

The 1D A₇B₇O₃₀ crystal lattice : an extreme case of oxygenation/slicing of 3D ABO₃ perovskite

17th European Conference on Solid State Chemistry - ECSSC17 – Lille, France – September 1st-4th, 2019

The 1D A₇B₇O₃₀ crystal lattice : an extreme case of oxygenation/slicing of 3D ABO₃ perovskite

Outline

1) The columnar perovskite A₇B₇O₃₀ crystal lattice

- Parent compound La₇Mo₇O₃₀
- Tungsten derivatives with transition metal substitutes
- 2) Oxygen excess in $ABO_{3+\delta}$ type perovskites
 - From 3D to 2D lattices: $A_k B_k O_{3k+1}$ Dion-Jacobson and $A_n B_n O_{3n+2}$ series
 - $A_7B_7O_{30}$ as a 1D extension of oxygenation in n=3 perovskite slabs
- 3) Other members of the A₇B₇O₃₀ family: the MPr₂W₂O₁₀ case

First evidenced in La₇Mo₇O₃₀

- Partial reduction product of oxide-ion conductor La₂Mo₂O₉
- $La_7Mo_7O_{30} \cong LaMoO_{4.286} \rightarrow Mo^{+5.57}$
- 7 Mo^{+5.57} = 1 Mo^{+4.5} (3b) + 6 Mo^{+5.75} (18f)
- [La₈] pseudo-cubes larger than [Mo₈] pseudo-cubes

F. Goutenoire, R. Retoux, E. Suard, P. Lacorre, J. Solid State Chem. 142 (1999) 228

57

M

Then extended to tungstates in $La_7W^{6+}M^{5+}O_{30}$ (M=Nb, Ta)

Space group $R\overline{3}$

- Synthesized in air
- Nb(Ta) fully on site 3a, partly on site 18f
- 7 $B^{+5.57} = 1 \text{ Nb}^{+5} (3b) + 6 W_{2/3} Nb_{1/3}^{+5.67} (18f)$
- Lower M oxydation state always in octahedron shared by two sucessive perowskite cages in a row

F. Goutenoire, S. Kodjikian, E. Suard, J. Solid State Chem. 178 (2005) 2811

and in $La_7Mo_{7(2-y)/2}W_{7y/2}O_{30}$ (y=0.5,1.0)

J.E.Vega-Castillo, U.K. Ravella, G. Corbel, P. Lacorre, A. Caneiro, Dalton Trans. 43 (2014) 2661

M

17th European Conference on Solid State Chemistry - ECSSC17 – Lille, France – September 1st-4th, 2019

Further extension to $La_7W_{7-x}M^{m+}_{x}O_{30}$ with x=3/(6-m)

 Sticking to the La₇B₇O₃₀ stoichiometry with tungsten partial substitution by lower valence transition metals :

Further extension to $La_7W_{7-x}M^{m+}_{x}O_{30}$ with x=3/(6-m)

 Sticking to the La₇B₇O₃₀ stoichiometry with tungsten partial substitution by lower valence transition metals :

M ^{m+}	3b	18f	B ⁶⁺	18f sites	6.5	18f					
Mo ⁵⁺ /Mo ⁴⁺	50%/50%-0%	25%/0%-75%	Mo ⁶⁺	al 3b &	5.5 -			•	•	••	
Nb(Ta) ⁵⁺	100%-0%	33.3%-66.7%	W ⁶⁺	octahedr	5.0 - 4.5 -	3b			•	•	
Ti ⁴⁺	<mark>70%</mark> -30%	13.3%-86.7%	W6+	tions in e	4.0 -						
Fe ³⁺	100%-0%	0%-100%	W ⁶⁺	je of cat	3.0 -		•	•			
Zn ²⁺	75%-25%	<mark>0%</mark> -100%	W6+	Charç	2.5 - 1		2 Zn ²⁺	3 Fe ³⁺	4 Ti ⁴⁺	5 Nb5+	$\xrightarrow{6}$

The only fully ordered compound of the whole series

57

Ta⁵⁺

The ordered structure of La₇W₆FeO₃₀

MMM

1)

CNrs

	Atom	Site	Х	У	Ζ	$B(Å^2)$
Space Group $R\overline{3}$	La1	3a	0	0	0	0.46(5)
	La2	18f	0.7813(2)	0.9853(2)	0.3375(5)	0.46(5)
Hexagonal cell :	Fe	3b	0	0	0.5	0.04(3)
a = 16.9635(2) Å	W	18f	0.1969(1)	0.0130(1)	0.1695(4)	0.04(3)
c = 6.8460(1) Å	01	18f	0.247(1)	0.098(2)	0.355(4)	1.0(2)
	02	18f	0.295(2)	0.049(2)	0.996(4)	1.0(2)
X-Ray powder diffraction	O3	18f	0.174(1)	0.115(2)	0.042(4)	1.0(2)
Rietveld refinement (FullProf)	04	18f	0.208(2)	0.928(2)	0.331(3)	1.0(2)
	05	18f	0.031(2)	0.106(1)	0.322(3)	1.0(2)

17th European Conference on Solid State Chemistry - ECSSC17 – Lille, France – September 1st-4th, 2019

M M

The ordered structure of La₇W₆FeO₃₀

77 M

a

CN

The 1D A₇B₇O₃₀ crystal lattice

The ordered structure of La₇W₆FeO₃₀

[A₈] and [B₈] pseudo-cubes sizes

17th European Conference on Solid State Chemistry - ECSSC17 – Lille, France – September 1st-4th, 2019

Oxygen excess in $ABO_{3+\delta}$ type perovskites General overview: from 3D to 2D

 The perovskite structure can withstand oxygen surstoichiometry up to a certain level while retaining typical perovskite features :

Regular cubic (or distorted) 3D arrangement : Ordered and stoichiometric ABO₃

3D configuration regular

General overview: from 3D to 2D

 The perovskite structure can withstand oxygen surstoichiometry up to a certain level while retaining typical perovskite features :

Lacunar 3D arrangement : Oxygen excess $ABO_{3+\delta}$ often due to cation deficiency, as in $La_{1-x}Mn_{1-x}O_3$ with $x=\delta/(3+\delta)$

up to δ~0.4

3D configuration statistical

57

M

General overview: from 3D to 2D

 The perovskite structure can withstand oxygen surstoichiometry up to a certain level while retaining typical perovskite features :

3D configuration

Regular perovskite

17th European Conference on Solid State Chemistry - ECSSC17 – Lille, France – September 1st-4th, 2019

57

M

Oxygen excess in $ABO_{3+\delta}$ type perovskites General overview: from 3D to 2D

 The perovskite structure can withstand oxygen surstoichiometry up to a certain level while retaining typical perovskite features :

3D configuration

2D configuration

Higher values of oxygen excess are possible,
at the expense of tridimensionality:
1) In the Dion-Jacobson series

A_kB_kO_{3k+1}

2D slabs of k octahedral planes isolated from each other

Regular perovskite

General overview: from 3D to 2D

 The perovskite structure can withstand oxygen surstoichiometry up to a certain level while retaining typical perovskite features :

3D configuration

Regular perovskite

2D configuration

17th European Conference on Solid State Chemistry - ECSSC17 – Lille, France – September 1st-4th, 2019

General overview: from 3D to 2D

 The perovskite structure can withstand oxygen surstoichiometry up to a certain level while retaining typical perovskite features :

3D configuration

Regular

perovskite

57

M

General overview: from 3D to 2D

 The perovskite structure can withstand oxygen surstoichiometry up to a certain level while retaining typical perovskite features :

3D configuration

General overview: from 3D to 2D

 The perovskite structure can withstand oxygen surstoichiometry up to a certain level while retaining typical perovskite features :

General overview: from 3D to 2D

 The perovskite structure can withstand oxygen surstoichiometry up to a certain level while retaining typical perovskite features :

2D configuration

Higher values of oxygen excess are possible, at the expense of tridimensionality:

2) In the $A_n B_n O_{3n+2}$ series

2D slabs of n octahedra edges isolated from each other

17th European Conference on Solid State Chemistry - ECSSC17 – Lille, France – September 1st-4th, 2019

General overview: from 3D to 2D

 The perovskite structure can withstand oxygen surstoichiometry up to a certain level while retaining typical perovskite features :

2

Oxygen excess in ABO_{3+ δ} type perovskites

2

Oxygen excess in $ABO_{3+\delta}$ type perovskites

2)

Oxygen excess in $ABO_{3+\delta}$ type perovskites

Common features between 2D $A_nB_nO_{3n+2}$ and 1D $A_7B_7O_{30}$ series

A₇B₇O₃₀ 1D

 $A_n B_n O_{3n+2}$ 2D

CNIS

	Dim.	n col/slab thickness	Formula	Octa. distort. % peri-center-peri	Cation charge in octahedra peri-center-peri	
-	1D	3	La ₇ Mo ₇ O ₃₀	19 - 0 - 19	5.75 - 4.5 - 5.75	
	1D	3	La ₇ W ₄ Ta ₃ O ₃₀	20 - 0 - 20	5.67 - 5 - 5.67	
	1D	3	La ₇ W _{5.5} Ti _{1.5} O ₃₀	20 - 0 - 20	5.73 - 4.6 - 5.73	
	1D	3	La ₇ W ₆ FeO ₃₀	18 - 0 - 18	6 - 3 - 6	
-	1D	3	La ₇ W _{6.5} Zn _{0.75} O ₃₀	21 - 0 - 21	6 - 3 - 6	
-	2D	3	Sr ₂ LaTa ₃ O ₁₁	12 - 4 - 12	5 - 5 - 5	
	2D	4	La ₄ Ti ₄ O ₁₄	20-16-16-20	4-4-4	
	2D	4	Sr ₄ Ta ₄ O ₁₄	15-9-9-15	5-5-5-5	
	2D	5	Ca ₅ Nb ₅ O ₁₇	23-17-3-17-23	4.97-4.81-4.73-4.81-4.97	
	2D	5	Ca ₅ TiNb ₄ O ₁₇	22-16-1-16-22	4.95-4.8-4.56-4.8-4.95	
	2D	5	Sr ₅ TiNb ₄ O ₁₇	20-16-2-16-20	4.9-4.82-4.56-4.82-4.9	
	2D	5	La ₅ FeTi ₄ O ₁₇	22-17-2-17-22	3.97-3.85-3.53-3.85-3.97	
-	2D	6	La ₆ Fe ₂ Ti ₄ O ₂₀	23-17-4-4-17-23	3.95-3.76-3.32-3.32-3.76-3.95	

• Common characteristics :

 both octahedral distortions and B cationic charges increase from center to outskirts of pervoskite slabs/columns;

- A cations are shifted out from the slab/column center.

(Sr,Ca)₅(Ti,Nb)₅O₁₇

La₇W₆FeO₃₀ 1D, n=3

Oxygen excess in ABO_{3+ δ} type perovskites The A_nB_nO_{3n+2} way

Oxygen excess in ABO_{3+ δ} type perovskites The A_nB_nO_{3n+2} way

Other members of the $A_7B_7O_{30}$ family: the MPr₂W₂O₁₀ case

Journal of Thermal Analysis and Calorimetry, Vol. 93 (2008) 3, 711-715

NEW PRASEODYMIUM(III) AND *d*-ELECTRON METALS TUNGSTATES OF THE FORMULA MPr₂W₂O₁₀ (*M*=Mn, Co, Cd)

E. Tomaszewicz*

Department of Inorganic and Analytical Chemistry, Szczecin University of Technology, Al. Piastów 42, 71-065 Szczecin, Poland Three new compounds $MPr_2W_2O_{10}$ (*M*=Mn, Co, Cd) were prepared by the solid-state reaction. They are isostructural and crystallize in the orthorhombic system. $MPr_2W_2O_{10}$ (*M*=Mn or Co) melt incongruently above 1150°C and the solid product of melting is $Pr_2W_2O_9$. The CdPr₂W₂O₉ compound starts decomposing in the solid-state at 1156°C to $Pr_2W_2O_9$ and CdO.

looking for new members with other rare earths: Similar XRD patterns with different stoichiometry...

Philosophical Magazine Vol. 92, No. 33, 21 November 2012, 4167–4181

Dielectric and magnetic permittivities of three new ceramic tungstates $MPr_2W_2O_{10}$ (M = Cd, Co, Mn)

Z. Kukuła^a, E. Tomaszewicz^b, S. Mazur^c, T. Groń^{a*}, H. Duda^a, S. Pawlus^a, S.M. Kaczmarek^d, H. Fuks^d and T. Mydlarz^e

^aUniversity of Silesia, Institute of Physics, Katowice, Poland; ^{bd}West Pomeranian University of Technology, Szczecin, Poland; ^cThe Henryk Niewodniczański Institute of Nuclear Physics, Kraków, Poland; ^eInternational Laboratory of High Magnetic Fields and Low Temperatures, Wrocław, Poland

Broadband dielectric spectroscopy measurements revealed an anomalously large relative permittivity value ($\varepsilon_r = 884$) for MnPr₂W₂O₁₀, a smaller value ($\varepsilon_r = 156$) for CoPr₂W₂O₁₀ and the smallest value ($\varepsilon_r = 22$) for CdPr₂W₂O₁₀ at low frequency ($\nu = 0.1$ Hz) and above room temperature in the insulating and paramagnetic state. Below 273 K, the relative permittivity ($\varepsilon_r \sim 24$) did not depend significantly on frequency for all the tungstates under study. Electrical resistivity, thermoelectric power, electron paramagnetic resonance, magnetic susceptibility and magnetization provided experimental evidence that the studies tungstates were paramagnetic insulators with low *n*-type conduction. Only in the case of MnPr₂W₂O₁₀ was a ferrimagnetic order below 45 K observed. These effects are discussed within the framework of Maxwell–Wagner polarization, chemical covalent bonds and porosity mechanism.

Other members of the A₇B₇O₃₀ family: the MPr₂W₂O₁₀ case

MPr₂W₂O₁₀ (M= Cd, Mn, Co, Tomaszewicz et al., from Pr₂WO₆+MWO₄, ortho. a₀,b₀,c₀)
 Pr₇W_{6.25}M_{0.75}O₁₀ (M=Co, Zn, Lacorre, from elementary oxides, hexagonal a_h,c_h)

M ²⁺	a _o or C _h (Å)	2.c_o or a _h (Å)	$\sqrt{(b_0^2 + c_0^2)}$ or b_h (Å)	c _h /a _h	c _h /b _h	
Cd	6.8567	16.820	16.837	0.4077	0.4072	
Mn	6.8076	16.819	16.832	0.4048	0.4044	
Со	6.8021	16.817	16.822	0.4045	0.4044	
Со	6.8094	16.8382	16.8382	0.4044	0.4044	
Zn	6.8112	16.8428	16.8428	0.4044	0.4044	

Thank you for your attention !

CNCS 17th European Conference on Solid State Chemistry - ECSSC17 – Lille, France – September 1st-4th, 2019

17

 $\mathbf{7}$