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Abstract We propose a new definition of the normal fracture diffusion-dispersion
coefficient for a reduced model of passive transport in fractured porous media.
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1 Introduction

In this paper, we focus on the reduced model introduced in [1, 3] describing the Pas-
sive Transport of a solute in a Fractured Porous Media, which will be now refered
to as (PTFPM). By reduced model, we assume that the fracture is treated as a sur-
face of codimension one. The reduced model (PTFPM) consists of two advection–
diffusion–reaction equations, one in the porous media and one in the fracture, with
advective velocity fields taken as the solution of a decoupled problem, and where
the coupling is done by subtil transmission conditions describing the exchanges be-
tween the different regions. A notable feature of the reduced model (PTFPM) is that
the transmission conditions between the porous media and the fracture mimic at the
discrete level the property that the advection terms do not contribute to the energy
balance of the system, allowing us to handle both conducting and blocking fractures
by letting the concentration of the solute jumps across the fracture; see also [7] in
the context of advection of a passive scalar in a fractured porous media. However,
the description of the fracture diffusion-dispersion in both the normal and tangential
directions considered in the reduced model (PTFPM) is meaningless from the physi-
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cal viewpoint. Indeed, in (PTFPM) those coefficients are assumed independent from
the surrounding unknowns: this is irrelevent since they play an important role in the
description of (i) the exchanges between the porous media and the fracture, and
(ii) the behavior of the solute at the neighborhood of the fracture. The aim of this
paper is to propose a more physical definition of the fracture diffusion-dispersion
coefficient, and present some test cases based on the previous works [2, 3]. The rest
of this paper is organized as follows: in Section 2 we present the main equations and
in Section 3 we perform numerical experiments.

2 The differential model

In this section, we present the reduced model for the passive transport in a frac-
tured porous media. We first introduce notation, then define the velocity fields and
diffusion-dispersion tensors, and finally introduce the main equations.

2.1 Notation

We consider a porous medium saturated by an incompressible fluid that occupies
a space region Ω ⊂ R2 traversed by a fracture Γ . We assume that Ω is an open,
bounded, connected, polygonal set with Lipschitz boundary ∂Ω , and denote by n∂Ω

the unit normal vector on ∂Ω pointing out of Ω . The fracture Γ is represented by
an open line segment of nonzero length which cuts Ω into two disjoint connected
polygonal subdomains ΩB,1 and ΩB,2 with Lipschitz boundary. The sets ΩB := Ω \
Γ = ΩB,1 ∪ΩB,2 and ∂ΩB := ∪2

i+1(∂ΩB,i \Γ ) correspond to the bulk region and
the external boundary of the bulk region, respectively. The boundary of the fracture
Γ is denoted by ∂Γ , and the corresponding outward unit tangential vector is τ∂Γ .
Finally, nΓ denotes the unit normal vector to Γ pointing out of ΩB,1 This notation
is illustrated in Figure 1.

Fig. 1 Illustration of the nota-
tion introduced in Section 2.1.

ΩB,1 ΩB,2

Γ

∂ΩB

ΩB := ΩB,1∪ΩB,2

∂Γ

nΓ

For any scalar- or vector-valued function ϕ sufficiently regular to admit a (possi-
bly two-valued) trace on Γ , we define the jump and average operators such that

[[ϕ]]Γ := (ϕ|ΩB,1 −ϕ|ΩB,2)|Γ , {{ϕ}}Γ :=
1
2
(ϕ|ΩB,1 +ϕ|ΩB,2)|Γ .
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2.2 Advective velocity fields

We assume that the advective velocity fields are Darcy velocities solution of the
decoupled reduced model [8] describing the flows in a fractured porous media that
reads as follows: Find the bulk Darcy velocity u : ΩB → R2, the bulk pressure p :
ΩB→ R and the fracture pressure pΓ : Γ → R such that

u+K∇p = 0 in ΩB, (1a)
∇ ·u = f in ΩB, (1b)

u ·n∂Ω = 0 on ∂ΩB, (1c)
∇τ · (−KΓ ∇τ pΓ ) = `Γ fΓ +[[u]]Γ ·nΓ in Γ , (1d)
−KΓ ∇τ pΓ · τ∂Γ = 0 on ∂Γ , (1e)∫

Γ

pΓ = 0, (1f)

where f ∈ L2(ΩB) and fΓ ∈ L2(Γ ) verify
∫

ΩB
f +

∫
Γ
`Γ fΓ = 0 and denote source or

sink terms, K : ΩB→ R2×2 is the bulk permeability tensor, and we have set KΓ :=
κτ

Γ
`Γ , with κτ

Γ
: Γ → R denoting the tangential permeability inside the fracture and

`Γ : Γ →R the fracture thickness. In (1d) and (1e), ∇τ and ∇τ · denote the tangential
gradient and divergence operators along Γ , respectively. The following transmission
conditions across the fracture close the problem:

{{u}}Γ ·nΓ =
κn

Γ

`Γ

[[p]]Γ on Γ , [[u]]Γ ·nΓ =
κn

Γ

`Γ

ξ
−1({{p}}Γ − pΓ ) on Γ , (2)

where ξ ∈
(
0, 1

2

]
is a user-dependent model parameter and κn

Γ
: Γ → R represents

the normal permeability inside the fracture. From now, we refer to the advective
velocity fields as the bulk Darcy velocity u and the tangential fracture Darcy velocity
uΓ :=−KΓ ∇τ pΓ .

2.3 Diffusion-dispersion tensors

Following [9], we assume that the bulk diffusion-dispersion tensor D : ΩB→ R2×2

and the fracture diffusion-dispersion coefficient DΓ : Γ → R are such that

D := φ (dmI2 + |u|(dlE(u)+dt(I2−E(u)))) , (3a)

DΓ := φΓ

(
`Γ dΓ

m + |uΓ |dΓ
l
)
, (3b)

where u and uΓ are defined in Section 2.2, | · | is the euclidian norm, and the scalar
functions φ ,dm,dl,dt : Ω → R and φΓ ,dΓ

m,d
Γ
l : Γ → R are, respectively, the bulk

porosity, molecular diffusion, longitudinal and transverse dispersion coefficients,
and the fracture porosity, molecular diffusion and longitudinal dispersion coeffi-
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cients. In (3a), I2 ∈ R2×2 is the identity matrix and E(u) := |u|−2(u⊗ u) ∈ R2×2

denotes the orthogonal projection matrix in the direction of u. In the reduced model
(PTFPM), the fracture diffusion-dispersion coefficient DΓ depends on a fracture
transverse dispersion coefficient. Here, the fracture transverse dispersion coefficient
is rather integrated into the transmission conditions; see Remark 1.

2.4 The reduced model

For a fixed T > 0, we denote by Ω T
B := (0,T )×ΩB and Γ T := (0,T )×Γ the

temporal-spatial domains of interest, and by ∂Ω T
B := (0,T )× ∂ΩB and ∂Γ T :=

(0,T )×Γ their respective boundaries. The reduced model for the passive transport
of a solute in a fractured porous media hinges into seeking the concentration of the
solute in the bulk c : Ω T → R and in the fracture cΓ : Γ T → R such that

φ∂tc+∇ · (uc−D∇c)+ f−c = f+ĉ in Ω
T
B , (4a)

−D∇c ·n∂Ω = 0 on ∂Ω
T
B , (4b)

`Γ φΓ ∂tcΓ +∇τ ·(uΓ cΓ −DΓ∇τ cΓ )+ `Γ f−
Γ

cΓ = `Γ f+
Γ

ĉΓ in Γ
T , (4c)

+[[uc−D∇c]]Γ ·nΓ

−DΓ ∇τ cΓ · τ∂Γ = 0 on ∂Γ
T , (4d)

where u and uΓ are defined in Section 2.2, D and DΓ are defined in Section 2.3, the
terms f± := 1/2(| f | ± f ) and f±

Γ
:= 1/2(| fΓ | ± fΓ ) denote the positive or negative

part of f and fΓ , respectively, and the scalar functions ĉ : Ω T
B →R and ĉΓ : Γ T →R

stand for the concentration of solute as it is injected in the bulk and in the fracture,
respectively. The following transmission conditions, along with initial conditions
c(t = 0) = c0 in ΩB and cΓ (t = 0) = cΓ ,0 in Γ , close the problem:

{{uc−D∇c}}Γ ·nΓ =
Dn

Γ

`Γ

[[c]]Γ +{{c}}Γ {{u}}Γ ·nΓ +
1
8
[[c]]Γ [[u]]Γ ·nΓ on Γ ,

[[uc−D∇c]]Γ ·nΓ =
Dn

Γ

`Γ

ξ
−1({{c}}Γ − cΓ)+

1
2
({{c}}Γ + cΓ)[[u]]Γ ·nΓ on Γ ,

(5)

where ξ is the user-dependent model parameter introduced in Section 2.2. The term
Dn

Γ
: Γ → R represents the normal diffusion-dispersion coefficient of the fracture.

In the reduced model (PTFPM), Dn
Γ

does not depend on the surrounding unknowns.
For a more accurate description of the exchange between the bulk and the fracture,
we propose the following definition:

Dn
Γ

:= φΓ (dΓ
m +dΓ

t |{{u}}Γ ·nΓ |), (6)

that depends on (i) the porosity of the fracture φΓ , (ii) the fracture molecular dif-
fusion coefficient dΓ

m, and (iii) on the fracture transverse dispersion dΓ
t : Γ → R
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weighted by the normal component of the average of the bulk Darcy velocity u.
From now, we refer to the reduced model (4)–(5)–(6) as (PTFPM?).

Remark 1. The fracture transverse dispersion dΓ
t describes the property of the solute

to diffuse in the orthogonal directions of the fracture advective velocity field uΓ . In
the framework of reduced models, it is assumed that the normal componant of the
fracture Darcy velocity is a linear combinaison of the normal component of the
surrounding bulk Darcy velocity; see [8]. Therefore, it seems natural to integrate the
fracture transverse dispersion coefficient into the transmission conditions (5).

3 Numerical experiments

In this section we numerically compare the two reduced models (PTFPM) and
(PTFPM?). For the sake of brevety, we refer to the previous works [2, 3] for the
space discretization aspects and to [3, Section 5] for an in-depth description of the
test case configurations considered in this section. To discretize in time, we use a
backward Euler scheme and consider a uniform partition (tn)0≤n≤N of the time in-
terval (0,T ) with t0 = 0, tN = T and tn− tn−1 = ∆ t for all 1≤ n≤ N.

3.1 Injection and production wells

In petroleum engineering, the source terms f and fΓ are used to model injection and
production wells in the bulk and in the fracture, respectively; see [10]. Through this
section, the injection well sits in xi ∈ ΩB, the production one in xp ∈ ΩB, and both
are modeled by the source term f defined such that

f (x) =
1
2
(
tanh(200(0.025−|x−xi|))− tanh

(
200

(
0.025−|x−xp|

)))
.

For a fixed Tinj > 0, the concentration of solute as it is injected is defined as ĉ(t,x) =
1 if t < Tinj and ĉ(t,x) = 0 otherwise. In the fracture, we set fΓ ≡ ĉΓ (t,x)≡ 0. We
assume that the initial concentration of solute is zero in ΩB and Γ .

3.2 Impermeable fractures

We first consider a test case modelling the passive displacement of a solute in a
fractured porous medium where fractures act as barriers. The domain configuration
and user parameters are detailed in Figure 2a. With this configuration the solute is
expected to go from the injection well toward the production well by avoiding the
fractures; see [3, Section 5.2]. In Figures 2b and 2c, we display the bulk concen-
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trations of both reduced models (PTFPM) and (PTFPM?) obtained at different time
t. In both cases, the solute follows the corridors designed by the fractures acting as
barriers and goes from the injection to the production well for the two configura-
tions. However, discontinuities of the bulk concentration c across the fractures are
more pronounced in the reduced model (PTFPM?). This arises from the fact that the
fracture transverse coefficient dΓ

t depends on the surrounding bulk Darcy velocity,
which, in this case, avoids fractures.

∂ΩB

ΩB

∂Γ

⊕

	
Ω = (0,1)2, ξ = 0.125, xi = (1/2,0), xp = (1/2,1)
Γ = (0,3/4)×{1/4,3/4}∪ (1/4,1)×{1/2}
`Γ = 10−2 , K = 10−3I2, κτ

Γ
= 10−3, κn

Γ
= 10−6

dm = dΓ
m = 10−5, dl = dΓ

l = 1, dt = dΓ
t = 10−2

φ = φΓ = 10−1, T = 102, Tinj = 30, ∆ t = 1

(a) Domain configuration (left) and parameters (right)

1

0

(b) Reduced model (PTFPM)

1

0

(c) Reduced model (PTFPM?)

Fig. 2 Domain configuration and parameters (top), and snapshots of the bulk concentrations c
(bottom) for the test case of Section 3.2 (impermeable fractures). Displayed times (from left to
right, top to bottom): t = 5, 20, 40, 60, 80, 100.

3.3 Permeable fractures

We now consider fractures acting as conduits. Both the domain configuration and
user parameters are displayed in Figure 3a. With this choice, it is expected that the
solute is attracted by the fractures; see [3, Section 5.3]. In Figures 3b and 3c, we
display bulk concentrations c of both reduced models (PTFPM) and (PTFPM?), at
different time t. In both cases, we can distinctly see that the solute channeled by the
fractures flows towards the production well faster than the solute in the surrounding
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bulk medium. We remark that, at the neighborhood of the fracture tips located near
the injection well, discontinuities of the concentration c are, also in this case, more
pronounced in the reduced model (PTFPM?).

∂ΩB

ΩB

∂Γ

⊕

	
Ω = (0,1)2, ξ = 0.125, xi = (1/2,0), xp = (1/2,1)
Γ = {2/32,8/32,13/32,19/32,24/32,30/32}× (1/4,3/4)
`Γ = 10−2 , K = 10−3I2, κτ

Γ
= 10−1, κn

Γ
= 10−3

dm = dΓ
m = 10−5, dl = dΓ

l = 1, dt = dΓ
t = 10−2

φ = φΓ = 10−1, T = 102, Tinj = 30, ∆ t = 1

(a) Domain configuration (left) and parameters (right)

1

0

(b) Reduced model (PTFPM)

1

0

(c) Reduced model (PTFPM?)

Fig. 3 Domain configuration and parameters (top), and snapshots of the bulk concentrations c
(bottom) for the test of Section 3.3 (permeable fractures). Displayed times (from left to right, top
to bottom): t = 5, 15, 30, 50, 80, 100.

In practice, the molecular diffusion coefficients are set to zero. This delicate case
is prone to instabilities since the diffusion-dispersion tensors can be degenerate in
some parts of the domain where the Darcy velocities vanish. Moreover, the fracture
normal diffusion-dispersion coefficient depends, in this case, only on the Darcy ve-
locity u. In Figure 4, we display the concentrations obtained by the two reduced
models (PTFPM) and (PTFPM?) at different time t setting dm = dΓ

m = 0. Clearly,
one can see instabilities at the neighborhood of the fractures for the reduced model
(PTFPM); see Figure 4a. On the other hand, the reduced model (PTFPM?) seems
to handle without difficulty this particular case; see Figure 4b. We also note that the
discontinuities are more pronounced in the reduced model (PTFPM?), and that the
concentrations of the two reduced models (PTFPM) and (PTFPM?) behave differ-
ently at the vicinity of the fractures.



8 Florent Chave

(a) Reduced model (PTFPM) (b) Reduced model (PTFPM?)

Fig. 4 Snapshots of the bulk concentration c and zoom on the vicinity of the fracture for the
test case of Section 3.3 (permeable fracture, vanishing molecular diffusion). Displayed times: t =
15, 20, 30.
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