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Abstract

The planktonic foraminifera genus Globigerinoides provides a prime example of a species-

rich genus in which genetic and morphological divergence are uncorrelated. To shed light

on the evolutionary processes that lead to the present-day diversity of Globigerinoides, we

investigated the genetic, ecological and morphological divergence of its constituent species.

We assembled a global collection of single-cell barcode sequences and show that the

genus consists of eight distinct genetic types organized in five extant morphospecies.

Based on morphological evidence, we reassign the species Globoturborotalita tenella to

Globigerinoides and amend Globigerinoides ruber by formally proposing two new subspe-

cies, G. ruber albus n.subsp. and G. ruber ruber in order to express their subspecies level

distinction and to replace the informal G. ruber “white” and G. ruber “pink”, respectively. The

genetic types within G. ruber and Globigerinoides elongatus show a combination of ende-

mism and coexistence, with little evidence for ecological differentiation. CT-scanning and

ontogeny analysis reveal that the diagnostic differences in adult morphologies could be

explained by alterations of the ontogenetic trajectories towards final (reproductive) size.

This indicates that heterochrony may have caused the observed decoupling between

genetic and morphological diversification within the genus. We find little evidence for envi-

ronmental forcing of either the genetic or the morphological diversification, which allude to

biotic interactions such as symbiosis, as the driver of speciation in Globigerinoides.
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Introduction

Species of the genus Globigerinoides are the dominant constituent of tropical-subtropical

planktonic foraminifera assemblages throughout the Neogene and represent a cornerstone

for paleoceanography. The extant members of the genus feature one of the most iconic spe-

cies of planktonic foraminifera that was formally described from the Atlantic by d’Orbigny in

1839 as Globigerina rubra, after the reddish coloration of its test. The species definition was

later widened to include colorless specimens as variants with the same morphology because

shell color was not considered taxonomically relevant at the species level [1,2]. It was further

broadened by Parker [3] to include the morphologically similar Globigerinoides elongatus
(d’Orbigny) and Globigerinoides pyramidalis (van den Broeck) that were originally distin-

guished using characteristics such as the compression of the last chamber and a higher tro-

chospire. Parker [3] considered that the three species formed a morphological continuum

with G. ruber and this broad definition was endorsed by Kennett and Srinivasan in 1983 [4],

who interpreted G. elongatus, G. pyramidalis and also G. cyclostomus (Galloway and Wissler)

as ecophenotypic variants of G. ruber. This broad species definition has remained stable

since, but most researchers continued to distinguish the two “chromotypes” as G. ruber
“white” and G. ruber “pink”, because of differences in biogeography, seasonality and isotopic

composition [5]. Their distinction is particularly highlighted by the extinction of G. ruber
“pink” in the Indian and Pacific Oceans 120,000 years ago, while persisting in the Atlantic to

the present day [6].

The lumping of G. elongatus, G. pyramidalis, G. cyclostomus with G. ruber was questioned

by Robbins and Healy-Williams [7], who identified stable isotopic differences among morpho-

logical variants. This motivated Wang [8] to further test for isotopic differences between mor-

phological variants of G. ruber “white”. Wang [8] informally re-created the split between

G. ruber and G. elongatus, that had already been identified by d’Orbigny and referred to the

original G. ruber as G. ruber sensu stricto (s.s.) and lumped the specimens matching the

description of G. elongatus, G. pyramidalis and G. cyclostomus into G. ruber sensu lato (s.l.).

Wang [8] showed subtle but statistically significant differences of 0.21 ± 0.21‰ for δ18O and

−0.28±0.29‰ for δ13C between the two informal taxonomic units in the South China Sea and

suggested that G. ruber s.s. lived in the upper 30 meters of the water column and G. ruber s.l.

lived below 30 meters. Wang used this feature to reconstruct the variation of the thermal struc-

ture of the water column during the last glacial cycle. The work of Wang [8] triggered a series

of studies during the last two decades that examined chemical/compositional, morphological

and ecological differences between G. ruber s.s. and G. ruber s.l. [8–21] to assess their useful-

ness for paleoceanography.

In parallel to the investigation of the ecology of G. ruber s.l. and s.s., sequencing of the

small sub-unit of the ribosomal RNA gene (SSU rDNA) shed new light on the diversity

within the genus Globigerinoides. The earliest molecular phylogenies by Darling et al. [22,23]

demonstrated that the two chromotypes of G. ruber are genetically distinct, in line with the

well-established biogeographical and ecological differences [5]. Later, Darling and Wade [24]

described further genetic diversity within G. ruber “white” and Kuroyanagi et al. [25] sug-

gested that the genetic discontinuity observed within G. ruber “white” mirrored the sensu

stricto/sensu lato division of Wang [8]. These observations were confirmed by Aurahs et al.

[26] who identified four genotypes in G. ruber “white” (Ia, Ib, IIa and IIb) and in a second

study [27], these authors analysed images of the barcoded specimens to show that genotypes

Ia and Ib matched the diagnosis of G. ruber s.s., whilst genotype IIa matched the diagnosis of

G. ruber s.l. As a result, they proposed to reinstate Globigerinoides elongatus as a valid name

for genotype IIa. Irrespective of the complicated taxonomy, all genetic studies consistently
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identified G. elongatus (or G. ruber s.l.) as a sister to the morphologically distinct species

G. conglobatus. The contrast between the genetic divergence and morphological similarity

of G. elongatus and G. ruber implies a disconnection between genetic and morphological

evolution in the genus. Thus, next to the need to clarify and stabilize its nomenclature, the

complex diversification pattern in the genus also calls for a comprehensive study of the pat-

tern of speciation and morphological diversification leading to the present-day diversity in

Globigerinoides.
To this end, we assembled a global dataset of single-cell SSU rDNA sequences covering all

morphospecies of the genus, applied an objective molecular nomenclature system [28] to parse

the genetic variability and used the shell morphology of the barcoded specimens to map the

genetic units onto a morphological taxonomic framework. To explore patterns of morphologi-

cal evolution within the genus, we used CT scanning to quantify the ontogenetic trajectory of

the five morphospecies [29,30]. This allowed us to investigate whether the diagnostic differ-

ences in adult morphology between closely related species in the genus could be the result of

heterochrony, with slight alteration in the developmental sequence leading to large differences

in adult shape and size. Finally, we use our collection of globally distributed samples to analyze

the ecology of the morphological and cryptic species in the genus and discuss the potential

drivers of their evolution.

Material

Living planktonic foraminifera of the morphospecies Globoturborotalita rubescens, Globigeri-
noides ruber, Globigerinoides conglobatus, Globigerinoides elongatus and Globigerinoides
tenellus were sampled between 1993 and 2015 during 23 research cruises and 6 near shore

sampling campaigns (Fig 1) in all oceans. No sampling permit was needed for planktonic fora-

minifera. G. rubescens was included in the analysis to serve as outgroup in phylogenetic analy-

ses. The specimens were sampled using different open-closing plankton net systems, simple

plankton nets or ship pump systems between 0 and 700 m water depth and mesh sizes from

63 to 200 μm. The specimens were separated from other plankton, cleaned with brushes and

either transferred onto cardboard slides and air-dried or directly transferred into DNA extrac-

tion buffer and stored at -20˚C or -80˚C. The specimens stored on cardboard slides were trans-

ferred into DNA extraction buffer later in the laboratory.

Methods

Molecular analyses

DNA extraction was performed using either the DOC protocol, the GITC� protocol or the

Urea Protocol [31]. A fragment located at the 3’end of the of the SSU rDNA between the prim-

ers S14F1 or S14p and 1528R [32] was amplified and the PCR products obtained were purified

and sequenced directly with Sanger sequencing by several service providers (LGC Genomics

Berlin, University of Edinburgh Gene Pool, AGOWA and Station Biologique de Roscoff). In

addition, we randomly selected eight specimens for cloning in order to quantify potential

intragenomic variability and used the TOPO TA cloning kit (Invitrogen) according to manu-

facturer instructions. Between 2 and 13 clones were sequenced per individual. All chromato-

grams were carefully checked to ensure sequence quality and were deposited on NCBI under

the accession numbers MN383323 to MN384218. The methodologies used for sampling, DNA

extraction, amplification and cloning of single planktonic foraminifera cells are described in

Weiner et al. [31].
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Public databases

We completed our dataset with sequences already made available by earlier studies. First, we

retrieved all 359 SSU rDNA sequences of the six morphospecies that were stored in the PFR2

database v 1.0 [33]. We then manually queried the NCBI portal (last accession: 15.11.2018)

and retrieved seven additional sequences of G. ruber (Accession numbers KY397454-

KY397460).

Detailed information on handling procedures, sequences and associated metadata of the

newly generated data and those retrieved from public databases are provided in S1 Table.

Molecular nomenclature

The genetic diversity within the six morphospecies was classified into a three-tier hierarchical

scheme of Molecular Taxonomic Units following the system described in Morard et al [28].

The system uses the amplified ~1000 bp long sequence fragment located at the 3’end of the

SSU rDNA between stems 32 and 50 as molecular marker [32], which is the barcode selected

for benthic foraminifera [34] that covers six variable regions, three of which are foraminifera-

specific. To exclude potential sequencing errors when constructing the nomenclature, we

retained only sequences for which the individual sequence pattern was observed at least three

times across our dataset. All distinct sequences in the resulting trimmed dataset were consid-

ered as basetypes. Basetypes co-occurring within one or several individuals (because of intra-

individual variability among tandem copies of the gene) were assembled into basegroups, and

constitute the lowest level of the nomenclature (MOTUs lvl-3). The variability observed

between the basetypes represents at least the intragenomic (intra-individual) variability and

the variability observed among different basegroups is considered to represent at least the level

of population variability. If a unique basetype is observed within a single specimen, which is

the majority of cases in our dataset (see Results), the resulting basegroup contains a single

Fig 1. Samples collection. (A) Locations of the samples analyzed in the study. Each symbol corresponds to a scientific cruise or near shore collection

site. Cruise names are indicated in the legend. The background color represent the annual sea surface temperature extracted from the World Ocean

Atlas [105]. (B) Sampling coverage of the five species of the genus Globigerinoides. The colors in the background represent the relative abundance in

sediments extracted from the FORCENS database [106]. Note that G. ruber albus n.subsp. and G. elongatus have the same map because they usually

were not be discriminated in micropaleontological studies. The maps were generated using Ocean Data View [107].

https://doi.org/10.1371/journal.pone.0225246.g001
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basetype. The levels 1 and 2 of the nomenclature (following Morard et al. [28]) were con-

structed using a combination of two automated delimitation methods, the Automated Barcode

Gap Discovery method (ABGD; [35]) and the Poisson Tree Process (PTP; [36]). The sequences

were aligned with MAFFT v.7 [37] and a phylogenetic inference was calculated with 1000 non-

parametric bootstrapping pseudo replicates based on a BioNJ starting tree using PhyML [38].

The best substitution models were selected using the Smart Model Selection [39] under Akaike

Information Criterion and the model GTR+I+G was selected. The resulting trees were submit-

ted to the PTP server (http://species.h-its.org/) under default settings. The same alignment that

served to generate the tree was submitted to the online ABGD server (http://wwwabi.snv.

jussieu.fr/public/abgd/abgdweb.html) using the Kimura K80 distance and default options. We

retained the initial (coarsest delimitation) and recursive partition (finest delimitation) pro-

vided with the lowest prior intraspecific divergence. We defined the MOTU lvl-2 as the finest

delimitation proposed by either ABGD or PTP and the MOTU lvl-1 as the coarsest. The pro-

posed delimitations are retained as working hypotheses provided that two clones belonging to

the same basegroup were not attributed to different partitions (oversplit) and that sequences

belonging to different morphospecies were not grouped in the same partition (lumping). The

delimitation proposed by ABGD and PTP as well as the retained delimitation are reported in

Fig 2. As multiple, but partly overlapping, nomenclatural schemes were proposed by successive

studies [21–24, 40, 41], we reported the correspondence between these schemes and their

equivalent in our system (Fig 3 and S2 Table).

A significant part of the sequences had insufficient quality and/or coverage to be included

in the assessment of the diversity within the Globigerinoides plexus, but carried enough infor-

mation to be attributed to at least one MOTU level of our nomenclatural system. The Sanger

Fig 2. Molecular taxonomy of the genus Globigerinoides. Each branch represents a unique basetype, the symbol next to the branch represent the

individual basegroup and the colors represent unique morphospecies. The first set of rectangles represent the three automated delimitation proposed by

ABGD and PTP. The coarsest partition is retained as Lineage (MOTUs level-1) and encircled with a solid line, the finest partition is retained as

Genotype (MOTUs level-2) and encircled in dotted line. The resulting 3-rank molecular taxonomy is showed in the second set of rectangles.

https://doi.org/10.1371/journal.pone.0225246.g002
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sequences not meeting the quality criteria were compared to the basetype sequences and

received the finest taxonomic attribution possible based on the availability of diagnostic sites

in the region they covered (See S1 Table). Biogeography and temporal occurrences of the

genotypes and basegroups are shown in Fig 4.

Sample coverage and environmental parameters

We calculated rarefaction curves at MOTUs lvl-2 and lvl-3 (Fig 5) and complemented the

approach with a first order Jackknifing to evaluate the coverage of our dataset (Table 1).

Because G. tenellus and G. conglobatus were under-sampled (60 sequences in a dataset of 1251

sequences), we calculated the rarefaction curves to include all species and selectively only for

G. ruber and G. elongatus separately (Fig 5). Likewise, the Jackknifing was applied to G. ruber
and G. elongatus combined at the MOTUs lvl-2 and on each species separately at the lvl-3

(Table 1). We then applied the analyses to the global dataset and separately on three main bio-

geographic regions: North Atlantic Ocean, Indian Ocean and Pacific Ocean.

The dataset constituted for this study is the result of the efforts by multiple research teams

and re-exploitation of public data, therefore it was difficult to recover and harmonize the envi-

ronmental parameters measured during each sampling campaign. In order to analyze the

Fig 3. Development and consistency across the nomenclatural scheme proposed for the genus Globigerinoides. The Sankey diagram indicates the

change in the names, addition of new taxa, lumping and splitting of existing units across the successive studies. The change of colors indicates when

formal taxonomic revisions were made.

https://doi.org/10.1371/journal.pone.0225246.g003
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Fig 4. Biogeographic distribution of constitutive genotypes (MOTUs lvl-2) and basegroups (MOTUs lvl-3) of the genus Globigerinoides in the

sample set. (A) The circles indicate where the genotypes have been collected and are filled when the basegroup has been identified in the sample. Note

that the coverage for G. conglobatus and G. tenellus is insufficient for robust interpretation. The maps were generated using Ocean Data View [107]. (B)

Windrose diagram showing the month of collection of each genotype and basegroup. The month of collection have been normalized in regard to

hemisphere.

https://doi.org/10.1371/journal.pone.0225246.g004
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ecological preferences of the sampled genotypes and basegroups, we chose to use geographic

coordinates and collection date to extract the monthly average values of the following environ-

mental parameters from public databases: Sea Surface Temperature (SST), Mixed Layer

Salinity (MLS), Chlorophyll concentration (CHL), Particulate Organic Carbon (POC) and

Productivity (PROD). The SST, CHL and POC parameters were extracted from the MODI-

S-Aqua (NASA, Greenbelt, MD, USA) database [42–44], the MLS was extracted from the Iso-

pycnal/Mixed-layer Ocean Climatology (MIMOC) database [45] and PROD was calculated

following the Vertically Generalized Production Model from Behrenfeld and Falkowski [46].

In this way, we could gather a homogeneous environmental dataset although it is less precise

than in-situ measurements. We display the environmental parameter values at the morphospe-

cies, genotype and basegroup levels in Fig 6 and tested if the distribution of values of sister taxa

at each taxonomic level was the same (null hypothesis) with a simple non-parametric Wil-

coxon-Mann-Whitney U-test using the Bonferroni correction (Table 2). All statistical analyses

were performed in PAST 3.21 [47].

Fig 5. Assessment of species richness. Rarefaction curves for the different basins and the entire dataset at the genotype (MOTUs lvl-2) and basegroup

(MOTUs lvl-3) levels, and for all morphospecies together and for the better sampled G. ruber and G. elongatus only.

https://doi.org/10.1371/journal.pone.0225246.g005
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Phylogeny and molecular clock

To reconstruct the evolutionary history of the genus Globigerinoides, we applied a molecular

clock estimation using the same alignment as for the maximum likelihood tree inference (Fig

2). We used the divergence between G. rubescens and the genus Globigerinoides (23.8 Ma [48]),

the First Appearance Datum (FAD) of G. conglobatus (8–8.6 Ma) and G. tenellus (2.5 Ma),

which are known from the fossil record [49], as minimum ages to constrain the phylogeny.

We used a relaxed clock model implemented in BEAST v.1.8.4 [50]. Model parameters were

set using BEAUti v1.8.4. The distribution of the fixed node age prior was considered normal

and the speciation rate was assumed constant under the Yule-Process. The GTR (Generalised

Time Reversible) model was selected as substitution model and an UPGMA (Unweighted Pair

Group method with arithmetic mean) tree was calculated as starting tree. Markov-Chain-

Monte Carlo (MCMC) analyses were conducted for 10,000,000 generations, with a burn-in of

1000 generations and saving each 1000th generation. The maximum clade credibility tree with

median node heights was calculated in TREEAnnotator from the BEAST package, with a

burn-in of 100 trees and a posterior probability limit of 0. The resulting tree was then visual-

ized in FigTree v. 1.3.1 [51] and is shown in Fig 7.

3D morphology

We produced CT-scans of G. rubescens, G. ruber albus n.subsp., G. conglobatus, G. elongatus
and G. tenellus to assess the ontogenetic development of each species. To ensure that the speci-

mens had completed their life cycle, which usually is not the case for the living specimens col-

lected in the water column, we used specimens recently deposited on the seafloor from a core

top sample retrieved south of Barbados at station GeoB3935 (12˚36.8 N, 59˚23.2 W; bottom

depth 1554 meters) [52]. We chose this sample because of the exceptional preservation of the

tests, which were free of fine-grained sediment. Moreover, its provenance is close to the sam-

pling localitions where Globigerinoides spp. were previously analysed for their ontogeny [53].

From this sample, we selected one specimen per morphospecies, choosing specimens with

Table 1. Results of the Jackknifing analyses that provide the comparison between the observed diversity (So) and the estimated basegroup diversity (Se) for G. ruber
and G. elongatus basegroup at global and basins scales. Note that the entire diversity of G. ruber and G. elongatus may not have been entirely captured in the Atlantic

Ocean and the Indian Ocean respectively because So does not fall into the 95% confidence interval (CI95).

Global North Atlantic Ocean Indian Ocean Pacific Ocean

G. ruber (albus + ruber) + G. elongatus (GENOTYPE) So 5 4 4 4

Se 5 4 4 4

CI95 0 0 0 0

So 2 Se ± CI95 TRUE TRUE TRUE TRUE

G. ruber (albus + ruber) + G. elongatus (BASEGROUP) So 9 6 6 8

Se 9 7.97183 6.97872 8

CI95 0 2.713228 1.9182971 0

So 2 Se ± CI95 TRUE FALSE FALSE TRUE

G. ruber (albus + ruber) (BASEGROUP) So 6 4 3 5

Se 6 5.97183 3 5

CI95 0 2.713228 0 0

So 2 Se ± CI95 TRUE FALSE TRUE TRUE

G. elongatus (BASEGROUP) So 3 2 3 3

Se 3 2 3.97872 3

CI95 0 0 1.9182971 0

So 2 Se ± CI95 TRUE TRUE FALSE TRUE

https://doi.org/10.1371/journal.pone.0225246.t001
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well-developed characteristic features. We choose specimens that were of large size and had a

thick test, which indicates maturity and facilitates CT-scanning at good resolution. Indeed,

four of the five species have a diminutive final chamber indicative of reproduction by gameto-

genesis (the reproductive terminal stage sensu Brummer et al. [53]), while G. ruber is

Fig 6. Environmental parameters. Distribution of the monthly values of Sea Surface Temperature (SST), Mixed Layer

Salinity (MLS), Chlorophyll (CHL), Particulate Organic Carbon (POC) and Productivity (Prod), observed for the

morphospecies, genotypes and basegroups of G. elongatus, G. ruber albus n.subsp. and G. ruber ruber. The statistical

tests to compare the distribution are provided in Table 2. The box plot were generated with R [108] using the ggplot2

package [109].

https://doi.org/10.1371/journal.pone.0225246.g006
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normalform. We realize that planktonic foraminifera are morphologically variable, not only in

their adult shape but also throughout their ontogeny [53], so the decision to analyze only a sin-

gle specimen per morphospecies was made in order to achieve a first rough assessment of the

main differences of ontogenetic trajectories among the morphospecies. Such trajectories are

known to differ between species but are stable within species, with much variability correlated

with proloculus size [29,30,53]. The selected specimens were individually mounted on a stub

and scanned at a cubic resolution of 1.2 μm with a General Electrics V/Tome/x micro-scanner

(PACEA, Bordeaux University). Each scan was performed at 80 kV and 180 μA without filter

as the shell had a low X-ray absorption rate. The smaller specimen of G. rubescens was analyzed

with a cubic resolution of 0.68 μm with a Zeiss Versa 500 at 80kV, 7W and with a filter LE1.

Table 2. Results of Mann-Whitney tests for environmental parameters comparisons. The significant values are shown in bold.

Morphospecies SST MLS CHL POC Prod

G. elongatus vs G.ruber albus 1.18E-04 0.02 0.82 1.00 0.18

G. elongatus vs G.ruber ruber 0.72 0.10 0.87 1.00 1.00

G.ruber albus vs G.ruber ruber 2.32E-07 3.82E-07 0.05 0.20 0.01

Genotype

G. ruber albus Ia vs G. ruber albus Ib 1.00 1.00 1.00 1.00 0.02

G. ruber albus Ia vs G. ruber albus Ic 1.00 1.00 1.00 1.00 0.29

G. ruber albus Ib vs G. ruber albus Ic 1.00 1.00 1.00 1.00 1.00

Basegroup

G. elongatus Ia1 vs G. elongatus Ia2 2.00E-03 0.02 1.00 1.00 0.01

G. elongatus Ia1 vs G. elongatus Ia3 0.10 0.43 1.00 1.00 0.25

G. elongatus Ia2 vs G. elongatus Ia3 0.56 1.00 1.00 1.00 0.37

G. ruber albus Ia1 vs G. ruber albus Ia2 1.00 1.00 1.00 1.00 1.00

G. ruber albus Ib1 vs G. ruber albus Ib2 0.28 0.82 1.00 1.00 1.00

https://doi.org/10.1371/journal.pone.0225246.t002

Fig 7. Molecular clock estimates of the diversification of the Globigerinoides genus rooted on Globoturborotalita rubescens. The grey bars indicate

the uncertainties in the dating of the node and the stars indicate the nodes used for calibration (See text for details).

https://doi.org/10.1371/journal.pone.0225246.g007
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Semi-automated segmentation was used to reconstruct three-dimensional (3D) virtual surfaces

of the calcite volume (external morphology) of each specimen (Fig 8), and the inner volume of

individual chambers (Fig 9) were produced by manual segmentation with the ITK-SNAP v 3.6

software [54] to reconstruct the ontogenetic trajectory of each morphospecies. We automati-

cally extracted the volume, centroid position and major axis of individual chambers using a

custom script in MATLAB R2017b to calculate growth parameters of the trochospire, follow-

ing the model of Raup [55]. We calculated the whorl expansion rate W, the relative distance

between the generating curve and the axis of coiling D, the translation rate T and the shape of

the generating curve S. The calculated growth parameters of each species are displayed in Fig

10 and the numerical values are provided in S3 Table.

Results

Genetic diversity within Globigerinoides
Our dataset on the molecular diversity within the genus Globigerinoides and its sister species

G. rubescens includes 1251 Sanger sequences, of which 893 are new. All 1251 sequences cover

the same rDNA barcode region and originated from a total of 1159 individuals collected at 179

sampling stations (Fig 1). Among the 1251 sequences, 147 met the quality criteria to derive

molecular taxonomy and served to define a total of 17 basetypes (unique, replicable sequence

motifs). We observed three basetypes that co-occurred within two single individuals of

G. rubescens that were consequently grouped into a single basegroup. Additionally, we identi-

fied the co-occurrence of two basetypes within three clones from a single individual of G.

ruber, published by Kuroyanagi et al. [25]. Since this is the only observation of intragenomic

variability within the SSU rRNA gene in G. ruber, we consider it likely that it resulted from

contamination or PCR/sequencing error and we thus reject this single observation as evidence

Fig 8. 3D morphology. CT- scans of external morphology of representative specimens of the five species in four standard views for (1) G. conglobatus,
(2) G. ruber, (3) G. elongatus, (4) G. tenellus and (5) G. rubescens. The scaling of the species respects the difference in sizes.

https://doi.org/10.1371/journal.pone.0225246.g008
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for intragenomic variability in the species. As a result, we retained 15 basegroups (Fig 2), 14 of

these consisting of a single basetype, which provided a basis for the construction of a molecular

nomenclature of the group. The automated taxa partitions proposed by ABGD and PTP did

not violate any of the conditions of the taxonomic system (lumping of sequences belonging to

different morphotaxa or splitting of basetypes belonging to the same basegroup) and were thus

retained. Partitions by ABGD reflected the morphological species concept of the group. The

PTP analysis identified three partitions within G. ruber albus n.subsp. and two within G. con-
globatus, which were retained as distinct genotypes. No partitions were identified within the

morphospecies G. rubescens, G. elongatus, G. tenellus and G. ruber ruber indicating that these

morphospecies consist of only a single genotype.

Molecular and morphological revision of existing taxonomic concepts

The first DNA sequences of members of the genus Globigerinoides were made available in the

earliest publications on the genetic diversity of planktonic foraminifera [23,56–58], but

nomenclatural schemes to describe the cryptic diversity in the genus were presented only a

decade later in parallel and independently by Darling and Wade [24] and Kuroyanagi et al.

[25], who both identified five cryptic species within G. ruber (Fig 3). The complexity of naming

cryptic species further increased in the following year when Ujiié and Lipps [40] produced a

distinct nomenclatural scheme with only four cryptic species within G. ruber, whereas Aurahs

et al. [26] further developed the scheme initially proposed by Darling and Wade [24], but

Fig 9. Ontogenetic development of the five selected morphospecies. (A) The addition of individual chambers is shown with segmentation of the

inner volume from the proloculus to the final chamber. To accommodate the difference in size during the ontogeny and between the species, we have

decreased the relative size of the successive stage by 10% and provide scale bars at the beginning, middle and end of their ontogeny for reference. (B)

Relative proportions of the total inner volume occupied by each chamber. Color coding of the chamber is the same as in (A) with indication of the

transition between the successive ontogenetic stages marked colored lines (See main text for details). The dotted lines indicate when the exact transition

between stages is uncertain.

https://doi.org/10.1371/journal.pone.0225246.g009

Molecular and morphological diversity in Globigerinoides

PLOS ONE | https://doi.org/10.1371/journal.pone.0225246 December 5, 2019 13 / 30

https://doi.org/10.1371/journal.pone.0225246.g009
https://doi.org/10.1371/journal.pone.0225246


chose to interpret all subtle sequence differences across their dataset and produced a scheme

with 14 different cryptic species. Two years later, Aurahs et al. [27] reduced the diversity to

only eight cryptic species by considering only the most repeatable sequence pattern in their

dataset. Furthermore, they split the genetic diversity between G. ruber s. s. (G. ruber Ia, Ib, Ib2

and pink) and G. ruber s. l. (G. ruber IIa, IIa1, IIa2 and IIb) with the genotype IIa being consid-

ered as G. elongatus. André et al. [59] proposed a revision of the available nomenclature based

on automated methods for species delimitation to define cryptic diversity in planktonic fora-

minifera, which reduced the diversity to five cryptic species only.

In our study, we quadrupled the size of the dataset compared to previous studies and placed

all the formally described cryptic species into a new framework, and we identified only one

new basegroup in G. ruber albus n.subsp. (Ib2). We have also generated a SSU rDNA sequence

from a specimen identified on collection and by later observations as G. tenellus (S1 Fig) that

was identical to the sequences obtained from specimens of G. ruber Type IIb of Aurahs et al.

[27]. This allowed us to recognize this type as G. tenellus and thus return the species to Globi-
gerinoides, as a sister to G. elongatus. The extended and strictly curated dataset allowed for

Fig 10. Raup’s parameters. The scheme on the left represents the position of the centroids of the chambers in G. conglobatus in 3D space. The z-axis is

given by the coiling axis of the specimen. The radius r (distance between the coiling axis and the centroid of a given chamber), the height z (distance

between the centroids of the proloculus and a given chamber along the coiling axis) and the angle α (measured between the radii of two successive

chambers) are illustrated on the scheme. The segmentation of the inner volume of the last chamber is given in the right bottom corner of the scheme

together with the biometric measures H (Height of the chamber) and L (Length of the chamber). The equations of the parameters of the Raup model are

provided next to the graph (See explanation in the main text). The six panels on the right show the results for the Raup parameters for each chamber of

each specimen together with the cumulative volume and the whorl number. The results of the measurements and calculation of the Raup parameters

are provided in the S3 Table.

https://doi.org/10.1371/journal.pone.0225246.g010
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identifying one new basegroup in G. conglobatus as well as in G. tenellus and reducing the

number of basetypes to three within G. elongatus.
Since the genetic distance separating the “pink” and “white” chromospecies of G. ruber is

greater than the distance separating G. elongatus and G. tenellus (Fig 2), we feel compelled to

express the genetic and phenotypic distinction between the two lineages in formal taxonomy.

However, the phenotypic distinction reflects the color of the shell, not shell morphology, and

this character fades with age, rendering it impossible to distinguish the lineages in fossil mate-

rial older than ~750 kyr [6]. Therefore, we propose to use the subspecies names G. ruber albus
n.subsp. and G. ruber ruber, facilitating continuity by allowing the use of the nominotype

“G. ruber” at the species level in situations where the chromospecies cannot be differentiated.

Moreover, the physical holotype designated here combines the shell morphology with the SSU

rDNA drawn from the same individual, the first for a planktonic foraminifer. The physical

specimens have been deposited at the Naturalis Biodiversity Center, Leiden, the Netherlands.

Systematics

Phylum Foraminifera d’Orbigny, 1826

Class Globothalamea Pawlowski, Holzmann & Tyszka, 2013

Order Rotaliida Delage and Hérouard, 1896

Superfamily Globigerinoidea Carpenter, Parker & Jones, 1862

Family Globigerinidae Carpenter, Parker & Jones, 1862

Genus Globigerinoides Cushman, 1927, amended by Spezzaferri et al., 2015

Type species Globigerina rubra d’Orbigny, 1839

Species Globigerinoides ruber (d’Orbigny, 1839)

Subspecies Globigerinoides ruber albus n. subsp.

Type material: Holotype: Voucher C319 collected at 7.409˚S, 165.274˚E on 12.03.2013

between 0–20 meters water depth (Museum number: RGM.1332320). Paratypes: Voucher

C208 collected at 6.414˚N, 143.024˚E on 18.03.2013 between 80–100 meters water depth

(Museum Number: RGM.1332321), Voucher C281 collected at 22.719˚S, 170.918˚E on

08.03.2013 between 60–80 meters water depth (Museum Number: RGM.1332322) and Vouch-

ers C329 collected at 7.409˚S, 165.274˚E on 12.03.2013 between 0–20 meters water depth

(Museum number: RGM.133233). Light microscopy images of the type specimens are pro-

vided in S2 Fig.

Diagnosis: Differs from G. ruber ruber by the absence of reddish color of the shell, by the

presence of a distinct sequence motive in the SSU rDNA gene, by its seasonality and depth

habitat in the modern Atlantic and its presence in the Indopacific throughout the last 120 ka.

The two subspecies cannot be distinguished prior to 750 ka due to the fading of the color with

time and both are then captured as G. ruber well into the Neogene.

Description. The new subspecies largely overlaps with G. ruber ruber in test morphology,

but differs in the color of the test, which develops during the neanic stage [53]. The morphol-

ogy of the species and its changes during the ontogeny have been described in detail by Brum-

mer et al. [53] and is formalized accordingly below. The holotype has been selected such that

the test shows all key features of the species, but lacks color and because it yielded a SSU rDNA

sequence of genetic type G. ruber albus n.subsp. Ia (Voucher C319).

Prolocular stage. Proloculus small, 12.5 ± 1.5 μm (10–16 μm), wall imperforate, smooth and

non-spinose; aperture interiomarginal, circular with thickened rim, in multi-chambered tests

larger than deuteroconch and truncated by flat wall shared with deuteroconch.

Juvenile stage. Starting with deuteroconch, test lobate, umbilico-convex, umbilicus open,

wide, narrowing after completion of initial whorl; chambers hemispherical, 7–12 (9.3 ± 1.2)
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added in ± 1.5 whorls of near planispire, with 5–6 in initial whorl, totaling 8–13 (9.7 ± 1.2)

chambers in tests 54–76 (65.3 ± 5.8) μm in diameter. Aperture interiomarginal-marginal, a

small, low arch with marked rim. Spines sparse, thin, flexible; microspines present; pores

sparse, exclusively along sutures on spiral side; wall texture spinose, non-cancellate. No prefer-

ential shell coiling direction; algal symbionts acquired.

Neanic stage. Test rapidly changing towards adult morphology, becoming sphaeroidal with

umbilicus closing; chambers globose, 3–4 in half to complete whorl of low trochospire,

decreasing to 3 in last whorl, totaling 12–16 (14 ± 1.3) chambers in tests 120–190 (140 ± 25)

μm in diameter. Aperture widening to a wide, high arch and migrating to the umbilicus.

Spines and pores becoming numerous and evenly distributed; spines becoming thicker and

more rigid; spine bases, inter-spine ridges and pore pits develop; wall becoming coarsely perfo-

rate and cancellate.

Adult stage. Test sphaeroidal to elongate with reddish color, chambers globose in a low-

medium trochospire, at least 1, usually 2 to 3, up to 4 chambers are added, totaling 14–18

chambers in test>180, up to 510 μm in diameter, until reproduction (gametogenesis). Second-

ary aperture(s) develop. Wall texture cancellate-spinose and macroperforate.

Terminal stage. Usually one, occasionally two normalform and/or diminutive (kummer-

form) chambers are added, rarely one or two bullate chambers capping the secondary aper-

tures. Spines progressively shed, wall coarsely perforate, smooth to coarsely cancellate. Loss of

algal symbionts, loss of buoyancy. Terminal shells 230–560 μm in diameter with 15–19 cham-

bers in 3–4 whorls of low to medium trochospire.

Distribution and ecological preferences of Globigerinoides MOTUs

Although our study benefits from a globally distributed sampling, we unfortunately lack sam-

pling points in the Southern Atlantic. The rarefaction curves, however, confirm that the geno-

type diversity within Globigerinoides likely has been entirely captured by our global dataset as

well as in the individual ocean basins when considering all morphospecies and the better sam-

pled G. ruber ruber, G. ruber albus n.subsp. and G. elongatus respectively (Fig 5). We are confi-

dent that all existing genotypes and the majority of basegroups have been detected, so that we

are able to interpret their biogeographic patterns (Fig 4A). We observe that the genotypes G.

ruber albus n.subsp. Ia and Ib are cosmopolitan whilst the genotype G. ruber albus n.subsp. Ic

was not found in the North Atlantic. A similar pattern could hold for the basegroup G. ruber
albus n.subsp. Ib2 as well, as it has not been found in the North Atlantic. This may be a sam-

pling bias because its genotype has been encountered only at two stations in the Caribbean

Sea. Also, G. elongatus basegroups Ia1 and Ia3 have a cosmopolitan distribution whilst base-

group Ia2 was not found in the North Atlantic. The unique basetype detected in G. ruber ruber
Ia1 was only found in the North Atlantic in our dataset. Unfortunately, the biogeography of

the MOTUs of G. conglobatus and G. tenellus remains unknown due to the low number of

observations.

While saturation is also reached at the basegroup level in the global dataset for the three

morphospecies, it is not reached for the Indian and North Atlantic oceans, indicating that our

sampling was not sufficient in these two basins. Jackknifing analysis indicates that it is likely

that two basegroups of G. ruber have not been sampled in the North Atlantic, while it is possi-

ble that one basegroup of G. elongatus may still be discovered in the Pacific Ocean. However,

this seems unlikely for G. elongatus because the diversity in the Indian Ocean would thus be

higher (three observed and four estimated genotypes) than in the global dataset (three

observed and estimated genotypes). These results may be the consequence of our unevenly dis-

tributed sampling and the fact that the detection of basegroups depends on the fragment of
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SSU rDNA covered, which depends of the primer used in each study. Therefore, it is impossi-

ble to say whether we failed to capture the diversity in G. ruber or G. elongatus in every basin,

also given the lack of data from the South Atlantic, or if these results reflect an existing bias in

our sample set.

We observe a significant difference in the sea surface temperature and mixed layer salin-

ity at which G. ruber albus n.subsp., G. ruber ruber and G. elongatus were collected (Fig 6,

Table 2). However, the apparent preference of G. ruber ruber for higher salinity may be arti-

ficial because most of our sampling for this species originates from the Caribbean and Medi-

terranean Seas (characterized by higher salinity) and the central Atlantic has not been

sampled yet precluding a robust assessment of the true preferences of this taxa. Our sam-

pling suggests differences between the basegroups G. elongatus Ia1 and Ia2, which occupy

the lower and upper end of the thermal range of the morphological species. We also find

G. ruber albus n.subsp., G. ruber albus n.subsp. Ib and G. elongatus Ia2 in more productive

waters compared to G. ruber ruber, G. ruber albus n.subsp. Ia and G. elongatus Ia1, but do

not observe differences with respect to chlorophyll content or particulate organic carbon.

Our dataset does not reveal any seasonality in the occurrence of either the genotypes or

basegroups (Fig 4B), but we stress that the sample set may not be suited to reveal such

patterns.

Phylogeny of Globigerinoides
The topology and timing of diversification between members of the genus Globigerinoides
(Figs 2 and 7) is largely congruent with the phylogeny proposed by Aurahs et al. [27]. The

deepest split in the molecular clock phylogeny (Fig 7) separates G. ruber from G. conglobatus,
G. elongatus and G. tenellus and is dated at 17.59 Ma but with a large credible interval on the

age of the split (23.25 to 12.58 Ma). The Maximum-likelihood inference (Fig 2) does not sup-

port the monophyly of this clade and it is not possible to conclude from the molecular perspec-

tive alone if G. conglobatus is more closely related to G. elongatus and G. tenellus or to the G.

ruber clade. The next diversification event in each lineage occurred in the late Miocene, when

G. conglobatus diverged from the ancestor of G. elongatus and G. tenellus (ca. 8.29 Ma) and G.

ruber albus n.subsp. and G. ruber ruber separated (ca. 6.74 Ma). Further diversification

occurred between the late Pliocene and early Quaternary, when G. elongatus and G. tenellus
separated concomitantly with the deepest split among the constitutive genotypes of G. ruber
albus n.subsp. and G. conglobatus. A further divergence occurred in the course of the Quater-

nary between the genotypes Ib and Ic of G. ruber albus n.subsp., but all the remaining six

divergences at the level of basetypes emerged into the Pleistocene, estimated between ~9 and

224 ka.

3D ontogenetic morphology

The largest shell diameter of the analyzed specimens ranges from 250 μm in G. rubescens and

G. tenellus, to 700 μm for G. conglobatus (Fig 8), and the CT scans revealed that the specimens

consist of 15 to 18 chambers (Fig 9A). The number of chambers is not fixed within a species

and specimens with smaller proloculus seem to have more chambers [53]. For example, the

chamber number can vary from 15 to 19 chambers in G. ruber albus, and the onset of the onto-

genetic stage is not tied to the development of a particular chamber [53]. In this study, we use

the chamber number as a descriptive term for convenience to explore only our results, and

do not mean to imply a fixed boundary between the ontogenetic stages. In all five morphospe-

cies the proloculus is consistently larger than the deuteroconch. Proloculus diameters differ

among species, ranging from 9 μm in G. elongatus to 17 μm in G. conglobatus (Fig 10) and the
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ontogenetic development is accompanied by marked differences in the pattern of chamber

addition among the species (Figs 9 and 10).

The ontogenetic trajectory of G. rubescens is the most stable. It begins with a steady loga-

rithmic increase of chamber size from chambers two to thirteen, then levels off towards cham-

ber 16 and ends with a diminutive final chamber 17 after 3.5 whorls (Figs 9 and 10). While the

chamber shape (S) remains the same throughout its ontogeny, the whorl expansion rate (W)

first drops steeply to chamber 5, then decreases slowly until chamber 13, slightly increases

until chamber 15 and then decreases again to the final chamber. Inversely, the translation rate

(T) increases slowly until chamber 13, then drops until chamber 15, to rise sharply over the

two last chambers, while the relative distance between the coiling axis and the chamber cen-

troid (D) decreases steadily throughout the ontogeny except in chambers 14–15.

Ontogenetic trajectories of G. tenellus and G. elongatus are initially similar and only diverge

in the last stages. The analyzed specimen of G. tenellus produced slightly larger chambers but

terminated its growth with two chambers less than G. elongatus (Fig 10). The chambers of G.

elongatus gradually flatten between chambers 14–18, resulting in a decreasing S, whilst in G.

tenellus they become rounder between chambers 14–16, which results in the divergent final

shape that distinguishes between the sister species. As for G. rubescens, the final chamber of

the scanned specimens of G. tenellus and G. elongatus is smaller than the penultimate chamber,

which is indicative of the terminal reproductive stage.

Largest shells are typically found in G. conglobatus and G. ruber, but shell size is clearly not

associated with the growth of more chambers: G. ruber has only 15 chambers in our dataset.

The ontogenetic trajectory of G. ruber differs from all other species in its whorl number, which

increases more steeply from chamber 9 onwards (Fig 10) in line with the higher angular incre-

ment between successive chambers. However, its expansion rate W is close to all other species

except for G. conglobatus (Fig 10). G. ruber and G. conglobatus show a higher rate of size

increase in consecutive chambers that the other species, such that for G. ruber the three last

chambers occupy 94% of the total chamber volume (Fig 9B). The rates D and T are mirrored

in their unevenness due to the abrupt decrease of the radius during the ontogeny (see S3

Table), the elevation of the trochospire and the tighter coiling axis. Finally, G. conglobatus has

the largest test but its most distinctive feature is the increase of the sphericity between cham-

bers 1 to 10 that is followed by compression between chambers 11 to 18. Its whorl expansion

rate (W) is the highest throughout its ontogeny, but the formation of its high trochospire

occurs over the last two chambers with an increase of T and a decrease of D.

Our Raupian analysis of the 3D ontogenetic trajectory of the five species could be used to

determine changes in the position in the growth sequence when the juvenile, near-planispiral,

many-chambered stage ends (onset of neanic stage sensu Brummer et al. [53]) and when the

diagnostic, reproductive morphology is established (onset of adult stage sensu Brummer et al.

[53]). The distinction of the ontogenetic stages in the CT reconstructions is based mainly on

the parameters of chamber addition, but in several cases, the observed transitions could also be

correlated with the emergence of further indicative traits, such as supplementary apertures.

The analysis of the ontogenetic trajectories reveals that the allocation of chamber number and

chamber volume to the ontogenetic trajectory remained similar between G. rubescens and G.

ruber (Fig 9), but the other species show distinct differences in allocation. G. conglobatus dif-

fers most from the other species, exhibiting distinct juvenile-neanic stage with radially elon-

gated chambers. G. elongatus shows a morphologically normal juvenile stage with 10 chambers

and becomes trochospiral late in its ontogeny. Both species develop compressed chambers but

the compression starts during the neanic stage at chamber 11 for G. conglobatus and at the

onset of adult stage at chambers 14–15 for G. elongatus. By comparison, G. tenellus is much

smaller, does not develop chamber compression and has fewer chambers (16).

Molecular and morphological diversity in Globigerinoides

PLOS ONE | https://doi.org/10.1371/journal.pone.0225246 December 5, 2019 18 / 30

https://doi.org/10.1371/journal.pone.0225246


Discussion

Strict dataset curation of the genetic dataset associated with the application of our nomencla-

ture system confirms recent metabarcoding results which indicate that the biological diversity

in planktonic foraminifera is limited [60,61]. We identified only eight genotypes and 14 base-

groups within the five sequenced morphospecies of Globigerinoides, which likely covers the

entire genotypic diversity in the genus. At the basegroup level, Globigerinoides conglobatus and

Globigerinoides tenellus remain undersampled, but for the Globigerinoides ruber plexus and

Globigerinoides elongatus, the sampling effort is sufficient to analyze the distribution of genetic

diversity at all hierarchical levels (Fig 5, Table 2).

Our data confirm earlier work [26] in their conclusions that G. ruber ruber occurs only in

the Atlantic, is the only type with test color and constitutes a single basegroup. We observe no

other basegroup or genotype restricted to the Atlantic within the genus (Fig 4), but instead

note the apparent absence of the basegroups G. elongatus Ia2 as well as G. ruber albus n.subsp.

Ic1 and potentially Ib2 from the North Atlantic. Despite the fact that our first order Jackknif-

ing (Table 1) and rarefaction analyses (Fig 4) suggest that the diversity in the North Atlantic

may not have been captured entirely for G. ruber albus n.subsp. at the basegroup level, it does

seem to be the case for G. elongatus at the basegroup level and for G. ruber albus n.subsp. at the

genotype level. Therefore, the observed distribution pattern likely highlights an isolation of the

tropical Atlantic from the Indian and Pacific Oceans.

Because of the equatorial position of the continents, the subtropical-tropical waters of the

world oceans are only connected to a limited degree. At present, transport of tropical/subtropi-

cal marine plankton is largely unidirectional, from the Pacific to the Indian Ocean via the

Indonesian throughflow, and from the Indian Ocean into the Atlantic via the Agulhas leakage.

During glacial times, these connections likely became even more restricted [62]. Indeed, the

disappearance of G. ruber ruber from the Indian and Pacific Oceans 120 kyrs ago [6] and its

persistence in the Atlantic indicate a reduced ability to re-invade the Indian Ocean from the

Atlantic. Dispersal from the Indian and Pacific Oceans into the Atlantic via Agulhas leakage is

evidenced by the existence of a number of cosmopolitan basetypes (G. elongatus Ia1/Ia3 and

G. ruber albus n.subsp. Ia1/Ia2/Ib2). In this scenario, the absence of G. elongatus Ia2 and G.

ruber albus n.subsp. Ib2/Ic1 in the North Atlantic cannot be the result of dispersal limitation.

Instead, the apparent accumulation of recently diverged endemic basegroups in the Pacific

rather than the Atlantic (Figs 4 and 5) is reminiscent of the pattern observed in the hyperdi-

verse Globigerinella [63], where it has been ascribed to incumbency (expansion of a species

into a new environment being prevented by an incumbent species with similar ecological pref-

erences [64]). In our case, it might be that the Atlantic residents G. ruber ruber Ia1, G. ruber
albus n.subsp. Ia1/Ia2/Ib1 and G. elongatus Ia1/Ia3 impede the establishment of invading

genotypes recently diverged in the Indian and Pacific Oceans. The lack of diversity in the

Atlantic endemic G. ruber ruber, compared to the cosmopolitan sister clade (Figs 2 and 4) sug-

gests that no diversification occurs in the North Atlantic. Therefore, the Indian and Pacific

Oceans seem to act as the primary source for biodiversity and the North Atlantic as a sink

within the Globigerinoides genus.

Notwithstanding the pattern of limited connectivity between the Atlantic and the Indian

and Pacific Oceans, the majority of the MOTUs has a cosmopolitan distribution within the

(sub)tropical habitat of Globigerinoides, with co-occurrences at all taxonomic levels at the

same stations (Figs 1 and 4), consistent with their apparently similar ecological niches (Fig 6).

Although we did not sample G. ruber ruber in the South Atlantic, the distribution of the bet-

ter-covered taxa is associated with higher SST in G. ruber albus n.subsp. compared to G. elon-
gatus (Fig 6, Table 2). We acknowledge that our sampling of G. ruber ruber, with more
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sampling stations in the Caribbean and Mediterranean Seas compared to the central Atlantic,

may have produced a biased view on the ecological preferences of this morphospecies. How-

ever, we are confident that our dataset of G. ruber albus and G. elongatus does not suffer from

this limitation (Fig 4). The difference in thermal niches between G. ruber albus n.subsp. and G.

elongatus has been a matter of debate since the seminal work of Wang [8]. Several studies repli-

cated the observation of the preference of G. elongatus for colder waters compared to G. ruber
albus n.subsp. akin to our observations [9,14–16,18,19,65,66], but observations of the absence

of such differences have also been made. Indeed, a global synthesis of seasonally and depth-

resolved sediment trap and plankton net observations [11] showed no statistically significant

difference between G. ruber albus n.subsp. and G. elongatus in Mg/Ca composition of the shell.

Studies conducted in the Gulf of Mexico [10,21] and in the central North Atlantic [67] showed

similar absence of oxygen isotopic offsets between the morphospecies and argued that the dif-

ference in habitat, seasonal and calcifying depth is not systematic. Downcore analyses of Mg/

Ca ratios from the southwest Pacific [15,20] showed that the difference between the two mor-

phospecies was not stable though time and varied between 0 and 2˚C in temperature space.

This is consistent with the findings of Numberger et al. [18] in Mediterranean sediments, who

noted oxygen isotopic offsets between the species, but the value and direction of the offset

changed during the last 400 kyrs. Altogether, the niches of the two morphospecies may differ,

but temperature sensitivity alone is unlikely to be the sole factor explaining the niche

difference.

The conflicting observations on the degree of overlap between the ecological niches of G.

ruber albus n.subsp. and G. elongatus raise the question of whether the degree of the overlap

could be driven by ongoing diversification at the genotype and basegroup levels. In our analy-

sis, we observe little to no ecological differences between the genotypes and basetypes of G.

ruber albus n.subsp. and G. elongatus, except for (small) differences in temperature, salinity

and productivity niches between G. elongatus basegroups Ia1 and Ia2 (Fig 6 and Table 2).

Therefore, the regionally and temporally varying overlap between the ecological niches of the

two morphospecies is unlikely to be the result of ecological differentiation among the constitu-

ent MOTUs. There is no evidence for the existence of ecological or biogeographic differentia-

tion between the genotypes of G. ruber albus n.subsp. nor G. elongatus such as those that were

discovered in morphospecies like Orbulina universa [68–70], Globorotalia inflata [71,72], Glo-
borotalia truncatulinoides [73–75], Globigerina bulloides [76–79], Neogloboquadrina pachy-
derma [80–83] and Pulleniatina obliquiloculata [84,85]. An explanation invoking a vertical

niche separation as observed in Hastigerina pelagica [86] is unlikely, because G. ruber albus n.

subsp. and G. elongatus are both symbiont-bearing taxa limited to the photic zone and a con-

sistent separation with depth or season would result in a constant isotopic offset, which con-

trasts general observations (see above).

Although abiotic factors, such as temperature, are important drivers of plankton commu-

nity structure [87,88], recent studies have shown that biotic interactions may be even more

important drivers of plankton diversification. Analyses of plankton metacommunity structure

showed that abiotic factors alone explained only 18% of the variability in the distribution of

environmental OTUs [89], leaving biotic interactions as the main driver of ecological and bio-

logical diversification in the open ocean. Photosymbiosis is the biotic interaction that has been

most studied in foraminifera [90] and is of interest to paleoceanographers, not only because it

ties photosymbiotic species to photic depths, but also because it impacts the incorporation of

stable carbon isotopes and trace elements in the calcareous shell [91–93]. Photophysiology

[92,94–98] investigations have documented the dynamic relationship between the foraminif-

era and their photosymbionts, but the diversity of these interactions, including other interac-

tions such as parasitism or commensalism, has not yet been systematically resolved. Indeed,
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Shaked and de Vargas [99] found 21 phylotypes of the dinoflagellate Symbiodinium hosted by

four morphospecies of tropical planktonic foraminifera, including G. ruber and G. conglobatus,
and suggested that this number most likely represents the lower bound of the true symbiotic

diversity, leaving ample space for differentiation due to preference for different symbiont

strains.

Planktonic foraminifera, like many protists living in the oligotrophic ocean, are capable of

mixotrophy (capable of autotrophy by symbiosis and heterotrophy) and the type of mixotro-

phy influences the biogeography and seasonality of the mixotrophs hosting the symbionts

[100]. We hypothesize that the position in the trophic network occupied by planktonic forami-

nifera may control when and where they calcify their shell. The control of temperature on

planktonic foraminifera individual species abundance and occurrence could be indirect and

the physico-chemical condition of the water column that the planktonic foraminifera record

may reflect their relationships with other organisms rather than a mere thermal response. In

this scenario, temperature alone would not explain evolution in planktonic foraminifera [101]

and vital effects impacting the incorporation of carbon isotopes could have varied through

time as a function of varying symbiotic association and mixotrophy level [93]. Indeed, a prom-

inent role of biotic factors in the diversification of Globigerinoides species is consistent with the

lack of physical niche differentiation at the level of genotypes and basegroups. The large num-

ber of apparently recently diverging basegroups could result from a high turnover driven by

biotic interactions which rarely leads to persistent separation of lineages, resulting in a contin-

uous diversification in the genus throughout the late Neogene and Quaternary (Fig 7), without

a clear partitioning of the ecological space along abiotic factors.

Diversification at the cryptic level in the genus likely reflects biotic interactions, but it

remains to be explained why and how the morphological evolution and genetic divergence are

disconnected at the morphospecies level. For instance, G. ruber ruber and G. ruber albus n.

subsp. diverged around ~6.7 Ma and remained morphologically identical, whereas G. elonga-
tus and G. conglobatus diverged around 8.3 Ma (Fig 7) but are morphologically distinct from

juvenile to adult. Similarly, G. tenellus and G. elongatus, which are morphologically dissimilar

diverged around 2.4 Ma and this event could be concomitant with the divergence time of the

constitutive genotype of G. conglobatus and G. ruber albus n.subsp (Fig 7). Because of a simi-

larity in shape, G. tenellus was previously considered a sister species of G. rubescens. The appar-

ent similarity motivated us to analyze the ontogeny of this species as well. Our strategy was to

recover the potential phylogenetic information contained in the ontogenetic development of

the five extant morphospecies of Globigerinoides and to use Globoturborotalita rubescens as an

outgroup. Because of the time-consuming nature of 3D analysis, we limited our approach to a

single representative specimen per species to obtain the main differences in the ontogenetic

development between species. We acknowledge that intra-species variability in the ontogenetic

development exists [53] and that our study design prevents assessing the magnitude of this var-

iability. Nevertheless, the observed contrasting patterns of growth allocation to ontogenetic

stages are substantial and associated with systematic changes in chamber shape and growth

pattern (Fig 9), in a manner that can be best described in the light of heterochrony [102]. Het-

erochrony is defined as evolutionary change in the rate and timing of ontogenetic develop-

ment. Although heterochrony is a concept developed to understand the connection between

evolution and development in multicellular organisms, we apply it in a broad sense to plank-

tonic foraminifera because the sequential growth of their tests preserves the sequence of shapes

during individual growth. Also, we stress that heterochrony as a concept does not explain the

mechanistic cause for evolutionary change, but provides a framework in which the emergence

of the divergent adult shapes can be described through changes in the ontogenetic trajectory

[102].
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In this heterochronic framework, we observe that the G. rubescens specimen displays the

most stable development with relatively little change in the shape of its chambers during

ontogeny compared to the other species (Figs 9 and 10). Considering this morphospecies as

outgroup (given its phylogenetic position; Figs 2 and 7), we explore the divergence of adult

morphologies of the individual species in terms of Raupian alterations in the ontogenetic

trajectory and the successive emergence of new characters. Compared to G. rubescens, the

morphological innovations in Globigerinoides are the emergence of elongate chambers, com-

pressed chambers and supplementary apertures. Chamber elongation is restricted to the juve-

nile stage of the G. conglobatus specimen and it is followed by compression in the neanic-adult

stages of large G. conglobatus. Chamber compression also occurs in the adult stage of G. elon-
gatus and its absence in small G. tenellus hints at heterochrony by dwarfing. Supplementary

apertures are lacking in the small ancestral G. rubescens but are typically found in in the sister

clade and their reduction to the last 1–2 chambers in G. tenellus is consistent with hetero-

chrony by dwarfing. In G. tenellus a single secondary aperture is typically present in the final

chamber, whereas all other species of the genus develop at least in the final chambers two sup-

plementary apertures per chamber.

The ratio S describing the evolution of the roundness of the chambers is more stable during

the ontogeny of G. ruber compared to the four other species (Fig 10). The analyzed specimen

is large (400 μm) for the few (15) chambers it has, and lacks chamber compression in compari-

son to G. elongatus and G. conglobatus, indicating that G. ruber may have a neotenic ontoge-

netic trajectory. Neoteny is characterized by a conservation of juvenile features during the

adult stage, reduced compression of the last chamber in the case of G. ruber, without a change

of size. It is associated with a steeper increase of chamber size at a higher angular increment

towards the end of the growth. This scenario would be consistent with the hypothesis that

G. ruber evolved from G. obliquus (which has more compressed chambers) as proposed by

Aurahs [27]. In contrast, the ontogenetic trajectory of G. conglobatus appears hypermorphic,

which is characterized by larger final size. Finally, G. elongatus and G. tenellus seem to follow

similar ontogenetic paths and to differ in the last three chambers, with the compression of the

chambers of G. elongatus and the increase of the roundness of G. tenellus chambers. Also,

G. tenellus has larger chambers through its ontogeny and its final size is smaller than G. elonga-
tus, suggesting progenesis. Progenesis is defined as a loss of an adult feature, the final com-

pressed chamber akin to what we hypothesize for G. ruber, but in this case associated with a

reduction in size due to a premature interruption of the growth. In terms of size, G. tenellus is

one of the few known examples of dwarfing in planktonic foraminifera, but unlike the fossil

species Globorotalia exilis, Globorotalia miocenica and Morozovelloides crassatus the dwarfing

in G. tenellus does not (yet) seem to be associated with a reduction of abundance preceding

extinction [103].

Evolution through heterochrony could provide an explanation for the erroneous taxonomic

placement of G. elongatus as a sister to G. ruber that led to the informal delimitation G. ruber
s.l. and s.s. by Wang [8]. Indeed, we hypothesize that G. elongatus may not attain the size and

shape of G. conglobatus because it has smaller chambers, which are less compressed, and could

consequently converge towards the size and shape of G. ruber. Similarly, G. tenellus may create

a morphological convergence with G. rubescens despite having markedly different pre-adult

ontogenetic trajectories (Fig 9). The presence of supplementary apertures in G. tenellus is thus

an apomorphy of Globigerinoides. Based on our observations, we proposed several interpreta-

tions of the molecular phylogeny topology that would be in agreement with the morphology,

taking into account the heterochronic development within Globigerinoides genus (Fig 11).

Similar to previous studies [29,30] our results show that CT-scanning offers a promising

avenue for ontogenetic analysis and resolve phylogenetic relationships among extinct species
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of planktonic foraminifera [104]. We recognize that we cannot draw firm conclusions from

our analysis because of the limited amount of specimen analyzed, and stress the need for repli-

cate analysis to confirm our results. Even though ontogenetic analysis may not explain what

triggered the divergence and convergence of juvenile and adult morphologies, it could provide

a viable explanation for the apparent disconnection between morphological and genetic diver-

gence. Heterochrony is a process through which large changes in adult morphology could be

achieved at genetically low cost [102], creating an impression of large change not matched by

the degree of genetic kinship.

Supporting information

S1 Fig. Light microscopy images of the specimen CA1261 identified as Globigerinoides
tenellus and from which sequence match the type IIb of Aurahs et al [26,27]. (a) Umbilical

(b) spiral (c) lateral views. The scale bar represents 100 μm.

(TIF)

S2 Fig. Light microscopy images of the holotype of (C319) and paratypes (C208, C281,

C329) of G. ruber albus n.subsp. The archiving museum numbers at the Naturalis

Fig 11. Cladogram representing the morphological evolution of the Genus Globigerinoides. The cladogram (A) represents the retained scenario and

the cladograms (B) and (C) possible but rejected alternatives. (A) The presence of supplementary apertures and compressed last chambers are

synapomorphies of the genus. The last compressed chamber is lost in G. ruber and G. tenellus through neoteny and progenesis respectively. The pink

coloration in G. rubescens and G. ruber ruber is a homoplasic character that appear independently during the evolution of the two species. (B)

Alternative scenario where the pink coloration is a synapormophic character of the Globoturborotalita and Globigerinoides genus but lost in G. ruber
albus n.subsp. and by the common ancestor of G. conglobatus, G. elongatus and G. tenellus. Although we cannot with certainty choose between the

scenario (A) and (B) regarding the pink coloration because the character is not preserved in sediments before 750 ka [6], we prefer the scenario (A) due

to its higher parsimony. (C) Alternative scenario where the last compressed chamber is not a synapomorphic character but acquired only in the

monophylum G. conglobatus, G. elongatus and G. tenellus and lost by G. tenellus. We do not retain this scenario because Globigerinoides obliquus, the

likely common ancestor of the modern species shows high compression in its last chamber [27].

https://doi.org/10.1371/journal.pone.0225246.g011
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Biodiversity Center, Leiden, The Netherlands are provided below the voucher of the speci-

mens. The scale bar represents 100 μm.

(TIF)

S1 Table. Metadata and taxonomy of the Sanger sequences used in the study.

(XLSX)

S2 Table. Taxonomic equivalence between the existing taxonomic nomenclatures proposed

in the literature and our updated molecular taxonomy.

(XLSX)

S3 Table. Volume, Cartesian coordinates and parameters of the Raup’s model measured

on individual chambers of the five selected morphological species (Figs 9 and 10).

(XLSX)
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9. Steinke S, Chiu H-Y, Yu P-S, Shen C-C, Löwemark L, Mii H-S, et al. Mg/Ca ratios of two Globigeri-

noides ruber (white) morphotypes: Implications for reconstructing past tropical/subtropical surface

water conditions. Geochemistry, Geophys Geosystems. 2005; 6: 1–12. https://doi.org/10.1029/

2005GC000926

10. Richey JN, Thirumalai K, Khider D, Reynolds CE, Partin JW, Quinn TM. Considerations for Globigeri-

noides ruber (White and Pink) Paleoceanography: Comprehensive Insights From a Long-Running

Sediment Trap. Paleoceanogr Paleoclimatology. 2019; 34: 353–373. https://doi.org/10.1029/

2018PA003417

11. Gray WR, Weldeab S, Lea DW, Rosenthal Y, Gruber N, Donner B, et al. The effects of temperature,

salinity, and the carbonate system on Mg/Ca in Globigerinoides ruber (white): A global sediment trap

calibration. Earth Planet Sci Lett. 2018; 482: 607–620. https://doi.org/10.1016/j.epsl.2017.11.026

12. Jentzen A, Schönfeld J, Schiebel R. Assessment of the Effect of Increasing Temperature On the Ecol-

ogy and Assemblage Structure of Modern Planktic Foraminifers in the Caribbean and Surrounding

Seas. J Foraminifer Res. 2018; 48: 251–272. https://doi.org/10.2113/gsjfr.48.3.251

13. Mojtahid M, Manceau R, Schiebel R, Hennekam R, de Lange GJ. Thirteen thousand years of south-

eastern Mediterranean climate variability inferred from an integrative planktic foraminiferal-based

approach. Paleoceanography. 2015; 30: 402–422. https://doi.org/10.1002/2014PA002705

14. Antonarakou A, Kontakiotis G, Mortyn PG, Drinia H, Sprovieri M, Besiou E, et al. Biotic and geochemi-

cal (δ18O, δ13C, Mg/Ca, Ba/Ca) responses of Globigerinoides ruber morphotypes to upper water col-

umn variations during the last deglaciation, Gulf of Mexico. Geochim Cosmochim Acta. 2015; 170: 69–

93. https://doi.org/10.1016/j.gca.2015.08.003

15. Regoli F, de Garidel-Thoron T, Tachikawa K, Jian Z, Ye L, Droxler AW, et al. Progressive shoaling of

the equatorial Pacific thermocline over the last eight glacial periods. Paleoceanography. 2015; 30:

439–455. https://doi.org/10.1002/2014PA002696

16. Kawahata H. Stable isotopic composition of two morphotypes of Globigerinoides ruber (white) in the

subtropical gyre in the North Pacific. Paleontol Res. 2005; 9: 27–35.
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59. André A, Quillévéré F, Morard R, Ujiié Y, Escarguel G, De Vargas C, et al. SSU rDNA divergence in

planktonic foraminifera: molecular taxonomy and biogeographic implications. PLoS One. 2014; 9:

e104641. https://doi.org/10.1371/journal.pone.0104641 PMID: 25119900
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