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Abstract: The boreoatlantic gonate squid (Gonatus fabricii) represents important prey for top 

predators—such as marine mammals, seabirds and fish—and is also an efficient predator of 

crustaceans and fish. Gonatus fabricii is the most abundant cephalopod in the northern Atlantic and 

Arctic Ocean but the trace element accumulation of this ecologically important species is unknown. 

In this study, trace element concentrations (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) 

were analysed from the mantle muscle and the digestive gland tissue of juveniles, adult females, and 

adult males that were captured south of Disko Island off West-Greenland. To assess the feeding 

habitat and trophic position of this species, stable isotopes of carbon (δ13C) and nitrogen (δ15N) were 

measured in their muscle tissue. Mercury concentrations were positively correlated with size (mantle 

length) and trophic position. The Hg/Se ratio was assessed because Se has been suggested to play a 

protective role against Hg toxicity and showed a molar surplus of Se relative to Hg. Cadmium 

concentrations in the digestive gland were negatively correlated with size and trophic position (δ15N), 

which suggested/reflected a dietary shift from Cd-rich crustaceans towards Cd-poor fish during 

ontogeny. This study provides trace element concentration data for G. fabricii from Greenlandic 

waters, which represents baseline data for a northern cephalopod species. Within West-Greenland 

waters, G. fabricii appear to be an important vector in the transfer of Cd for the Arctic pelagic food 

web.  

 

Keywords: Cephalopods; biomonitoring; trace metals; northern Atlantic; Gonatidae; trophic 

position; stable isotopes  
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1. Introduction 

Trace elements—such as arsenic, cadmium, lead or mercury—have important implications for human 

health and are indicators for environmental pollution (Tchounwou et al., 2012). In the marine 

environment, most metals and metalloids occur naturally at low concentrations (Langston, 1990). 

However, their levels can be increased by natural phenomena (such as atmospheric deposition, soil 

erosion or volcanic activity (Boutron et al., 1994)) and by anthropogenic activities (such as mining, 

river discharges or industrial wastes (e.g., Gao and Chen, 2012; García et al., 2008). 

The Arctic Ocean has been suggested to be particularly vulnerable to trace element contamination 

because it acts as a sink for various contaminants that are transported north through the atmosphere, 

rivers and oceanic currents (Barrie et al., 1992; McConnell and Edwards, 2008; Muir et al., 1992). 

Arctic marine mammals, fish and birds have been the focus of several trace element concentration 

studies and long-term biomonitoring programs (e.g., AMAP, 2018; Becker, 2000; Campbell et al., 

2005; Dehn et al., 2006; Dietz et al., 1996; Macdonald and Sprague, 1988; Zauke et al., 1999). 

However, to the best of our knowledge, cephalopods have not been included in these previous studies, 

although they have been proposed as vectors of contaminants, particularly Cd and Hg, to marine top 

predators (Bustamante et al., 1998a, 2006).  

Indeed, cephalopods play a pivotal role in the Arctic marine ecosystem as both predators and prey 

(Nesis, 1965, 2001; Gardiner and Dick, 2010). Their distribution has been correlated to the occurrence 

of predators, such as toothed whales (Bjørke, 2001), the northern fulmar, Fulmarus glacialis (Savinov 

et al., 2003), and the Greenland halibut, Reinhardtius hippoglossoides (Orr and Bowering, 1997). The 

northern distribution ranges of some cephalopod species appear to have been expanded by warming 

Arctic waters (Gardiner and Dick, 2010, Gilly, 2005; Golikov et al., 2013). In addition, increased 

abundance can result in a shift in the predator’s diet from fish to squid, changing the contaminant 

exposure accordingly (Dehn et al., 2006). Therefore, it is fundamentally important to consider 

cephalopods as a major vector in the trace element transfer along trophic food webs linking their trace 

element concentrations to their ecological role. 

The boreoatlantic gonate squid Gonatus fabricii (Lichtenstein, 1818) is the most abundant squid in 

the northern Atlantic and Arctic Ocean (Kristensen, 1983; Nesis, 2001; Zumholz and Frandsen, 2006; 

Gardiner and Dick, 2010; Golikov et al., 2018) and represents the only squid species that spends its 

entire life cycle of around two years, in the Arctic Ocean (Golikov et al., 2018; Kristensen, 1984; 

Nesis, 1971). It shows a vertical distribution that covers a broad depth range, with early life stages 
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occurring from the surface to about 1000 m depth, and more mature stages down to 3000 m 

(Kristensen, 1983, 1984; Nesis, 1965; Piatkowski and Wieland, 1993; Wiborg, 1982). This 

ontogenetic descent has also been inferred from variations in Sr/Ca ratios in the statoliths of G. 

fabricii captured off West Greenland, which suggests a migration of adult squids into deeper and 

colder waters (Zumholz et al., 2007). The species is believed to spawn near the bottom of the 

continental slopes off West Greenland and northern Norway (Arkhipkin and Bjørke, 1999; Kristensen 

1984) and spawned eggs are likely carried (‘brooded’) by the female in the water column as observed 

for the sister species G. onyx in the Pacific (Bjørke et al., 1997; Seibel et al 2005).  

Gonatus fabricii plays an important role in the energy transfer from epipelagic to meso- and 

bathypelagic layers through its vertical migration (Gardiner and Dick, 2010; Kristensen, 1984). 

Although both juvenile and adult G. fabricii prey on macroplanktonic crustaceans (Kristensen, 1984; 

Nesis, 1965; Sennikov et al., 1989), their diet shifts during maturation from invertebrates (i.e., 

amphipods, copepods, euphausids, pteropods, and chaetognaths) to fish (e.g., capelin, Arctic cod, 

redfish, and lanternfish) and other cephalopods (Sennikov et al., 1989; Wiborg, 1984). In the Arctic 

marine food web, G. fabricii is a major prey item for seals, various cetaceans, seabirds, and deep-sea 

fishes (Gardiner and Dick, 2010). Sperm whales alone are estimated to consume 1.5 million tonnes 

of G. fabricii annually in the northern Atlantic (Bjørke, 2001). Squid prey that was estimated from 

cephalopod beaks in stomach contents of sperm whales that stranded along the coasts of the North 

Atlantic consisted of up to 99% of G. fabricii (Bjørke and Gjøsæter, 2004; Ijsseldijk et al., 2018; 

Martin and Clarke, 1986; Santos et al., 1999;). Narwhales, Monodon monoceros, observed in West 

Greenland waters during autumn almost exclusively fed on G. fabricii (Laidre and Heide-Jørgensen, 

2005). Furthermore, G. fabricii plays an economic role because it is used as bait in Greenland’s long-

line and trap fisheries (Frandsen and Wieland, 2004), which make up around 85% of Greenland’s 

economic exports (Lund, 2018).  

The overall aim of the present study was to assess the trace element accumulation and trophic position 

of G. fabricii within a polar region of the Atlantic Ocean. This was addressed through the following 

means:  

- 1) the measurement of stable isotope values of carbon and nitrogen in muscle tissue to investigate 

shifts in the relative trophic position of G. fabricii during ontogeny; 

- 2) the determination of trace element concentrations in the mantle muscle (>70% of the total mass 

of the squid) and the digestive gland (a key organ in the bioaccumulation and detoxification of 
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contaminants; Penicaud et al. 2017) of juvenile and adult G. fabricii specimens; 

- 3) the combination of trace element and stable isotope data to observe changes in trace element 

concentration in conjunction with shifts in diet and feeding habitat. 

 

2. Material and Methods 

2.1. Sample collection 

Specimens of Gonatus fabricii were collected by the research vessel ‘Paamiut’ (Greenland Institute 

of Natural Resources) by midwater trawling in depths of 569–590 m, south of Disko Island off 

Western Greenland (69°23’N, 52°63’W) on 16 July 2005 (Fig 1). A total of 45 specimens were stored 

at –40°C, composed of 15 males (dorsal mantle length [DML]: 90–274 mm), 15 females (DML: 76–

193 mm), and 15 juveniles (DML: 30–56 mm).  

 

2.2. Stable isotope analysis 

Carbon and nitrogen stable isotopes were analysed from subsamples (0.2–0.4 mg) of the freeze-dried 

mantle tissue with a continuous flow mass spectrometer (Delta V Plus with a Conflo IV interface, 

Thermo Scientific, Bremen, Germany) coupled to an elemental analyzer (Flash 2000, Thermo 

Scientific, Milan, Italy). Results are expressed in the δ unit notation as deviations from standards 

(Vienna Pee Dee Belemnite for δ13C and N2 in air for δ15N) following the formula: δ13C or δ15N = 

[(Rsample/Rstandard) – 1] x 103, where R is 13C/12C or 15N/14N, respectively. The analytical precision, 

based on internal laboratory standards (acetanilide and peptone), was <0.10 ‰ for δ13C and <0.15 ‰ 

for δ15N. 

 

2.3. Trace element analysis 

Prior to trace element analysis, tissue samples of digestive gland and mantle muscle were freeze-dried 

for 48 hours and homogenized. Water content ranged from 33.5–67.3% in the digestive gland and 

72.9–89.4% in the mantle tissue. Sample aliquots (~200 mg dry weight [dw]) were digested overnight 
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in a 3:1 mixture of 65% HNO3 (Merck, suprapur quality) and 37% HCl (Merck, suprapur quality). 

This was followed by mineralization by heating the samples for 30 min in a Milestone microwave 

(maximum temperature of 105°C). Trace element concentrations (Ag, As, Cd, Co, Cr, Cu, Fe, Mn, 

Ni, Pb, Se, and Zn) were measured by inductively coupled plasma mass spectroscopy (ICP-MS) 

(Thermo Fisher Scientific X Series 2) and optical emission spectroscopy (OES) (Varian Vista-Pro) 

following Lucia et al. (2016). Procedural blanks and certified reference materials (CRM)—dogfish 

liver (DOLT-4, National Research Council, Canada), lobster hepatopancreas (TORT-3, NRCC), and 

clam muscle tissue (IAEA461, International Atomic Energy Agency, Austria)—were treated and 

analysed in the same way as the other samples. Recoveries of the elements ranged from 85–105% 

(n=9). The detection limits for Ag, Cd, Co, and Pb were 0.025 µg.g-1, Fe and Zn were 5 µg.g-1 , Cu 

and Se were 0.125 µg.g-1, and Ni was 0.05 µg.g-1, based on 200 mg of sample material diluted in a 

volume of 50 ml. Cadmium concentrations were only measured in the digestive gland of specimens 

in order to prevent storage diffusion effects (Lischka et al., in press; Bustamante et al., 2002; 

Francesconi et al., 1993).  

Mercury concentrations were measured using an Advanced Mercury Analyser (ALTEC AMA 254, 

with a detection limit > 0.05 ng) on dried, homogenized digestive gland and mantle tissue (1–2 mg 

dw) as described in Bustamante et al. (2006). For every 10 samples, one standard sample of certified 

reference material DOLT 5 (Dogfish liver; NRCC) was analysed (recovery=109%). The detection 

limit was 0.05 ng. Results for trace element concentrations are expressed in µg.g-1 dw. 

2.4. Mercury:selenium interaction 

In order to assess Hg and Se ratios, measured concentrations were converted from µg.g-1 dw into 

nmol.g-1 using the molecular weight of 200.59 for Hg and 78.96 for Se. Ratios were assessed for both 

tissue types, as a Hg:Se ratio >1 indicates an excess of Hg in relation to Se in the tissue (Cuvin-Aralar 

and Furness, 1991; Ralston et al., 2008).  

2.5. Statistical analysis 

Most statistical analyses were conducted with R version 3.3.3 (Ihaka and Gentleman, 1996). Prior to 

data analysis, values below the detection limit were replaced by the lowest measured value of the 

corresponding element multiplied by 0.5. The samples were normalised and transformed using auto-

scaling, mean centred, and divided by the standard deviation. Principal component analysis (PCA) 

plots were produced to examine differences in overall trace element concentrations among tissue 
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types and maturation stage, using the package ‘ggbiplot’ (Vu, 2011). Correlations among trace 

element concentrations in the two tissues were assessed using the R package ‘corrgram’ (Wright, 

2012). Significance of the variable collinearity was tested using pairwise nonparametric Spearman 

correlations (‘corr.test’ function of the ‘corrgram’ package, Wright, 2012). Using the software 

MetaboAnalyst v2.0 (https://github.com/xia-lab/MetaboAnalystR), heatmaps were generated using 

Euclidean distance and Ward hierarchical clustering. 

Analyses of covariance (ANCOVA) were performed in R to check if concentrations of the trace 

elements (Ag, As, Cd, Hg, and Pb) in the two tissues were influenced by size, stable isotope values, 

or sex. Prior to the statistical tests, trace element concentrations were z-transformed (Graf, 2004) and 

diagnostic plots were used to check for variance homogeneity and normality of the residues. 

Explanatory variables were added (in the following order: DML, δ15N, sex, δ13C) to see if the feeding 

habitat had an effect once size was accounted for. Analysis of variance (ANOVA) was conducted to 

test if there was a relationship between stable isotope values and sex/maturity stage (female, male, 

juvenile). 

3. Results 

3.1. Stable isotope values 

The δ13C were on average highest in mature males (–18.96‰), followed by females (–19.10‰), and 

juveniles (–20.60‰) (Table 1). The δ13C values showed a distinct grouping with maturity stage 

(ANOVA, F-value= 339.66, p< 0.001); Fig. 3). The δ15N values were significantly higher in females 

(12.75–15.15‰) and males (12.64–15.12‰), compared to juveniles (8.59–9.64‰) (ANOVA, F-

value = 339.66, p< 0.001; Table 1, Fig. 3).  

3.2. Trace element concentrations 

Trace element concentrations in the digestive gland of mature Gonatus fabricii (females and males) 

followed the order Cu>Zn>Fe>Cd>As>Se>Ag>Ni>Mn>Co>Cr>Pb> Hg. Those measured in 

juveniles were found in the following order: Fe>Zn>Cd>Cu>As>Se>Ni>Mn>Cr>Co>Ag>Pb> Hg 

(Table 1). Between matures and juveniles, juveniles showed higher concentrations of Cd, Co, Cr, Fe, 

Mn, Ni, Pb, Se, and Zn in the digestive gland, while mature specimens had the highest concentrations 

of Ag and Cu (Table 1, Fig. S1). 

Trace element concentrations in the mantle muscle of mature individuals followed the order 

https://github.com/xia-lab/MetaboAnalystR
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Zn>Cu>As>Fe>Mn>Se>Ag>Mn>Ni>Cr>Hg>Ag>Co>Pb. Those found in juveniles ranged in the 

following order: Zn>Fe>Cu>As>Se>Mn>Ni>Cr>Co>Pb>Hg>Ag. The mature specimens exhibited 

the highest concentrations of As and Hg, with maximum concentrations measured in mantle tissue of 

males (Table 1, Fig. 2, Fig. S1). The PCA showed a distinction between tissue type and maturation 

stage (Fig. 2). The first axis of the PCA explained 45.6 % of the variance, the second axis 27.6%. 

Principle component (PC) 1 was mainly driven by Cd, Co, Cr, Fe, Ni, Pb, Se, and Zn, while PC 2 was 

mainly driven by Ag, Cd, Co, and Cu.  

3.3. Trace element correlations 

The concentrations of Hg and Se in the mantle tissue showed a negative correlation (r= –0.60, 

p<0.001). The molar ratio between Hg and Se in the digestive gland (mean= 0.007) and the mantle 

tissue (mean=0.024) were well below one (Fig. 4a, b). A linear relationship between the Hg 

concentration and the molar ratio of Hg:Se in the mantle tissue was observed (Fig. 4b).  

In the digestive gland tissue, Zn showed a positive correlation with Cd (r=0.37, p=0.01), while a 

negative relationship was found between Zn and Cu (r=-0.65, p<0.001). Chromium and Ni were 

positively correlated both in the digestive gland (r=0.93, p<0.001) and mantle tissue (r=0.90, 

p<0.001).  

3.4. Relationship between trace metal concentrations and stable isotopes 

ANCOVAs were performed to test which variables (δ15N, δ13C, size - or DML, and sex) influence 

the concentrations of the elements Ag, As, Cd, Cu, Hg, Pb, and Zn. Silver concentrations in both 

tissues were significantly influenced by δ15N, while the digestive gland was also affected by size 

(Table 2). Arsenic concentrations in both tissues showed a significant relationship with size and δ15N. 

Cadmium concentrations in the digestive gland showed a significant relationship with stable isotope 

values and sex. Copper concentrations in the digestive gland were influenced by size, stable isotope 

values, and sex, while concentrations in the mantle tissue were only significantly influenced by δ15N. 

Mercury concentrations in both tissues showed a significant relationship with size and δ15N; however, 

Hg concentrations were higher in the mantle tissue and showed an additional relationship with sex. 

Both tissues showed significant relationships between Pb concentration with size and δ13C (Table 2). 

Zinc concentrations were significantly correlated with size and sex in both tissues, while the digestive 

gland showed an additional relationship with δ15N. 
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4. Discussion 

The trace element concentrations in deep-sea cephalopods, especially from high latitudes, are highly 

relevant in terms of bioaccumulation, due to the pivotal role that cephalopods play in marine 

ecosystems. The boreoatlantic gonate squid, Gonatus fabricii, is the most abundant cephalopod in the 

northern Atlantic Ocean and a key element in the oceanic food web and hence highly relevant for the 

understanding of Arctic open-ocean ecology. We herein assess trace element concentrations in this 

cephalopod species from Greenland waters, which helps unravelling the bioaccumulation patterns 

within the sensitive Arctic ecosystem. 

4.1. Stable Isotopes 

Stable isotopic signatures have been used for cephalopods to assess their trophic ecology (through 

δ15N) and the habitat use (through δ13C, Cherel and Hobson, 2005; Hobson, 1999). Nitrogen stable 

isotope values (δ15N) are considered to be directly related to diet and are therefore used as an indicator 

of trophic position (DeNiro and Epstein, 1978, 1981; Graham et al., 2010). Enriched δ15N values 

indicate a higher trophic position of adult G. fabricii relative to juveniles (Fig. 4). This phenomenon 

has been well documented in fish (e.g., Chouvelon et al., 2014; Galván-Magaña et al., 2012), while 

fewer studies have focused on squid species (e.g., Chouvelon et al., 2011; Lischka et al., 2018; Merten 

et al., 2017). We found an increase in the δ15N values associated with size, which was attributed to a 

shift in the trophic regime (i.e. predating prey of higher trophic levels; Kristensen, 1984), which is 

concomitant with a significant increase of the δ13C values from immature to mature G. fabricii (Fig. 

3).  

Our distinct separation in the δ13C values of mature individuals and juveniles indicates an ontogenetic 

shift in habitat of G. fabricii (Fig 3). The differences found in different G. fabricii life stages for δ13C 

are likely related to ontogenetic migration where older and larger specimens live deeper than juveniles 

(Kristensen, 1983; Nesis, 1965; Sennikov et al., 1989). Both these signatures are consistent with the 

known change in feeding habits as a result of ontogenetic migration with larger adults living in deeper 

waters (Nesis, 1965; Kristensen, 1983; Sennikov et al., 1989). Our results are consistent with the 

ontogenetic changes previously reported from stable isotope signatures in the beaks of G. fabricii 

(DML13–257 mm) captured off Greenland and in the Barents Sea (Golikov et al., 2018), and in 

elemental signatures in the statoliths (Zumholz et al., 2007).  
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4.2. Trace element concentrations 

4.2.1. Cadmium  

Compared to other taxa, cephalopods have a high capacity to accumulate toxic Cd in elevated 

concentrations in the digestive gland (Penicaud et al., 2017). Gonatus fabricii shows intermediate Cd 

concentrations, relative to the low levels found in the Loliginidae (Bustamante et al., 2002) and the 

concentrations reported for oceanic Ommastrephidae (Gerpe et al., 2000; Lischka et al., 2018, 2019; 

Table 3). Although unusually high Cd concentrations have been previously reported in the subpolar 

waters of both hemispheres (Bustamante et al., 1998ab, 2003; MacDonald and Sprague 1988; Petri 

and Zauke 1993; Ritterhoff and Zauke, 1997), G. fabricii does not appear to bioaccumulate this trace 

element in those extreme concentrations. Physiological factors are likely responsible for this 

decreased Cd bioaccumulation relative to the Ommastrephidae. For example, the digestive gland of 

Ommastrephids and Sepiidae, contrasting to Loliginids, possesses a lysosomal system with specific 

cells (‘boules’ structures) that are thought to be involved in the storage of large amounts of Cd 

(Penicaud et al., 2017). The detoxification mechanisms in G. fabricii are not fully understood and 

future studies should focus on this aspect of their physiology.  

The Cd concentrations found in G. fabricii individuals show a strong correlation with life stage (Table 

1,2; Fig 2). Juveniles had higher Cd concentrations than adults, which could be linked to the 

ontogenetic change in diet that was revealed through the δ15N values discussed above (Table 1). 

Indeed, diet has been suggested as the main source for Cd accumulation in cephalopods (Penicaud et 

al., 2017). Juvenile G. fabricii have been reported to feed mainly on crustaceans in epipelagic waters, 

whereas adult specimens predominantly feed on deeper meso- and bathypelagic fishes (Bjørke and 

Gjøsæter, 2004; Golikov et al., 2018; Nesis, 1965; Sennikov et al., 1989; Wiborg et al., 1984). 

Although Cd is strongly retained by cephalopods (Bustamante et al., 2002), there are two potential 

explanations for the Cd decrease with ontogeny. These include: 1) the diet of G. fabricii shifts from 

a Cd-rich diet (crustaceans) to a Cd-poor diet (fish); and/or 2) a fast growth rate in the juveniles results 

in a dilution of Cd in the growing tissues (Chouvelon et al. 2011). Predators that feed mainly on 

juvenile G. fabricii (e.g., Greenland halibut, Reinhardtius hippoglossoides, Dawe et al., 1998) could 

have an increased Cd intake relative to predators that preferentially feed on larger specimens (e.g., 

sperm whales Physeter macrocephalus, bottlenose whales Hyperoodon ampullatus, and narwhales 

Monodon monoceros, Bjørke, 2001; Laidre and Heide-Jørgensen, 2005). 

Gonatus fabricii is an important prey item for top predators in the Arctic pelagic food web (Bjørke, 
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2001; Bluhm and Gradinger, 2005), which could make it an important vector for Cd. The diet of the 

harbour porpoise, Phocoena phocoena, off Greenland contained squid, which have been suggested 

as the main source of Cd (Szefer et al., 2002). However, the Cd concentrations in the digestive gland 

of G. fabricii reported herein (4.36-63.14 μg.g-1 dw; Table 1) are higher compared to those from the 

liver of P. phocoena from coastal Greenland (3.45 μg.g-1 dw; Szefer et al., 2002). Similarly, Cd 

concentrations in the Greenland shark, Somniosus microcephalus (which primarily feeds on mammals 

and fish), were lower on average (i.e., 10.7 ± 4.87 μg.g-1; Corsolini et al., 2014) than those measured 

in G. fabricii (Table 1). The energetic requirements of ectothermic fish and endothermic mammals 

differ and could impact Cd exposure and bioaccumulation (Jezierska and Witeska, 2006). In addition, 

the biological effects of cold Arctic waters can be significant and must be taken into account when 

comparing Cd accumulation in mammals and fishes (Sokolova and Lannig, 2008). There is a higher 

energetic cost associated with living in the Arctic compared to temperate oceans, and ingesting a large 

amount of squid could significantly contribute to the Cd exposure in predators (Bustamante et al., 

1998a,b). Due to its importance in the diets of many predators (Bjørke, 2001) and high Cd 

concentrations (Table 1), G. fabricii from West-Greenland waters appear to be an important vector 

in the transfer of Cd in the Arctic pelagic food web.  

4.2.2. Mercury 

Mercury is a highly bioaccumulative metal and is known to cause neurological damage in various 

organisms including humans (Campbell et al., 2005). There is very little information on Hg 

concentrations in marine Arctic invertebrates (Fort et al., 2016) despite their key role in the arctic 

food web. Our results for Hg concentrations in the digestive gland (0.01 to 0.11 μg.g-1 dw) and mantle 

tissue (0.03 to 0.26 μg.g-1) were comparable to those reported for Berryteuthis magister, a gonatid 

from the Bering Sea (~ 0.21 ± 0.11 μg.g-1 dw, converted from ww) (Cyr et al., 2019). In both tissues, 

Hg concentrations showed a positive linear correlation with size and trophic level (Table 1, 2). A 

correlation between size/age and Hg concentration has been previously shown in fish (Monteiro et 

al., 1996; Scott, 1974) and several cephalopod species (Chouvelon et; al. 2011; Lischka et al., 2018; 

Monteiro et al., 1992; Rossi et al., 1993; Storelli and Marcotrigiano, 1999). In addition, the link 

between trophic position and Hg concentrations in marine organisms is well documented (e.g., 

Phillips et al., 1980; Power et al., 2002), including cephalopods (Chouvelon et al., 2011). 

Furthermore, high concentrations (~0.33 - 2.44 μg.g-1 dw) of Hg in marine mammals (e.g., ringed 

seal Phoca hispida, harp seal Phoca groenlandica, harbour porpoise Phocoena phocoena, minke 

whale Balaenoptera acutorostrata or narwhale Monodon monoceros) were previously reported from 
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the Arctic (Dietz et al., 2000).  

Detoxification mechanisms for Hg that involve Se have been reported for marine animals (Chen et 

al., 2006; Huang et al., 1995; Ralston et al., 2008; Storelli and Marcotrigiano, 1999). With increasing 

Hg concentrations, and trophic level, Se concentrations decrease (Fig. 4), this has been also shown 

for flying fish (Exocoetus volitans) and mitre squid (Uroteuthis chinensis) (Wang et al., 2018). The 

mantle tissue of G. fabricii showed a negative correlation between molar Se and Hg (Figs 4a, b). A 

bioreduction of Se concentrations with increasing trophic level has been well documented in the 

marine food web, but is still not fully understood (Stewart et al., 2010). The ontogenetic differences 

in Hg and Se concentrations observed herein could be explained by the dietary shift that occurs with 

maturation, with adult specimens feeding on Hg rich fishes and increasing their own Hg 

concentrations. It is assumed that a molar excess of Hg relative to Se indicates the storage of organic 

Hg in the tissues of marine taxa (Ralston et al., 2008). However, Se concentrations measured in our 

study for G. fabricii were several magnitudes higher than Hg concentrations, which is in concordance 

with data from other invertebrates from Greenland waters (Riget et al., 2007; Ritterhoff and Zauke, 

1997). This could indicate an opposite trend where increased Hg concentration lead to decreased Se 

concentrations, or that Hg is stored by binding to muscular proteins without Se being involved in its 

metabolism.  

4.2.3. Lead 

Lead concentrations of G. fabricii found in the present study were higher in the digestive gland (0.03-

0.37 μg.g-1 dw) than in the muscular tissue (0.01-0.16 μg.g-1 dw), which showed a similar trend with 

concentrations previously reported for Todarodes filippovae (Kojadinovic et al., 2011). Lead appears 

to be mainly stored and detoxified in the digestive gland (Penicaud et al., 2017; Smith et al., 1984). 

Specimen size was significantly correlated with Pb concentrations in both digestive gland and muscle 

tissue, with higher concentrations found in juvenile specimens (Tables 1,2). This ontogenetic decrease 

in Pb concentrations can be explained by the dietary shift that occurs with maturation and Pb dilution 

with growth, because the accumulation of Pb in cephalopods is associated with feeding habits 

(Villanueva and Bustamante, 2006) and the bioreduction of Pb within food webs (Wang, 2002). 

4.2.4. Silver 

Silver concentrations showed a positive linear relationship with size, maturation stage, and stable 

isotope values. These relationships suggest an accumulation of Ag with age and trophic position. 
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High concentrations of Ag in cephalopods have been previously reported in e.g. Ommastrephes 

bartrami and Sthenoteuthis oualaniensis (Martin and Flegal, 1975) and are likely the result of the 

high bioaccumulation capacities of cephalopods for this metal (Bustamante et al., 2004). In 

concordance with our measured concentrations, elevated Ag concentrations have often been observed 

together with high Cu concentrations, which are required for hemocyanin synthesis (Beuerlein et al., 

2002; Martin and Flegal, 1975). The concentrations measured in this study are comparable to 

concentrations measured in Architeuthis dux (Bustamante et al., 2008; Table 4). Silver naturally 

occurs in the Earth’s crust and shows a high affinity to sulphur ligands in seawater (Bell and Kramer, 

1999; Dehn et al., 2006). Cephalopods are known to take up Ag from seawater (Bustamante et al., 

2004; Miramand et al., 2006). Because of the vertical migration, adult G. fabricii could be exposed 

to higher Ag concentrations in deeper waters (Boyé et al., 2012; Zhang et al., 2004), creating an 

indirect link between Ag concentrations and trophic level. Our results suggest that G. fabricii could 

be a vector for the bioaccumulation of Ag in the food web. However, more research is needed on the 

concentrations of Ag in other Arctic predators to better understand the bioaccumulation of this trace 

element in the pelagic food web.  

4.2. Trace element correlations 

The highest Cu concentrations were found in the digestive gland of G. fabricii, which is considered 

the main storage organ for this metal (Finger and Smith, 1987; Miramand and Bentley, 1992). We 

found a correlation between Cd, Cu and Zn in the digestive gland; however, the significance of this 

correlation varied between ontogenetic stages, with the highest correlation found between Cd and Zn 

in the digestive gland of juveniles. Copper and Zn are cofactors in digestive enzyme systems and are 

involved in hemocyanin synthesis (Bustamante et al., 2002; Smith et al., 1984). The role of Cu and 

Zn in the detoxification process of Cd in cephalopods has been previously discussed (e.g., Bustamante 

et al., 2002; Miramand and Bentley, 1992), and excessive metals in the digestive gland cells can be 

bound to metalloproteins (Jebali et al., 2008; Viarengo and Nott, 1993). In addition, the strong 

correlation found between Zn and Cd in juveniles likely indicates a stronger detoxification effect in 

the digestive gland, which is necessary due to the high Cd concentrations in their diet, rather than an 

inefficient Cd detoxification method that improves with maturity.  

A correlation was observed between trace element concentrations of Cr and Ni in the digestive gland. 

The association of these two trace elements could be linked with anthropogenic activities. Elevated 

Ni concentrations in marine biota have been linked with mining activities and natural erosion 

(Bustamante et al., 2000; Pernice et al., 2009). The correlation of these two trace elements could be 
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associated with their main commercial use, because steel production uses Ni as an alloy with Cr and 

both metals are associated in ores (Cano et al., 2014; Sedriks, 1982). Therefore, an accumulation of 

Ni could likely result in a correlated accumulation of its associated metals (e.g., Co, Cr, Mn; Metian 

et al., 2008; Monniot et al., 1994). Both Ni and Cr can impact pelagic food webs through the 

bioconcentration in invertebrates and their predators (Campbell et al., 2005).  

4.3. Gonatus fabricii as a vector of trace elements 

Our results indicate that Gonatus fabricii is an important vector for the transfer of contaminants into 

the deep-sea pelagic food web due to its high abundance, its role as dominant prey and its ontogenetic 

migration into deeper waters. In addition, G. fabricii may also transfer contaminants to benthic and 

benthopelagic food webs via benthic-pelagic coupling. Gonatids undergo a single reproductive cycle 

(semelparous life strategy) (Boyle and Rodhouse, 2005; Laptikhovsky et al., 2007). Females hold on 

to the eggs in the water column during an extensive brooding period (likely ~ 2 years) as has been 

observed for G. onyx in Monterey Canyon, off California at depths between 1,539 and 2,522 m (Seibel 

et al 2005), which is followed by death. After death, Pacific gonatids sink to the seafloor where they 

represent an important food source for scavenging fauna (Hoving et al., 2017). Similarly, post-

spawning carcasses of G. fabricii in the northern Atlantic are likely consumed by benthic scavenging 

fauna including fish (e.g., grenadiers, Coryphaenoides spp.; Martin and Christiansen, 1997) but in 

situ observations of gonatid carcasses remain undocumented from the Atlantic. Trace elements are 

accumulated with increasing trophic level in the deep pelagic ocean (Atwell et al., 1998; Campbell et 

al., 2005). The combination of ontogenetic migration, high abundance, terminal spawning, and the 

accumulation of trace elements along the pelagic food chain via consumption of meso-and 

bathypelagic fishes by G. fabricii suggests that significant amounts of Cd and Hg may be transported 

to the deep-sea. Sinking carcasses of spent G. fabricii may then potentially introduce these 

contaminants to the benthic food web via scavengers. Future studies should focus on Cd and Hg 

concentrations in benthic scavengers of the northern seas to test this hypothesis. 

5. Conclusion 

Overall, trace element concentrations measured in G. fabricii, collected in 2005 off West Greenland, 

were relatively low when compared to loliginid or ommastrephid squids. However, we found 

significant differences in trace element accumulation, in particular for Cd, with maturity stage and 

trophic position. Our findings suggest that concentrations of most trace elements vary with size in G. 

fabricii and support an ontogenetic change in diet. This implies that in the pelagic Arctic food web, 
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the transfer of trace elements to predators depends on the size/age class of the squids. Predators that 

feed mainly on juvenile G. fabricii (e.g. Greenland halibut) might have an increased Cd intake 

compared to predators mainly feeding on adult specimens, (e.g., sperm whales, bottlenose whales and 

narwhales). Conversely, Hg levels were higher in mature individuals and would have a stronger effect 

on predators that feed predominantly on mature G. fabricii. Future studies should be conducted on G. 

fabricii and other cephalopod species in Arctic waters in order to clarify our understanding of the 

element transfers in the marine Arctic food web, which will be crucial for tracing the bioaccumulation 

of contaminants in Arctic marine mammals, birds, and predatory fishes.  
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Figure 1. Map of the sampling area during the cruise, the sampling station is are indicated by grey 

circles. 
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Figure 2. Principal component analysis (PCA) presenting the trace element concentrations in the 

digestive gland (a) and the mantle tissue. (b) Element loadings along Principle component (PC)1 

and PC2 are represented by arrows. Abbreviations are the following: female digestive gland (F 

DG), female mantle (F M), juvenile digestive gland (J DG), juvenile mantle (J M), male digestive 

gland (M DG) and male mantle (M M). Ellipses indicate the 95% confidence interval around 

tissue/maturity stage groupings.   
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Figure 3. Relationship between Hg concentrations (µg.g-1 dw) and the molar ratio of Hg:Se in (a) 

digestive gland (y= -0.002 + 0.19x, R2= 0.58, p<0.001) and (b) mantle tissue (y=-0.002+0.24x, R2= 

0.95, p<0.001) of female (F), male (M) and juvenile (J).
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Figure 4. Carbon (δ13C) and nitrogen (δ15N) stable isotope values (‰) in female, male and juvenile specimen. 
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Table 1. Summary of specimen data and trace elemental concentrations for Gonatus fabricii for 

females (n=15), males (n=15) and juveniles (n=15). Specimen size is presented as dorsal mantle 

length (DML), muscle stable isotope δ13C and δ15N values (reported as ‰), and trace element 

concentrations (minimum, mean, and maximum) for digestive gland and mantle tissue (μg.g-1 dw) 

Gonatus fabricii specimens. 

  
Female Male Juvenile  
Mean Min Max Mean Min Max Mean Min Max 

DML 12.80 7.60 19.30 17.14 9.00 27.40 4.06 3.00 5.60 

δ13C -19.10 -19.53 -18.77 -18.96 -19.35 -18.72 -20.60 -21.10 -19.98 

δ15N 13.74 12.75 15.15 13.98 12.64 15.12 9.09 8.59 9.64 

Digestive gland 

Ag 1.20 0.44 2.23 1.03 0.45 1.83 0.22 0.14 0.44 

As 10.18 4.49 19.84 10.25 4.11 19.42 6.68 5.29 8.01 

Cd 31.57 5.86 63.14 31.79 4.36 58.18 41.60 25.80 62.32 

Co 0.17 0.08 0.29 0.12 0.05 0.18 0.29 0.13 0.63 

Cr 0.10 0.09 0.10 0.12 0.09 0.41 1.68 0.10 11.56 

Cu 124 72.7 192 138 67.6 223 14.1 7.66 50.0 

Fe 57.5 22.4 136 42.8 20.1 92.4 207 99.5 320 

Hg 0.05 0.01 0.09 0.06 0.01 0.11 0.04 0.02 0.06 

Mn 1.01 0.82 1.29 0.85 0.51 1.21 2.45 1.18 5.45 

Ni 1.16 0.48 2.06 0.86 0.26 1.78 4.49 1.24 19.21 

Pb 0.08 0.03 0.15 0.05 0.03 0.12 0.22 0.09 0.37 

Se 2.96 1.27 6.54 2.36 1.36 4.58 5.75 3.88 9.55 

Zn 74.0 23.0 140 56.5 29.6 131 136 89.8 181 

Mantle tissue 

Ag 0.09 0.01 0.19 0.08 0.02 0.26 0.03 0.01 0.05 

As 22.31 11.65 51.07 26.30 11.30 35.39 6.06 5.57 6.81 

Co 0.04 0.02 0.12 0.03 0.02 0.07 0.06 0.03 0.11 

Cr 0.32 0.10 1.84 0.28 0.10 1.53 0.99 0.20 2.43 

Cu 26.3 10.5 54.5 18.8 10.1 37.9 11.5 8.09 15.2 

Fe 18.7 8.67 42.1 9.63 4.20 13.2 48.3 18.9 163 

Hg 0.13 0.05 0.22 0.16 0.04 0.26 0.04 0.03 0.05 

Mn 2.50 1.33 3.51 1.63 1.37 2.03 1.83 1.49 2.08 

Ni 0.81 0.27 3.20 0.49 0.26 1.45 1.15 0.41 2.46 

Pb 0.03 0.01 0.06 0.02 0.01 0.05 0.06 0.03 0.16 

Se 1.80 1.34 2.09 1.78 1.43 2.35 2.23 1.87 2.92 

Zn 90.6 41.6 131 54.0 44.4 65.3 91.7 80.1 107 

 

 

 



  1 

Table 2. Analysis of covariance (ANCOVA) for the linear models fitted to the trace element concentration in 

the digestive gland and muscle tissue. Explanatory variables are as follows: dorsal mantle length (DML), δ13C 

and δ15N values (‰), and sex. Mantle tissue concentrations for Cd were excluded due to diffusion of the 

digestive gland concentrations to the mantle tissue during sample storage. Df represents the degrees of 

freedom. Asterisks show the level of significance: * p < 0.05, ** p < 0.01, *** p < 0.001. 

 
 Df Sum of 

squares 

Mean 

square 

F-value Significance Df Sum of 

squares 

Mean 

square 

F-value Significance 

Digestive gland   Mantle 

Ag  

DML 1 4.20 4.20 63.34 <0.001 *** 1 0.40 0.40 2.28 0.14 
 

δ15N 1 3.89 3.89 58.62 <0.001 *** 1 3.32 3.32 18.85 <0.001 *** 

Sex 2 0.14 0.07 1.06 0.35 
 

2 0.19 0.10 0.55 0.58 
 

δ13C 1 0.18 0.18 2.77 0.10 
 

1 0.23 0.23 1.29 0.26 
 

Residuals 39 2.59 0.07 
   

39 6.86 0.18 
   

As  

DML 1 1.49 1.49 7.75 0.01 ** 1 7.70 7.70 202.39 <0.001 *** 

δ15N 1 1.27 1.27 6.60 0.01 * 1 1.65 1.65 43.31 <0.001 *** 

Sex 2 0.59 0.29 1.53 0.23 
 

2 0.15 0.07 1.92 0.16 
 

δ13C 1 0.17 0.17 0.87 0.36 
 

1 0.02 0.02 0.40 0.53 
 

Residuals 39 7.49 0.19 
   

39 1.48 0.04 
   

Cd  

DML 1 0.00 0.00 0.01 0.93 
       

δ15N 1 1.18 1.18 8.42 0.01 ** 
      

Sex 2 3.65 1.83 13.03 <0.001 *** 
      

δ13C 1 0.70 0.70 5.00 0.03 * 
      

Residuals 39 5.47 0.14 
         

Cu  

DML 1 6.42 6.42 270.98 <0.001 *** 1 0.28 0.28 2.70 0.11 
 

δ15N 1 3.26 3.26 137.56 <0.001 *** 1 6.02 6.02 57.46 0.00 *** 

Sex 2 0.35 0.18 7.44 0.002 ** 2 0.56 0.28 2.67 0.08 . 

δ13C 1 0.05 0.05 2.01 0.16 
 

1 0.06 0.06 0.56 0.46 
 

Residuals 39 0.92 0.02 
   

39 4.08 0.10 
   

Hg  

DML 1 1.29 1.29 6.57 0.01 * 1 7.20 7.20 220.47 <0.001 *** 

δ15N 1 0.94 0.94 4.80 0.03 * 1 1.53 1.53 46.89 <0.001 *** 

Sex 2 0.84 0.42 2.14 0.13 
 

2 0.89 0.45 13.65 <0.001 *** 

δ13C 1 0.29 0.29 1.47 0.23 
 

1 0.10 0.10 3.01 0.09 . 

Residuals 39 7.65 0.20 
   

39 1.27 0.03 
   

Pb  

DML 1 5.15 5.15 84.97 <0.001 *** 1 4.78 4.78 41.24 <0.001 *** 

δ15N 1 1.57 1.57 25.83 <0.001 *** 1 0.19 0.19 1.66 0.21 
 

Sex 2 0.20 0.10 1.65 0.21 
 

2 0.14 0.07 0.61 0.55 
 

δ13C 1 1.71 1.71 28.27 0.00 *** 1 1.37 1.37 11.83 0.001 ** 

Residuals 39 2.37 0.06 
   

39 4.52 0.12 
   

Zn  

DML 1 4.18 4.18 42.66 <0.001 *** 1 3.83 3.83 36.55 <0.001 *** 

δ15N 1 1.80 1.80 18.40 <0.001 *** 1 0.01 0.01 0.09 0.77 
 

Sex 2 0.65 0.32 3.30 0.05 * 2 2.94 1.47 14.04 <0.001 *** 

δ13C 1 0.54 0.54 5.49 0.02 * 1 0.12 0.12 1.19 0.28 
 

Residuals 39 3.83 0.10 
   

39 4.09 0.10 
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Table 3. Comparison of digestive gland Cd concentrations reported for various squid species. All 

concentrations are indicated as μg.g-1 dw. 

 

Species Mean ± SD Sampling Location Study 

Gonatus fabricii  35 ± 15 Disko Bay, 

Greenland 

This study 

Architeuthis dux 65.8 ± 43.1 Bay of Biscay Bustamante et al. 2008 

Illex argentinus 1003 ± 566 Central South Brazil 

Bight  

Dorneles et al., 2007* 

Illex argentinus 92.5 Argentina Falandysz, 1988 

Illex argentinus 5.1 ± 1.5 Patagonia Gerpe et al., 2000 

Illex argentinus 145 ± 65 Argentina Kurihara et al., 1993 

Illex coindetii 0.12 ± 0.05 Adriatic Sea Storelli and 

Marcotrigiano, 1999* 

Illex coindetii 15 ± 5 Bay of Biscay Bustamante et al. 2002 

Nototodarus gouldi 50 ± 25 Bass Strait, 

Australia 

Smith et al., 1984 

Nototodarus gouldi 33 ± 30 Port Phillip Bay, 

Australia 

Finger and Smith, 1987 

Nototodarus sloanii 111 ± 95 Chatham Rise, New 

Zealand 

Lischka et al., 2019 

Ommastrephes 

bartramii 

827 ± 369 Sea of Japan Kurihara et al., 1993 

Ommastrephes 

bartramii 

287 ± 194 Southern California Martin and Flegal, 1975 

Sthenoteuthis 

oualaniensis 

198 Japanese Sea  Ichihashi et al., 2001* 

Sthenoteuthis pteropus 748 ± 279 Eastern Tropical 

Atlantic 

Lischka et al., 2018 

Todarodes filippovae 246 ± 187 Indian Ocean Kojadinovic et al., 2011 

Todarodes filippovae 98.5 ± 67.2 Tasmania Kojadinovic et al., 2011 

Todarodes pacificus 16.7 Sea of Japan Ishizaki et al., 1970 

Todarodes sagittatus 85 ± 37 Bay of Biscay Bustamante et al., 2002 

Todarodes sagittatus 18 ± 12 Bay of Biscay Chouvelon et al., 2011 

*concentrations have been converted from wet weight 
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Table 4. Comparison of digestive gland Ag concentrations reported for various squid species. All 

concentrations are indicated as μg.g-1 dw. 

Species Mean ± SD Sampling Location Study  
Gonatus fabricii 0.82 ± 0.55 Disko Bay, 

Greenland 

This study 

Architeuthis dux 1.90 ± 0.47 Bay of Biscay Bustamante et al., 2008 

Nototodarus gouldi 3.3 ± 1.4 Bass Strait, 

Australia 

Smith et al., 1984 

Ommastrephes batramii 12.1 ± 8.6 Southern California Martin and Flegal, 1975 

Sthenoteuthis oualaniensis 24.1 ± 10.9 Southern California Martin and Flegal, 1975 

Sthenoteuthis pteropus 9.86 ± 3.44 Eastern Tropical 

Atlantic 

Lischka et al., 2018 

Todarodes filippovae 3.04 ± 1.55 Tasmania Kojadinovic et al. 2011 

Todarodes filippovae 3.40 ± 1.60 Indian Ocean Kojadinovic et al. 2011  

Todarodes pacificus 7* ± NA Sea of Japan Ichihashi et al., 2001 

*concentrations have been converted from wet weight 



  1 

Supplementary information 
 

 

 

 

 

Figure S1. Heatmap of the auto-scaled trace element concentrations in the digestive gland of the three 

different groups analysed herein (female, male, and juvenile). Darker colours symbolize a stronger 

correlation. Hierarchical clustering is indicated by brackets.  

 


