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We propose a Stein characterization of the Kummer distribution on (0, ∞).

This result follows from our observation that the density of the Kummer distribution satisfies a certain differential equation, leading to a solution of the related Stein equation. A bound is derived for the solution, under a condition on the parameters. The derivation of this bound is carried out using the same framework as in Gaunt 2017 [A Stein characterisation of the generalized hyperbolic distribution. ESAIM:

Introduction

2K p ( √ ab)

x p-1 e -1 2 (ax+b/x) , x > 0, where K p is the modified Bessel function of the third kind.

For details on GIG and Kummer distributions see [START_REF] Koudou | Characterizations of GIG laws: a survey complemented with two new results Proba[END_REF][START_REF] Koudou | Independence properties of the Matsumoto-Yor type[END_REF][START_REF] Piliszek | Change of measure technique in characterizations of the gamma and Kummer distributions[END_REF] and references therein, where one can see for instance that these distributions are involved in some characterization problems related to the so-called Matsumoto-Yor property.

In this paper, these two distributions are considered in the context of Stein's method. This method introduced in [START_REF] Stein | A bound for the error in the normal approximation to the distribution of a sum of dependent random variables[END_REF] is a technique used to bound the error in the approximation of the distribution of a random variable of interest by another probability (for instance the normal) distribution. For an overview of Stein's method see [START_REF] Chen | Normal approximation by Stein's method[END_REF][START_REF] Ross | Fundamentals of Stein's method[END_REF]. The first steps of this method consist in finding an operator called Stein operator characterizing the targeted distribution, then solving the corresponding socalled Stein equation.

One finds in [START_REF] Stein | A bound for the error in the normal approximation to the distribution of a sum of dependent random variables[END_REF] a seminal instance of the method, where Stein showed that a random variable X has a standard normal distribution if and only if for all real-valued absolutely continuous function

f such that E |f ′ (Z)| < ∞ for Z ∼ N(0, 1), E [f ′ (X) -Xf (X)] = 0. The corresponding Stein equation is f ′ (x) -xf (x) = h(x) -Eh(Z)
where h is a bounded function and Z a random variable following the standard normal distribution. The operator f → T f defined by (T f )(x) = f ′ (x) -xf (x) is the corresponding Stein operator.

If a function f h is a solution of the previous equation, then for any random variable U we have

|E(f ′ h (U) -Uf h (U))| = |E(h(U)) -E(h(Z))|.

Thus, in order to bound |E(h(U)) -E(h(Z))

| given h, its enough to find a solution f h of the Stein equation and to bound the left-hand side of the previous equation. The problem of solving the Stein equation for other distributions than the standard normal distribution and bounding the solution and its derivatives has been widely studied in the literature (see [START_REF] Goldstein | Stein's method for the Beta distribution and the Pòlya-Eggenberger urn[END_REF] among many others).

The aim of this paper is to solve the Stein equation and derive a bound of the solution for the Kummer distribution (which is new) and for the generalized inverse Gaussian distribution (which has been done in [START_REF] Gaunt | A Stein characterisation of the generalized hyperbolic distribution[END_REF], but there was a little mistake in the bound of the solution).

The idea of this paper emerged by reading the remarkable work by [START_REF] Gaunt | A Stein characterisation of the generalized hyperbolic distribution[END_REF] about a Stein characterization of the generalized hyperbolic distribution of which the generalized inverse Gaussian distribution (GIG) is a limiting case. Among many other results, [START_REF] Gaunt | A Stein characterisation of the generalized hyperbolic distribution[END_REF] solved the GIG Stein equation and bounded the solution by using a general result obtained in [START_REF] Schoutens | Orthogonal Polynomials in Steins Method[END_REF] when the targeted distribution has a density g satisfying (s(x)g(x)) ′ = τ (x)g(x)

(1.1)

for some polynomial functions s and τ . Also a bound was obtained for the solution under the condition that the function τ be a decreasing linear function. But since this linearity condition does not hold in the GIG case, the bound given by [START_REF] Gaunt | A Stein characterisation of the generalized hyperbolic distribution[END_REF] has to be slightly corrected. This is done in Theorem 3.1 after recalling the general framework of Schoutens [START_REF] Schoutens | Orthogonal Polynomials in Steins Method[END_REF] and adapting it to the cases where τ is decreasing but not necessarily linear. Indeed, we realized that the procedure adopted in [START_REF] Schoutens | Orthogonal Polynomials in Steins Method[END_REF] still works, via a slight change, even if τ is not linear.

Observing that the Kummer density also satisfies (1.1), we can use the same methodology (Theorem 4.2) for this distribution. We have to put the restrictions p ≤ -1 for the GIG density and 1 -b -c ≤ 0 for the Kummer density in order for the corresponding function τ to be decreasing on (0, ∞).

In Section 1 we recall the general framework established by [START_REF] Schoutens | Orthogonal Polynomials in Steins Method[END_REF] for densities g satisfying (1.1) without the assumption of linearity of τ . We retrieve the Stein operator given in [START_REF] Schoutens | Orthogonal Polynomials in Steins Method[END_REF] by using the density approach initiated in [START_REF] Stein | Use of exchangeable pairs in the analysis of simulations[END_REF] and further developed in [START_REF] Ley | Stein's density approach and information inequalities[END_REF].

In Section 2 we show the application of this method to the GIG distribution as mentioned in [START_REF] Gaunt | A Stein characterisation of the generalized hyperbolic distribution[END_REF] by giving the right bound for the solution of the Stein equation. Section 3 is devoted to the Stein characterization and the Stein equation related to the Kummer distribution.

Stein characterization in the Schoutens framework

Theorem 1 in [START_REF] Schoutens | Orthogonal Polynomials in Steins Method[END_REF] addressed the problem of establishing a Stein characterization for probability distributions with density g satisfying (1.1) for some polynomial functions s et τ , and proved that a Stein operator in this case is f → sf ′ + τ f . We realized (see the following theorem) that the same Stein operator can be arrived at by using the density approach designed in [START_REF] Stein | Use of exchangeable pairs in the analysis of simulations[END_REF] and [START_REF] Ley | Stein's density approach and information inequalities[END_REF]. The support of the density may be any interval, but here we take this support to be (0, ∞) in the purpose of the application to the GIG and Kummer distributions.

Theorem 2.1 Consider a density g on (0, ∞) such that (1.1) holds for some polynomial functions s and τ . Then a positive random variable X has density g if and only if for any differentiable function f such that lim

x→0 s(x)g(x)f (x) = lim x→∞ s(x)g(x)f (x) = 0, E [s(X)f ′ (X) + τ (X)f (X)] = 0.
Proof: We use Corollary 2.1 of [START_REF] Ley | Stein's density approach and information inequalities[END_REF]. According to this corollary, a Stein operator related to the density function g is

T g f (x) = 1 g(x) (f g) ′ (x.)
Applyng this operator to sf , we have

T g (sf )(x) = 1 g(x) (sf g) ′ (x) = 1 g(x) (f ′ (x)s(x)g(x) + f (x)(sg) ′ (x))
which, by (1.1), reads

T g (sf )(x) = 1 g(x) (f ′ (x)s(x)g(x) + f (x)τ (x)g(x)) = f ′ (x)s(x) + f (x)τ (x).
Theorem 2.1 shows that the Stein equation related to any density g satisfying (1.1) enjoys the tractable form

s(x)f ′ (x) + τ (x)f (x) = h(x) -Eh(W ) (2.1)
where W is random variable with density g. Schoutens [START_REF] Schoutens | Orthogonal Polynomials in Steins Method[END_REF] found a solution to the Stein equation (2.1) and established a bound for the solution, under the condition that the function τ be a decreasing linear function (which is the case for the so-called Pearson and Ord classes of distributions considered in [START_REF] Schoutens | Orthogonal Polynomials in Steins Method[END_REF]).

The following result comes from Proposition 1 in [START_REF] Schoutens | Orthogonal Polynomials in Steins Method[END_REF]. We again take the support of the density function to be (0, ∞). 

f h (x) = 1 s(x)g(x) x 0 g(t) [h(t) -Eh(W )] dt = -1 s(x)g(x) +∞ x g(t) [h(t) -Eh(W )] dt.
(2.2) Remark 2.1 The proof of this proposition is given in [START_REF] Schoutens | Orthogonal Polynomials in Steins Method[END_REF] just by calculating the derivative of the function f h defined by (2.2) and checking directly that f h satisfies (2.1). Our following proposition complements this result. Proposition 2.2 Under the notation and assumptions of Proposition 2.1,

• The solutions of the Stein equation (2.1) are of the form

f h (x) = 1 s(x)g(x) x 0 g(t) [h(t) -Eh(W )] dt + C s(x)g(x) = -1 s(x)g(x) +∞ x g(t) [h(t) -Eh(W )] dt + C s(x)g(x) (2.3)
where C is constant.

• Suppose lim x→0 s(x)g(x) = 0. For the solution to be bounded, it is necessary that C = 0 in (2.3).

Proof:

Multiplying both sides of (2.1) by g(x) we have

s(x)g(x)f ′ (x) + τ (x)g(x)f (x) = g(x)(h(x) -Eh(W ))
which, by (1.1), can be written

s(x)g(x)f ′ (x) + (sg) ′ (x)f (x) = g(x)(h(x) -Eh(W )), i.e. (sgf ) ′ (x) = g(x)(h(x) -Eh(W )).
As a consequence, there exists a constant C such that

s(x)g(x)f (x) = x 0 g(t) [h(t) -Eh(W )] dt + C (2.4)
which implies (2.3). Suppose f is bounded. Since lim x→0 s(x)g(x) = 0, letting x tend to 0 in (2.4) yields C = 0.

The second expression for f h follows from the fact that, since W has density g,

+∞ 0 g(t) [h(t) -Eh(W )] dt = 0.
The following proposition proves that the solution given by (2.2) is bounded indeed if h is bounded, and thus is the unique bounded solution to the Stein equation associated to the density g. A bound is provided. Proposition 2.3 Consider a density function g > 0 on (0, ∞) satisfying Equation (1.1), where s and τ are polynomial functions such that s > 0 on (0, ∞) and τ is decreasing and has a unique zero α on (0, ∞). Assume that lim where

M = max 1 s(α)g(α) α 0 g(t)dt; 1 s(α)g(α) +∞ α g(t)dt and ||f h || = sup x>0 |f h (x)| .
Remark 2.2 This result is a reformulation of Lemma 1 in [START_REF] Schoutens | Orthogonal Polynomials in Steins Method[END_REF] without the assumption that τ is linear. With this assumption, [START_REF] Schoutens | Orthogonal Polynomials in Steins Method[END_REF] established the same bound with α = E(X) (for a random variable X with density g), which is not true if τ is not linear. The proof given below follows the lines of that of [START_REF] Schoutens | Orthogonal Polynomials in Steins Method[END_REF] where we observed that the assumption of linearity of τ was used nowhere except to state that its only zero is α = E(X).

The proof of Proposition 2.3 uses the following lemma : Proof: Suppose x < α. Since τ is positive and decreasing on (0, α), we have

τ (t) τ (x)
≥ 1 for all t ≤ x. Therefore

x 0 g(t)dt ≤ x 0 g(t) τ (t) τ (x) dt = 1 τ (x) x 0 τ (t)g(t)dt = s(x)g(x) τ (x)
because of (1.1) and as lim t→0 s(t)g(t) = 0.

For x > α, since τ is negative and decreasing on (α, ∞), we have

τ (t) τ (x) ≥ 1 for all t ≥ x. As a consequence, +∞ x g(t)dt ≤ +∞ x g(t) τ (t) τ (x) dt = -s(x)g(x) τ (x) since lim t→∞ s(t)g(t) = 0.
Now, let us prove (2.5).

Proof:

For x < α, |f h (x)| = 1 s(x)g(x) x 0 g(t) [h(t) -Eh(W )] dt ≤ 1 s(x)g(x) x 0 g(t) |h(t) -Eh(W )| dt ≤ ||h(.) -Eh(W )|| 1 s(x)g(x) x 0 g(t)dt. Let l(x) = 1 s(x)g(x)
x 0 g(t)dt. Then l is differentiable on (0, ∞) and

l ′ (x) = -(s(x)g(x)) ′ (s(x)g(x)) 2 x 0 g(t)dt + 1 s(x) = -τ (x) s 2 (x)g(x) x 0 g(t)dt + 1 s(x)
Using Lemma 2.1, we conclude that l ′ (x) ≥ 0. Then l(x) ≤ l(α).

For x > α,

|f h (x)| = ||h(x) -Eh(W )|| 1 s(x)g(x) +∞ x g(t)dt. Let u(x) = 1 s(x)g(x) +∞ x g(t)dt. The function u is differentiable on (0, ∞) and u ′ (x) = -τ (x) s 2 (x)g(x) +∞ x k(t)dt - 1 s(x)
By Lemma 2.1, we conclude that u ′ (x) ≤ 0. Then u(x) ≤ u(α).

In the two next sections we apply the previous results to the GIG and Kummer distributions.

About the Stein equation of the generalized inverse Gaussian distribution

Recall that the density of the GIG distribution with parameters p ∈ R, a > 0, b > 0 is

g p,a,b (x) = (a/b) p/2 2K p ( √ ab) x p-1 e -1 2 (ax+b/x) , x > 0, (3.1) 
where K p is the modified Bessel function of the third kind. Let

s(x) = x 2 and τ (x) = b 2 + (p + 1)x - a 2 x 2 . (3.2) 
Then, as observed by [START_REF] Gaunt | A Stein characterisation of the generalized hyperbolic distribution[END_REF], the GIG density g p,a,b satisfies

(s(x)g p,a,b (x)) ′ = τ (x)g p,a,b (x). 
This enables us to apply Theorem 2.1 to retrieve the following Stein characterization of the GIG distribution given in [START_REF] Koudou | Characterizations of GIG laws: a survey complemented with two new results Proba[END_REF] and [START_REF] Gaunt | A Stein characterisation of the generalized hyperbolic distribution[END_REF]: 

Proposition 3.1 A random variable X
E X 2 f ′ (X) + b 2 + (p + 1)X - a 2 X 2 f (X) = 0.
The corresponding Stein equation is

x 2 f ′ (x) + b 2 + (p + 1)x - a 2 x 2 f (x) = h(x) -Eh(W ) (3.3)
where h is a bounded function and W a random variable following the GIG distribution with parameters p, a, b.

We apply Proposition 2.2 and Proposition 2. Secondly, observe that if p ≤ -1, then the function τ defined by (3.2) is decreasing on (0, ∞) and that its only zero on (0, ∞) is α = p + 1 + (p + 1) 2 + ab a . Thus, by using Proposition 2.2 and Proposition 2.3, we obtain the following theorem. Remark 3.1 This result was claimed by Gaunt (see [START_REF] Gaunt | A Stein characterisation of the generalized hyperbolic distribution[END_REF]) with α = E(X) by applying Proposition 1 of [START_REF] Schoutens | Orthogonal Polynomials in Steins Method[END_REF]. The only slight mistake is that τ is not a polynomial function of degree one as in [START_REF] Schoutens | Orthogonal Polynomials in Steins Method[END_REF].

About the Stein equation related to the Kummer distribution

Recall that for a > 0, b ∈ R, c > 0, the Kummer distribution K(a, b, c) has density

k a,b,c (x) = 1 Γ(a)ψ(a, a -b + 1; c) x a-1 (1 + x) -a-b e -cx , (x > 0)
where ψ is the confluent hypergeometric function of second kind. Let Remark 4.1 These results could be used in future work to provide rates of convergence in limit problems related to the GIG and Kummer distributions.

s(x) = x(1 + x) and τ (x) = (1 -b)x -cx(1 + x) + a. ( 4 

For

  a > 0, b ∈ R, c > 0, the Kummer distribution with parameters a, b, c has densityk a,b,c (x) = 1 Γ(a)ψ(a, a -b + 1; c) x a-1 (1 + x) -a-b e -cx , (x > 0)where ψ is the confluent hypergeometric function of the second kind. The generalized inverse Gaussian (hereafter GIG) distribution with parameters p ∈ R, a > 0, b > 0 has density g p,a,b (x) = (a/b) p/2

Proposition 2 . 1

 21 Consider a density function g > 0 on (0, ∞) satisfying Equation (1.1), for some polynomial functions s and τ . Then a solution of the Stein equation (2.1) is

  )g(x) = 0. If h is a bounded continuous function, then ||f h || ≤ M ||h(.) -Eh(Z)|| (2.5)

Lemma 2 . 1

 21 Under the assumptions of Proposition 2.3, dt ≤ -s(x)g(x)τ (x) for x > α.

  follows the GIG distribution with density g p,a,b if and only if, for all real-valued and differentiable function f such that lim x→∞ g p,a,b (x)f (x) = lim x→0 g p,a,b (x)f (x) = 0, we have:

  3 to solve Equation(3.3) and bound the solution. Let us check that the assumptions of these propositions are true in the GIG case.Firstly, we note that, by (3.1),s(x)g p,a,b (x) = (a/b) p/2 2K p ( √ ab)x p+1 e -1 2 (ax+b/x) , x > 0, which shows that lim x→∞ s(x)g p,a,b (x) = lim x→0 s(x)g p,a,b (x) = 0.

Theorem 3 . 1

 31 The GIG Stein equation (3.3) has solutionf h (x) = 1 s(x)g p,a,b (x) x 0 g p,a,b (t) [h(t) -Eh(W )] dt = -1 s(x)g p,a,b (x) +∞ x g p,a,b (t) [h(t) -Eh(W )] dt (3.4)where W follows the GIG distribution with parameters p, a, b.If h is a bounded continuous function and p ≤ -1, then the function defined by (3.4) is the unique bounded solution of (3.3) and ||f h || ≤ M ||h(.) -Eh(W )|| where α = p + 1 + (p + 1) 2 + ab a , M = max 1 s(α)g p,a,b (α) α 0 g p,a,b (t)dt; 1 s(α)g p,a,b (α) +∞ α g p,a,b (t)dt .

Theorem 4 . 2

 42 x)k a,b,c (x)) ′ = τ (x)k a,b,c (x.) Then we can use Theorem 2.1 to obtain the following Stein characterization of the Kummer distribution: Theorem 4.1 A random variable X follows the K(p, a, b) distribution if and only if, for alldifferentiable function f , E [X(X + 1)(f ′ (X) + ((1 -b)X -cX(1 + X) + a) f (X)] = 0.The corresponding Stein equation isx(x + 1)f ′ (x) + [(1 -b)x -cx(1 + x) + a] f (x) = h(x) -Eh(W ) (4.2)where W has density k a,b,c . We haves(x)k a,b,c (x) = 1 Γ(a)ψ(a, a -b + 1; c) x a (1 + x) 1-a-b e -cx , x > 0and we see that lim x→∞ s(x)k a,b,c (x) = lim x→0 s(x)k a,b,c (x) = 0. Note also that if 1 -b -c ≤ 0, then the function τ defined by (4.1) is decreasing on (0, ∞) and its only zero on this interval is α = 1 -b -c + (1 -b -c) 2 + 4ac 2c . Then we use again Proposition 2.2 and Proposition 2.3 to obtain the following result: The Kummer Stein equation (4.2) has solutionf h (x) = 1 s(x)k a,b,c (x) x 0 k a,b,c (t) [h(t) -Eh(W )] dt = -1 s(x)k a,b,c (x) +∞ x k a,b,c (t) [h(t) -Eh(W )] dt(4.3) where W ∼ K(a, b, c). If h is a bounded continuous function and 1 -b -c ≤ 0, then f h defined by (4.3) is the unique bounded solution of (4.2) and ||f h || ≤ M ||h(.) -Eh(W )|| where α = 1 -b -c + (1 -b -c) 2 + 4ac 2c , M = max 1 s(α)k a,b,c (α) α 0 k a,b,c (t)dt; 1 s(α)k a,b,c (α) +∞ α k a,b,c (t)dt .