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Abstract

We provide existence, uniqueness and stability results for affine stochastic Volterra
equations with L1-kernels. Such equations arise as scaling limits of branching processes
in population genetics and self-exciting Hawkes processes in mathematical finance. The
strategy we adopt for the existence part is based on approximations using stochastic
Volterra equations with L2-kernels. Most importantly, we establish weak uniqueness
using a duality argument on the Fourier–Laplace transform via a deterministic Riccati–
Volterra integral equation. We illustrate the applicability of our results on a class of
hyper-rough Volterra Heston models with a Hurst index H ∈ (−1/2, 1/2].

Keywords: Stochastic Volterra equations, Affine Volterra processes, Riccati-Volterra
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1 Introduction

We establish weak existence, uniqueness and stability results for stochastic Volterra equa-
tion with locally L1–kernels K in the form

Xt = G0(t) +

∫ t

0
K(t− s)Zsds, t ≥ 0, (1.1)

where Z is a real-valued continuous semimartingale with affine characteristics

(bX, cX, 0), (1.2)

∗Université Paris 1 Panthéon-Sorbonne, Centre d’Economie de la Sorbonne, 106, Boulevard de l’Hôpital,
75013 Paris, eduardo.abi-jaber@univ-paris1.fr. I would like to thank Mathieu Rosenbaum for presenting
me the uniqueness problem, and Ryan McCrickerd for interesting discussions.
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with b ∈ R, c ≥ 0 and a given function G0 : R+ → R. For L2–kernels this formulation was
recently introduced in Abi Jaber et al. (2019a), where Z is a semimartingale with jumps
but whose characteristics are absolutely continuous with respect to the Lebesgue measure.
In the L1 setting, X may fail to be absolutely continuous with respect to the Lebesgue
measure, as will be explained in the sequel. For this reason, our study falls beyond the
scope of Abi Jaber et al. (2019a).

Our motivation for studying such convolution equations is twofold. Stochastic Volterra
equations with kernels that are locally in L1 but not in L2 arise as scaling limits of branch-
ing processes in population genetics and self–exciting Hawkes processes in mathematical
finance.
• From branching processes to stochastic Volterra equations. The link was formulated

for the first time in Mytnik and Salisbury (2015) to motivate the study of stochastic
Volterra equations with L2–kernels. In the sequel we re-formulate the aforementioned
introductory exposition linking super–processes with stochastic Volterra equations with L1–
kernels. Consider a system of n reactant particles in one dimension moving independently
according to a standard Brownian motion and branching only in the presence of a catalyst.
The catalyst region at a certain time t is defined as the support of some deterministic
measure ρt(dx). Whenever a particle enters in the catalyst region and after spending
a random time in the vicinity of the catalyst, it will either die or split into two new
particles, with equal probabilities. The measure ρt(dx) determines the local branching
rate in space and time depending on the location and the concentration of the catalyst.
Two typical examples are ρt(dx) ≡ ρ̄dx where the branching occurs in the entire space
with constant rate ρ̄ and ρt(dx) = δ0(dx) for a branching occurring with infinite rate only
when the particle hits a highly concentrated single point catalyst located at 0. In case of
branching, the two offspring particles evolve independently with the same spatial movement
and branching mechanism as their parent.

One can view the reactant as a rescaled measure-valued process (Ȳ n
t (dx))t≥0 defined

by

Ȳ n
t (B) =

number of particles in B at time t

n
, for every Borel set B.

Sending the number of particles to infinity, one can establish the convergence towards a
measure-valued macroscopic reactant Ȳ , coined catalytic super-Brownian motion, which
solves an infinite dimensional martingale problem, see Dawson and Fleischmann (1991);
Etheridge (2000); Perkins (2002) and the references therein. Moreover, in the presence
of a suitable deterministic catalyst ρ = (ρt(dx))t≥0 having no atoms, the measure-valued
process Ȳ admits a density Ȳt(dx) = Yt(x)dx solution to the following stochastic partial
differential equation in mild form

Yt(x) =

∫
R
pt(x− y)Y0(y)dy +

∫
[0,t]×R

pt−s(x− y)
√
Ys(y)W ρ(ds, dy). (1.3)

where Y0 is an input curve, pt(x) = (2πt)−1/2 exp(−x2/(2t)) is the heat kernel and W ρ is a
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space-time noise with covariance structure determined by ρ, refer to Zähle (2005) for more
details. The previous equation is only valid if ρ has no atoms. One could still heuristically
set ρt(dx) = δ0(dx) in (1.3) for the extreme case of a single point catalyst at 0, which would
formally correspond to the catalytic super-Brownian motion of Dawson and Fleischmann
(1994). Then, the space-time noise reduces to a standard Brownian motion W so that
evaluation at x = 0 yields

Yt(0) = g0(t) +
1√
2π

∫ t

0
(t− s)−1/2dZs, (1.4)

where dZt =
√
Yt(0)dWt and g0(t) =

∫
R pt(y)Y0(y)dy. The link with stochastic Volterra

equations of the form (1.1) is established by considering the local occupation time at the
catalyst point 0 defined by

Xt = lim
ε→0

∫ t

0

∫
R
pε(y)Ȳs(dy) ds, t ≥ 0, (1.5)

where pε is a suitable smoothing kernel of the dirac point mass at 0. Integrating both sides
of equation (1.4) with respect to time and formally interchanging the integrals lead to

Xt =

∫ t

0
Ys(0)ds (1.6)

=

∫ t

0
g0(s)ds+

1√
2π

∫ t

0
(t− s)−1/2Zsds. (1.7)

where 〈Z〉 = X. Consequently, X solves (1.1) for the kernel

K0(t) =
t−1/2

√
2π

, t > 0, (1.8)

which is locally in L1 but not in L2. Needless to say, one is not allowed to plug the
Dirac measure in (1.3). Indeed, in the presence of a single point catalyst, the catalytic
super-Brownian motion does not admit a density at the catalyst position as shown by
Dawson and Fleischmann (1994) and the identities (1.3) and (1.6) break down. The local
occupation time X is even singular with respect to the Lebesgue measure, see Dawson
et al. (1995); Fleischmann and Le Gall (1995). Still, one can rigorously prove that the local
occupation time X defined by (1.5) solves (1.7) by appealing to the martingale problem of
the measure–valued process Ȳ , we refer to Appendix A for a rigorous derivation.
• From Hawkes processes to stochastic Volterra equations. More recently, for particular

choices of G0 and kernels, solutions to (1.1) were obtained in Jusselin and Rosenbaum
(2018) as scaling limits of Hawkes processes (Nn)n≥1 with respective intensities

λnt = gn0 (t) +

∫ t

0
Kn(t− s)dNn

s , t ≥ 0,
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for some suitable function gn0 and kernel Kn. The rescaled sequence of integrated acceler-
ated intensities Xn =

∫ ·
0 λ

n
nsds is shown to converge to a continuous process X satisfying

(1.1) for the fractional kernel

KH(t) =
tH−1/2

Γ(H + 1/2)
, t > 0,

with H ∈ (1/2, 1/2]. We note that for H = 0 the fractional kernel reduces to (1.8), up to
a normalizing constant. In other words, when H = 0, the scaling limit of the integrated
intensities of Hawkes processes can be seen as the local occupation time of the catalytic
super-Brownian motion of Dawson and Fleischmann (1994), provided uniqueness holds.
Similarly, when H ≤ 0, KH lies locally in L1 but not in L2, and one can also show that in
this case X is not absolutely continuous with respect to the Lebesgue measure, see Jusselin
and Rosenbaum (2018, Proposition 4.6).

In both cases, one can compute the Laplace transform of X, modulo a deterministic
Riccati–Volterra equation of the form

ψ(t) =

∫ t

0
KH(t− s)

(
1

2
ψ2(s)− 1

)
ds,

either by using the dual process of the catalytic super-Brownian motion, see Dawson and
Fleischmann (1994, Equations (4.2.1)-(4.2.2)), or by exploiting the affine structure of the
approximating Hawkes processes, see Jusselin and Rosenbaum (2018, Theorem 3.2). Both
constructions provide solutions to (1.1), but do not yield uniqueness. Establishing weak
uniqueness is one of the main motivation of this work.

In the present paper, we provide a generic treatment of the limiting macroscopic equa-
tion (1.1). The strategy we adopt is based on approximations using stochastic Volterra
equations with L2 kernels, whose existence and uniqueness theory is now well–established,
see Abi Jaber et al. (2019a,b) and the references therein. By doing so, we avoid the infinite-
dimensional analysis used for super-processes, we also circumvent the need to study scaling
limits of Hawkes processes, allowing for more generality in the choice of kernels K and input
functions G0. Most importantly, we establish weak uniqueness using a duality argument on
the Fourier–Laplace transform of X via a deterministic Riccati–Volterra integral equation.
In particular, this expression extends the one obtained for affine Volterra processes with
L2-kernels in Abi Jaber et al. (2019b). We illustrate the applicability of our results on a
class of hyper-rough Volterra Heston models with a Hurst index H ∈ (−1/2, 1/2] extend-
ing the results of Abi Jaber et al. (2019b); El Euch and Rosenbaum (2019); Jusselin and
Rosenbaum (2018). Such models have recently known a growing interest to account for
rough volatility, a universal phenomena observed in financial markets, see Gatheral et al.
(2018).

Notations ∆h stands for the shift operator, i.e. ∆hg = g(h + ·) and dg is the dis-
tributional derivative of a right–continuous function g with locally bounded variation,

4



i.e. dg((s, t]) = g(t) − g(s). For a suitable borel function f the quantity
∫ ·

0 f(s)dg(s)
will stand for the Lebesgue–Stieltjes integral, whenever the integral exists. Similarly, for
each t < T , the convolution

∫ t
0 f(t − s)dg(s) is defined as the Lebesgue–Stieltjes integral∫ T

0 1[0,t]f(t− s)dg(s) whenever this latter quantity is well–defined.

Outline Section 2 states our main existence and uniqueness result together with the
expression for the Fourier–Laplace transform. Section 3 provides a-priori estimates for
the solution. In Section 4, we derive a general stability results for stochastic Volterra
equations with L1–kernels. These results are used to establish weak existence for the
stochastic Volterra equation in Section 5. Furthermore, an existence result for Riccati–
Volterra equations with L1–kernels is derived there. Weak uniqueness is then established
by completely characterizing the Fourier–Laplace transform of the solution in terms of the
Riccati–Volterra equation of Section 6. In Section 7, we apply our results to obtain exis-
tence, uniqueness and the characteristic function of the log-price in hyper–rough Volterra
Heston models. Finally, we provide a more rigorous derivation of the stochastic Volterra
equation satisfied by the local occupation time of the catalytic super–Brownian motion in
Appendix A.

2 Main result

In this section, we present our main result together with the strategy we adopt. We start
by making precise the concept of solution.

We call X a weak solution to (1.1) for the input (G0,K), if there exists a filtered
probability space (Ω,F , (Ft)t≥0,P) supporting a non-decreasing, continuous and adapted
process X and a continuous semimartingale Z whose characteristics are given by (1.2) such
that (1.1) holds P–almost surely. Note that, by virtue of standard martingale representation
theorems, there exists an enlargement of the probability space supporting a Brownian
motion W such that Z admits the following decomposition

Zt = bXt +WcXt , t ≥ 0. (2.1)

One first notes that the formulation (1.1) differs from the one given in Jusselin and
Rosenbaum (2018, Equation (3)), where

Xt = G0(t) +

∫ t

0

(∫ t−s

0
K(r)dr

)
dZs.

Although these two formulation are equivalent, thanks to stochastic Fubini’s theorem, the
advantages of considering the formulation (1.1) as starting point, which is inspired by the
‘martingale problem’ formulation of stochastic Volterra equations recently introduced in
Abi Jaber et al. (2019a) will become clear in the sequel.

The following lemma establishes the link with stochastic Volterra equations with L2–
kernels, as the one studied for instance in Abi Jaber et al. (2019b).
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Lemma 2.1. Fix K ∈ L2
loc(R+,R) and g0 ∈ L1

loc(R+,R). Assume that there exists a
non-decreasing continuous adapted process X and a Brownian motion W on some filtered
probability space (Ω,F , (Ft)t≥0,P) such that

Xt =

∫ t

0
g0(s)ds+

∫ t

0
K(t− s)Zsds, (2.2)

with Z given by (2.1) and such that supt≤T E[|Xt|] <∞, for all T > 0. Then, X =
∫ ·

0 Ysds
where Y is a nonnegative weak solution to the following stochastic Volterra equation

Yt = g0(t) +

∫ t

0
K(t− s)bYsds+

∫ t

0
K(t− s)

√
cYsdW̃s, P⊗ dt− a.e. (2.3)

Conversely, assume there exists a nonnegative weak solution Y to the stochastic Volterra
equation (2.3) such that supt≤T E[|Yt|] <∞ for all T > 0, then X =

∫ ·
0 Ysds is a continuous

non-decreasing solution to (2.2).

Proof. Fix t ≥ 0. An application of stochastic Fubini’s theorem, see Abi Jaber et al.
(2019b, Lemma 2.1), yields∫ t

0
K(t− s)Zsds =

∫ t

0
K(s)

(∫ t−s

0
dZs

)
ds

=

∫ t

0

(∫ t−r

0
K(s)ds

)
dZr

=

∫ t

0

(∫ t

0
K(s− r)1{r≤s}ds

)
dZr

=

∫ t

0

(∫ s

0
K(s− r)dZr

)
ds.

Thus, X admits a density Y with respect to the Lebesgue measure, such that

Yt = g0(t) +

∫ t

0
K(t− r)dZr,

and the characteristics of Z read(
b

∫ ·
0
Ysds, c

∫ ·
0
Ysds, 0

)
.

Since X is non-decreasing almost surely, Y is nonnegative P ⊗ dt. Since 〈WcX〉t =
c
∫ t

0 Ysds, standard martingale representation theorems, e.g. Revuz and Yor (2013, Proposi-

tion V.3.8), yield the existence of a Brownian motion W̃ such that dWcXt =
√
cYtdW̃t. The

claimed stochastic Volterra equation (2.3) readily follows. The converse direction follows
along the same lines by integrating both sides of (2.3) and applying stochastic Fubini’s
theorem as above to get (2.2).
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Our strategy for constructing solutions to (1.1) with L1-kernels relies on an approx-
imation argument using L2-kernels combined with Lemma 2.1. To fix ideas, assume
G0 = limn→∞G

n
0 , with Gn0 =

∫ ·
0 g

n
0 (s)ds, for some sequence of L1

loc-functions (gn0 )n≥1.
Starting from a L1

loc–kernel K, assume that there exists a sequence of L2
loc–kernels (Kn)n≥1

such that
Kn → K, in L1

loc, as n→∞.
Then, for each n ≥ 1, Kn being locally square–integrable, under suitable conditions on
(gn0 ,K

n), the results in Abi Jaber et al. (2019b); Abi Jaber and El Euch (2019a) provide
existence of nonnegative solution Y n for (2.3) with (g0,K) replaced by (gn0 ,K

n). Setting
Xn =

∫ ·
0 Y

n
s ds, Lemma 2.1 provides a solution Xn to (1.1) for the input (Gn0 ,K

n), that is

Xn
t = Gn0 (t) +

∫ t

0
Kn(t− s)Zns ds, (2.4)

where the characteristics of Zn are (bXn, cXn, 0). Provided that (Xn)n≥1 is tight, it will
admit a convergent subsequence towards a limiting process X. Finally, sending n → ∞,
one would expect X to solve (1.1). The kernel approximation philosophy plays also a key
role in deriving the Fourier–Laplace transform of X and establishing weak uniqueness.

We now introduce the assumptions needed on the kernel K and the input function G0.
First, we assume that K ∈ L1

loc(R+,R) such that∫ h

0
|K(s)|ds+

∫ T

0
|K(s+ h)−K(s)|ds ≤ Chγ , h, T > 0, (2.5)

for some γ,C > 0. We will also need the following L2-condition on the right-shifted kernels
∆εK = K(·+ ε): for each ε > 0 there exists γε, Cε > 0 such that∫ h

0
|∆εK(s)|2ds+

∫ T

0
|∆εK(s+ h)−∆εK(s)|2ds ≤ Cεhγε , h, T > 0. (2.6)

Before going further, let us list some examples of kernels that satisfy (2.5)-(2.6).

Example 2.2. (i) Locally Lipschitz kernels K clearly satisfy (2.5)-(2.6) with γ = γε =
1, for all ε > 0.

(ii) The fractional kernel K(t) = tH−1/2 with H ∈ (−1/2, 1/2] satisfies (2.5)-(2.6). (2.6)
follows from (i) since ∆εK is locally Lipschitz for each ε > 0, and (2.5) is satisfied

with γ = H + 1/2. Indeed, we have
∫ h

0 K(t)dt = hH+1/2/(H + 1/2) and∫ T

0
|K(t+ h)−K(t)|dt = hH+1/2

∫ ∞
0

(
tH−1/2 − (t+ 1)H−1/2

)
dt,

where the integral appearing on the right-hand side is finite. This example shows
that (2.6) does not necessarily imply that K ∈ L2

loc, indeed when H ≤ 0, t 7→ tH−1/2

is not locally square-integrable.

7



(iii) If K1 and K2 satisfy (2.5)-(2.6), then so does K1 + K2. If in addition K2 is locally
Lipschitz then one can show that K1K2 also satisfies (2.5)-(2.6).

Second, monotonicity and continuity assumptions on (K,G0) are needed to construct
approximating sub-sequences of the form (2.4) with L2-kernels, that are non-decreasing.
For this we recall the notion of the resolvent of the first kind of a kernel: a measure L of
locally bounded variation is called a resolvent of the first kind of the kernel K if∫

[0,t]
K(t− s)L(ds) = 1, t ≥ 0.

In addition to (2.5)-(2.6), we consider the following condition on the shifted-kernels

the kernel is nonnegative, non-increasing and continuous on (0,∞), and
its resolvent of the first kind L is nonnegative and non-increasing in the

sense that s 7→ L([s, s+ t]) is non-increasing for all t ≥ 0.
(2.7)

We note in (2.7) that any nonnegative and non-increasing kernel that is not identically
zero admits a resolvent of the first kind; see Gripenberg et al. (1990, Theorem 5.5.5).

Example 2.3. If K is completely monotone on (0,∞), then (2.7) holds due to Gripenberg
et al. (1990, Theorem 5.5.4). Recall that a function f is called completely monotone on
(0,∞) if it is infinitely differentiable there with (−1)kf (k)(t) ≥ 0 for all t > 0 and k ≥ 0.
For each ε > 0, the shifted kernel ∆εK is again completely monotone on [0,∞) so that
(2.7) holds also for ∆εK. In particular, ∆εK is locally Lipschitz and (2.6) is satisfied
by Example 2.2-(i). This covers, for instance, any constant positive kernel, the fractional
kernel tH−1/2 with H ∈ (−1/2, 1/2], and the exponentially decaying kernel e−ηt with η > 0.
Moreover, sums and products of completely monotone kernels are completely monotone.
By combining the above examples we find that the Gamma kernel K(t) = tH−1/2e−ηt for
H ∈ (−1/2, 1/2] and η ≥ 0 satisfies (2.5), (2.6) and (2.7).

Concerning the input function G0, Abi Jaber and El Euch (2019a) provide a set GK of
admissible input curves g0 defined in terms of the resolvent of the first kind L to ensure the
existence of non-negative solution for (2.3). To guarantee that the approximate solutions
(2.4) are non-decreasing, we consider similarly to Abi Jaber and El Euch (2019a, Equations
(2.4)–(2.5)), the following condition1

∆hg0 − (∆hK ∗ L)(0)g0 − d(∆hK ∗ L) ∗ g0 ≥ 0, h ≥ 0, (2.8)

1Under (2.7) one can show that ∆hK ∗ L is right-continuous and of locally bounded variation (see
Abi Jaber and El Euch (2019a, Remark B.3)), thus the associated measure d(∆hK ∗ L) is well defined.
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where we used the notation (f ∗ µ)(t) =
∫ t

0 f(t− s)µ(ds) for a measure of locally bounded
variation µ and a function f ∈ L1

loc. We then define the space of admissible input curves
GK to be

GK = {g0 continuous, satisfying (2.8) such that g0(0) ≥ 0} . (2.9)

Two notable examples of such admissible input curves are:

Example 2.4. (i) g0 continuous and non-decreasing with g0(0) ≥ 0,

(ii) g0(t) = x0 +
∫ t

0 K(t− s)θ(s)ds, for some x0 ≥ 0 and θ : R+ → R+ locally bounded,
see e.g. Abi Jaber and El Euch (2019a, Example (2.2)).

Finally, we introduce the following process which enters in the representation of the
Fourier–Laplace transform:

Gt(s) = G0(s) +

∫ s∨t

t
gt(u)du, s, t ≥ 0, (2.10)

gt(s) =

∫ t

0
K(s− r)dZr, s > t. (2.11)

We note that since the shifted kernels are in L2, the stochastic convolution
∫ t

0 K(s−r)dZr =∫ t
0 ∆s−tK(t− r)dZr is well-defined as an Itô integral, for all s > t.

We are now in place to state the main result of the paper.

Theorem 2.5. Fix a a nonnegative and non-increasing kernel K ∈ L1
loc(R+,R) satisfying

(2.5). Assume that its shifted kernels ∆εK satisfy (2.6) and (2.7), for any ε > 0. Let
G0 = limn→∞

∫ ·
0 g

n
0 (s)ds for some functions gn0 ∈ G∆1/nK , n ≥ 1, and assume that G0

is continuous. Then, there exists a unique non-decreasing continuous weak solution X to
(1.1) for the input (G0,K). Furthermore, for a ∈ C and f : [0, T ] → C continuous such
that

a ∈ iR and <(f) ≤ 0, (2.12)

the joint conditional Fourier–Laplace transform of (X,WX), where W is the Brownian
motion appearing in (2.1), is given by

E
[
exp

(∫ T

t
f(T − s)dXs + a

(
WXT −WXt

)) ∣∣∣∣Ft] = exp

(∫ T

t
F (T − s, ψ(T − s))dGt(s)

)
,

for all t ≤ T , where Gt is defined as in (2.10) and ψ ∈ C([0, T ],C) solves the Riccati–
Volterra equation

ψ(t) =

∫ t

0
K(t− s)F (s, ψ(s))ds, t ≤ T, (2.13)

F (s, u) = f(s) +
1

2
a2 +

(
b+
√
ca
)
u+

c

2
u2, (2.14)
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such that

<(ψ(t)) ≤ 0, t ≤ T.

Proof. Theorems 5.2 and 5.4 give respectively the existence statement for the stochastic
Volterra equation and for the Riccati–Volterra equation. Theorem 6.3 provides the expres-
sion for the Fourier–Laplace transform together with the weak uniqueness of X.

Remark 2.6. If K satisfies (2.7) and g0 ∈ GK , the continuous function G0(t) =
∫ t

0 g0(s)ds
satisfies the assumption of Theorem 2.5. Indeed, fix n ≥ 1 and set gn0 = ∆1/ng0. We
start by showing that gn0 ∈ G∆1/nK . First, since g0 satisfies (2.8), gn0 (0) = g0(1/n) ≥
(∆1/nK ∗ L)(0)g0(0) ≥ 0. Second, we fix t, h′ > 0 and evaluate the condition (2.8) for
g0 with h = h′ + 1/n and t to get that gn0 satisfies (2.8) with K replaced by ∆1/nK.

Furthermore, we have that limn→∞
∫ t

0 g
n
0 (s)ds = G0(t) by virtue of Brezis (2010, Lemma

4.3).

Remark 2.7. If K is in L2
loc, then one recovers Abi Jaber et al. (2019b, Theorem 7.1) and

Abi Jaber and El Euch (2019a, Theorem 2.3).

3 A-priori estimates and Hölder regularity

We first provide a-priori estimates for solutions to (1.1). For this, we recall that the
resolvent of the second kind R of K is the unique L1

loc function solution to

R(t) = K(t) +

∫ t

0
K(t− s)R(s)ds = K(t) +

∫ t

0
R(t− s)K(s)ds, t ≥ 0.

The resolvent R exists, for any kernel K ∈ L1
loc, see Gripenberg et al. (1990, Theorems

2.3.1 and 2.3.5).

Lemma 3.1. Fix K ∈ L1
loc and assume that there exists a continuous and adapted solution

X to (1.1). Then, for all T > 0,

sup
t≤T

E [|Xt|p] ≤ C

(
1 + sup

t≤T
|G0(t)|p + ‖K‖p

L1([0,T ])

)(
1 + ‖R‖L1([0,T ])

)
, p ≥ 1, (3.1)

where C is a constant only depending on (p, T, b, c), and R is the resolvent of the second kind
of C‖K‖p−1

L1([0,T ])
|K|. Furthermore, denoting by X̃ = (X −G0), we have for all s ≤ t ≤ T ,

E
[
|X̃t − X̃s|p

]
≤ C

((∫ T

0
|K(t− r)−K(s− r)|dr

)p
+

(∫ t−s

0
|K(r)|dr

)p)

×

(
1 + sup

r≤T
E [|Xr|p]

)
(3.2)

where C is a constant only depending on (p, T, b, c).
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Proof. Fix p, n ≥ 1 and define τn = inf{t ≥ 0 : |Xt| ≥ n} ∧ T . Since X is adapted with
continuous sample paths, τn is a stopping time such that τn → T almost surely as n→∞.
First observe that

|Xt|1{t<τn} ≤ |G0(t)|+
∣∣∣∣∫ t

0
K(t− s)Zs1{s<τn}ds

∣∣∣∣ .
and set Xn

t = Xt1{t≤τn} . An applications of Jensen’s inequality on the normalized measure
|K(t)|dt/‖K‖L1([0,T ]) yields

|Xn
t |p ≤ 2p−1 |G0(t)|p + 2p−1

∣∣∣∣∫ t

0
K(t− s)Zs1{s<τn}ds

∣∣∣∣p
≤ 2p−1 sup

r≤T
|G0(r)|p + 2p−1‖K‖p−1

L1([0,T ])

∫ t

0
|K(t− s)|

∣∣Zs1{s<τn}∣∣p ds.
Taking expectation together with the Burkholder-Davis-Gundy’s inequality, we get for a
constant C depending exclusively on (p, T, b, c) that may vary from line to line:

E [|Xn
t |p] ≤ C sup

r≤T
|G0(r)|p + C‖K‖p−1

L1([0,T ])

∫ t

0
|K(t− s)| (1 + E [|Xn

s |
p]) ds

≤ C

(
1 + sup

r≤T
|G0(r)|p + ‖K‖p

L1([0,T ])

)(
1 + ‖R‖L1([0,T ])

)
where the last line follows from the generalised Gronwall inequality for convolution equa-
tions with R the resolvent of C‖K‖p−1

L1([0,T ])
|K|, see Gripenberg et al. (1990, Theorem 9.8.2).

The claimed estimate (3.1) now follows by sending n→∞ and using Fatou’s Lemma. To
prove (3.2), we fix s ≤ t ≤ T and we write thanks to Jensen’s inequality

|X̃t − X̃s|p ≤ 2p−1

∣∣∣∣∫ s

0
|K(t− r)−K(s− r)||Zr|dr

∣∣∣∣p + 2p−1

∣∣∣∣∫ t

s
|K(t− r)||Zr|dr

∣∣∣∣p
≤ 2p−1

(∫ T

0
|K(t− r)−K(s− r)|dr

)p−1 ∫ s

0
|K(t− r)−K(s− r)||Zr|pdr

+ 2p−1

(∫ t−s

0
|K(r)|dr

)p−1 ∫ t

s
|K(t− r)||Zr|pdr.
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Taking expectation and invoking once again Burkholder-Davis-Gundy’s inequality, we get

E
[
|X̃t − X̃s|p

]
≤ C

(∫ T

0
|K(t− r)−K(s− r)|dr

)p−1 ∫ s

0
|K(t− r)−K(s− r)|(1 + E [|Xr|p])dr

+ C

(∫ t−s

0
|K(r)|dr

)p−1 ∫ t

s
|K(t− r)|(1 + E [|Xr|p])dr

≤ C

((∫ T

0
|K(t− r)−K(s− r)|dr

)p
+

(∫ t−s

0
|K(r)|dr

)p)

×

(
1 + sup

r≤T
E [|Xr|p]

)
.

It follows that (3.1) is finite whenever G0 is locally bounded. Furthermore, (3.2) com-
bined with Kolmogorov–Chenstov continuity theorem, see Revuz and Yor (2013, Theorem
I.2.1), provides the existence of a version of (X − G0) with locally Hölder sample paths,
provided the kernel satisfies (2.5). This is the object of the next lemma.

Lemma 3.2. Assume that K satisfies (2.5) for some γ > 0 and that G0 is locally bounded,
then any continuous and adapted solution X to (1.1) satisfies

sup
t≤T

E [|Xt|p] <∞, p ≥ 1, T > 0. (3.3)

Furthermore, if G0 is locally Hölder continuous with order γ, then X has locally Hölder
sample paths of any order strictly less than γ.

Proof. Fix p ≥ 1, s ≤ t ≤ T . By local boundedness of G0, (3.3) readily follows from (3.1).
Under (2.5) and the γ–Hölder continuity of G0 on [0, T ], (3.2) reads

E [|Xt −Xs|p] ≤ C

(
1 + sup

r≤T
E [|Xr|p]

)
(t− s)γp

so that Revuz and Yor (2013, Theorem I.2.1) yields the existence of a unique version with
Hölder sample paths on [0, T ] of any order strictly less than (γ− 1/p). By continuity of X,
X corresponds to this version. The claimed result follows by arbitrariness of p ≥ 1.

Remark 3.3. It is clear from the proof that the moment bound (3.3) in Lemma 3.2 holds
also for state and time-dependent predictable characteristics b(x, t, ω) and c(x, t, ω), pro-
vided they satisfy a linear growth condition uniformly in (t, ω), that is,

|b(x, t, ω)| ∨ |c(x, t, ω)| ≤ cLG(1 + |x|), x ∈ R, t ∈ R+, ω ∈ Ω,

for some constant cLG.
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The following remark shows that the constant γ in Lemma 3.2 is not in general the
optimal Hölder constant.

Remark 3.4. For the fractional kernel K(t) = tH−1/2

Γ(H+1/2) , with H ∈ (−1/2, 1/2], γ =

H + 1/2 due to Example 2.2-(ii). The Riemman-Liouville fractional operator Iγ is defined
by

Iγf(t) =
1

Γ(γ)

∫ t

0
(t− s)γ−1f(s)ds.

The operator is well defined for any f ∈ Lploc, for some p ≥ 1. Further, Iγf is (γ +
1/p)–Hölder continuous, see Samko et al. (1993, Theorem 3.6). This is consistent with
Lemma 3.2, where we relied in the proof on the L∞–property of the process Z. The result
can be strengthened by exploiting that the process Z admits a version Z̃ with locally Hölder
continuous sample paths of any order strictly less than 1/2. Then, again standard mapping
theorems for Iα yield that IγZ̃ is locally Hölder continuous of any order strictly less than
γ + 1/2, see Samko et al. (1993, Theorem 3.3).

4 Tightness and stability

In this section, we state and prove our general tightness and stability result. One can
appreciate the formulation (1.1) for the stability argument.

Theorem 4.1. Let K be a kernel satisfying (2.5) for some γ > 0. Assume that there exist
sequences of kernels (Kn)n≥1 and functions (Gn0 )n≥1 such that

(i) Kn satisfies (2.5) for γ, uniformly in n ≥ 1 (i.e. the constant C appearing in (2.5)
does not depend on n);

(ii)
∫ t

0 |K
n(s)−K(s)|ds→ 0, as n→∞, t ≥ 0.

(iii) supt≤T |Gn0 (t)| < C ′0(T ) for some C ′0(T ) > 0, for all T > 0, uniformly in n ≥ 1,

(iv) Gn0 (t)→ G0(t), as n→∞, t ≥ 0, for some continuous function G0.

Then, any sequence of continuous non-decreasing solutions (Xn)n≥1 to (1.1), for the re-
spective inputs (Gn0 ,K

n), is tight on the space of continuous functions C([0, T ],R) endowed
with the uniform topology, for each T > 0. Furthermore, any limit point X is a continuous
non-decreasing solution to (1.1) for the input (G0,K).

Proof. Let (Xn)n≥1 be a sequence of continuous non-decreasing solutions to (1.1), for the
respective inputs (Gn0 ,K

n), that is

Xn
t = Gn0 (t) +

∫ t

0
Kn(t− s)Zns ds, t ≥ 0, (4.1)
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where Zn = bXn + Wn
cXn and (Xn,Wn) are defined on some filtered probability space

(Ωn,Fn, (Fnt )t≥0,Pn), for n ≥ 1.

• To argue tightness, it is sufficient to prove that the bound (3.2) for X̃n = (Xn −Gn0 )
is uniform in n, in the sense that there exists C(p, T ) > 0 such that

E
[
|X̃n

t − X̃n
s |p
]
≤ C(p, T )(t− s)γp, n ≥ 1, p ≥ 1, T > 0. (4.2)

Indeed, if this is the case, then Kolmogorov’s tightness criterion implies that the sequence
(X̃n)n≥1 is tight on C([0, T ],R), leading to the tightness of (Xn)n≥1 by using (iv) and
invoking Prokhorov’s theorem. To get (4.2), we first observe that thanks to (i), for all
n ≥ 1, the bound (3.2) reads

E
[
|X̃n

t − X̃n
s |p
]
≤ C(t− s)γp

(
1 + sup

r≤T
E [|Xn

r |p]

)
,

with C independent of n. Whence, it suffices to prove that there exists a constant C(p, T ) >
0 such that

sup
n≥1

sup
t≤T

E [|Xn
t |p] ≤ C(p, T ), p ≥ 1, T > 0. (4.3)

By virtue of the continuous dependence of the resolvent on the kernel in L1, the L1–
convergence of K in (ii) implies the L1–convergence of the respective sequence of re-
solvents (Rn)n≥1, see Gripenberg et al. (1990, Theorem 2.3.1). Thus, the sequences
(‖Kn‖L1([0,T ]))n≥1 and (‖Rn‖L1([0,T ]))n≥1 are uniformly bounded in n. Therefore, recalling
(iii), the bound in (3.1) for each Xn does not depend on n, yielding (4.3).
• We now move to the stability part. Fix T > 0 and let X be such that Xn ⇒ X

on C([0, T ],R), possibly along a subsequence. It follows from Jacod and Shiryaev (2003,
Theorem VI-4.13) that the sequence of local martingales (Wn

cXn)n≥1 is tight. Further-
more, any limit process M is a local martingale with quadratic variation cX, which can
be written as M = WcX for some Brownian motion W , see Jacod and Shiryaev (2003,
Theorem VI-6.26) and Jacod and Shiryaev (2003, Corollary IX-1.19). An application of
Skorokhod’s representation theorem provides the existence of a common filtered probability
space (Ω,F , (Ft)t≥0,P) supporting a sequence of copies (Xn,Wn

cXn)n≥1 that converges uni-
formly on [0, T ], almost surely, along a subsequence, towards a copy of (X,WcX). Keeping
the same notations for these copies, we have

sup
t≤T
|Xn

t −Xt| → 0, sup
t≤T
|Wn

cXn
t
−WcXt | → 0, P− a.s., as n→∞. (4.4)
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Now set Z = bX +WcX , fix t ≤ T and write∫ t

0
Kn(t− s)Zns ds−

∫ t

0
K(t− s)Zsds =

∫ t

0
Kn(t− s)(Zns − Zs)ds

−
∫ t

0
(Kn(t− s)−K(t− s))Zsds

= In + IIn.

Z being continuous, it is bounded almost surely so that IIn → 0 as n → ∞ by virtue of
(ii). Moreover,

|In| ≤ ‖Kn‖L1([0,T ])

(
b sup
t≤T
|Xn

t −Xt|+ sup
t≤T
|Wn

cXn
t
−WcXt |

)

which goes to 0 as n→∞ thanks to (4.4) and the uniform boundedness of (‖Kn‖L1([0,T ]))n≥1

due to the convergence (i). This shows that
∫ t

0 K
n(t−s)Zns ds→

∫ t
0 K(t−s)Zsds. Combined

with (iii), we get, after taking the limit in (4.1), that

Xt = lim
n→∞

Xn
t = G0(t) +

∫ t

0
K(t− s)Zsds,

for all t ≤ T . Since X is continuous, one can interchange the quantifiers so that the previous
identity holds for all t ≤ T , P almost surely. Finally, each Xn being non-decreasing, the
limit process X is again non-decreasing, which ends the proof.

5 Existence for L1-kernels

Throughout this section, we let (Kn)n≥1 denote the sequence of right–shifted kernels

Kn = ∆1/nK n ≥ 1.

We will prove the existence of solutions for the stochastic Volterra equation (1.1) and the
Riccati–Volterra equation (2.13)-(2.14) with L1-kernels using a density argument.

5.1 Existence for the stochastic Volterra equation

In preparation for the approximation argument, we first recast the existence results of
Abi Jaber et al. (2019b,a) for L2-kernels in our framework. We recall the definition of the
set GK in (2.9).

Lemma 5.1. Fix n ≥ 1. Assume that the shifted kernel Kn satisfies (2.6) and (2.7). Let
gn0 ∈ GKn and set Gn0 =

∫ ·
0 g

n
0 (s)ds. Then, there exists a non-decreasing continuous weak
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solution Xn to (1.1) for the input (Gn0 ,K
n). This solution is given by Xn =

∫ ·
0 Y

n
s ds, where

Y n is a nonnegative weak continuous solution to

Y n
t = gn0 (t) +

∫ t

0
Kn(t− s)bY n

s ds+

∫ t

0
Kn(t− s)

√
cY n
s dW

n
s . (5.1)

Proof. The existence of a R+–valued continuous weak solution to (5.1) follows from Abi Jaber
and El Euch (2019a, Theorem A.2)2. Furthermore, this solution satisfies

sup
t≤T

E [|Y n
t |p] <∞, p ≥ 1, T > 0.

An application of the converse part in Lemma 2.1 ends the proof.

Theorem 5.2. Fix a nonnegative and non-increasing kernel K ∈ L1
loc satisfying (2.5) for

some C0, γ0. Assume its shifted kernels Kn = ∆1/nK satisfy (2.6) and (2.7), for each
n ≥ 1. Let G0 = limn→∞

∫ ·
0 g

n
0 (s)ds for some functions gn0 ∈ GKn and assume that G0 is

continuous. Then, there exists a non-decreasing continuous weak solution X to (1.1).

Proof. Fix n ≥ 1. An application of Lemma 5.1 yields the existence of a non-decreasing and
continuous process Xn solution to (1.1) with the inputs (Gn0 ,K

n), where Gn0 =
∫ ·

0 g
n
0 (s)ds.

Each Xn being non-decreasing, the claimed existence now follows from Theorem 4.1, once
we prove that conditions (i)-(iv) are satisfied. To prove (i), we observe that since K is
nonnegative, non-increasing and satisfies (2.5), we have∫ h

0
|Kn(s)|ds+

∫ T

0
|Kn(s+ h)−Kn(s)|ds ≤

∫ h

0
|K(s)|ds

+

∫ T

0
|K(s+ 1/n+ h)−K(s+ 1/n)|ds

≤ C0h
γ0 . (5.2)

(ii) holds by the L1–continuity of the kernel K, see Brezis (2010, Lemma 4.3). (iv) follows
from the assumption on G0. Finally, to obtain (iii) we first observe that gn0 is nonnegative,
this follows from (2.8) evaluated at t = 0 (see Remark 2.6). Whence, Gn0 is non-decreasing
so that supt≤T G

n
0 (t) ≤ Gn0 (T ). The right-hand side is uniformily bounded in n by virtue

of the convergence of the sequence (Gn0 (T ))n≥1. The proof is complete.

5.2 Existence for the Riccati–Volterra equation

Similarly, we obtain existence of solutions to Riccati-Volterra equations with L1-kernels
by a density argument. We start by recalling the existence of solutions for the shifted
Riccati–Volterra equations (2.13)-(2.14).

2We note that all the assumptions are met there, except for the local Hölder continuity of g0. This
assumption is only needed to get Hölder sample paths of X, which we do not require here.
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Lemma 5.3. Let a ∈ iR and f : R+ → C measurable and locally bounded such that
<(f) ≤ 0. Assume that the shifted kernels Kn satisfy (2.6) and (2.7), for all n ≥ 1. Then,
for each n ≥ 1, there exists a continuous solution ψn to (2.13)-(2.14) for the kernel Kn

such that <(ψn(t)) ≤ 0 and

sup
t≤T
|ψn(t)| ≤

(
sup
t≤T
|f(t)|+ 1

2
|a|2
)∫ T

0
Enb (s)ds, (5.3)

for any T > 0, where Enb = Rnb /b when b 6= 0 and En0 = Kn with Rnb the resolvent of the
second kind of bKn.

Proof. Fix T > 0 and n ≥ 0. Since all shifted kernels (Kn)n≥1 are continuous on (0, T ], one
readily obtains that Kn is continuous on [0, T ] for each n ≥ 1. Fix n ≥ 1. An application
of Abi Jaber et al. (2019b, Lemma 6.3) yields the existence of a solution ψn ∈ L2([0, T ],C)
such that <(ψn(t)) ≤ 0, for all t ≤ T . To argue continuity of ψn, we fix t ≤ T and h > 0
and write

ψn(t+ h)− ψn(t) =

∫ t

0
(Kn(t+ h− s)−Kn(t− s))F (s, ψn(s))ds

+

∫ t+h

t
Kn(t+ h− s)F (s, ψn(s))ds.

Using the continuity of Kn on [0, T ] and the L2 integrability of ψn an application of the
dominated convergence theorem yields that the right hand side goes to 0 as h → 0. This
shows that ψn ∈ C([0, T ],C) for all n ≥ 1. Finally, the bound (5.3) follows from Abi Jaber
and El Euch (2019b, Corollary C.4) by noticing that ψn solves the linear equation

χ =

∫ t

0
Kn(t− s) (z(s)χ(s) + w(s)) ,

with w(s) = f(s) + 1
2a

2 and z(s) = (b+ a
√
c+ c

2ψ
n(s)) so that <(z) ≤ b.

Theorem 5.4. Let a ∈ iR and f : R+ → C measurable and locally bounded such that
<(f) ≤ 0. Fix a nonnegative and non-increasing kernel K ∈ L1

loc satisfying (2.5) for some
C0, γ0. Assume that its shifted kernels Kn = ∆1/nK satisfy (2.6) and (2.7), for each n ≥ 1.
Then, there exists a continuous solution ψ to (2.13)-(2.14) such that <(ψ(t)) ≤ 0, for all
t ≥ 0.

Proof. Let (ψn)n≥1 denote the sequence of continuous solutions produced by Lemma 5.3
for the respective shifted kernels Kn = ∆1/nK and fix T > 0.
• First, we prove that the sequence (ψn)n≥1 is relatively compact on C([0, T ],C) using

the Arzelà–Ascoli theorem. Since (Kn)n≥1 converges to K in L1, the respective sequence of
resolvents (Rnb )n≥1 converge in L1, by virtue of the continuous dependence of the resolvent
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on the kernel in L1, see Gripenberg et al. (1990, Theorem 2.3.1). Thus, the sequences
(‖Kn‖L1([0,T ]))n≥1 and (‖Rnb ‖L1([0,T ]))n≥1 are uniformly bounded in n so that (5.3) implies

sup
n≥1

sup
t≤T
|ψn(t)| <∞. (5.4)

Fix n ≥ 1, s ≤ t ≤ T and write

ψn(t)− ψn(s) =

∫ s

0
(Kn(t− u)−Kn(s− u))F (u, ψn(u))du

+

∫ t

s
Kn(t− u)F (u, ψn(u))du

= I + II.

Recall that the shifted kernels Kn satisfy the condition (5.2) uniformily in n with C0 and
γ0. Whence, using the uniform bound (5.4) combined with the boundedness of f we readily
get, by the triangle inequality, that

|ψn(t)− ψn(s)| ≤ |I|+ |II| ≤ C(t− s)γ0 ,

for some constant C independent of n. An application of the Arzelà–Ascoli theorem yields
the existence of ψ ∈ C([0, T ],R) such that

sup
t≤T
|ψn(t)− ψ(t)| → 0, as n→∞. (5.5)

In particular, since <(ψn) ≤ 0, we have <(ψ(t)) ≤ 0, for all t ≤ T .
• Second, we show that ψ solves the Riccati–Volterra equation with the kernel K. For

this we fix t ≤ T and we write

ψn(t)−
∫ t

0
K(t− s)F (s, ψ(s))ds =

∫ t

0
Kn(t− s) (F (s, ψn(s))− F (s, ψ(s))) ds

+

∫ t

0
(Kn(t− s)−K(t− s))F (s, ψ(s))cs

= 1n + 2n.

Clearly 2n → 0 by virtue of the L1-convergence of the kernels and the boundedness of f
and ψ. To argue that 1n → 0, it suffices to observe that, for all s ≤ T ,

|F (s, ψn(s))− F (s, ψ(s))| ≤ C(1 + sup
t≤T
|ψ(t)|+ sup

t≤T
|ψn(t)|)(sup

t≤T
|ψn(t)− ψ(t)|),

for a constant C independent of n. It follows from (5.4) and (5.5) that the right hand side
goes to 0. Combined with the uniform boundedness of (‖Kn‖L([0,T ]))n≥1 we obtain that
1n → 0. Combining the above we get that

ψ(t) = lim
n→∞

ψn(t) =

∫ t

0
K(t− s)F (s, ψ(s))ds, t ≤ T,

which ends the proof by arbitrariness of T .
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6 Weak uniqueness and the Fourier–Laplace transform

Fix a ∈ C, c, T ≥ 0 and f : [0, T ] → C continuous. Throughout this section, we fix G0

a non-decreasing continuous function and K ∈ L1([0, T ],R) such that (2.5) holds. We
let ψ ∈ C([0, T ],C) denote a solution to the Riccati equation (2.13)-(2.14) and X be a
non-decreasing continuous weak solution to (1.1). Define the process V T :

V T
t = V T

0 −
1

2

∫ t

0

(
a+
√
cψ(T − s)

)2
dXs +

∫ t

0

(
a+
√
cψ(T − s)

)
dWXs (6.1)

V T
0 =

∫ T

0
F (T − s, ψ(T − s))dG0(s). (6.2)

We note that the Lebesgue-Stieltjes integrals are well-defined since ψ is continuous and
(G0, X) are of locally bounded variation.

A straightforward application of Itô’s Lemma yields that the stochastic exponential
exp(V T ) is a local martingale. It is even a true martingale. This is the object of the
following lemma, which extends Abi Jaber et al. (2019b, Lemma 7.3).

Lemma 6.1. Let g ∈ L∞(R+,R) and define

Ut =

∫ t

0
g(s)dWXs .

Then the stochastic exponential t 7→ exp(Ut−1
2〈U〉t) is a martingale. In particular, exp(V T )

is a martingale.

Proof. Define Mt = exp(Ut − 1
2〈U〉t). Since M is a nonnegative local martingale, it is a

supermartingale by Fatou’s lemma, and it suffices to show that E[MT ] ≥ 1 for any T ∈ R+.
To this end, define stopping times τn = inf{t ≥ 0: Xt > n} ∧ T . Then M τn = Mτn∧· is
a uniformly integrable martingale for each n by Novikov’s condition, and we may define
probability measures Qn by

dQn

dP
= M τn .

By Girsanov’s theorem, the process

WcXt − 〈WcX , Uτn∧·〉t = WcXt −
∫ t

0
1{s≤τn} g(s)

√
cdXs

is a local martingale under Qn with quadratic variation cX, and we have

Xt = G0(t) +

∫ t

0
K(t− s)Zns ds,
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where Zn is a continuous semimartingale under Qn with characteristics(
bX −

∫ ·
0

1{s≤τn}g(s)
√
cdXs, cX, 0

)
.

Let γ be the constant appearing in (2.5) and let p > 2. Observe that the the first charac-
teristic of Zn satisfies a linear growth condition in X, uniformly in (t, ω). Therefore, due
to Lemma 3.2 and Remark 3.3, we have the moment bound

sup
t≤T

EQn [|Xt|p] ≤ κ

for some constant κ that does not depend on n. For any real-valued function f , write

|f |C0,α(0,T ) = sup
0≤s<t≤T

|f(t)− f(s)|
|t− s|α

for its α-Hölder semi-norm. We then get

Qn(τn < T ) ≤ Qn
(

sup
t≤T

Xt > n
)

≤ Qn
(
G0(T ) + |X|C0,0(0,T ) > n

)
≤
(

1

n−G0(T )

)p
EQn

[
|X|p

C0,0(0,T )

]
≤
(

1

n−G0(T )

)p
κ′

for a constant κ′ that does not depend on n, using the fact that G0 is non-decreasing for
the second inequality and Lemma 3.2 with α = 0 for the last inequality. We deduce that

EP [MT ] ≥ EP
[
MT1{τn=T}

]
= Qn(τn = T ) ≥ 1−

(
1

n−G0(T )

)p
κ′,

and sending n to infinity yields EP[MT ] ≥ 1. This completes the proof.

Lemma 6.2. Assume that the shifted kernels ∆hK are in L2([0, T ],R), for all h > 0. Set
(Gt)t≥0 and (gt)t≥0 as in (2.10)–(2.11). Then, the process (V T

t )0≤t≤T defined by (6.1)–(6.2)
satisfies

V T
t =

∫ t

0
f(T − s)dXs + aWXt +

∫ T

t
F (T − s, ψ(T − s))dGt(s), (6.3)

for all 0 ≤ t ≤ T .
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Proof. We fix t ≤ T , h > 0 and we define

Xh
t = G0(t) +

∫ t

0
∆hK(t− s)Zsds,

ght (s) =

∫ t

0
∆hK(s− u)dZu,

ψh(t) =

∫ t

0
∆hK(t− s)F (s, ψ(s))ds,

where we recall that Z = bX+WcX and F is given by (2.14). We stress that the right-hand
sides of all three quantities are defined from X and ψ and do not depend on Xh or ψh; Xh

t

and ght are well-defined as Itô integrals since ∆hK ∈ L2([0, T ],R).
Step 1. Convergence of Xh, gh, ψh. It follows from the boundedness of ψ, f and Z(ω),

and the L1-continuity of the kernel K that

sup
s≤T
|ψh(s)− ψ(s)| → 0, |Xh

t −Xt| → 0, P− a.s. (6.4)

as h→ 0. Set

Ght (s) = G0(s) +

∫ s∨t

t
gt(u)du.

By invoking stochastic Fubini’s theorem, justified by the L2-integrability of ∆hK, we get,
for all s > t,

Ght (s)−Gt(s) =

∫ s

0
(∆hK(u)−K(u))

(
Zt∧(s−u) − Zt−u

)
du.

The boundedness of Z(ω) and the L1-continuity of the kernel K, lead to

Ght (s)→ Gt(s), P− a.s. (6.5)

as h→ 0, for all s ∈ (t, T ].
Step 2. Proving (6.3). An application of stochastic Fubini’s theorem, see Veraar (2012,

Theorem 2.2) – justified by the L2-integrability of ∆hK, the boundedness of ψ, f and X(ω)

21



– yields ∫ t

0
ψh(T − s)dZs =

∫ t

0

(∫ T−s

0
F (u, ψ(u))∆hK(T − s− u)du

)
dZs

=

∫ T

0
F (u, ψ(u))

(∫ t∧(T−u)

0
∆hK(T − u− s)dZs

)
du

=

∫ T−t

0
F (u, ψ(u))

(∫ t

0
∆hK(T − u− s)dZs

)
du

+

∫ T

T−t
F (u, ψ(u))

(∫ T−u

0
∆hK(T − u− s)dZs

)
du

=

∫ T

t
F (T − s, ψ(T − s))ght (s)ds

+

∫ t

0
F (T − s, ψ(T − s))d

(
Xh
s −G0(s)

)
=

∫ T

t
F (T − s, ψ(T − s))d

(
Ght (s)−G0(s)

)
+

∫ t

0
F (T − s, ψ(T − s))d

(
Xh
s −G0(s)

)
.

where we used in the fourth identity that (Xh
s −G0(s)) =

∫ s
0

(∫ r
0 ∆hK(r − u)dZu

)
dr, due

to Lemma 2.1 since ∆hK ∈ L2
loc, for h > 0. Recalling (6.4)-(6.5) and sending h→ 0 in the

previous identity yields, by invoking the dominated convergence for the left-hand side and
the Portmanteau theorem on the measures (dXn, dGnt ) for the right-hand side (see Daley
and Vere-Jones (2003, Theorem A2.3.II)), we obtain that∫ t

0
ψ(T − s)dZs =

∫ T

t
F (T − s, ψ(T − s))dGt(s) +

∫ t

0
F (T − s, ψ(T − s))dXs

−
∫ T

0
F (T − s, ψ(T − s))dG0(s). (6.6)

Using (2.14), we write

−1

2

∫ t

0

(
a+
√
cψ(T − s)

)2
dXs =

∫ t

0
f(T − s)dXs + b

∫ t

0
ψ(T − s)dXs

−
∫ t

0
F (T − s, ψ(T − s))dXs.

This shows that V T given by (6.1) can be re-expressed in the form

V T
t = V T

0 +

∫ t

0
f(T − s)dXs +

∫ t

0
ψ(T − s)dZs −

∫ t

0
F (T − s, ψ(T − s))dXs + aWt.
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Plugging (6.6) in the previous expression and recalling (6.2) yields (6.3).

Theorem 6.3. Fix G0 continuous and non-decreasing and fix a nonnegative and non-
increasing kernel K ∈ L1

loc satisfying (2.5). Assume that its shifted kernels Kn = ∆1/nK
satisfy (2.6) and (2.7), for each n ≥ 1. Let X be a solution to (1.1) for the input (G0,K)
and set (Gt)t≥0 and (gt)t≥0 as in (2.10)–(2.11). Let a ∈ C, and f : [0, T ] → C continuous
satisfying (2.12). Then, the Fourier–Laplace transform is given by

E
[
exp

(∫ T

0
f(T − s)dXs + aWXT

) ∣∣∣∣Ft] = exp
(
V T
t

)
, t ≤ T, (6.7)

where V T is given by (6.3) and ψ ∈ C([0, T ],C) is a solution to the Riccati–Volterra
equation (2.13)–(2.14) such that <(ψt) ≤ 0, for all t ≤ T . In particular, weak uniqueness
holds for (1.1).

Proof. The existence of a solution to the Riccati–Volterra equations follows from Theo-
rem 5.4. Lemma 6.2 yields that (6.3) holds, so that the terminal value of V T reads

V T
T =

∫ T

0
f(T − s)dXs + aWXT .

This yields (6.7) by the true martingality of exp(V T ) obtained in Lemma 6.1. Finally,
the law of X is determined by the Laplace transform of the finite-dimensional marginals
(Xt1 , . . . , Xtm):

E

[
exp

(
m∑
i=1

viXti

)]
,

with t1 < t2 < . . . tm < T and vi ∈ C such that <(vi) ≤ 0, i = 1, . . . ,m, m ∈ N. Unique-
ness thus follows since these Laplace transforms can be approximated by the quantities
E[exp(

∫ T
0 f(T − s)dXs)] as f ranges through all continuous nonpositive functions and T

ranges through R+.

7 Application: Hyper-rough Volterra Heston models

In this section, we apply our main result, Theorem 2.5, to the class of hyper-rough Volterra
Heston models where the log-price S has the following dynamics

logSt = logS0 −
1

2
Xt +BXt , S0 > 0, (7.1)

Xt = G0(t) +

∫ t

0
K(t− s) (bXs +WcXs) ds, (7.2)
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with

B = ρW +
√

1− ρ2W⊥, (7.3)

and (W,W⊥) a two dimensional Brownian motion and ρ ∈ [−1, 1]. To ease presentation,
we will assume throughout this section that K is proportional to the fractional kernel:

K(t) = K1(t)KH(t) (7.4)

where

KH(t) =
tH−1/2

Γ(H + 1/2)
, t > 0,

for some H ∈ (−1/2, 1/2] and K1 is a non-singular completely monotone kernel on [0,∞),
e.g. K1 ≡ 1 or K1(t) = e−ηt, for some η > 0. Under such specification, the assumptions of
Theorem 2.5 needed on the kernel are satisfied due to Examples 2.2 and 2.3.

Furthermore, we assume that

G0(t) =

∫ t

0
g0(s)ds, t ≥ 0, for some g0 ∈ GK , (7.5)

recall Example 2.4 for concrete specifications of g0.
The following remark shows that X can be thought of as the ‘integrated variance’

process.

Remark 7.1. Assume that H ∈ (0, 1/2], then K ∈ L2
loc and it follows from Lemma 2.1

that Xt =
∫ t

0 Vsds where (S, V ) is a rough Volterra Heston model in the terminology of
Abi Jaber et al. (2019b, Section 7); El Euch and Rosenbaum (2019) satisfying

d logSt = −1

2
Vtdt+

√
VtdB̃t, S0 > 0,

Vt = g0(t) +

∫ t

0
K(t− s)bVsds+

∫ t

0
K(t− s)

√
cVsdW̃s.

If H ∈ (−1/2, 0), KH is no longer in L2
loc. In this case, not only Fubini’s interchange

breaks down, but it can also be shown that X is nowhere differentiable almost surely, see
Jusselin and Rosenbaum (2018, Proposition 4.6). In this case, one cannot really make
sense of the spot variance V and is stuck with the ‘integrated variance’ formulation (7.2),
justifying the appellation hyper–rough for such equations.

We are now in place to state the existence and uniqueness of a solution to (7.1)–
(7.2) together with the joint Fourier–Laplace transform of (logS,X). We say that (7.1)–
(7.2) admits a weak solution if there exists a filtered probability space (Ω,F , (Ft)t≥0,P)
supporting two continuous and adapted processes (S,X) and a two dimensional Brownian
motion (W,W⊥) with X non-decreasing such that (7.1)–(7.2) hold P–almost surely.
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Theorem 7.2. Let K be as in (7.4), G0 as in (7.5) and fix S0 > 0. Then, (7.1)–(7.2)
admits a unique weak continuous solution (S,X) such that X is non-decreasing and S
is positive. Furthermore, for any u1 ∈ iR and u2 ∈ C satisfying <(u2) ≤ 0, the joint
Fourier–Laplace transform of (logS,X) is given by

E
[
exp (u1 logST + u2XT )

∣∣∣Ft]=exp

(
u1 logSt + u2Xt +

∫ T

t
F (u1, u2, ψ(T − s))dGt(s)

)
for all T ≥ 0, where Gt is given by (2.10) and ψ solves the fractional Riccati–Volterra
equation

ψ(t) =

∫ t

0
K(t− s)F (u1, u2, ψ(s))ds, t ≥ 0, (7.6)

F (u1, u2, u3) =
1

2
(u2

1 − u1) + u2 + ρ
√
cu1u3 +

c

2
u2

3. (7.7)

Proof. We first note that (G0,K) satisfy the assumptions of Theorem 2.5 thanks to Ex-
amples 2.2-2.3 and Remark 2.6.

Step 1. We prove the existence and uniqueness. An application of Theorem 2.5 yields
the existence and uniqueness of a continuous non-decreasing weak solution X to (7.2)
on some filtered probability space (ΩX ,FX , (FXt )t≥0,PX) with a Brownian motion W
adapted to FX . Up to an eventual extension of the probability space, we let W⊥ denote
another Brownian motion independent of FX and set B = ρW̄ +

√
1− ρ2W̄⊥ and we let

F = FX ∨F⊥, where F⊥ is generated by W⊥. The extended probability space is denoted
by (Ω,F , (Ft)t≥0,P). Then,

St = S0 exp

(
BXt −

1

2
Xt

)
, t ≥ 0,

is the unique continuous positive solution of (7.1).
Step 2. We derive the Fourier-Laplace transform. It suffices to prove that the Fourier-

Laplace transform

Lt = E
[
exp (u1 logST + u2XT )

∣∣∣ Ft] (7.8)

can be written as

Lt = exp (u1 logSt + u2Xt)E
[
exp

(∫ T

t
f(T − s)dXs + a(WXT −WXt)

) ∣∣∣ Ft] (7.9)

where

f(t) =
1

2
(u2

1 − u1) + u2 −
a2

2
and a = u1ρ.
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Indeed, if this the case, the Riccati-Volterra equations (2.13)–(2.14) reduce to (7.6)-(7.7)
and the the claimed expression for the Fourier-Laplace transform together with the exis-
tence of the corresponding solution ψ follow from Theorem 2.5, since <(a) = 0 and

<(f) = <(u2) +
<(u2

1)

2
(1− ρ2) ≤ 0,

since <(u2) ≤ 0, u1 ∈ iR and ρ ∈ [−1, 1]. It remains to prove (7.9) by means of a projection
argument. For this, we fix t ≤ T and we write the variation of (7.1) between t and T , using
(7.3) to get

logST = logSt −
1

2

∫ T

t
dXs + ρ(WXT −WXt) +

√
1− ρ2

(
W⊥XT −W

⊥
Xt

)
. (7.10)

We then observe that

Mt := E
[
exp

(
u1

√
1− ρ2

(
W⊥XT −W

⊥
Xt

)) ∣∣∣Ft ∨ FX] = exp

(
u2

1

2
(1− ρ2)

∫ T

t
dXs

)
(7.11)

so that, using successively (7.10), the tower property of the conditional expectation and
the fact that X and W are FX -measurable, Lt given by (7.8) satisfies

Lt = E
[
exp (u1 logST + u2XT )

∣∣∣ Ft]
= E

[
E
[
exp (u1 logST + u2XT )

∣∣∣ Ft ∨ FX] ∣∣∣ Ft]
= exp(u1 logSt + u2Xt)E

[
exp

(
(u2 −

u1

2
)

∫ T

t
dXs + ρu1(WXT −WXt)

)
Mt

∣∣∣ Ft]
leading to (7.9) due to (7.11). This ends the proof.

In particular, for t = 0 and S0 = 1, we have X0 = 0, logS0 = 0 and dG0(s) = g0(s)ds
so that the unconditional Fourier–Laplace transform reads

E [exp (u1 logST + u2XT )] = exp

(∫ T

0
F (u1, u2, ψ(T − s))g0(s)ds

)
.

If in addition g0(t) = x0 + θ
∫ t

0 K(s)ds, for some x0, θ ≥ 0 (recall Example 2.4), then,
Fubini’s theorem leads to∫ T

0
F (u1, u2, ψ(T − s))g0(s)ds = x0

∫ T

0
F (u1, u2, ψ(s))ds+ θ

∫ T

0
ψ(s)ds

so that

E [exp (u1 logST + u2XT )] = exp

(
x0

∫ T

0
F (u1, u2, ψ(s))ds+ θ

∫ T

0
ψ(s)ds

)
.
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Remark 7.3. Using Theorem 4.1, one can prove the convergence of the multifactor Marko-
vian approximations designed in Abi Jaber (2019); Abi Jaber and El Euch (2019b) towards
the hyper-rough Heston model, where the kernel KH is approximated by a suitable weighted
sum of exponentials Kn(t) =

∑n
i=1 c

n
i e
−γni t. These approximations are therefore still valid

for non-positive values of the Hurst index H ∈ (−1/2, 0], which would allow the simulation
of the process X and the numerical approximation of the Riccati–Volterra equations, we
refer to the aforementioned articles for more details.

A Catalytic super–Brownian motion and its local occupa-
tion time

In this section, we sketch a rigorous derivation of equation (1.7) satisfied by the local
occupation time X given by (1.5) formally derived in the introduction. We will make use
of the notation 〈µ, φ〉 to denote the quantity

∫
R µ(dx)φ(x).

We recall that the super–Brownian motion with a single point catalyst Ȳ solves the
following martingale problem

〈Ȳt, φ〉 = 〈Ȳ0, φ〉+
1

2

∫ t

0
〈Ȳs,∆φ〉ds+ φ(0)Zt,

where ∆ = ∂2/∂x2, φ is a suitable test function and Z is a continuous martingale with
quadratic variation

〈Z〉t = Xt,

where X is the local occupation time defined by (1.5), see Dawson and Fleischmann (1994,
Theorem 1.2.7).

In order to make the link with stochastic Volterra equations, we first reformulate the
martingale problem in its ‘mild form’.

Lemma A.1. Assume that ψ ∈ C2(R,R) has a Gaussian decay, that is supx∈R |ψ(x)|ecz2 <
∞, for some constant c. Then,

〈Ȳt, ψ〉 = 〈StȲ0, ψ〉+

∫ t

0
(St−sψ)(0)dZs,

where

(Stµ)(x) =

∫
R
pt(x− y)µ(dy) and pt(x) =

1√
2πt

exp

(
−x

2

2t

)
, x ≥ 0.
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Sketch of proof. Let ξ : R+ → R be a differentiable function and set φt(x) = ξ(t)φ0(x) for
some C2 function φ0 having a Gaussian decay. An application of Itô’s Lemma gives

d〈Ȳt, φ0〉ξ(t) = ξ(t)d〈Ȳt, ψ〉+ 〈Ȳt, φ0〉ξ′(t)dt

= 〈Ȳt,
1

2
∆φt + ∂tφt〉dt+ φt(0)dZt.

Thus,

〈Ȳt, φt〉 = 〈Ȳ0, φ0〉+

∫ t

0
〈Ȳs,

1

2
∆φs + ∂tφs〉ds+

∫ t

0
φs(0)dZs. (A.1)

Fix t ≥ 0 and consider φs = St−sψ for all s ∈ [0, t]. Noticing that φt = ψ and ∂φs = −1
2∆φs,

the claimed identity follows from (A.1) with this specific test function combined with a
density argument.

For each ε > 0, let pε : x → (2πε)−1/2 exp(−x2/(2ε)) be Gaussian density approxima-
tions of the dirac mass at 0. It follows from Lemma A.1 that

〈Ȳt, pε〉 = 〈StȲ0, p
ε〉+

∫ t

0
(St−sp

ε)(0)dZs.

Integrating both sides with respect to time and invoking stochastic Fubini’s theorem, see
Lemma 2.1, leads to∫ t

0
〈Ȳs, pε〉ds =

∫ t

0
〈SsȲ0, p

ε〉ds+

∫ t

0
(St−sp

ε)(0)Zsds.

Sending ε→ 0 yields

Xt = lim
ε→0

∫ t

0
〈Ȳs, pε〉ds =

∫ t

0
(SsȲ0)(0)ds+

∫ t

0
pt−s(0)Zsds,

showing that X solves (1.7) with the function g0(t) = (StȲ0)(0).
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