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We report some evidences of an ongoing research on covariational reasoning with high school 

students concerned with the design and application of a Hypothetical Learning Trajectory (HLT) on 

problems of correlation and linear regression, as well as the role played by technology (Fathom) 

employed in the learning process. We observed student’s performance was slightly better when 

using the software in the instructional sequence, such as identifying and using the correlation 

strength and elaborating more refined arguments when comparing their own estimated model 

against the least squares line. 
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Context and research question 

Research by psychologists and statistical educators have produced extensive and robust knowledge 

about students’ covariational reasoning; for example, Zieffler and Garfield (2009, p. 11) 

summarized the general research findings in six statements: students are often, 1) significantly 

influenced by their personal beliefs with respect to their covariational judgments; 2) prone to 

believe that correlation exists where there’s actually none; 3) only considering data that support the 

joint presence of variables but ignore those referring to joint absence of variables; 4) greatly 

challenged to grasp negative correlation than dealing with a positive one; 5) disposed to make 

estimates below the actual correlation’s strength; and 6), susceptible to imply causal relationships 

when dealing with covariation tasks. In contrast, it’s more difficult to find research reports on how 

to produce progressive changes in students’ covariational reasoning as a result of teaching 

interventions in classroom, including why such changes would occur. In a recent literature review 

performed by the authors during the past 10 years, only five reports were found that include 

teaching interventions, two of which were carried out with tertiary level students (Inzunza, 2016, 

McLaren, 2012), two at high school level (Gil & Gibbs, 2017; Dierdorp, Bakker, Eijkelhof & van 

Maanen, 2011) and one at elementary level (Fitzallen, 2012). Such amount of investigations that 

report on the effects of instruction in students' covariational reasoning reflect Shaughnessy and 

others’ recommendations for future statistical educational research, who highlighted the need to 

carry out teaching experiments and document the effects of instruction. On the other hand, 

regarding research on the development of scientific thinking, students’ covariational reasoning has 

been widely investigated at the elementary and middle school levels (Zimmerman, 2007) but rarely 

at the high school level (even considering replica with adult subjects); in addition, the attended 

statistical content in most of these studies is mainly restricted to the association between qualitative 

variables. Thus, the results of our research aim to strengthen the body of knowledge on 

covariational reasoning within this particular trend. 
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In Mexico, the topic of numerical bivariate data, correlation and line of better fit is prescribed for 

most high school curricula, in which is common to find the use of dynamic statistical technology 

tools (e.g., Excel or Fathom) as a resource that could play a fundamental role in producing 

progressive changes in students' reasoning; in particular, technology can help promote covariational 

reasoning because it allows students to optimize the time it takes to make a graph and relieves the 

burden of making complex calculations. Given this context, the purpose of this study is to identify 

patterns in students’ reasoning emerged from the implementation of a developing hypothetical 

learning trajectory about linear regression and correlation; we propose a research question 

consistent with the following analysis strategy: to determine and compare reasoning patterns with 

some previously detected in an exploratory-diagnostic study where no teaching intervention was 

performed. Therefore, the new progressive patterns provide cues to the achievements gained during 

the new teaching strategy, so that our research question becomes: What reasoning patterns emerge 

in students’ solutions to problems of correlation and line of best fit during and as a result of student 

participation in a learning trajectory that includes extensive use of Fathom? 

Conceptual framework 

We rely on three fundamental ideas: (1) covariational reasoning, (2) the notion of aggregate, and 

(3) the mechanism of a hypothetical learning trajectory. Covariational reasoning is characterized as 

thinking process carried out by the subjects related to judgments and interpretations about the 

relationship that exists between two variables. Carlson, Jacobs, Coe, Larsen & Hsu (2002) indicate 

that covariational reasoning is defined as the cognitive activities included in the coordination of two 

quantitative variables while attending to the ways in which they change one with respect to the 

other; this type of reasoning also entails understanding many features of variation in which variation 

with respect to the linear fit model is highlighted. Some studies discuss the modeling of variation 

and the importance of considering both explained and unexplained variation when data is explored; 

these two characteristics of variation are of particular interest in the study of the linear regression 

between two quantitative variables because the isolation and modeling of aspects of variation 

allows to carry out predictions, explanations and control, as well as to question why variation 

occurs resulting in the search for its causes. 

In a linear regression and correlation context, the notion of aggregate is related to the form in which 

learners perceive a bi-variate data set through its representation in a scatterplot, and it’s also related 

with the objectives of interpreting the possible relation that exists between the variables that 

generate the data, propose a linear model that best fits the data and estimate new values for the 

response variable within the available data set. Bakker (2004) and Dierdrop et al. (2011) highlighted 

the importance of such notion in students’ learning process since it allows for drawing conclusions 

about regression and correlation given that it is through this reasoning that one can identify trends 

that extend beyond the correlated data; that is, to assume the notion of aggregate as to set a structure 

opposed to the attributes that could be addressed to aisled data points. 

Finally, the notion of an HLT was introduced by Simon (1995) as an essential component of a 

constructivist teaching and learning posture. The mechanism involves the selection and dynamic 

interaction between three main components: learning objectives, a set of mathematical tasks, and 

the associated learning hypotheses as a prediction of students’ actions and reasoning in response to 



 

 

the activities. We intend to employ such mechanism in our research both as a device for planning 

didactic interventions as well as a research vehicle, which requires a cycling revisiting of the three 

mentioned elements grounded in students’ practices and reasoning patterns. 

Method 

The previous study, constructing the HLT. Learning activities of the HLT are based on a 

questionnaire applied in 2016 to two groups of high school students enrolled in their senior year 

(17-18 years) in a public school; a total of 96 students participated in the study (Medina, Olay & 

Sánchez, 2016). From the analysis carried out in this exploratory test, students’ responses to the 

problems (described up next) exhibited the following main learning obstacles: 

 Students do not assume the data set as a whole, as an aggregate with its own properties, but 

as isolated cases with independent ones; to draw a line of best fit, they do not consider the 

variation that exists between the data and the position the model should have, and tend to 

only consider some points of the data available (such as the first and last ones, or the highest 

and lowest values of the set). 

 The idea of creating a diagram to represent the bivariate data does not arise intuitively; 

students don’t clearly identify properties such as the intensity of the relationship between the 

variables nor the meaning of the data pairs; and when facing prediction problems, do not use 

statistical concepts but rely heavily on arithmetic procedures. 

Based on the difficulties encountered in this study, learning hypothesis for the design of the HLT 

were developed: students should be able to convert data collected in tables to a graphic 

representation (scatter plot diagram); reflect on how to use all data when proposing their line of best 

fit; understand and discuss the meaning of the line of best fit as the line that minimizes the 

estimation error; consider the development of a scatterplot as a necessary tool for the analysis of the 

relationship between two variables; make hypotheses about the relationship between two variables 

(graduated: none, little, lots of’) based on the analysis of a scatter plot diagram; and obtain the least 

squares linear model to determine the value of the requested response variable. These hypotheses 

were condensed in two main learning objectives, (1) the learning about distributions of bivariate 

data: which intends for students to identify what elements, like the form and the tendency of a cloud 

of data points, are determining to establish the type of relation that exists between two quantitative 

variables, and (2), the learning about the variation of the data with respect to the linear adjustment 

model: which intends for students to identify that the linear adjustment model has an intrinsic 

random character rooted in the data itself. 

Participants, instruments and execution. The current version of the HLT was applied to a group of 

40 students (15 males, 25 females; 17-18 years old), arranged in 20 pairs, also enrolled in their 

senior year on a public high school in Mexico City; they previously received instruction on some 

essential descriptive statistics topics (statistical graphs, tendency and variability measures) and a 

mild technical-procedural introduction to linear regression and correlation. The application of the 

experiment consisted of 4 sessions of approximately 2 hours each: students familiarized with 

Fathom’s basic commands with an instruction activity during the first session; in session 2, students 

faced the gas consumption problem [adapted from Moore, 1998; item (i), figure 1] in which they 



 

 

proposed their line of best fit using the software, as well as analysis of some characteristics of the 

possible correlation between the variables (intensity and direction); such evidence which allowed 

the researchers to produce detailed descriptions of the visual analysis performed by the students and 

their justifications. 

   

Figure1: Data used in the gas consumption problem [(i), left], and in the arm and height measures 

problem [(ii), right] 

This is, students were asked about the form of the distribution of the data in the scatter plot, with 

which they could propose their own linear model that best fit the data (all of the instruction required 

the use of Fathom). In session 3, a further investigation of this problem was performed by adding a 

prediction item and a comparative analysis of the least squares line provided by the software against 

the students’ own model. Finally, in session 4, students faced the height and arm measures problem 

[item (ii), Figure 1], in which data was produced and taken by and from a sample of the 

participants. Once again, besides comparing students’ own model against the least squares line, the 

value corresponding to the sum of squares (errors) was provided through the software as a 

variability measure between the data and the linear models. 

Data and analysis tools. Our primary source of data are students’ written responses to the activities, 

fieldnotes and video recordings. We rely on principles and basic coding techniques provided by the 

Grounded Theory, which emphasizes the creation of categories and emergent theory based on the 

data that is systematically and exhaustively collected during the investigation. Analysis of students’ 

responses consisted of identifying patterns exhibited in at least two pairs of students (open and axial 

coding); each one was given a code defined below, leading to ten emergent codes assigned into one 

of three groups: inconsistent, favorable or neutral; these adjectives refer to their relationship with 

normative covariational reasoning. Inconsistent codes correspond to reasoning features that we 

consider difficult the understanding of normative ideas embedded in covariational reasoning, while 

favorable codes prefigure or constitute partially aligned basis for normative reasoning considering 

that additional teaching support can help to overcome; neutral codes refer to those which we didn’t 

find reasons to be classified as neither of the former. 

Results 

Inconsistent codes are labelled A1-A5, favorable are labelled B1-B4, and the only neutral 

corresponds to C1; we now briefly describe and exemplify these codes using the notation “PX” to 

denote a specific pair of students’ response. 



 

 

A1. Illusion of linearity (or proportionality). When confronted with a prediction problem, it consists 

of proposing a plausible value of Y given a value x0, a specific point of the data set is chosen to 

formulate and apply a rule of three. An example of this reasoning comes with P8’s response (gas 

consumption problem): “We applied a rule of three with the average temperature of 10.7 cause is 

the closest to 8, 3
3
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7.10
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
 of gas”. 

A2. Incidence in the maximum amount of points. To determine the line of best fit, a line that goes 

through the maximum number of points is proposed, and the criterion is also used to judge the 

appropriateness of the model. This reasoning, exhibited in the gas consumption and temperature 

problem, is directly exemplified by P7: “…we positioned the line so it touched the maximum 

amount of points”. 

A3. Attention to irregularity. To describe a tendency or when judging the intensity of the 

correlation, points that deviate from a possible regularity or that are misaligned are noted and used 

as an argument. For example, when describing the tendency in the data presented in the scatterplot 

(height and arm measures problem), P4 responded “No [tendency is noted or present], there are 

only 4 points aligned”. 

A4. Software references. When describing a tendency in the data or justifying a proposal for the line 

of best fit, actions with the software are mentioned but no response to the actual question is given; 

as an example of such reasoning, P1 responded (gas consumption and temperature problem) “…we 

draw the line with the pointer until adjusting it”. 

A5. Idiosyncratic. Answers are given using terms that do not correspond to the common (statistical) 

usage; most likely, students assign a personal meaning that is not possible to deduce from their 

written statements. P18 exemplifies this rationale when describe their expectation about how gas 

consumption varies with the temperature by saying “it all should depend of the weather”. 

B1. Describe the tendency. Students formulate expressions that indicate if the tendency is either 

positive or negative. Such expressions can be widely general like “goes down/goes up”, or much 

more specific “as long as X increments, Y diminishes”. For example, when describing the type of 

tendency in both problems, P3 and P16 mentioned, respectively, “yes, the points are rising and 

forming a straight line”, and “at a higher temperature the less [gas] consumption, and the lower the 

temperature the higher [gas] consumption”. 

B2. Exclusive reference to the line. The criterion consists of identifying the staggering of the points 

around a straight line but without describing its’ direction; e.g., when describing the tendency in the 

data in the gas consumption problem, students like P20 provide answers like “yes, [the points group 

into] in a straight line”. 

B3. Through the middle of the points. This method consists of proposing a line that goes through the 

middle of the data set in the scatterplot; in some cases, it refers to getting an equal number of points 

on each side of the line (one half above and the other one under). As an example of such strategy, 

P5 justified their proposal of the best fit line in the height and arm measures problem by saying “we 

placed it in the middle of the points to adjust it the most”. 



 

 

B4. Closeness. The best fit line is the one considered as the closest to all points, in which 

“closeness” implies minimizing the sum of the residuals. This type of responses arises when 

students observe how the least square method is about using the software. An example of such 

thinking is provided by P1 in the height and arm measure problem: “…[we placed the line]so that 

all the points are the closest to it”, or by P9 when comparing and analyzing their own proposal of 

the best fit line: “…[in our case] the points are farer to the line, so the squares get bigger”. 

C1. Software use. These responses only provide results or values taken from the software without 

adding comments or interpretations about them; for example, when P3 is trying to describe the 

intensity of the correlation in the height and arm measures problem, they just provide the value for 

r: “0.883844”. 

Conclusions and discussion 

We consider codes A1 and A2 as central when designing a teaching strategy. The term “illusion of 

linearity” has been adopted from van Doreen, de Book, Depaepe, Janssens & Verschaffel (2003) 

who rely on Freudenthal and define it as “the seduction to deal with each numerical relation as 

though it were linear”; the authors mention that such reasoning has been found in probability tasks 

as well as in arithmetic and algebraic domains. Casey (2014) pointed out that “many students 

required that their line [of best fit] go through the origin […], they had a preconceived notion that 

all lines start there”, a similar reasoning we understand as a geometric form of the linearity illusion; 

however, it should be noted that both reasonings are not fully equivalent but mathematically related 

to each other. In our previous study (Medina et al., 2016), about 80% of the responses were coded 

as A1 while in the current one this percentage diminished to 40% (Table 1). We interpret that the 

often-inadequate exploitation of such resource goes beyond the overvaluation it receives in most 

elementary educational curricula (e.g., consider Darwin’s famous statement: “I have no faith in 

anything short of actual measurement and the rule of three”; such reasoning was quite common 

before Galton and others’ statistical contributions). 

Code A1 B1 Others 

Gas consumption problem 8 3 9 

Table 1: Incidence of codes in pairs of students given to the prediction item 

The rationale behind code A2 (incidence in the maximum amount of points) was also found in 

Casey’s 2014 revision, in which she explains its presence as a consequence of previous learning 

gained in other mathematical domains such as analytic geometry. Besides addressing its possible 

causes, it is also convenient to discuss its possible implications. Students’ reasoning seems to 

partition the data into two parts, cases that rely directly into the linear model (explicit or imaginary) 

and those that doesn’t; that is, cases that belong or fulfill the model conditions and the ones that 

don’t. This lends support to the conjecture that at this point, students are still struggling to assume 

the data as an aggregate but at the most, as an aggregate partitioned in two. 

The logic behind code A3 (attention to irregularity) could be expressed as a particular case of the 

former but focused exclusively on the points “outside” of the model. In doing so, the points that 

“deviate” from the model are considered as a different class with respect to the others, which may 



 

 

be interpreted as a form to deal (or exclude) the notion of error involved in the use of statistical-

inferential models, or even as expressions of overprivileged technical-deterministic reasoning 

(which could be addressed by promoting more reflection into the context of the data; e.g., by 

elucidating possible causes for the “lack of adjustment” of all the points). 

As showed in Table 2, codes B1 (describe the tendency) and B2 (exclusive reference to the line) 

had an increased frequency when dealing with the second problem (final stage of the HLT), and a 

significant increase was also evident for code A3. The bigger frequency for code B1 might be 

attributed to students gained experience in this point of the trajectory despite the fact of dealing with 

a negative correlation; however, this feature might also have provoked that A3 appeared more often 

because of attending a more disperse data set. 

Codes B1 B2 A3 Others 

Gas consumption problem 2 4 1 13 

Height and arm problem 5 5 5 5 

Table 2: Incidence of codes in pairs of students when describing the tendency in the data 

As previously mentioned, codes B3 and B4 appeared as criteria of students when attempting to 

elaborate a linear model of their own (Table 3). Such codes were absent in our 2016 study, which 

led us to believe that their emergence might be motivated by the incorporation of the software to the 

instruction sequence. Specifically, adding a movable line and then comparing it against the least 

squares line seemed to have enable students identify how the former “goes through all of the 

points”; also, displaying and interpreting the sum of the squares through the software helped to 

capitalize the idea of the line of the best fit as the one that best approximates all points in the data 

set. 

Codes B3 B4 Others 

Gas consumption problem 2 0 18 

Height and arm problem 2 6 8 

Table 3: Incidence of codes in pairs of students when elaborating a line of best fit on their own 

To summarize and conclude this report, codes A1 and A2 are considered patterns that evidence 

students’ struggle when considering a data set as an aggregate in the context of linear regression and 

correlation problems. Codes B1 and B2 indicate a progress in students’ conceptions regarding their 

ability to conceive and identify a general structure subjacent to the data, although with great 

challenge when it comes to interpret and reconciliate the random inferential nature of the model. 

The emergence of codes B3 and B4 suggest that the use of Fathom might have contributed to 

improve students’ understanding by helping them to associate the line of best fit to the one that 

minimizes the sum of errors or deviations between the points and the model. Finally, a major 

limitation of the HLT is the lack of incidence in promoting reflection upon the reasons of why such 

correlations might exist (or not); a new version of the HLT and future researches could target such 

deficiency by addressing students’ reasoning in aspects related to causality and variability. 
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