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Abstract 
 

Nowadays, fuel cells are regarded as a promising solution in the context of development of a 
“More Electrical Aircraft”. Indeed, the integration of fuel cell systems in aircraft allows generating 
electrical energy with high efficiency and low environmental impact. However, there are still many 
questions about the functioning and the performance of these systems in typical aeronautical 
conditions. The present work is focused on aeronautical conditions linked to cabin applications. 
Therefore, a particular attention is paid to low pressure operation, with experimental investigations 
carried out at subatmospheric pressures. Given the complexity of the possible interactions, an 
experimental database was created using the Design of Experiments method. The experimental results 
are first presented and discussed, then exploited via a modelling approach. The objective is to define a 
model for the polarization curve able to describe its evolution when the operating conditions change. 
The methodology used to construct the model is introduced step-by-step as well as the modeling 
results for the various involved phenomena. At the end, the predictive behaviour of the model is 
investigated with polarization curves carried out at operating conditions taken outside the definition 
range of the DoE. 

 
Keywords – PEM fuel cell, aeronautical application, Design of Experiments, modelling. 
 

1. Introduction 
 

Fuel cells are electrochemical devices that convert the energy of a chemical reaction directly into 
electricity, water and heat. Fuel cells, and especially PEM fuel cells, have received over the past 
decades particular attention due to theirs main advantages, namely high electrical efficiency and no 
emission of greenhouse gases if used hydrogen is produced properly.  

 
At present, the choice of operating conditions is still a key issue in order to optimize the operation 

and performance of fuel cells, particularly in transport applications. However, due to the large number 
of operating parameters that influence the functioning of fuel cells, the need for tests is considerable 
and so experimental campaigns can be really time-consuming and costly. Several works have 
addressed this problematic by using Design of Experiments (DoE). Let us recall that this methodology 
defines a rigorously organized series of tests to determine the influence of several factors on a process 
with a minimum number of tests. Studies have been carried out for single cells [1] [2] and for stacks 
[3]. As explained in [4], DoE are often used in order to evaluate and compare materials or designs for 
fuel cells, to find an optimum of operating conditions considering fuel cell performance or to evaluate 
different fuel cell systems. Some authors have tried to use DoE results into model of fuel cell 
performance. References [4], [5] and [6] analyzed the factor influences on the response of a fuel cell in 
terms of power density to see which factors had a significant influence on performance. Their 
objective was to determine which operating conditions had to be optimized to obtain maximal power 
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density, using response surface methodology. The authors in reference [7] performed on a stack a full 
factorial plan of 2 levels for 3 factors: temperature, inlet hydrogen humidity and inlet air humidity. 
They established a semi-empirical model with 6 parameters using in particular an Amphlett expression 
for activation overpotential. They fitted this model to their experimental database and they carried out 
a statistical analysis in order to study the influence of each factor on cell performance. Then, they used 
the response surface method to link model parameters to applied operating factors, it is to say to see 
which operating conditions have an impact on a considered model parameter. Finally, they obtained a 
model which is able to estimate the experimental polarization curves. One of the limitations of the 
proposed model is that it is only valid for low current densities. In the thesis work of Isabelle Labach 
carried out at the LAPLACE laboratory, a model of H2/Air PEM fuel cells in variable operating 
conditions was proposed [8] [9]. This model was validated with single cells. Considered impacting 
factors were temperature, pressure, air relative humidity and air stoichiometry. The proposed model 
was parameterized thanks to a database created with Design of Experiments method. Experimental 
relations were then established to express the variation of the model parameters as a function of the 
operating conditions. This model allowed estimating with satisfactory results the polarization curves 
of a PEM single cell which operates in a given range of operating conditions. In addition, predictive 
behaviour of this model was investigated and results seemed promising to estimate polarization curves 
of cells operating outside the defined range.  

 
In our work, a particular attention is paid to the study of low-temperature PEM fuel cells in 

aeronautical conditions. Indeed, nowadays, fuel cells are getting an increasing amount of interest from 
the actors of the aeronautical industry and their integration in airplanes is considered as a consistent 
solution [10] [11]. However, even if this technology is quite mature in automotive and stationary 
sectors, there are still many questions about how the operating conditions specific to aeronautical 
environment will influence the functioning and performance of fuel cells [12]. Pressure is an operating 
factor that requires a remarkable thinking in aircraft applications. On one hand, increasing pressure 
leads to an increase of fuel cell performance. Several works have pointed out an important decrease of 
performance when pressure decreases [13] [14], an observation that has been largely reported by the 
DLR teams [15] [16]. On the other hand, operating with pressurized gases requires the use of a 
compressor, what means supplementary weight and volume. At an altitude of around 10 000 km, 
ambient pressure is close to 0.2 bar, whereas pressure is higher than 1.3 bar in a classical operating 
range for PEM fuel cells. A compromise could be to extract air from the aircraft cabin where ambient 
pressure is around 0.8 bar.  

 
In our present project, a benchmark study has been performed in order to compare performance of 

several types of Membrane Electrode Assemblies (MEAs) within stacks having rigorously the same 
structure (bipolar plates, cooling circuit, etc.) under aeronautical conditions for cabin applications. 
These stacks have been supplied by ZODIAC AEROTECHNICS which develops PEM fuel cell 
systems dedicated to aeronautical applications. An experimental database has been constituted thanks 
to the Design of Experiments (DoE) method. This database is composed of several polarization curves 
obtained in different operating conditions for different stacks, with in particular several points at 
subatmospheric pressures. All these tests were carried out at the LAPLACE laboratory. The same test 
bench was used for all these tests. 

This paper focuses on a part of the database; in other terms, this article will deal with the 
campaign achieved with one stack with one type of MEAs. Our objective in the present paper is 
indeed to describe the methodology we are following to analyze the created database, not to compare 
all the tested types of MEAs. Ideally, we want to define a global, robust and physics-linked model for 
the polarization curve able to describe its evolution when the operating conditions change. In other 
words, it is about ideally to obtain a physical law for each parameter of the model according to the 
operating conditions (T,P, gas flows, gas humidities).  Having such a model permits afterwards to 
optimize, mainly from the efficiency point of view, the system around the fuel cell stack as the air 
compressor, the humidification system, the cooling system, etc. Unfortunately, this very ambitious 
objective has not been yet reached, but the results which are presented in this paper are a new step 
towards this goal.   
 



Firstly in this paper, the carried out DoE is presented, followed by the formulation of the 
modelling we want to obtain. These two points being presented, the difficulty we have to overcome is 
that the physical laws describing the dependence of the model parameters to the operating conditions 
are not really formulated in a general point of view. This is linked to the complexity of the fuel cell 
operation and the strong couplings in terms of impact between all the operating conditions. That is the 
reason why the approach proposed in this paper is very progressive, in order to stay general and 
applicable to other characterization campaigns. We have adopted a step-by-step approach by 
introducing progressively hypotheses to analyze the experimental results. Thus, we start by analyzing 
one by one each measured polarization curve to identify trends concerning the dependence of the 
model parameters to the operating conditions. From these trends, we simplify for each model 
parameter the number of links with the operating conditions. Afterwards, we re-analyze all the 
polarization curves simultaneously with the model simplified (even if it remains complex). These last 
results being obtained, we start to identify laws describing the dependence of the model parameters to 
the operating conditions. Each time, an exploitation typical of the DoE methodology is proposed, that 
means the determination of an empirical law assuming a linear dependence to the considered operating 
conditions. If possible, another exploitation is proposed in parallel by introducing a physical law. We 
will see that this was only possible for a single parameter related to chemical kinetics. At the end of 
the paper, the obtained model is tested concerning its predictive ability.      

 
2. Presentation of the experimental approach and of the model used 

 
2.1.  Experimental approach 

 
Tests were organized following the Design of Experiments approach on the same test bench at the 

LAPLACE laboratory with a 1kW PEMFC stack. The impact on fuel cell performance was studied for 
four operating conditions: fuel cell temperature T, gas pressure P, air relative humidity RHair and 
hydrogen relative humidity RHH2. Tests were conducted at constant stoichiometries whatever the 
conditions: λH2 = 1.5 for hydrogen and λair = 2 for air. 
 

Except for pressure, two levels were chosen. Four levels were selected for pressure which impact 
is particularly not well known amongst all the aeronautical conditions. Table 1 shows the selected 
values for each factor. The lowest pressure (0.8 bara) is typical of the cabin pressure. The highest 
pressure is in the range of classical values used in terrestrial applications. The values of temperature 
are in a classical range for PEMFC operating at low temperatures. Gas relative humidity can seem 
rather low compared with classical values, but the idea was here to investigate performance at low 
relative humidity.  
 
 

Operating factor Levels Number of level 
T 65 – 80 (°C) 2 
P 0.8 – 1 – 1.3 – 1.5 (bara) 4 

RH
air
  16 – 26 (%) 2 

RH
H2
 16 – 26 (%) 2 

Table 1 - Operating conditions applied for our Design of Experiments 

In practice, it was rather difficult, taking into account our humidification systems, to apply this 
range of relative humidity. We estimate that, depending on temperature and pressure, we were 
between 13% and 18% when 16% was the objective and between 22% and 30% when 26% was the 
target. In other words, the precision was from ±10 to ±20% for our gas relative humidity. In the 
following, the supposed reached experimentally value of HR is given with the initial target “16%” or 
“26%”. 
 



In the DoE approach, the normalized operating conditions are classically considered. For an 
operating factor Xi (Xi = T, P, RHair or RHH2), the corresponding normalized value xi (xi = t, p, rhair or 
rhH2) is given by: 
 

x� � X� �	X��	 
 X���2X��	 � X���2
 

 

( 1 ) 

 
 
Where xi is a value comprised between 0 and 1, Xmax and Xmin are respectively the maximal and the 
minimal value of Xi. 
 

Concerning the DoE experiments achieved, only 31 polarization curves have been measured 
whereas 32 tests should have been carried out theoretically (multiplication of all the levels for all the 
considered factors: 2x4x2x2=32). Indeed, curve corresponding to the operating point 
(t, p, rhair, rhH2) = (1, -1, -1, -1) could not be tested because of too low performances (cell voltage 
security level has been reached). In other words, the operating conditions were too constraining: too 
high temperature, too low pressure and too low relative humidities.  

Let us underline that Electrochemical Impedance Spectroscopies (EIS) were also carried out at 
the same time that the measurement of a polarization curve for each current, step by step. These EIS 
will be exploited here to obtain the global ohmic resistance (named Rohm in the following) including 
ionic and electronic phenomena. 
 

Only the significant and representative results of the carried out DoE are presented in the 
following.  

 

Figure 1 – Selected experimental polarization curves of the DoE: illustration of the influence of temperature and pressure, 

the gas humidities being the highest possible (around 26%) 

Figure 1 presents all the curves obtained for the highest gas relative humidities supposed to be 
around 26%.  

65°C, 1.5bara 

65°C, 1.3bara 
80°C, 1.5bara 

80°C, 1.3bara 

80°C, 0.8bara 
65°C, 0.8bara 

80°C, 1bara 
65°C, 1bara 



At given temperature, the ranking of measured performance according to pressure is very clear: 
the more the pressure increases, the better the performance. Unfortunately, performance decreases 
very strongly when pressure decreases under subatmospheric pressures. These results are very 
consistent with the state-of-art [13] [15] [17]: the O2 concentration is too low at low pressures to 
obtain satisfying operation.  

At given pressure, the ranking according to temperature is not really the expected one: each time, 
the best performance is obtained for 65°C the lowest temperature tested. Generally, an increase of 
temperature has indeed a benefic effect on the performance of a fuel cell because a lot of phenomena 
are favored:  kinetics of the involved chemical reactions, protonic conduction and the involved species 
transport because water in liquid form decreases. That means that the operation of the tested MEAs is 
more complex than that of the classical ones. At low current densities where dynamics is dominated 
by the kinetics of the involved chemical reactions (activation phenomena), it appears that the operation 
is clearly sensitive to pressure, and in a more complex way to temperature. These trends were not 
expected illustrating all the operation complexity of a fuel cell. 
 

For some selected points of the carried out DoE, Figure 2 illustrates the influence of gas 
humidities.  

Firstly, let us underline that, in this figure, are drawn the best and the worst polarization curves 
obtained during this campaign. The best one corresponds to 65°C, 1.5 bara and gas humidities of 26%: 
except temperature, that was obtained for the highest values for the operating conditions. The worst 
one was obtained for 80°C, 0.8bara, and gas humidities of 16%/26% (air/H2): except temperature, this 
was for the lowest values tested in terms of operating conditions (let us recall that the case 80°C, 
0.8bara and RH of 16%/16% (air/H2), the worst case possible in our DoE, was not possible to 
measure). 

 

 
Figure 2 – Selected experimental polarization curves of the DoE: illustration of the influence of gas humidities  

Let us now observe the influence of gas humidities. In Figure 2, three series of curves can be 
clearly separated corresponding respectively to the three couples of operating conditions (65°C, 
1.5bara), (65°C, 1bara) and (80°C, 0.8bara). For each couple, the ranking for the humidity influence is 
always the same: the best performance is when air relative humidity has its highest value (26%). The 

26%, 26% 
26%, 16% 
16%, 26% 
16%, 16% 

RHair, RHH2 

26%, 26% 

26%, 16% 
16%, 26% 

16%, 16% 26%, 26% 
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highest value for hydrogen relative humidity (26%) improves also performance, but the influence air 
relative humidity is priority. The impact of gas humidities is not chaotic, but ordered or even logical.  
 

Figure 3 proposes the evolution of Rohm according to the current for selected operating conditions. 
Let us recall that Rohm is measured by EIS. When no value was measured at low current densities, the 
value considered for Rohm is that of the lowest current density measured; this value is arbitrarily 
blocked to that value if necessary.    

The evolution according to the current is globally classical: at low current densities, less water is 
produced and moreover it is difficult to maintain constant the gas overstoichiometries, leading to a 
progressive drying of the membranes and thus an increase of Rohm when the current tends towards zero.  
On the other hand, the behavior of Rohm is a little bit amazing concerning temperature: indeed 
temperature is usually favorable to decrease Rohm, contrarily to the trends observed here. Pressure has 
a nonlinear and very important impact on the value of Rohm as it can be seen clearly in Figure 3.a: the 
more the pressure increases, the more Rohm increases. The influence of gas humidities (Figure 3.b) is 
again here coherent and logical: the best results are obtained when gas humidities have their highest 
value (26%) and the worst ones for their lowest value (16%).  

The complex modelling of Rohm is not an objective in this paper. In the following, these 
measures of Rohm will be directly injected into our modelling works.  
 

 
(a)                                                                            (b) 

Figure 3 – Evolution of Rohm (measured by EIS) according to the current for selected operating conditions of the DoE – (a) 

illustration of the influence of temperature and pressure, the gas humidities being the highest possible (around 26%) – (b)  

illustration of the influence of gas humidities  

2.2.  Presentation of the model used for the polarization curve 
 

The global model equation is: 
 


���� � ���� � ���� � ����� � ���� ( 2 ) 

 
Where: - Ucell: fuel cell voltage (V) 
- Erev: theorical thermodynamic reversible voltage (V) 
- ηact, ηdiff, ηohm: activation, diffusion and ohmic losses (V): 
 

The thermodynamic reversible voltage Erev can be defined thanks to the following relation: 
 

���� � �°��� 
 �� ! " #$%& '$(&
)*+, ( 3 ) 

 
The activation losses, represented by ηact, are linked to the chemical reactions’ kinetics. Thanks to 

a simplified Butler-Volmer equation, ηact can be written:  
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80/1 
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65/1.5/16/26 
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 .1.2 + ( 4 ) 

 
Where the parameters α, Jn and J0 are defined in Table 2. 
 

The diffusion losses ηdiff refer to the reactant gas transport in the Gas Diffusion Layers (GDLs) 
and in the Active Layers (ALs). These losses are mainly occuring at the cathode side. Combining Fick 
and Faraday laws, and assuming that diffusion losses are mainly occuring at the cathode side, the 
following relation can be proposed for ηdiff: 
 

�����(.) � 3 ��4 ! " '1 � ..���+3 ( 5 ) 

 
Where the parameters β and Jlim are defined in Table 2. 
 

The ohmic losses ηohm include voltage drops linked to the membrane resistance, to the electronic 
resistance of the other elements of the cell (electrodes, bipolar plates, etc.) and to contact resistances 
existing between the different layers. The ohmic losses ηohm can be expressed by: 

 

����(.) � ����	.    ( 6 ) 

 
Where the parameter Rohm is defined in Table 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 2 - Signification of terms presented in the previous equations 

The fuel cell voltage can be thus expressed with the following relation: 
 


����(.) � ���� � ��0 ! " '. 
 .1.2 + � 3 ��4 ! " '1 � ..���+3 � 	����	. ( 7 ) 

 
The parameters to be identified are a priori α, J0, Jn, β, Jlim and Rohm.  

 
In accordance with many bibliographic studies [18] [19], in this paper, the charge transfer 

coefficient α was assumed constant with current, invariant with the operating conditions and equal to 
0.5.   

Moreover, as already explained in part 2.1, Rohm is not identified but measured thanks to 
Electrochemical Impedance Spectroscopy (EIS); it corresponds to the intersection of the spectrum at 
high frequencies with the abscissa axis. Rohm is measured at every current density point of the 
polarization curve.  
 

Symbol Quantity 
Α Charge transfer coefficient 
N Number of exchanged electrons in 

the global reaction (n = 2) 
J Current density (A/cm²) 
Jn Parasitic reactions’ equivalent 

current density (A/cm²) 
J0 Exchange current density (A/cm²) 
Β Diffusion coefficient 

Jlim Limiting diffusion current density 
(A/cm²) 

Rohm Ohmic resistance (Ω.cm²) 



Finally, the model parameters to be identified are a priori J0, Jn, β and Jlim. The objective in the 
following of this paper is to determine their dependence to the operating conditions from the analysis 
of the carried out DoE. 
 

3. Modelling of the results for the DoE experimental database 
 

3.1. General comments 
 

The diffusion losses are nonlinear from a general point view as in part 2.2 (equation (5)). In the 
database (see Figure 1 and Figure 2), as there is no inflection/bending of the polarization curves at 
high current density, β and Jlim are impossible to determine because an infinity of solution exists. That 
is why a linear relation is used for diffusion losses instead of the equation (5): 
 

�����(.) � �����	. ( 8 ) 

 

Where the diffusion resistance Rdiff (Ω.cm²) is expressed by ����� � 67
189:;<=. 

 
So the following relation will be finally used to model a polarization curve for our DoE: 

 


����(.) � ���� � ��0 ! " '. 
 .1.2 + � �����	. �	����	. ( 9 ) 

 
 

In this case, parameters which have to be identified are J0, Jn, and Rdiff. 
 

At this step of our study, a general relation taking into account the parameter dependence to the 
operating conditions can be formulated:  
 


����(., �, ?, �@���, �@%*) � ����(�, ?) � ��0 ! " A. 
 .1(�, ?, �@���, �@%*).2(�, ?, �@��� , �@%*) B 

                            ������(�, ?, �@���, �@%*)	. � 	����(�, ?, �@��� , �@%*)	. 
( 10 ) 

 
In order to simplify these dependences to all the operating conditions for J0, Jn, and Rdiff, a first 

modelling is going to be performed firstly curve by curve. It consists in identifying, with an 
optimization algorithm, the three values J0, Jn, and Rdiff curve by curve for the 31 measured curves of 
the DoE. The approach is afterwards to observe if the impact of an operating condition on a parameter 
can be neglected. 

 
The optimization algorithm used in our modelling approach is the Covariance Matrix Adaptation 

Evolution Strategy, called “cmaes”. An objective function gives the error to be minimized during the 
optimization process. Several starting points are randomly drawn in the fixed variation domain (lower 
and upper bounds are defined for every parameter) and at the end, only the best solution is considered. 
In order to converge more quickly, parameters used in the optimization process are expressed in the 
logarithmic scale and are normalized. In the following sections, parameters are always presented with 
their normalized values for confidentiality reasons. 
 

3.2. Curve-by-curve identification 
 

In this section, a curve-by-curve identification is carried out: a parameter set (J0, Jn, Rdiff) has to be 
identified for each polarization curve, meaning that 31 J0, 31 Jn and 31 Rdiff have to be identified. 

The error ε which is calculated in the objective function and which has to be minimized in the 
optimization process is based on a least square criterion: 
 



C � D DA
����_�F�(.) � 
����_�GH(.)
����_�GH(.) B*
:1IJKLMN

 ( 11 ) 

 
Where ncurves is the number of curves, Ucell_exp is the experimental cell voltage (V) and Ucell_est is the 
estimated cell voltage calculated using the parameters obtained in the identification process (V). 
Estimated cell voltage is the calculated cell voltage using the model equation (9) presented in section 
3.1. 
 

In the following work, identified parameters will be presented in their normalized value xnorm 
compared to their lower and upper bounds fixed in the identification process: 

 

O1��� � P � O�QORQ � O�Q ( 12 ) 

 
With X the parameter (X = J0, Jn or Rdiff), xlb the lower bound of the parameter, xub the upper bound of 
the parameter and xnorm the normalized value of the parameter. 
 

Results of the curve-by-curve identification are presented in Table 3. 
 

Curve 

number 
t p rh

air
 rh

h2
 

J
0
 

number 

J
n
 

number 

R
diff

 

number 
J
0
 (norm) J

n
 (norm) R

diff
 (norm) 

1 1.00 1.00 1.00 1.00 1 1 1 0.490 0.781 0.618 
2 1.00 1.00 -0.44 1.00 2 2 2 0.489 0.746 0.632 
3 1.00 1.00 1.00 -0.44 3 3 3 0.490 0.777 0.625 
4 1.00 1.00 -0.44 -0.44 4 4 4 0.489 0.730 0.644 
5 -1.00 1.00 1.00 1.00 5 5 5 0.381 0.717 0.598 
6 -1.00 1.00 -0.44 1.00 6 6 6 0.378 0.671 0.603 
7 -1.00 1.00 1.00 -0.44 7 7 7 0.383 0.718 0.603 
8 -1.00 1.00 -0.44 -0.44 8 8 8 0.380 0.672 0.614 
9 -1.00 0.43 0.79 0.79 9 9 9 0.376 0.703 0.612 

10 -1.00 0.43 -0.56 0.79 10 10 10 0.371 0.670 0.621 
11 -1.00 0.43 0.79 -0.56 11 11 11 0.378 0.709 0.619 
12 -1.00 0.43 -0.56 -0.56 12 12 12 0.367 0.662 0.631 
13 1.00 0.43 0.79 0.79 13 13 13 0.483 0.782 0.633 
14 1.00 0.43 -0.56 0.79 14 14 14 0.479 0.731 0.650 
15 1.00 0.43 0.79 -0.56 15 15 15 0.476 0.757 0.644 
16 1.00 0.43 -0.56 -0.56 16 16 16 0.466 0.700 0.660 
17 1.00 -0.43 0.40 0.40 17 17 17 0.460 0.757 0.679 
18 1.00 -0.43 -0.80 0.40 18 18 18 0.455 0.716 0.695 
19 1.00 -0.43 0.40 -0.80 19 19 19 0.458 0.747 0.689 
20 1.00 -0.43 -0.80 -0.80 20 20 20 0.439 0.685 0.695 
21 -1.00 -0.43 0.40 0.40 21 21 21 0.342 0.694 0.668 
22 -1.00 -0.43 -0.80 0.40 22 22 22 0.330 0.700 0.677 
23 -1.00 -0.43 0.40 -0.80 23 23 23 0.341 0.685 0.675 
24 -1.00 -0.43 -0.80 -0.80 24 24 24 0.326 0.623 0.688 
25 1.00 -1.00 0.07 0.07 25 25 25 0.456 0.760 0.711 
26 1.00 -1.00 -1.00 0.07 26 26 26 0.435 0.674 0.731 
27 1.00 -1.00 0.07 -1.00 27 27 27 0.438 0.735 0.726 
28 -1.00 -1.00 0.07 0.07 28 28 28 0.346 0.693 0.698 
29 -1.00 -1.00 -1.00 0.07 29 29 29 0.314 0.617 0.713 
30 -1.00 -1.00 0.07 -1.00 30 30 30 0.325 0.666 0.709 
31 -1.00 -1.00 -1.00 -1.00 31 31 31 0.288 0.570 0.717 

Table 3 – Results of curve-by-curve identification for every curve of the DoE 

Even if not directly visible in Table 3, we can affirm that the orders of magnitude of identified 
parameter values are coherent with the typical values found in the literature for each parameter: 
identified J0 are around 5.10-7 A/cm², Jn are around 1.10-4 A/cm² and Rdiff are around 0.2 Ω.cm². 
 



Figure 4 and Figure 5 give the experimental polarization curve (points in red), the estimated 
polarization curve (in blue) and the relative error at each current density between the experimental 
polarization curve and the estimated polarization curve, respectively for curves 1 and 31 of the DoE. 

 

 

Figure 4 - Experimental polarization curve and estimated polarization curve (curve-by-curve identification)  

Curve 1: T = 80°C, P = 1.5 bara, RHair = 30 % (/”26%”), RHH2 = 30 % (/”26%”) 

 

Figure 5 - Experimental polarization curve and estimated polarization curve (curve-by-curve identification)  

Curve 31: T = 65°C, P = 0.8 bara, RHair = 13 % (/”16%”), RHH2 = 13 % (/”16%”) 

Maximal relative error between experimental cell voltage and estimated cell voltage of the curve 
1 is 0.42%. Maximal relative error of the curve 31 is 0.92%. Similar results are obtained for every 
polarization curve of the DoE. Mean relative error between experimental and estimated polarization 
curves calculated for the 31 DoE curves is 0.24 %. In all, maximal relative error at a given current 
density is 1.26 % (obtained for curve 30). 

As a conclusion concerning this first identification, we can say that the model, with parameters 
identified curve by curve, enables to estimate with a satisfactory precision the polarization curve of the 
studied fuel cell at a given operating point. However, the simulation time is important: it takes around 
3 hours to make the identification for all the 31 curves (93 parameters have to be identified in all in 
this case). 
 

Let us try now to put in evidence simplifications in terms of model parameters’ dependence to 



operating conditions.  
The results in table 3 show that for experiments performed at given temperature and pressure (red 

rectangles), the identified J0 values are really similar regardless the value of gas humidities. That 
shows that it is possible to make the assumption that J0 depends only on temperature T and on pressure 
P. In the same way, the assumption considering that Jn depends on temperature T, on pressure P and 
on air relative humidity RHair can be proposed. Looking at the identified values of Rdiff, it appears that 
it is quite difficult to detect a trend concerning the dependency of this parameter to particular operating 
conditions. That is why Rdiff is considered to be dependent on all operating conditions (T, P, RHair and 
RHH2). Theses hypotheses are consistent with first analyzes of the experimental polarization curves 
presented in section 3.1. 
 

Consequently, the previous equation (10) proposed in section 3.2 can be modified in order to 
taking into account these new hypotheses, globally consistent with the literature [3] [5] [7] [9]: 
 
����(., �, ?, �@��� , �@%*) �����(�, ?) � 67

S18 " T:U:V(7,W,6%X<K):Y(7,W) Z � �����(�, ?, �@���, �@%*)	. �	����	(�, ?, �@���, �@%*).                ( 13 ) 

 
 

3.3. Identification by applying the new hypotheses 
 

In this section, new model identification is going to be carried out by applying the new 
hypotheses that emerged at the end of section 3.2. This time, the identification is not carried out curve 
by curve since some parameters are supposed to be common for several curves. A total of 8 J0, 16 Jn 
and 31 Rdiff have to be identified. 
 

Curve 

number 
t p rh

air
 rh

h2
 

J
0
 

number 

J
n
 

number 

R
diff

 

number 
J
0
 (norm) J

n
 (norm) R

diff
 (norm) 

1 1 1 1 1 1 1 1 

0.490 
0.778 

0.618 
3 1 1 1 -0.44 1 1 3 0.632 
2 1 1 -0.44 1 1 2 2 

0.739 
0.625 

4 1 1 -0.44 -0.44 1 2 4 0.644 
5 -1 1 1 1 2 3 5 

0.381 
0.715 

0.598 
7 -1 1 1 -0.44 2 3 7 0.604 
6 -1 1 -0.44 1 2 4 6 

0.674 
0.602 

8 -1 1 -0.44 -0.44 2 4 8 0.614 
9 -1 0.43 0.79 0.79 3 5 9 

0.373 
0.700 

0.611 
11 -1 0.43 0.79 -0.56 3 5 11 0.621 
10 -1 0.43 -0.56 0.79 3 6 10 

0.672 
0.617 

12 -1 0.43 -0.56 -0.56 3 6 12 0.632 
13 1 0.43 0.79 0.79 4 7 13 

0.476 
0.765 

0.632 
15 1 0.43 0.79 -0.56 4 7 15 0.649 
14 1 0.43 -0.56 0.79 4 8 14 

0.721 
0.644 

16 1 0.43 -0.56 -0.56 4 8 16 0.663 
17 1 -0.43 0.4 0.4 5 9 17 

0.453 
0.744 

0.677 
19 1 -0.43 0.4 -0.8 5 9 19 0.695 
18 1 -0.43 -0.8 0.4 5 10 18 

0.709 
0.688 

20 1 -0.43 -0.8 -0.8 5 10 20 0.699 
21 -1 -0.43 0.4 0.4 6 11 21 

0.335 
0.681 

0.667 
23 -1 -0.43 0.4 -0.8 6 11 23 0.678 
22 -1 -0.43 -0.8 0.4 6 12 22 

0.634 
0.673 

24 -1 -0.43 -0.8 -0.8 6 12 24 0.690 
25 1 -1 0.07 0.07 7 13 25 

0.443 
0.742 

0.708 
27 1 -1 0.07 -1 7 13 27 0.734 
26 1 -1 -1 0.07 7 14 26 0.687 0.727 
28 -1 -1 0.07 0.07 8 15 28 

0.319 
0.656 

0.692 
30 -1 -1 0.07 -1 8 15 30 0.714 
29 -1 -1 -1 0.07 8 16 29 

0.618 
0.708 

31 -1 -1 -1 -1 8 16 31 0.723 

Table 4 - Results of identification with the new hypotheses for every curve of the DoE 



The results of this identification are presented in Table 4. Table 4 has to be compared with 
Table 3. For example, the new values of J0 are very close to the average value of the previously-
grouped values in Table 3. This observation is the same for Jn. The values Rdiff   are very close to the 
ones of Table 3.  

 
Figures 6 and 7 show the comparison between experimental polarization curve and estimated 

polarization curve obtained with the identification for curves 1 and 31 of the DoE. 

 

Figure 6 - Experimental and estimated polarization curves  

(identification applying new assumptions on parameter dependences on operating conditions)  

Curve 1: T = 80°C, P = 1.5 bara, RHair = 30 % (/”26%”), RHH2 = 30% (/”26%”) 

 

Figure 7 - Experimental and estimated polarization curves  

(identification applying assumptions on parameter dependences on operating conditions)  

Curve 31: T = 65°C, P = 0.8 bara, RHair = 13 % (/”16%”), RHH2 = 13 % (/”16%”) 

 

Relative error between experimental and estimated cell voltage for every current density point is 
similar to relative error obtained previously for curve-by-curve identification in the case of curves 1 
and 31. Similar results are obtained for other curves of the DoE. The maximal error obtained between 



experimental and estimated polarization curves for one current density point is 1.7 % (obtained for the 
curve 31). 

 
 

  Curve 1 Curve 31 
Maximal relative error compared to the curve 

estimated with curve-by-curve identification (%) 0.04 0.93 

Mean relative error compared to the curve 

estimated with curve-by-curve identification (%) 
0.01 0.68 

Table 5 – Comparison between error values obtained with results of identification by applying the new assumptions on 

parameters’ dependences in comparison to previous results of curve-by-curve identification  

The results presented in Table 5 point out that the results of identification by applying the new 
assumptions on parameters’ dependences are really close to the results of curve-by-curve identification 
for presented curves. Moreover, as shown in table 4, identified parameter values appear to be 
consistent with the previous identified parameters (Table 3) using a curve-by-curve identification. It 
confirms that hypotheses which have been done in this identification work are relevant.  

One of the advantages is that the identification time has been considerably reduced (around 30 
minutes for 10 different starting points with this identification compared to 3 hours with curve-by-
curve identification). Moreover, the identified values are less dependent on the quality of the 
experimental curves. That means that if there is an aberrant point or a lack of data in some parts of an 
experimental curve, this default will be smoothed.  

 
3.4. Construction of parameter variation laws as a function of operating conditions 

 
In this section, the objective is to determine variation laws as a function of operating conditions 

for each model parameter: J0(T,P), Jn(T,P,HRair) and Rdiff(T,P,HRair, HRH2)  respectively starting from 
8 J0, 16 Jn and 31 Rdiff identified in the section 3.3.  

For each parameter, an exploitation typical of the DoE methodology will be proposed, that means 
the determination of an empirical law assuming a linear dependence to the considered operating 
conditions. If possible, another exploitation is proposed in parallel by introducing a physical law. In 
practice, according to our knowledge, this is only possible for J0.      
 

In this following, 50 starting points have been randomly drawn in the fixed variation domain of 
each parameter. For every variation law identification, calculations have lasted less than 10 minutes. 
 
 

� Variation laws for J0(T, P) 
 

8 values for J0 are available to carry out the variation law identification. Two laws are 
successively evaluated for J0: one purely empirically, the second one based on physical considerations. 
 
Empirical variation law for J0(T, P): 

 
Considering that J0 depends on temperature and on pressure, an empirical variation law can be 

proposed: 
 

.2(�, ?) � 	 .2_���1 
 [:2 × ] 
	 :̂2 × $ 
 _:2 × ] × $ ( 14 ) 

 
Where J0_mean, aJ0, bJ0 and cJ0 are parameters to be identified 
 

The error εJ0 which is calculated in the objective function and which has to be minimized in the 
optimization process is based on a least square criterion: 



 

C:2 � D A.2_�F�(�, ?) � .2_���(�, ?).2_���(�, ?) B*
(7,W)

 ( 15 ) 

 
where J0_ref is the reference exchange current density, meaning the previous identified J0 which are 
presented in the part 3.3, and J0_est is the estimated exchange current density calculated using the 
variation law parameters obtained in the identification process. 
 

Table 6 gives a comparison of reference J0 and estimated J0 (empirical law case). The maximal 
relative error using the proposed empirical variation law is 4.9%. 
 

T p J
0_ref

 (norm) J
0_est

 (norm) 
Relative error (%) 

between J
0_ref

 and J
0_est

 

1 1 0.490 0.488 1.57 
-1 1 0.381 0.383 1.79 
-1 0.43 0.373 0.367 4.86 
1 0.43 0.476 0.477 0.40 
1 -0.43 0.453 0.457 3.11 
-1 -0.43 0.335 0.340 4.46 
1 -1 0.443 0.441 2.11 
-1 -1 0.319 0.317 1.90 

Table 6 - Comparison of reference J0 (previously identified) and estimated J0 using the defined empirical variation law 

The orders of magnitude (rough values) of variation law parameters are: 
J0_mean ≈ 5.10-7 A/cm²; aJ0 ≈ 2.10-7; bJ0 ≈ 1.10-7; cJ0 ≈ 4.10-8 

 
These coefficient values show that temperature and pressure have a similar impact on the 

parameter J0.  
 
 
Physics-based variation law for J0(T, P): 
 

A physics-based relation constructed with an Arrhenius law is given in references [8] and [9]:  

 

.2(�, ?) � .2_��� A ??���B
` aO$ b������� A1 � �����Bc ( 16 ) 

 
Where the reference exchange current density J0_arr (A/cm²), the reaction order with respect to oxygen 
γ and the activation energy Eact (J/mol) are parameters to be identified. 

 
Table 8 gives a comparison of reference J0 and estimated J0 (physics-based law case). The 

maximal relative error using the proposed physics-based variation law is 7.3 %. It appears that the 
error is a slightly more important in this case than for the estimation using the empirical variation law.   

 

t p J
0_ref

 (norm) J
0_est

 (norm) 
Relative error (%) 

between J
0_ref

 and J
0_est

  

1 1 0.490 0.492 2.08 
-1 1 0.381 0.378 2.30 
-1 0.43 0.373 0.365 6.85 
1 0.43 0.476 0.479 2.73 
1 -0.43 0.453 0.455 1.82 
-1 -0.43 0.335 0.341 5.93 
1 -1 0.443 0.435 7.31 
-1 -1 0.319 0.321 2.29 

Table 7 - Comparison of reference J0 (previously identified) and estimated J0 using the physics-based variation law 



The orders of magnitude of variation law parameters are:  
J0_arr ≈ 2.10-7 A/cm²; γ ≈ 0.8; Eact ≈ 69.103 J/mol 

 
 

� Variation law for Jn(T, P, RHair) 
 

Considering that Jn depends on temperature, pressure and air relative humidity, an empirical 
variation law can be proposed for the parasitic equivalent current density Jn: 
 

.1 � .1_���1 
 [:1 × ] 
 :̂1 × $	 
 _:1 × ℎe��� 
 f:1 × ] × $ 
 a:1 × ] × ℎe��� 
 g:1 ×	$ × ℎe��� ( 17 ) 

 
Where Jn_mean, aJn, bJn, cJn, dJn, eJn and fJn are parameters to be identified 

 
Table 9 gives a comparison of reference Jn and estimated Jn. The maximal relative error using the 

proposed empirical variation law is 6.7%. 
 

t p hr
air

 J
n_ref

 (norm) J
n_est

 (norm) 
Relative error (%) 

between J
n_ref

 and J
n_est

 

1 1 1 0.778 0.778 0.26 
1 1 -0.44 0.739 0.736 2.01 
-1 1 1 0.715 0.714 0.66 
-1 1 -0.44 0.674 0.677 2.04 
-1 0.43 0.79 0.700 0.702 1.07 
-1 0.43 -0.56 0.672 0.663 5.62 
1 0.43 0.79 0.765 0.768 1.99 
1 0.43 -0.56 0.721 0.726 3.45 
1 -0.43 0.4 0.744 0.749 3.27 
1 -0.43 -0.8 0.709 0.706 2.21 
-1 -0.43 0.4 0.681 0.679 1.31 
-1 -0.43 -0.8 0.634 0.638 2.77 
1 -1 0.07 0.742 0.732 6.73 
1 -1 -1 0.687 0.689 1.94 
-1 -1 0.07 0.656 0.658 1.45 
-1 -1 -1 0.618 0.617 0.52 

Table 8 - Comparison of reference Jn (previously identified) and estimated Jn using the defined empirical variation law 

The orders of magnitude of variation law parameters are: 
Jn_mean ≈ 1.10-4 A/cm²; aJn ≈ 3.10-5; bJn ≈ 1.10-5; cJn ≈ 3.10-5; dJn ≈ 6.10-19; eJn ≈ 8.10-6; fJn ≈ 3.10-18 

 
It appears that temperature, pressure and air relative humidity have a comparable impact on Jn. It 

also shows that certain crossed terms can be neglected. 
 
 

� Variation law for Rdiff(T, P, RHair, RHH2) 
 

Considering that Rdiff depends on temperature, pressure and gas relative humidities, an empirical 
variation law can be proposed for diffusion resistance Rdiff: 
 ����� � �����=MXV 
 [6���� × ] 
 ^6���� × $	 
 _6���� × ℎe��� 
 f6���� × ℎe%*	
a6���� × ] × $ 
 g6���� × ] × ℎe���
	h6����× t	×	ℎe%* 
 ℎ6���� × $ × ℎe��� 	
j6���� × $ × ℎe%* 
 k6���� × ℎe��� × ℎe%* 

( 18 ) 

 
Where Rdiff_mean, aRdiff, bRdiff, cRdiff, dRdiff, eRdiff, fRdiff, gRdiff, hRdiff, iRdiff and jRdiff are parameters to be 
identified. 

 



Table 9 gives a comparison of reference Rdiff and estimated Rdiff. The maximal relative error using 
the proposed empirical variation law is 17.1%. 
 

t p hr
air

 hr
H2

 R
diff_ref

 (norm) R
diff_est

 (norm) 
Relative error (%) 

between R
diff_ref

 and R
diff_est

 

1.00 1.00 1.00 1.00 0.6183 0.617 1.42 
1.00 1.00 -0.44 1.00 0.6317 0.628 4.68 
1.00 1.00 1.00 -0.44 0.6248 0.622 3.65 
1.00 1.00 -0.44 -0.44 0.6442 0.634 11.22 
-1.00 1.00 1.00 1.00 0.5977 0.597 1.06 
-1.00 1.00 -0.44 1.00 0.6038 0.598 6.98 
-1.00 1.00 1.00 -0.44 0.6017 0.596 6.51 
-1.00 1.00 -0.44 -0.44 0.6144 0.600 15.34 
-1.00 0.43 0.79 0.79 0.6109 0.616 5.51 
-1.00 0.43 -0.56 0.79 0.6212 0.633 14.92 
-1.00 0.43 0.79 -0.56 0.6175 0.629 13.84 
-1.00 0.43 -0.56 -0.56 0.6321 0.646 17.13 
1.00 0.43 0.79 0.79 0.6316 0.636 5.70 
1.00 0.43 -0.56 0.79 0.6493 0.657 9.38 
1.00 0.43 0.79 -0.56 0.6442 0.650 7.45 
1.00 0.43 -0.56 -0.56 0.6629 0.670 8.14 
1.00 -0.43 0.40 0.40 0.6772 0.673 4.48 
1.00 -0.43 -0.80 0.40 0.6947 0.696 1.95 
1.00 -0.43 0.40 -0.80 0.6882 0.690 2.62 
1.00 -0.43 -0.80 -0.80 0.6989 0.711 14.30 
-1.00 -0.43 0.40 0.40 0.6667 0.655 12.84 
-1.00 -0.43 -0.80 0.40 0.6779 0.678 0.60 
-1.00 -0.43 0.40 -0.80 0.6733 0.673 0.06 
-1.00 -0.43 -0.80 -0.80 0.6902 0.694 4.08 
1.00 -1.00 0.07 0.07 0.7077 0.700 8.04 
1.00 -1.00 -1.00 0.07 0.7336 0.721 13.71 
1.00 -1.00 0.07 -1.00 0.7275 0.716 12.54 
-1.00 -1.00 0.07 0.07 0.6918 0.684 8.08 
-1.00 -1.00 -1.00 0.07 0.7140 0.706 9.18 
-1.00 -1.00 0.07 -1.00 0.7078 0.701 7.41 
-1.00 -1.00 -1.00 -1.00 0.7227 0.719 3.71 

Table 9 - Comparison of reference Rdiff (previously identified) and estimated Rdiff using the defined empirical variation law 

The orders of magnitude of variation law parameters are: 
Rdiff_mean ≈ 0.2 Ω.cm²; aRdiff ≈ 2.10-2; bRdiff ≈ -9.10-2; cRdiff ≈ -4.10-2; dRdiff ≈ -3.10-2; eRdiff ≈ -3.10-3 

fRdiff ≈ -5.10-3; gRdiff ≈ -2.10-3; hRdiff ≈ 3.10-2; iRdiff ≈ 2.10-2; jRdiff ≈  2.10-3
 

 
It can be observed that temperature, pressure and gas humidities present a similar impact on Rdiff 

value. Moreover, influence of interaction terms between operating conditions appears also to be 
important and cannot be neglected. It highlights that the assumption to consider that Rdiff is dependent 
on every operating condition is coherent.  
 
 

� Reconstitution of the DoE curves using the identified variation laws in function of 
operating conditions 

 
Using the previously-defined variation laws, it is possible to reconstitute all the DoE polarization 

curves. Two cases are possible: in the first case, the empirical variation law for J0 is used whereas in 
the second case, the physics-based variation law for J0 is used. Unchanged variation laws are used in 
both cases for Jn and for Rdiff. Our objective is to quantify the errors by using these laws to simulate the 
DoE polarization curves. 
 

Figure 8 and Figure 9 present the experimental polarization curve and the reconstructed 
polarization curve using the defined variation laws respectively for curve 1 and 31. 



 

Figure 8 - Experimental polarization curve and estimated polarization curve using the variation laws  

Curve 1: T = 80°C, P = 1.5 bara, RHair = 30 % (/”26%”), RHH2 = 30% (/”26%”) 

 

Figure 9 - Experimental polarization curve and estimated polarization curve using the variation laws 

Curve 31: T = 65°C, P = 0.8 bara, RHair = 13 % (/”16%”), RHH2 = 13 % (/”16%”) 

The results show that it is possible to reconstitute the DoE curves using the defined variation laws 
with a satisfactory precision. Results in the two cases are quite similar. The maximal error obtained 
between the experimental cell voltage and the estimated cell voltage at a given current density is close 
to 5.5% (obtained for curve 12 in both cases) and the mean error is lower than 1%. 
 
 

4. Testing of the predictive behaviour of the model using the identified variation laws in 
function of operating conditions 

 
In this part, first elements of predictive behaviour testing of the model are presented. The 

objective is to estimate the error when predicting a polarization curve that is taken outside the 
operating domain of the previous DoE.  
 

As Rohm is measured with Electrochemical Impedance Spectroscopy in our approach, Rohm is an 



input data of the model, even this evaluation phase. In order to be fully predictive, it would be 
necessary to determine a variation law of Rohm as a function of operating conditions.  
 

Curve 32 corresponding to T = 80°C, P = 1.7 bara, RHair = 19 %, RHH2 = 31 % is firstly proposed 
for this testing. 

Figure 11 presents the identification results for curve 32. Two cases are considered: in the first 
case, J0 empirical variation law is used whereas in the second case, J0 physics-based variation law is 
used. In both cases, the defined empirical variation laws for Jn and Rdiff are used.  

 

Figure 10 – Experimental polarization curve and estimated polarization curves using the different variation laws in function 

of operating conditions (2 cases for J0 variation law)  

Curve 32: T = 80°C, P = 0.65 bara, RHair = 19 %, RHH2 = 31 %  

It appears that the prediction of the polarization curve in the case of curve 32 is quite coherent 
with the experimental polarization curve obtained. The maximal relative error between experimental 
and predictive curves is close to 8 % and the mean relative error is close to 2 %. The predictive 
polarization curve is close to the experimental curve at low current densities. However, the error 
between the two curves increases as the current density increases and is maximal at the higher current 
densities. This can be explained by the difficulty of modelling the diffusion phenomena by an 
empirical law as observed in Table 9. 

Comparable results are obtained for estimation using J0 empirical variation law and J0 physics-
based variation law. 
 

Curve 33 corresponding to T = 80°C, P = 0.65 bara, RHair = 12 %, RHH2 = 20 % is secondly 
studied in the same way. As for the previous curve, Rohm is considered known (Rohm is not estimated 
using a variation law).  

Figure 11 presents the identification results for curve 33. As explained before, two cases are 
considered for J0 variation law.  

 
For this curve 33, the conclusions are similar to those for curve 32: the results show again that the 

model is able to predict with satisfactory precision cell voltage at low current densities. At higher 
current density, an “unhooking” appears between the experimental and estimated curves. Similar 
results are obtained for estimation using J0 empirical variation law and J0 physics-based variation law. 
However, evaluate the predictive behaviour of the model is limited with this curve 33 because only a 
restricted domain of current density were explored. 

 



 

Figure 11 – Experimental polarization curve and estimated polarization curves using the different variation laws in function 

of operating conditions (2 cases for J0 variation law)  

Curve 33: T = 80°C, P = 0.65 bara, RHair = 12 %, RHH2 = 20 % 

In order to evaluate the predictive behaviour of the model, a curve-by-curve identification is 
carried out for curves 32 and 33. It is to say that a set of parameters (J0, Jn, Rdiff) is identified directly 
for each of these two curves. The results of these curve-by-curve identifications are compared to 
prediction results presented before and obtained using applying variation laws. Tables 10 and Table 11 
present the results respectively for the curve 32 and the curve 33. 
 

 
Reference value (norm) 

Curve-by-curve identification 
Estimated value (norm) 

Prediction with the model 
Error between reference and 

estimated values (%) 

J
0
 0.487 

Empirical law: 0.499 Empirical law: 12 

Physical law: 0.503 Physical law: 17 

J
n
 0.739 0.746 4.8 

R
diff

 0.621 0.593 27 

Table 10 – Comparison of curve-by-curve identification and prediction results for curve 32 

 
Reference value (norm) 

Curve-by-curve identification 
Estimated value (norm) 

Prediction with the model 
Error between reference and 

estimated values (%) 

J
0
 0.427 

Empirical law: 0.428 Empirical law: 0.25 

Physical law: 0.416 Physical law: 9.7 

J
n
 0.686 0.674 8 

R
diff

 0.759 0.739 21 

Table 11 – Comparison of curve-by-curve identification and prediction results for curve 33 

These tables show that estimation of J0 and Jn gives quite acceptable errors. The error is more 
important for prediction of Rdiff. These results point out that it is necessary to work again on the 
definition and identification of variation laws particularly for diffusion phenomena, maybe on the 
parameter dependences on operating conditions. 
 

5. Conclusion 
 

In this paper, the complex behavior a PEMFC stack in function of various operating conditions 
was experimentally investigated by the Design of Experiments methodology. The various operating 



conditions explored in this DoE are representative of aeronautical conditions within an aircraft cabin. 
The experimented subatmospheric pressures are one of the highlights of our works.  

After being discussed, these experimental results have been studied via a modelling approach of 
the polarization curve. Firstly, a curve-by-curve study was carried out. These first modelling results 
were exploited to evaluate if the dependence of each model parameter was strong or not to each 
involved operating condition. Thus, assumptions have been introduced concerning the parameter 
dependence to the operating conditions. The consequences were a simplification of the model (even if 
it remains complex) and a reduction of the identification time. Under these simplification hypotheses, 
the polarization curves were estimated with no significant loss of precision compared to the case of 
curve-by-curve identification. 

Using the results of this first modelling step, variation laws for model parameters J0, Jn and Rdiff 
have been constructed. The aim of defining these laws is to be able to have a predictive model in 
function of operating conditions. Our initial goal was to use and/or define physics-based laws 
describing this parameter dependence to the operating conditions. We were only able to use a physics-
based law for the activation current Jo issued from previous works at the LAPLACE laboratory. A 
result is that this law appears also valid for subatmospheric pressures. The modelling with physic-
based laws for Jn and Rdiff, even for Rohm, remains an issue. Only empirical laws were proposed for Jn 
and Rdiff. 

The predictive behaviour of the model was tested on two curves taken outside the operating field 
of the DoE. The estimation of these two polarization curves seems promising. However, at high 
current densities, the error between the predictive curve and the real experimental curve is more 
important, illustrating that the diffusion phenomena modelling is not easy. For their modelling, a direct 
exploitation with a typical empirical law generally used with a DoE (assumption of a linear 
dependence to the operation conditions), as done in this paper, gives good results, but the limits in 
terms of precision have been quickly reached regarding its predictive capability. Future works will be 
devoted to correct this error and to improve variation law definition. It could be interesting to 
complete the carried out DoE with higher current densities in order to investigate more deeply the 
nonlinear behaviour of the diffusion phenomena, and perhaps in this way to improve the predictive 
character of our model.  

More generally, the behaviour of a fuel cell with subatmospheric pressures remains also an issue: 
we have indeed observed in our works the big impact of pressure on the fuel cell performance and new 
exploratory tests would be necessary to go further. 
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