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Abstract

We propose a Stein characterization of the Kummer distribution on (0,∞).

This result follows from our observation that the density of the Kummer dis-

tribution satisfies a certain differential equation, leading to a solution of the

related Stein equation. A bound is derived for the solution, under a condition

on the parameters. The derivation of this bound is carried out using the same

framework as in Gaunt 2017 [A Stein characterisation of the generalized hyper-

bolic distribution. ESAIM: Probability and Statistics, 21, 303–316] in the case

of the generalized inverse Gaussian distribution, which we revisit by correcting

a minor error in the latter paper.

Keywords : Generalized inverse Gaussian distribution, Kummer distribution, Stein

characterization.

1 Introduction

For a > 0, b ∈ R, c > 0, the Kummer distribution with parameters a, b, c has density

ka,b,c(x) =
1

Γ(a)ψ(a, a− b+ 1; c)
xa−1(1 + x)−a−be−cx, (x > 0)

where ψ is the confluent hypergeometric function of the second kind.

The generalized inverse Gaussian (hereafter GIG) distribution with parameters

p ∈ R, a > 0, b > 0 has density

gp,a,b(x) =
(a/b)p/2

2Kp(
√
ab)

xp−1e−
1

2
(ax+b/x), x > 0,

1
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where Kp is the modified Bessel function of the third kind.

For details on GIG and Kummer distributions see [4, 5, 11] and references therein,

where one can see for instance that these distributions are involved in some charac-

terization problems related to the so-called Matsumoto-Yor property.

In this paper, these two distributions are considered in the context of Stein’s

method. This method introduced in [9] is a technique used to bound the error in

the approximation of the distribution of a random variable of interest by another

probability (for instance the normal) distribution. For an overview of Stein’s method

see [1, 7]. The first steps of this method consist in finding an operator called Stein

operator characterizing the targeted distribution, then solving the corresponding so-

called Stein equation.

One finds in [9] a seminal instance of the method, where Stein showed that a

random variable X has a standard normal distribution if and only if for all real-valued

absolutely continuous function f such that E |f ′(Z)| <∞ for Z ∼ N(0, 1),

E [f ′(X) −Xf(X)] = 0.

The corresponding Stein equation is

f ′(x) − xf(x) = h(x) − Eh(Z)

where h is a bounded function and Z a random variable following the standard nor-

mal distribution. The operator f 7→ Tf defined by (Tf )(x) = f ′(x) − xf(x) is the

corresponding Stein operator.

If a function fh is a solution of the previous equation, then for any random variable

U we have

|E(f ′

h(U) − Ufh(U))| = |E(h(U)) − E(h(Z))|.

Thus, in order to bound |E(h(U)) − E(h(Z))| given h, its enough to find a solution

fh of the Stein equation and to bound the left-hand side of the previous equation.

The problem of solving the Stein equation for other distributions than the standard

normal distribution and bounding the solution and its derivatives has been widely

studied in the literature (see [3] among many others).

The aim of this paper is to solve the Stein equation and derive a bound of the

solution for the Kummer distribution (which is new) and for the generalized inverse

Gaussian distribution (which has been done in [2], but there was a little mistake in

the bound of the solution).

The idea of this paper emerged by reading the remarkable work by [2] about a Stein

characterization of the generalized hyperbolic distribution of which the generalized
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inverse Gaussian distribution (GIG) is a limiting case. Among many other results,

[2] solved the GIG Stein equation and bounded the solution by using a general result

obtained in [8] when the targeted distribution has a density g satisfying

(s(x)g(x))′ = τ(x)g(x) (1.1)

for some polynomial functions s and τ . Also a bound was obtained for the solution

under the condition that the function τ be a decreasing linear function. But since this

linearity condition does not hold in the GIG case, the bound given by [2] has to be

slightly corrected. This is done in Theorem 3.1 after recalling the general framework

of Schoutens [8] and adapting it to the cases where τ is decreasing but not necessarily

linear. Indeed, we realized that the procedure adopted in [8] still works, via a slight

change, even if τ is not linear.

Observing that the Kummer density also satisfies (1.1), we can use the same

methodology (Theorem 4.2) for this distribution. We have to put the restrictions

p ≤ −1 for the GIG density and 1 − b − c ≤ 0 for the Kummer density in order for

the corresponding function τ to be decreasing on (0,∞).

In Section 1 we recall the general framework established by [8] for densities g

satisfying (1.1) without the assumption of linearity of τ . We retrieve the Stein operator

given in [8] by using the density approach initiated in [10] and further developed in

[6].

In Section 2 we show the application of this method to the GIG distribution as

mentioned in [2] by giving the right bound for the solution of the Stein equation.

Section 3 is devoted to the Stein characterization and the Stein equation related to

the Kummer distribution.

2 Stein characterization in the Schoutens frame-

work

Theorem 1 in [8] addressed the problem of establishing a Stein characterization for

probability distributions with density g satisfying (1.1) for some polynomial functions

s et τ , and proved that a Stein operator in this case is f 7→ sf ′ + τf . We realized

(see the following theorem) that the same Stein operator can be arrived at by using

the density approach designed in [10] and [6]. The support of the density may be any

interval, but here we take this support to be (0,∞) in the purpose of the application

to the GIG and Kummer distributions.
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Theorem 2.1 Consider a density g on (0,∞) such that (1.1) holds for some polyno-

mial functions s and τ . Then a positive random variable X has density g if and only if

for any differentiable function f such that lim
x→0

s(x)g(x)f(x) = lim
x→∞

s(x)g(x)f(x) = 0,

E [s(X)f ′(X) + τ(X)f(X)] = 0.

Proof: We use Corollary 2.1 of [6]. According to this corollary, a Stein operator

related to the density function g is

Tgf(x) =
1

g(x)
(fg)′(x.)

Applyng this operator to sf , we have

Tg(sf)(x) =
1

g(x)
(sfg)′(x)

=
1

g(x)
(f ′(x)s(x)g(x) + f(x)(sg)′(x))

which, by (1.1), reads

Tg(sf)(x) =
1

g(x)
(f ′(x)s(x)g(x) + f(x)τ(x)g(x))

= f ′(x)s(x) + f(x)τ(x).

�

Theorem 2.1 shows that the Stein equation related to any density g satisfying (1.1)

enjoys the tractable form

s(x)f ′(x) + τ(x)f(x) = h(x) − Eh(W ) (2.1)

where W is random variable with density g. Schoutens [8] found a solution to the

Stein equation (2.1) and established a bound for the solution, under the condition

that the function τ be a decreasing linear function (which is the case for the so-called

Pearson and Ord classes of distributions considered in [8]).

The following result comes from Proposition 1 in [8]. We again take the support

of the density function to be (0,∞).

Proposition 2.1 Consider a density function g > 0 on (0,∞) satisfying Equation

(1.1), for some polynomial functions s and τ . Then a solution of the Stein equation

(2.1) is

fh(x) =
1

s(x)g(x)

∫ x

0

g(t) [h(t) − Eh(W )] dt

=
−1

s(x)g(x)

∫ +∞

x

g(t) [h(t) − Eh(W )] dt.

(2.2)
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Remark 2.1 The proof of this proposition is given in [8] just by calculating the

derivative of the function fh defined by (2.2) and checking directly that fh satisfies

(2.1). Our following proposition complements this result.

Proposition 2.2 Under the notation and assumptions of Proposition 2.1,

• The solutions of the Stein equation (2.1) are of the form

fh(x) =
1

s(x)g(x)

∫ x

0

g(t) [h(t) − Eh(W )] dt+
C

s(x)g(x)

=
−1

s(x)g(x)

∫ +∞

x

g(t) [h(t) − Eh(W )] dt+
C

s(x)g(x)

(2.3)

where C is constant.

• Suppose lim
x→0

s(x)g(x) = 0. For the solution to be bounded, it is necessary that

C = 0 in (2.3).

Proof:

Multiplying both sides of (2.1) by g(x) we have

s(x)g(x)f ′(x) + τ(x)g(x)f(x) = g(x)(h(x) − Eh(W ))

which, by (1.1), can be written

s(x)g(x)f ′(x) + (sg)′(x)f(x) = g(x)(h(x) − Eh(W )),

i.e.

(sgf)′(x) = g(x)(h(x) − Eh(W )).

As a consequence, there exists a constant C such that

s(x)g(x)f(x) =

∫ x

0

g(t) [h(t) − Eh(W )] dt + C (2.4)

which implies (2.3).

Suppose f is bounded. Since lim
x→0

s(x)g(x) = 0, letting x tend to 0 in (2.4) yields

C = 0.

The second expression for fh follows from the fact that, since W has density g,
∫ +∞

0

g(t) [h(t) − Eh(W )] dt = 0.

�

The following proposition proves that the solution given by (2.2) is bounded in-

deed if h is bounded, and thus is the unique bounded solution to the Stein equation

associated to the density g. A bound is provided.
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Proposition 2.3 Consider a density function g > 0 on (0,∞) satisfying Equa-

tion (1.1), where s and τ are polynomial functions such that s > 0 on (0,∞) and

τ is decreasing and has a unique zero α on (0,∞). Assume that lim
x→0

s(x)g(x) =

lim
x→∞

s(x)g(x) = 0. If h is a bounded continuous function, then

||fh|| ≤ M ||h(.) − Eh(Z)|| (2.5)

where

M = max

(

1

s(α)g(α)

∫ α

0

g(t)dt;
1

s(α)g(α)

∫ +∞

α

g(t)dt

)

and ||fh|| = sup
x>0

|fh(x)| .

Remark 2.2 This result is a reformulation of Lemma 1 in [8] without the assumption

that τ is linear. With this assumption,[8] established the same bound with α = E(X)

(for a random variable X with density g), which is not true if τ is not linear. The

proof given below follows the lines of that of [8] where we observed that the assumption

of linearity of τ was used nowhere except to state that its only zero is α = E(X).

The proof of Proposition 2.3 uses the following lemma :

Lemma 2.1 Under the assumptions of Proposition 2.3,
∫ x

0

g(t)dt ≤ s(x)g(x)

τ(x)
for x < α

and
∫ +∞

x

g(t)dt ≤ −s(x)g(x)

τ(x)
for x > α.

Proof: Suppose x < α. Since τ is positive and decreasing on (0, α), we have
τ(t)

τ(x)
≥ 1 for all t ≤ x. Therefore

∫ x

0

g(t)dt ≤
∫ x

0

g(t)
τ(t)

τ(x)
dt

=
1

τ(x)

∫ x

0

τ(t)g(t)dt

=
s(x)g(x)

τ(x)

because of (1.1) and as lim
t→0

s(t)g(t) = 0.
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For x > α, since τ is negative and decreasing on (α,∞), we have
τ(t)

τ(x)
≥ 1 for all

t ≥ x. As a consequence,

∫ +∞

x

g(t)dt ≤
∫ +∞

x

g(t)
τ(t)

τ(x)
dt

=
−s(x)g(x)

τ(x)

since lim
t→∞

s(t)g(t) = 0. �

Now, let us prove (2.5).

Proof:

For x < α,

|fh(x)| =

∣

∣

∣

∣

1

s(x)g(x)

∫ x

0

g(t) [h(t) − Eh(W )] dt

∣

∣

∣

∣

≤ 1

s(x)g(x)

∫ x

0

g(t) |h(t) − Eh(W )| dt

≤ ||h(.) − Eh(W )|| 1

s(x)g(x)

∫ x

0

g(t)dt.

Let l(x) =
1

s(x)g(x)

∫ x

0

g(t)dt. Then l is differentiable on (0,∞) and

l′(x) =
− (s(x)g(x))′

(s(x)g(x))2

∫ x

0

g(t)dt+
1

s(x)

=
−τ(x)

s2(x)g(x)

∫ x

0

g(t)dt+
1

s(x)

Using Lemma 2.1, we conclude that l′(x) ≥ 0. Then l(x) ≤ l(α).

For x > α,

|fh(x)| = ||h(x) − Eh(W )|| 1

s(x)g(x)

∫ +∞

x

g(t)dt.

Let u(x) =
1

s(x)g(x)

∫ +∞

x

g(t)dt. The function u is differentiable on (0,∞) and

u′(x) =
−τ(x)

s2(x)g(x)

∫ +∞

x

k(t)dt− 1

s(x)

By Lemma 2.1, we conclude that u′(x) ≤ 0. Then u(x) ≤ u(α). �

In the two next sections we apply the previous results to the GIG and Kummer

distributions.
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3 About the Stein equation of the generalized in-

verse Gaussian distribution

Recall that the density of the GIG distribution with parameters p ∈ R, a > 0, b > 0

is

gp,a,b(x) =
(a/b)p/2

2Kp(
√
ab)

xp−1e−
1

2
(ax+b/x), x > 0, (3.1)

where Kp is the modified Bessel function of the third kind.

Let

s(x) = x2 and τ(x) =
b

2
+ (p+ 1)x− a

2
x2. (3.2)

Then, as observed by [2], the GIG density gp,a,b satisfies

(s(x)gp,a,b(x))′ = τ(x)gp,a,b(x).

This enables us to apply Theorem 2.1 to retrieve the following Stein characterization

of the GIG distribution given in [4] and [2]:

Proposition 3.1 A random variable X follows the GIG distribution with density

gp,a,b if and only if, for all real-valued and differentiable function f such that

lim
x→∞

gp,a,b(x)f(x) = lim
x→0

gp,a,b(x)f(x) = 0, we have:

E

[

X2f ′(X) +

(

b

2
+ (p+ 1)X − a

2
X2

)

f(X)

]

= 0.

The corresponding Stein equation is

x2f ′(x) +

(

b

2
+ (p + 1)x− a

2
x2
)

f(x) = h(x) − Eh(W ) (3.3)

where h is a bounded function and W a random variable following the GIG distribu-

tion with parameters p, a, b.

We apply Proposition 2.2 and Proposition 2.3 to solve Equation (3.3) and bound

the solution. Let us check that the assumptions of these propositions are true in the

GIG case.

Firstly, we note that, by (3.1),

s(x)gp,a,b(x) =
(a/b)p/2

2Kp(
√
ab)

xp+1e−
1

2
(ax+b/x), x > 0,

which shows that lim
x→∞

s(x)gp,a,b(x) = lim
x→0

s(x)gp,a,b(x) = 0.
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Secondly, observe that if p ≤ −1, then the function τ defined by (3.2) is decreasing

on (0,∞) and that its only zero on (0,∞) is α =
p+ 1 +

√

(p+ 1)2 + ab

a
.

Thus, by using Proposition 2.2 and Proposition 2.3, we obtain the following the-

orem.

Theorem 3.1 The GIG Stein equation (3.3) has solution

fh(x) =
1

s(x)gp,a,b(x)

∫ x

0

gp,a,b(t) [h(t) − Eh(W )] dt

=
−1

s(x)gp,a,b(x)

∫ +∞

x

gp,a,b(t) [h(t) − Eh(W )] dt

(3.4)

where W follows the GIG distribution with parameters p, a, b.

If h is a bounded continuous function and p ≤ −1, then the function defined by

(3.4) is the unique bounded solution of (3.3) and

||fh|| ≤ M ||h(.) − Eh(W )||

where

α =
p+ 1 +

√

(p+ 1)2 + ab

a
,

M = max

(

1

s(α)gp,a,b(α)

∫ α

0

gp,a,b(t)dt;
1

s(α)gp,a,b(α)

∫ +∞

α

gp,a,b(t)dt

)

.

Remark 3.1 This result was claimed by Gaunt (see [2]) with α = E(X) by applying

Proposition 1 of [8]. The only slight mistake is that τ is not a polynomial function of

degree one as in [8].

4 About the Stein equation related to the Kum-

mer distribution

Recall that for a > 0, b ∈ R, c > 0, the Kummer distribution K(a, b, c) has density

ka,b,c(x) =
1

Γ(a)ψ(a, a− b+ 1; c)
xa−1(1 + x)−a−be−cx, (x > 0)

where ψ is the confluent hypergeometric function of second kind. Let

s(x) = x(1 + x) and τ(x) = (1 − b)x− cx(1 + x) + a. (4.1)

Then

(s(x)ka,b,c(x))′ = τ(x)ka,b,c(x.)

Then we can use Theorem 2.1 to obtain the following Stein characterization of the

Kummer distribution:
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Theorem 4.1 A random variable X follows the K(p, a, b) distribution if and only if,

for all differentiable function f ,

E [X(X + 1)(f ′(X) + ((1 − b)X − cX(1 +X) + a) f(X)] = 0.

The corresponding Stein equation is

x(x + 1)f ′(x) + [(1 − b)x− cx(1 + x) + a] f(x) = h(x) − Eh(W ) (4.2)

where W has density ka,b,c.

We have

s(x)ka,b,c(x) =
1

Γ(a)ψ(a, a− b+ 1; c)
xa(1 + x)1−a−be−cx, x > 0

and we see that lim
x→∞

s(x)ka,b,c(x) = lim
x→0

s(x)ka,b,c(x) = 0.

Note also that if 1 − b− c ≤ 0, then the function τ defined by (4.1) is decreasing

on (0,∞) and its only zero on this interval is α =
1 − b− c+

√

(1 − b− c)2 + 4ac

2c
.

Then we use again Proposition 2.2 and Proposition 2.3 to obtain the following

result:

Theorem 4.2 The Kummer Stein equation (4.2) has solution

fh(x) =
1

s(x)ka,b,c(x)

∫ x

0

ka,b,c(t) [h(t) − Eh(W )] dt

=
−1

s(x)ka,b,c(x)

∫ +∞

x

ka,b,c(t) [h(t) − Eh(W )] dt

(4.3)

where W ∼ K(a, b, c).

If h is a bounded continuous function and 1 − b− c ≤ 0, then fh defined by (4.3)

is the unique bounded solution of (4.2) and

||fh|| ≤ M ||h(.) − Eh(W )||

where

α =
1 − b− c+

√

(1 − b− c)2 + 4ac

2c
,

M = max

(

1

s(α)ka,b,c(α)

∫ α

0

ka,b,c(t)dt;
1

s(α)ka,b,c(α)

∫ +∞

α

ka,b,c(t)dt

)

.

Remark 4.1 These results could be used in future work to provide rates of conver-

gence in limit problems related to the GIG and Kummer distributions.
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