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Abstract

Real-time tracking of vigilance states related to both sleep or anaesthesia has been a goal

for over a century. However, sleep scoring cannot currently be performed with brain signals

alone, despite the deep neuromodulatory transformations that accompany sleep state

changes. Therefore, at heart, the operational distinction between sleep and wake is that of

immobility and movement, despite numerous situations in which this one-to-one mapping

fails. Here we demonstrate, using local field potential (LFP) recordings in freely moving

mice, that gamma (50–70 Hz) power in the olfactory bulb (OB) allows for clear classification

of sleep and wake, thus providing a brain-based criterion to distinguish these two vigilance

states without relying on motor activity. Coupled with hippocampal theta activity, it allows

the elaboration of a sleep scoring algorithm that relies on brain activity alone. This method

reaches over 90% homology with classical methods based on muscular activity (electromy-

ography [EMG]) and video tracking. Moreover, contrary to EMG, OB gamma power allows

correct discrimination between sleep and immobility in ambiguous situations such as fear-

related freezing. We use the instantaneous power of hippocampal theta oscillation and OB

gamma oscillation to construct a 2D phase space that is highly robust throughout time,

across individual mice and mouse strains, and under classical drug treatment. Dynamic

analysis of trajectories within this space yields a novel characterisation of sleep/wake transi-

tions: whereas waking up is a fast and direct transition that can be modelled by a ballistic tra-

jectory, falling asleep is best described as a stochastic and gradual state change. Finally,

we demonstrate that OB oscillations also allow us to track other vigilance states. Non-REM

(NREM) and rapid eye movement (REM) sleep can be distinguished with high accuracy

based on beta (10–15 Hz) power. More importantly, we show that depth of anaesthesia can

be tracked in real time using OB gamma power. Indeed, the gamma power predicts and

anticipates the motor response to stimulation both in the steady state under constant anaes-

thetic and dynamically during the recovery period. Altogether, this methodology opens the

avenue for multi-timescale characterisation of brain states and provides an unprecedented

window onto levels of vigilance.
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Author summary

Real-time tracking of vigilance states related to wake, sleep, and anaesthesia has been a

goal for over a century. However identification of wakefulness and different sleep states

cannot currently be performed routinely with brain signals and instead relies on motor

activity. Here we demonstrate that 50–70 Hz electrical oscillations in the olfactory bulb

(OB) of mice are a reliable indicator for global brain states. Recording this activity with an

implanted electrode allows for clear classification of sleep and wake, without the need for

motor activity monitoring. We construct a fully automatic sleep scoring algorithm that

relies on brain activity alone and is robust throughout time, between animals, and after

drug administration. Our method also tracks in real time the depth of anaesthesia both in

the steady state under constant anaesthetic and dynamically during the recovery period

from anaesthesia. Furthermore, this index predicts responsiveness to noxious stimulation

under anaesthesia. Altogether, this methodology opens the avenue for characterisation of

vigilance states based on OB recordings.

Introduction

Defining the different states of brain activity and describing how they impact the computations

performed by neural networks is an ongoing challenge in neuroscience. In our day-to-day

lives, the most dramatic change of state is found at the frontier between sleep and wakefulness,

which involves substantial modifications at the level of the brain [1–3] and throughout the

whole organism [4,5]. Despite these profound transformations, to date, we surprisingly lack an

easily measured marker of brain activity that allows unambiguous, moment-to-moment iden-

tification of sleep and wake states.

Sleep scoring methods in human research are now widely accepted throughout the scien-

tific community [6,7], but there is no clear consensus for rodent studies [8]. Commonly used

methods are generally completely manual or rely on manually scored training data to calibrate

automatic algorithms (Table 1), therefore adding the problem of interscorer variability to the

already existing issue of variability between laboratories.

Moreover, all current sleep scoring methods essentially rely on motor activity to discriminate

sleep from wake (see Table 1). This renders all methods inherently vulnerable to any mismatch

between these brain states and the level of motor activity such as during freezing—a commonly

used behaviour in mice—or any sleep anomalies causing movement during sleep [9].

The state of the art therefore presents both a conceptual and a technical problem regarding

the identification of sleep and wake.

Sleep scoring methods are based on the assumption that the information about sleep states

is contained in classically recorded signals and that the challenge is to extract the correct

marker from them [10]. In order to implement a reliable sleep scoring, the candidate marker

of sleep and wake must show a systematic and sustained difference in value throughout each

state.

Despite multiple studies, such a clear-cut situation has never been found when using brain

signals [11]. Therefore, attempts to identify sleep with brain signals rely on more elaborate

methods that extract composite features from local field potential (LFP) data [12]. However,

the first step of dimensionality reduction is highly dependent on the data at hand and often

results in mapping data onto axes that vary between animals and sessions, requiring post hoc

human labelling procedures [12]. To compensate for the poor quality of the brain-related sleep
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markers, machine learning has been used in several studies but with no decisive improvement

[13–16].

Here we propose a novel brain-related marker allowing us to reliably track transitions from

sleep to wakefulness: gamma power (50–70 Hz) measured in the olfactory bulb (OB). This

oscillation has been previously shown to vary between sleep states [17], but we show here that

it displays the desired characteristics to continuously identify these states.

This oscillation is strongly suppressed during sleep and continuously present during wak-

ing. Importantly, the distribution of gamma power follows an easily separable bimodal distri-

bution, the optimal situation for an automatic separation procedure. Coupling this indicator

with the classical hippocampal theta/delta power ratio allows us to construct a fully automated

sleep scoring algorithm that classifies wake, rapid eye movement (REM) sleep, and non-REM

(NREM) sleep based on brain state alone.

We then use these variables to construct a robust 2D phase space that is highly robust across

mice—from the same and different strains—and days. This phase space forms the basis of an inno-

vative analytical methodology for the study of fast timescale transitions using kinematic modelling

of trajectories. As an application, we provide strong evidence for a deep asymmetry between transi-

tions from sleep to wake and wake to sleep. In particular, the awakening transition displays strongly

driven, fast dynamics, whereas the process of falling asleep is more stochastic and slower.

Finally, we show that OB LFP activity is a remarkably versatile indicator of global brain

states: beta power can be used to discriminate REM and NREM sleep, while gamma power not

only tracks changes in vigilance between sleep and wake but also predicts in real time the

depth of anaesthesia.

Results

OB gamma power modulation throughout brain states

Classical sleep scoring methods differentiate sleep from wake states using electromyography

(EMG) activity or the animal’s motion recorded using accelerometers or video tracking (see

Table 1. Overview of sleep scoring methodologies.

Reference Motor parameters Brain activity parameters Manual calibration

Brankack and

colleagues, 2010

EMG EEG power: delta (1–4 Hz), theta2 (7–8.5 Hz),

and gamma2 (52–70 Hz)

Manual scoring of 5% of data to train LDA or

classification tree

Crisler and colleagues,

2008

EMG EEG: 107 temporal and spectral parameters Manual scoring of 2 h of data to train SVM

Gross and colleagues,

2009

EMG EEG: Delta, theta, sigma, and beta bands Manual determination of thresholds

Louis and colleagues,

2004

EMG EEG: Delta, theta, alpha, beta, and gamma Manual scoring of 1 d of data to establish

thresholds

Rytkönen and

colleagues, 2011

EMG EEG: Delta, theta, alpha, beta, and gamma Manual scoring of 5% of data to train naïve

Bayes classifier

Veasey and colleagues,

2000

EMG EEG: Delta, sigma, theta Manual determination of thresholds

Zeng and colleagues,

2012

Doppler and video recording of

movement and breathing

none Manual scoring of 10% data to train SVM

Liang and colleagues,

2012

EMG 13 EEG features Manual scoring of 2 animals to establish

thresholds for all others

Stephenson and

colleagues, 2009

EMG EEG: delta, alpha, theta, beta, and gamma power No manual steps

Abbreviations: EEG, electroencephalography; EMG, electromyography; LDA, linear discriminant analysis; SVM, support vector machine.

https://doi.org/10.1371/journal.pbio.2005458.t001
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Table 1, [11,14,15,18–23]). Theta and delta power recorded in the hippocampus (HPC) or cor-

tex (due to the volume conduction of theta oscillations) can then be used to discriminate REM

from NREM sleep. According to classical sleep scoring methods, wake is defined by high EMG

activity and irregular HPC activity during quiet wake or theta oscillations during active explo-

ration. Sleep, in contrast, is defined by low EMG power. NREM is discriminated from REM

sleep using the theta/delta power ratio in the HPC: during NREM, delta power is strong,

whereas highly regular theta oscillations are observed during REM (Fig 1A). Similar results

can be obtained when recording electroencephalography (EEG) rather than LFP.

In order to construct a sleep scoring method that relies on brain signals alone, we screened

multiple brain regions to find a good predictor for discriminating between sleep and waking

states. We recorded from multiple brain regions in 15 freely moving mice: the OB, the HPC,

the prefrontal cortex, and the parietal cortex. Mice were recorded for an average of 6.6 ± 0.58 h

(minimal recording length: 2 h) in their home cages in the light period and slept on average

58% of the time. We initially used a classical sleep scoring method based on movement and

hippocampal activity to establish a database of recordings from different brain states using 10

mice that were also implanted with an EMG wire in the nuchal muscles (n = 6) or tracked

using video (n = 4).

The average spectra over wake, NREM, and REM periods are shown in Fig 1B. In cortical

and hippocampal areas, as expected, REM and NREM showed strong differences in the theta

and delta band, and wake periods showed less low-frequency power. In cortical and hippocam-

pal areas, no individual frequency band allowed a clear discrimination between sleep and

wake.

Fig 1. Identification of OB gamma as a reliable marker of sleep/wake states. (A) EMG, HPC, and OB activity during wake, NREM, and REM sleep. Wake is

characterised by high EMG activity and high gamma power in the OB, whereas sleep is characterised by low EMG activity and low gamma power in the OB. HPC LFP

shows regular theta activity during REM sleep. Filtered signals from the OB in the gamma band (OB-γ, 50–70 Hz) illustrate the remarkable decrease in gamma power

during sleep states. (B) Low-frequency (top) and high-frequency (bottom) spectra from different brain regions during NREM, REM, and wake states as classified using

movement-based scoring (EMG or filmed activity). Note the strong increase in gamma activity in the OB in the wake state (pink bar). (n = 9 for OB and HPC, n = 6 for

PFCx and PaCx, error bars: s.e.m.). Note that differences in HPC activity between vigilance states vary strongly according to recording depth; see S5 Fig. (C) Gamma

power in OB drops as the animal transitions from wake to sleep. The data are smoothed with different window lengths (0.1, 1, and 4 s, as indicated by colour). Inset:

histogram of gamma values after different smoothing windows have been applied. The fast fluctuations present in the awake state are smoothed out as the window size

increases, yielding a more clearly bimodal distribution with a larger smoothing window. (D) Ashman’s D (bimodality index, significant if larger than 2) for gamma

power increases (top), and the overlap between the two Gaussians fit to the bimodal distribution of gamma power decreases (bottom) with the length of the smoothing

window. The stars show window sizes illustrated in C. EMG, electromyography; HPC, hippocampus; NREM, non-REM; OB, olfactory bulb; PaCx, parietal cortex; PFCx,

prefrontal cortex; REM, rapid eye movement.

https://doi.org/10.1371/journal.pbio.2005458.g001
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However, we found a strong increase in power in the OB during waking relative to sleep

states. This difference was strongest in the low-gamma band centred at 60 Hz, as previously

described [17]. OB activity is modulated by the breathing cycle in all vigilance states but dis-

plays a sustained gamma band oscillation only in the wake state (Fig 1A). Crucially, gamma

power was low in both NREM and REM sleep states and could therefore allow the distinction

of wake from REM sleep. Gamma activity is therefore a candidate replacement for muscular

activity in sleep scoring.

OB gamma power displays strong fluctuations correlated with breathing activity on the

scale of around a second [17]. To find the appropriate timescale for tracking the changes in

gamma power related to brain state changes, we applied a smoothing window of varying length

to the instantaneous gamma power. As the smoothing window increased in length, the distri-

bution of gamma power became more distinctly bimodal and the two underlying distributions

clearly separated (Fig 1C and 1D). We found that smoothing windows of 1 s or above pro-

duced two normal distributions that overlapped by less than 5% (Fig 1D bottom). This analysis

allowed us to establish a set of parameters (frequency, smoothing window) for which gamma

power in the OB is a promising marker for discriminating between wake and sleep on fine

timescales of the order of 1 s without any reliance on muscular activity.

Construction and validation of the sleep scoring algorithm

A schematic of the sleep scoring algorithm is shown in Fig 2A. All steps are automatic and do

not require any supervision by the user.

The first step classifies data into sleep and wake periods. Instantaneous smoothed gamma

power in the OB shows a bimodal distribution that can be well fit by a sum of two Gaussian

functions (Fig 2B) (mean R2 = 0.98 ± 0.009). The two component distributions correspond to

gamma power during sleep and wake periods, respectively. Since the amplitude of these distri-

butions depends on the proportion of time spent in each state, they are normalised to unit

area, and the sleep/wake threshold is defined as the intersection of the two corresponding

Gaussian curves (Fig 2Bi). Below-threshold values of gamma power are defined as sleep and

above-threshold values as wake.

The second step classifies sleep data into REM and NREM periods. The theta-to-delta ratio

in the HPC during sleep shows a clear peak of low values corresponding to the predominant

NREM phase and a flat shoulder of higher values corresponding to the rare REM phase (Fig

2Bii). Fitting a Gaussian distribution to the lower values allows us to automatically place a

threshold to discriminate REM from NREM sleep.

Each time point is now attributed to one of the three states based on its OB gamma power

and HPC theta/delta ratio. Short epochs of any give state lasting less than 3 s are merged with

the neighbouring states. An example session is shown in Fig 2C and 2D that illustrates the con-

struction of a 2D phase space for brain states (Fig 2C). This space demonstrates the clear sepa-

ration of brain states even after the merging and dropping of short epochs. This shows that the

continuity hypothesis does not lead to any aberrant classification (see S1 Movie for data from

another mouse).

We validated the sleep scoring algorithm by comparing it to manual sleep scoring per-

formed using HPC LFPs and EMG activity, the classical golden standard. Two expert scorers

independently scored sessions from 4 mice with an average interscorer overlap of 89% ± 3%

(Cohen’s κ: 0.81). On average, the OB-based and manual sleep scoring overlapped by 90% ±
2% (Cohen’s κ: 0.83) throughout the sessions (Fig 3A). We also performed scoring using an

automatic EMG algorithm. Agreement between the OB gamma scoring and the automatic

EMG scoring was 93% (Cohen’s κ: 0.85) (Fig 3B). Moreover, EMG power and OB gamma

Brain based vigilance state monitoring
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power were highly correlated and time locked at transition points (Fig 3C and 3D). Some time

points show disagreement between the two variables (Fig 3C); this shows that by coupling OB

gamma activity and EMG measurements, we can hope to clarify the definition of quiet wake

and movement during sleep.

We next compared how clearly bimodal the distributions of these two variables were to

evaluate how well they separated sleep and wake states. Both variables were strongly bimodal,

according to Ashman’s D (Fig 3E, left); however, the error made when fitting their distribu-

tions with two Gaussians was higher for EMG power (Fig 3E, centre and right). We found that

this higher error was explained by a larger proportion of values in the trough between the two

Gaussians for EMG power (11% ± 2% for EMG and 4% ± 3% for gamma power). This indi-

cates that ambiguous intermediary values between clearly defined sleep and wake are more fre-

quent when using EMG than OB LPF, leading to more potential errors in scoring.

This demonstrates that sleep scoring using gamma power in the OB or using EMG, with

either automatic or manual methods, gives very similar classification of brain states, confirm-

ing that OB gamma power is a good predictor of wake and sleep as classically defined. More-

over, gamma power provides distributions with a clearer separation than EMG power, making

it a more reliable predictor.

Fig 2. Schematic of sleep scoring method and application to example data set. (A) Flowchart of data through the scoring algorithm. Sleep and

wake states are first classified based on OB gamma (i). Sleep data are then further classified into REM and NREM sleep based on HPC theta/delta

power ratio (ii). (B) Example of automatic thresholding of distributions. (i) Two Gaussian distributions are fit to the distribution of OB gamma

power (left), and their areas are equalised (right). The threshold is placed at the intersection of the two distributions. (ii) A Gaussian distribution is

fit to the distribution of HPC theta/delta power ratio during sleep. The residuals are shown in the bottom plot. The threshold is placed at the point

where the fit explains less than 50% of the data. (C) Phase space of brain states showing the distribution of NREM (blue), REM (red), and wake

(grey) data for an example mouse. Corresponding histograms are shown along the relevant axis, with automatically determined thresholds in red.

(D) HPC low-frequency spectrogram with theta/delta power ratio below, OB high-frequency spectrogram with gamma power below, and

hypnogram for the same mouse as in C. The relevant frequency bands are outlined by a dotted grey line. Right: bracketed area on an expanded

timescale. HPC, hippocampus; NREM, non-REM; OB, olfactory bulb; REM, rapid eye movement.

https://doi.org/10.1371/journal.pbio.2005458.g002
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Fig 3. Validation of new sleep scoring method by comparison with classical methods. (A) Overlap of manual scoring with OB

gamma scoring. Each column gives the percent of time from each state identified using manual scoring (x label) that is classified as

NREM (blue), REM (red), and wake (grey), respectively, using OB gamma scoring. For example, the first column can be read as

signifying that out of all the data classified as NREM by the manual scorer, 93% was also classified as NREM by the OB gamma

scoring, 2% as REM, and 5% as wake (n = 4). (B) Overlap of automatic EMG scoring with OB gamma scoring (n = 6). (C) Correlation

of OB gamma power and EMG power for one mouse, with automatically determined thresholds in red. Dots in the upper right and

lower left-hand corner are identically classified by both approaches. (D) OB gamma and EMG power triggered on transitions from

wake to sleep and sleep to wake determined by the OB gamma, demonstrating tight temporal locking of changes with both indicators

(n = 6). (E) Quality of fit of two Gaussians to OB gamma power and EMG power distributions. Both distributions are strongly

bimodal, as the average Ashman’s D is larger than 2. However, both mean square error and R2 show that gamma power distributions

Brain based vigilance state monitoring
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Robustness of the sleep scoring method

Sleep scoring is often performed on large batches of animals, requiring simple surgeries and a

high success rate. It is known that theta rhythm can be easily recorded in the hippocampal area

using a single LFP wire. How does the OB gamma power used for sleep scoring depend on the

exact placement of the recording site? To answer this question, we simultaneously recorded

activity from multiple depths in the OB covering the outer and inner plexiform layers, the

mitral cell layer, and granular cell layer using a 16-site linear probe (Fig 4A). We found that

gamma oscillations could be observed at all depths, and sleep scoring performed using elec-

trodes at all depths highly overlapped (>92%) with classical, movement-based sleep scoring

(Fig 4B). We however observed that the separation between wake and sleep peaks was best in

the deeper recording sites, and in particular, the most coherent scoring was found in those

sites within the granule cell layer where gamma oscillations are visibly stronger (Fig 4C and

4D).

This demonstrates that placement of the LFP wire for reliable scoring does not require

great precision during implantation, assuring good scoring for all implanted animals. The

granule cell layer, however, appears to be the optimal anatomical region to ensure reliable scor-

ing, since it shows the clearest bimodality of gamma power. The coordinates we recommend

aim for the centre of this zone (anteroposterior [AP] +4, mediolateral [ML] +0.5, dorsoventral

[DV] −1.5). We also observed that gamma power recorded in the piriform cortex could be

used for reliable scoring (S4 Fig).

An optimal sleep scoring technique must provide reproducible results in the same animal

throughout time and easily comparable results between animals. In other words, the phase

space used to define sleep states must be stable. This phase space was constructed so that the

separation between wake and sleep on the one hand and REM and NREM on the other hand

used orthogonal axis. This simple space is remarkably consistent among animals and across

days, as can be seen by the similar position of the clouds of points representing each state (Fig

5A).

We first quantified this similarity in the same animals between days and between light and

dark cycles. We used the thresholds defined for one animal on a given light cycle to score test

data from the same animal on a subsequent light or dark cycle. The scoring was then compared

with that obtained using thresholds determined on the test data.

We found that the observed consistency between phase spaces was sufficient to perform

highly accurate scoring on the next day’s light cycle (average over recordings: 97% ± 0.5%,

Cohen’s κ: 0.97, n = 15, Fig 5Bi) and during the following dark cycle (average over recordings:

96% ± 0.9%, Cohen’s κ: 0.94, n = 4, Fig 5Bii) using independently defined thresholds. We also

found that stable recordings could be obtained for up to 10 wk with maintained thresholds (S1

Fig). Finally, since gamma oscillations in the OB have been linked with information processing

and novelty [24], we exposed 8 mice to a novel environment for 15 min, during which the ani-

mals actively explored. On average, only 2% ± 1.1% of the time was misclassified as sleep. This

demonstrates that any changes in gamma activity linked to behaviour remain well within the

bounds of the wake state as previously defined.

We next asked whether our method would allow for easy comparison between animals by

comparing the phase space used for sleep scoring across individuals. We found that after nor-

malising distributions to the mean NREM values, to account for changes in implantation

are better fit by a sum of two Gaussians (n = 15 for gamma, n = 6 for EMG; t test, p = 0.43, 0.0063, 0.0005, respectively, ��� p< 0.001).

EMG, electromyography; NREM, non-REM; OB, olfactory bulb; REM, rapid eye movement.

https://doi.org/10.1371/journal.pbio.2005458.g003
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depth between animals, both OB and HPC distributions were highly reproducible across mice,

and the independently determined thresholds had very close values (Fig 5C). Scoring one ani-

mal using the thresholds determined for another, we found that scoring was also highly reliable

(average over recordings: 90% ± 2.5%, Cohen’s κ: 0.85, n = 15, Fig 5D).

We tested whether our novel algorithm was applicable to studies using drug administration

by applying it to mice injected with the classical antidepressant fluoxetine that is well known

Fig 4. Robustness of sleep scoring method to variations in implantation site. (A) Anatomical position (right) of 16-site silicon probe in the OB as estimated from

histology (left). Sites 1–4 and sites 12–16 are respectively dorsal and ventral to the gl in the epl. (B) Sleep scoring is performed using the gamma activity from each

electrode site and compared to sleep scoring using the animal’s movement. Accuracy is calculated as total overlap in sleep/wake periods. (C) Gamma power

distributions for each electrode classified by implantation location: dorsal epl, gl, and ventral epl. Note that the strong separation of sleep and wake peaks is present in all

layers and is clearest for electrodes within and below the granule layer. (D) Correlation matrix of sleep scoring performed using gamma power from different

implantation depths. All values are high (above 95%), and the gl shows particularly coherent scoring (>99%). epl, external plexiform layer; gl, glomerular layer; gr,

granule cell layer; mi, mitral cell layer; OB, olfactory bulb.

https://doi.org/10.1371/journal.pbio.2005458.g004
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Fig 5. Robustness of sleep scoring method throughout time and between animals. (A) Phase space of brain states and corresponding histograms along the relevant

axis with automatically determined thresholds of the same mouse over different days (i versus ii) and in two different mice (i versus iii) demonstrating the highly

conserved architecture across time and individuals. (B) Overlap of scoring using thresholds determined on the same mouse on one day and applied the following day (i)

and during successive light and dark periods (ii). Each column gives the percent of time from each state identified using thresholds determined on the reference day data

that are classified as NREM (blue), REM (red), and wake (grey), respectively, using thresholds determined using data from different days (i) or during the light period

(ii) (n = 10 mice were recorded on consecutive days and used for interday scoring, n = 5 mice were recorded over a 24 h period of light and dark periods). (C) Heat map

of point density averaged over all phase spaces for all mice (n = 15). Circles show the 95% boundaries of NREM, REM, and wake for each mouse. Histograms from all
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for its REM-suppressing effect. Sleep scoring using this method reproduced the well-known

reduction in REM sleep as expected, but more importantly, it agreed with classical EMG-based

scoring after drug delivery, and no change in the phase space was observed (S2 Fig).

We also verified that the method was applicable in three other mouse strains: Gad2-IR-

ES-Cre knock-in C57BL/6J Rj (n = 4), C3H/HeNRj (n = 2), and DBA/2Rj (n = 3) (S3 Fig).

Blindly applying the algorithm to these strains produced remarkably similar phase space of

brain states and a good overlap with classical EMG methods in all lines. Indeed, despite some

large changes in the OB power spectra between strains, they all shared the common feature of

a difference between sleep and wake in the 50–70 Hz band, which allowed us to generalise our

methodology. For C3H and more particularly for DBA mice, the OB spectrum appears as a

smooth 1/f slope; however, subtraction of the spectra from sleep and wake states (S3B Fig)

clearly reveals the wake-specific 50–70 Hz oscillation that is otherwise obscured by the other

oscillation at 30 Hz. It is only by using multiple mice strains recorded during different brain

states that we can clearly identify that the apparently continuous OB spectrum in these strains

can be decomposed into two different peaks.

This demonstrates that brain state–related changes in OB gamma power are quantitatively

robust over multiple days and throughout the circadian cycle. Moreover, the phase space thus

constructed is highly reproducible between animals. Finally, the method can be applied to

studies involving pharmacological manipulation and generalised to other mouse strains. This

makes OB gamma power an excellent parameter to use for automatic methods of scoring and

a promising tool for comparing sleep in cohorts of animals.

A powerful tool to study mismatch between brain state and motor activity

A major issue with current approaches to sleep scoring is that EMG activity conflates absence

of movement and sleep, which suffers from notable exceptions such as freezing behaviour.

Freezing is a widely studied behaviour in paradigms such as fear conditioning. It is defined as

a complete absence of all movement except for respiration. This absence of movement is asso-

ciated with a strong drop in EMG power. Although it has been shown that on average EMG

power is lower during sleep than freezing [25], we investigated whether freezing could be mis-

classified as sleep using EMG power and whether OB gamma power could resolve this issue.

Six mice were therefore fear conditioned by pairing tones with mild foot shocks and, during

test sessions, displayed robust freezing to tone presentation (post conditioned stimulus not

associated with shock [CS−] freezing: 25% ± 10%; post conditioned stimulus associated with

shock [CS+] freezing: 67% ± 13%).

The example session shown in Fig 6A illustrates the strong expected drop in EMG power

during freezing periods, sometimes below the sleep/wake threshold independently determined

during a previous home cage session. Although the EMG power is indeed on average higher

during freezing than during the sleep state, certain freezing time points can be misclassified as

sleep (Fig 6B). Moreover, EMG shows a similar drop in power at freezing and sleep onset (Fig

6C). In sharp contrast, OB gamma power remains systematically above the sleep/wake thresh-

old (Fig 6B). Gamma power triggered on freezing onset shows that the variable is independent

of this abrupt change in movement (Fig 6C).

Freezing is a behaviour that dissociates complete immobility from sleep, allowing us to

clearly show that OB gamma power is tracking transitions from wake to sleep and not from

mice are shown along the relevant axis with automatically determined thresholds (�). The data from each mouse are normalised by dividing the instantaneous power by

the average NREM power to align all distributions to the peak of distribution of NREM activity. (D) Overlap of scoring using thresholds determined on one mouse and

applied to a different mouse (n = 15 mice). As in B. NREM, non-REM; REM, rapid eye movement.

https://doi.org/10.1371/journal.pbio.2005458.g005
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Fig 6. Correct classification of freezing periods as wake using OB gamma power but not EMG power. (A) OB gamma power, quantity of movement, and EMG

power during an example test session during which the mouse displayed freezing episodes (blue line). Red lines indicate the sleep/wake thresholds for OB gamma and

EMG power that were independently determined during a previous sleep/wake session in the home cage. (B) In grey, distribution of gamma (left) and EMG (right)

power during sleep and wake in the home cage. In black, the distribution during the test session, including the freezing periods. Gamma power during the test session is

systematically classified as wake, whereas the EMG power during freezing periods drops below the sleep/wake threshold. (C) Averaged OB gamma power (left) and

EMG power (right) triggered on two types of transitions from mobility to immobility: the wake-to-sleep transition and the active-to-freezing transition. OB gamma

power drops when the animal falls asleep but not when the animal freezes. EMG power shows similar changes during freezing and sleep onset (n = 6, error bars: s.e.m.).

EMG, electromyography; OB, olfactory bulb.

https://doi.org/10.1371/journal.pbio.2005458.g006
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mobility to immobility. EMG, in contrast, is an unreliable marker for sleep scoring when ani-

mals are susceptible to display immobility during wakefulness.

The different dynamics of waking up and falling asleep

Our automated sleep scoring method classifies all data points into periods of wake, NREM,

and REM. Thus considered, changes in vigilance are reduced to a sequence of steady states, yet

a crucial aspect of sleep concerns the transitions between states. Here we show that these tran-

sitions can be studied by visualizing moment-to-moment variations in brain state as a moving

point in the previously described phase space (S1 Movie). The trajectories can then be studied

using tools from statistical physics.

Shifting to this finer timescale, we replaced the previously used threshold with a transition

zone, consistent with many experts arguing that there is no single time point corresponding to

the onset or offset of sleep [26]. For each point in phase space, the probability of remaining in

the current state (the ‘stay probability’) is calculated, revealing highly stable zones far from the

thresholds (Fig 7A, white) and zones of instability in which the state of the brain is changing

close to the thresholds (Fig 7A, black). Two transition zones naturally emerged along the

gamma power axis between sleep and wake states and the theta/delta ratio axis between REM

and NREM. In the rest of the study, we focus on the sleep/wake transition. The sleep/wake

transition zone can be identified by measuring the average stay probability along the gamma

power axis (Fig 7A, lower panel), which displays a strong dip between sleep and wake states.

We identify this low stay probability region as the transition zone, which is shown between the

grey lines in Fig 7A. We propose three measures based on this transition zone to study the

dynamics of state change and illustrate that it allows for novel characterisation of the sleep/

wake transition.

First, we defined ‘true transitions’ as a full crossing of the transition zone. We found that

the duration of this crossing depended on the direction. Wake-to-sleep transitions were signif-

icantly slower than sleep-to-wake transitions (Fig 7B).

Second, we also defined ‘aborted transitions’ during which the brain state enters this transi-

tion zone but does not make a full crossing. Aborted wake/wake transitions were more fre-

quent than sleep/sleep transitions (p = 0.005, n = 15, paired t test). These aborted wake/wake

transitions tended to be strongly grouped around the 30 s preceding complete wake/sleep tran-

sitions, whereas sleep/sleep transitions were only weakly related in time to sleep/wake transi-

tions (Fig 7C). This indicates that falling asleep is preceded by many aborted transitions

contrary to waking up.

Finally, we adopted a dynamic approach to analyse these trajectories. Differences in transi-

tion durations (Fig 7B) from wake to sleep and sleep to wake can be interpreted as differences

in speed only if the movement is well described by ‘ballistic’ motion. Ballistic motion indicates

that time, speed, and distance are linearly related, as when an apple falls to the ground (Fig 7H,

grey). This is not true for all types of motion, particularly those describing stochastic processes

such as diffusive motion, as when a grain of pollen diffuses on a bowl of water (Fig 7H, black).

To evaluate whether the observed motion is closer to the ballistic or diffusive regime, the mean

square displacement as a function of time can be modelled thus:

MSDðtÞ ¼ hðxðt þ tÞ � xðtÞÞ2i ¼ 2Dta

Theory of Brownian motion indicates that when alpha = 2, the movement is ballistic, and

for alpha = 1, the movement is diffusive. For alpha< 2 and> 1, the movement is described as

superdiffusive. Transitions with essentially similar dynamics but different speeds are described

by the same value of alpha but different values of D. On the other hand, a change in the value
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Fig 7. Analysis of phase space trajectories to study the dynamics of state transitions. (A) Phase space map of the stay probability, i.e., the probability of

remaining in the current state after 3 s. Far from state boundaries, stay probability equals 1 (white), indicating that this part of the phase space is highly stable;
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of alpha argues for different transition dynamics and thus potentially different underlying

mechanisms.

Fig 7D–7G compares the same number of transition trajectories from wake to sleep (top)

and from sleep to wake (bottom). The wake-to-sleep trajectories appear much more convo-

luted and tile the plane more densely than the sleep-to-wake trajectories, suggesting that their

movement is more diffusive. The mean square displacement curves for both transitions types

clearly segregate into two groups with a faster rise time for the sleep-to-wake transition, as

expected (Fig 7I). We can now ask what the underlying difference between these two curves is

by fitting them to the simple equation as defined above (mean R2 = 0.996, all R2 larger than

0.988). Fitting reveals that the motion from sleep to wake is ballistic (mean alpha = 2.1),

whereas the motion from wake to sleep is more diffusive (mean alpha = 1.47) (Fig 7J).

Overall, using the phase space approach, we can clearly demonstrate a strong and novel

dichotomy between sleep–wake and wake–sleep transitions. In particular, the awakening tran-

sition is fast and ballistic, whereas the process of falling asleep is slower and more stochastic,

preceded by multiple failed attempts to transition. Finally, the frequent aborted sleep/sleep

transitions that do not precede actual awakenings may be linked to subthreshold arousal phe-

nomena such as the cyclic alternating pattern [27].

REM and NREM sleep signatures in OB activity

When considering previous observations, the most likely explanation is that OB activity can

act as an index of vigilance state because it reflects the ongoing neuromodulatory state of the

brain, probably because of the numerous projections coming from regions in the brain stem

known to regulate sleep and wake (see Discussion). If this reasoning is correct, OB activity

should also be different between REM and NREM sleep, given that they show very different

neuromodulatory profiles.

Accordingly, we observed that beta range activity (10–20 Hz) in the OB was much weaker

during REM sleep than NREM sleep (Fig 8A). Activity in this band during sleep clearly segre-

gated into two levels that strongly correlated with HPC theta/delta ratio (Fig 8B). The distribu-

tion of OB beta power is similar to that described for the HPC theta/delta ratio: a clear peak of

values corresponding to NREM sleep and a broader slab of values for REM sleep. We therefore

placed an automatic threshold to separate the two states using the same methodology as for the

HPC and applied the rule that beta power below threshold corresponded to REM sleep and

above threshold to NREM sleep. We then evaluated the agreement with data scored using

HPC LFP. We found that there was a good agreement between the two methods: 97% of

NREM periods and 75% of REM periods, as defined by the HPC, were correctly identified

using OB scoring (Fig 8D). REM sleep defined by OB scoring corresponded to HPC-defined

REM sleep in 83% of cases.

the frontiers between states are characterised by low stay probability (black). Averaging the stay probability along the gamma power axis (bottom panel) reveals

a strong dip in stay probability that is identified as the transition zone between sleep and wake (grey lines). Trajectories around the transition border illustrate

full transitions (sleep to wake and wake to sleep) and aborted transitions (sleep to sleep and wake to wake). (B) Traversal time of the transition zone showing

that wake-to-sleep transitions are significantly longer than sleep-to-wake transitions (paired t test: p = 0.0007, n = 15; error bars: s.e.m.; ��� p< 0.001). (C)

Cross-correlation of aborted transitions’ times relative to true transitions. Wake-to-sleep transitions are more tightly coupled to aborted transitions from wake

than sleep-to-wake transitions to aborted transitions from sleep (error bars: s.e.m.). (D, E) Phase space of stay probability with transition zones shown in grey

with 10 randomly chose transition trajectories from wake to sleep (D) or from sleep to wake (E). (F, G) Gamma power as a function of time for wake-to-sleep

(F) and sleep-to-wake (G) trajectories. Arrows show how displacement is measured for the trajectory shown in thicker line: at each time point, the distance to

the transition zone is calculated. The square of this value yields the MSD. (H) Theoretical relationship between MSD and time for three regimes of motion:

ballistic, superdiffusive, and diffusive. (I) MSD for sleep-to-wake and wake-to-sleep trajectories as a function of time after normalisation by D for clarity. Thick

line: average over all mice (n = 15). Note the clear separation of the two sets of lines. (J) Values of alpha and D obtained after fitting the MSD curves (F). Note

that alpha is significantly increased for sleep-to-wake transitions relative to wake-to-sleep transitions. (paired t test: alpha: p = 7E-11, D: p = 0.2, n = 15, ���

p< 0.001). MSD, mean square displacement; ns, not significant.

https://doi.org/10.1371/journal.pbio.2005458.g007
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We next more closely investigated the periods of REM sleep (25%) identified by the HPC

that were misidentified as NREM based on the OB beta power (Fig 8D). We found that in fact

some REM bouts were missed entirely when using the OB beta method, accounting for 14%

out of the 25% error rate, and they tended to be particularly short (Fig 8E). The finding that

OB beta activity can be used to identify REM sleep opens the possibility of sleep scoring using

a single wire in the OB to track wake, REM, and NREM sleep, with most errors being restricted

to short bouts. This modulation of another OB rhythm by brain state confirms our hypothesis

that activity in the brain region is highly sensitive to neuromodulatory changes.

OB activity tracks depth of anaesthesia and predicts reaction to future

stimulation

Given the remarkable link between OB oscillations and sleep/wake states, we asked whether

OB gamma could provide an even more general indicator of vigilance by investigating the

impact of anaesthesia.

Fig 8. Reduction of OB beta activity during REM sleep allows good NREM/REM discrimination. (A) Spectrograms of OB (top) and HPC (bottom) activity.

The coloured bar indicates the state of the animal defined using OB and HPC activity. Note that during REM periods, defined by strong theta activity in the

HPC, there is a drop in a wide band from 10 to 20 Hz in the OB (bar: 3 min). (B) Correlation of OB beta power and HPC theta/delta ratio power for the same

mouse as in A. Black: automatically determined thresholds. Dots in the upper left and lower right-hand corner are identically classified by both approaches. (C)

Distributions of beta power in the OB during sleep with automatically determined thresholds (�) (n = 15). (D) Percentage of overlap of REM and NREM scored

using the HPC (left) of the OB (right) with the other methodology: OB and HPC, respectively (n = 15, error bars: s.e.m.). (E) Distribution of bout duration for

REM periods identified by both HPC and OB scoring (light red) or identified only by HPC scoring (dark red). Note that bouts missed by the OB scoring are

systematically very short. HPC, hippocampus; NREM, non-REM; OB, olfactory bulb; REM, rapid eye movement.

https://doi.org/10.1371/journal.pbio.2005458.g008
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We evaluated the impact of isoflurane and ketamine/xylazine anaesthesia on OB oscilla-

tions and linked these changes to two classical measures of anaesthetic depth: response to nox-

ious stimulation and loss of righting reflex (Fig 9C). The 50–70 Hz band that is prominent

during wake is suppressed during both sleep and anaesthesia (Fig 9A and 9B). Under anaesthe-

sia, we in fact observed a steady decrease in global power with depth of anaesthesia, which can

be fully tracked even after restricting analysis to the 50–70 Hz band. This suggests that measur-

ing gamma power not only provides information about the transition from wake to sleep to

anaesthesia but could also be used to monitor depth of anaesthesia.

We first imposed different levels of steady-state isoflurane anaesthesia and measured the

corresponding activity in the OB. We found that OB gamma power tracks isoflurane concen-

tration increase concomitantly with the loss of righting reflex (Fig 9D). During anaesthesia, we

electrically stimulated the eyelids of the mice to provide a reproducible and time-locked mea-

sure of their responsivity to noxious stimulation and evaluated their motor responses every 2

min. Predictably, response to stimulation was reduced as isoflurane concentration increased,

and the average gamma power tracked this change closely (Fig 9E). These results show that the

steady-state value of OB gamma under anaesthesia is a good correlate of two behavioural mea-

sures of anaesthetic depth: the righting reflex and response to stimulation.

We next asked whether OB gamma power can follow dynamic changes and monitor in real

time the depth of anaesthesia. We addressed this question by evaluating whether OB gamma

power could predict stimulation responsivity during anaesthesia recovery. Once mice had

reached the deepest level of isoflurane anaesthesia, we stopped isoflurane delivery and left

them to regain consciousness in their home cage whilst continuing to stimulate at regular

intervals so as to track their arousal level (Fig 9F). As can be seen in Fig 9F, as mice began to

respond to stimulation and regained motility, the OB gamma power increased with a strikingly

similar time course.

We found that OB gamma activity during the 3 s prior to eye shock stimulation (excluding

500 ms prior to stimulation to avoid spectral leakage) can predict the animal’s future response.

First of all, the gamma power in the 3 s before the shock correlated very strongly with the ani-

mal’s response (Fig 9G). To evaluate the relevance of this observation, we compared it with

one of the main physiological markers of anaesthetic depth, heart rate, and found that the OB

gamma was a more reliable correlate of stimulation response. Since the relationships between

these variables and stimulation responsivity may follow an unknown nonlinear function, we

used the Box-Cox transformation, which explores a smooth range of monotonic functions to

find the transformation that yields a maximally linear relationship. This allows a fair compari-

son of correlation strength between our two variables despite potential nonlinearities in the

data. Taking the maximal correlation after transformation, heart rate also correlated well with

stimulus reactivity (Fig 9H); however, OB gamma power systematically showed a stronger cor-

relation (Fig 9I).

As can be seen in Fig 9F, reactivity to stimulus is clearly bimodal during recovery, allowing

us to place a natural threshold between ‘sedated’ and ‘aroused’ responses. By using receiver

operating characteristic (ROC) curves, we showed that OB gamma power before stimulation

almost perfectly predicts the state of anaesthesia based on the binarised response to noxious

stimuli (Fig 9J and 9K). As for the correlation measures, OB gamma was a better predictor

than heart rate (Fig 9J and 9K).

These results demonstrate that OB activity is as sensitive to levels of vigilance and reactivity

during anaesthesia-induced sedation as it is to natural changes during sleep and wake. The OB

gamma power can therefore also be used to track depth of anaesthesia with high accuracy and

in real time, since it can predict and in fact anticipate the future reaction to stimulation.

Brain based vigilance state monitoring

PLOS Biology | https://doi.org/10.1371/journal.pbio.2005458 November 8, 2018 17 / 32

https://doi.org/10.1371/journal.pbio.2005458


Fig 9. Link between OB activity in the gamma band and depth of anaesthesia. (A) Spectra from wake/sleep and anaesthetised states (n = 4 for isoflurane

[‘iso’], n = 3 for ketamine/xylazine [‘ketamine’], error bars: s.e.m.). (B) Example data across states showing raw and filtered (50–70 Hz) OB signals. Raw data

from 1.8% isoflurane is scaled up by a factor 2 for visibility. The same scale is always used for gamma power. (C) Schematic of protocol. Mice were first

recorded in their home cage to establish the sleep/wake threshold. Then, under 5 levels of isoflurane anaesthesia, a baseline of 10 min activity was recorded,

after which mice received 2 V eye shock stimulations to evaluate reaction levels to noxious stimulation. At the end of the protocol (recovery), mice were

recorded until they regained full mobility. One wk later, mice were re-anaesthetised at the same 5 isoflurane concentrations, and after the induction period,

their righting reflex was scored. Finally, 1 wk later, mice were injected with a ketamine/xylazine cocktail and recorded until they regained full mobility. (D)

Mean OB gamma power normalised to sleep levels (1 = mean NREM gamma level) during baseline period and proportion of mice with righting reflex as a

function of isoflurane concentration (n = 4, error bars: s.e.m.). (E) Mean stimulus response to 2 V eye shock evaluated with head acceleration as a function of

OB gamma power normalised to sleep levels (1 = mean NREM gamma level) during baseline period. (F) Example of recovery session for one mouse. At time 0,

isoflurane delivery was stopped. The top panel shows OB spectrogram and the response to eye shock stimulation, the middle panel shows OB gamma power,

and the bottom panel shows the heart rate. Note the rise in gamma power and heart rate as the animal begins to respond to stimulation. (G) Stimulus reaction

throughout recovery session for all mice (each mouse is a different colour) as a function of log-scaled OB gamma power normalised to sleep (0 = mean NREM

gamma level). OB gamma is plotted with a log scale, as this gave the optimal correlation as evaluated in panel I. (H) Stimulus reaction throughout recovery

session for all mice (each mouse is a different colour) as a function of heart rate. Heart rate has been transformed to obtain the optimal correlation as evaluated

in I. (I) Pearson correlation coefficient for OB gamma and heart rate correlated with stimulus reaction as a function of lambda, the transformation parameter of

the Box-Cox transformation. This continuous transformation allows us to find the best monotonic transformation of data to improve the validity of the

Pearson correlation coefficient, which assumes linearity between the two variables, given that this relationship may be in fact nonlinear (see Materials and

methods for details). Note that OB gamma is systematically better correlated than heart rate. The peak correlation is used to choose the lambda coefficient,
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Discussion

Since its invention, EEG has been the tool of choice to attempt to monitor vigilance states

using brain activity. This endeavour has been most successful in identifying wake, sleep, and

the substages of sleep, and studying their microstructure has become an essential aspect of

understanding the brain in health and disease [27]. Therefore, sleep scoring is the essential

first step in any study of global brain states. Here we establish for the first time, to our knowl-

edge, a methodology for addressing this issue with brain signals alone. We found that gamma

oscillations in the OB allow us to continuously discriminate sleep from wake, substituting

muscular activity or body movements, which are required in all the other sleep scoring meth-

ods. They can also be used to transpose the evolution of brain states into a phase space in

which the fine dynamics of state transitions can be analysed. This methodology also captures

the modification of vigilance state induced by anaesthesia. We demonstrated that OB gamma

activity can predict and in fact anticipate the response to noxious stimulation and can there-

fore be used as a real-time tracker of anaesthetic depth. Altogether, this shows that OB activity

can be used to track vigilance states in real time in a wide range of situations with high accu-

racy without having to rely on muscular or other body-related measures.

There is a long history of the study of the link between activity in the olfactory system and

brain states, which has in particular focused on the correlation of OB oscillations and arousal

level. The earliest recordings made in the OB by Adrian identified the fast oscillations under

anaesthesia [28] but already noted an ‘awakening reaction’ as anaesthesia gradually lightened

[29]. He therefore suggested that the OB oscillations are damped by anaesthetic drugs and

increased by waking activity. Later, ‘arousal discharges’ (34–48 Hz) were identified in the cat

OB that were potentiated by attention and disappeared during sleep and anaesthesia [30,31].

These global changes in OB oscillatory profile depending on level of arousal have been

described and modelled as a hierarchy of attractors with increasing potential for fast oscillatory

activity ranging from anaesthesia to seizure [32]. More recent studies have confirmed these

changes in OB activity related to sleep states [17] and anaesthesia [33,34].

The novel sleep scoring method we propose relies on activity recorded in the HPC and the

OB only. Implantation of electrodes for recording LFP in these two areas is easy to achieve

because they both show robust oscillations in the theta and gamma ranges respectively. After

implantation, the method is fully automated and therefore removes the time-consuming steps

of manually scoring the data set in its entirety or in part to calibrate semiautomatic algorithms.

We have shown that this method for sleep scoring is robust to slight changes in implantation

site, across days, and between different animals. This robustness to implantation site may

seem surprising given the high spatial heterogeneity of gamma oscillations in the HPC [35]

and cortex [36]. However, in the OB, oscillations in the gamma range are highly coherent

across large areas, despite fast-varying phase shifts [37]. Finally, the method is applicable to

multiple strains of mice and after drug injection. It therefore allows easy comparison between

mice and throughout time and should enhance comparability of data sets from different

laboratories.

Beyond the technical ease of use, this method also provides a promising framework for the

study of global brain states. Using activity recorded in the brain and not muscle activity allows

us to track sleep/wake activity independently of movement, as we demonstrated with the

which is applied to transform data in G and H (n = 4, error bars: s.e.m.). (J) ROC curve for OB gamma and heart rate prediction of whether stimulus reaction is

classified as ‘sedated’ or ‘aroused’ according to threshold. The black dotted line indicates the curve expected by chance. (K) Area under the ROC curve for OB

gamma and heart rate (‘HR’). The black dotted line shows the expected chance level. The black line at 0.5 shows the expected chance level (Friedman test χ2(3)

= 4, p = 0.045; ��� p< 0.05). NREM, non-REM; OB, olfactory bulb; ROC, receiver operating characteristic.

https://doi.org/10.1371/journal.pbio.2005458.g009
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example of freezing, a period of tonic immobility linked with fear expression. This could pro-

vide a heretofore-lacking methodology to study phenomena such as REM without atonia

induced in lesion studies [38].

Finally, gamma activity in the OB is a variable with fast dynamics that allows us to study

fine timescale transitions not accessible to other, slower sleep-related oscillations such as delta

power. The mechanisms that control the transitions between sleep and wake have been exten-

sively studied [39], but how they relate to changes in more global physiological variables is an

open and essential question. The process of falling asleep has been described using beha-

vioural, physiological, and electrophysiological variables as a progressive sleep onset period in

humans [26]. After awakening, the prolonged deficits in performing certain tasks, named sleep

inertia [40], has been described in humans and in rats, and mice OFF periods were observed

up until 5 min after awakening [41]. All these studies demonstrate that transitions should not

be considered as points in time but instead as extended periods justifying our use of transition

zones.

We advocate constructing phase spaces with electrophysiological variables (OB gamma and

HPC theta/delta ratio) capable of tracking high-speed changes in the brain state. This phase

space remains stable in time and is reproducible between animals, which is a crucial step

towards characterising the dynamical evolution of sleep states. Tracking activity within this

phase space allows us to model changes in brain state with the rich repertoire of tools taken

from statistical physics. The efficiency of this approach is illustrated by its ability to capture the

deep asymmetry between falling asleep and waking up [42]. Indeed, falling asleep can be mod-

elled as a slower, diffusive process, whereas waking up corresponds to a faster, ballistic change.

This is consistent with the fine evolution of neuronal activity at transition times in brain stem

and hypothalamic nuclei responsible for the sleep/wake switch that show faster dynamics

upon awakening than falling asleep [43–46].

We also showed that OB activity in the beta range (10–20 Hz) can be used to identify REM

and NREM sleep with high reliability. The rare errors of discrimination concern particularly

short REM bouts. Given the strength of HPC theta in the rodent allowing for clear identifica-

tion of REM sleep, we still recommend recording in the HPC whenever possible. However, the

use of a single wire in the OB to discriminate sleep and wake (OB gamma) and REM and

NREM sleep (OB beta) could be a useful strategy when using bulky headstages, such as head-

mounted microscopes, that may block access to the HPC.

Although our main focus is on the ability of OB gamma to discriminate sleep from wake,

since this was an important issue in the field of sleep scoring, we also show that it can be used

to track anaesthetic depth in real time. Steady-state OB gamma power systematically decreased

as we induced deeper levels of anaesthesia by increasing isoflurane concentration and there-

fore was strongly correlated with two different measures of anaesthetic depth: the loss of right-

ing reflex and the response to eye shock stimulation. Moreover, OB gamma power also closely

tracked the changing level of arousal as mice recovered from anaesthesia. It could predict the

reaction level to a future stimulation with remarkable accuracy and systematically outper-

formed another common marker of anaesthesia level, heart rate. These results are particularly

striking, since, to date, we lack a clear marker to monitor depth of anaesthesia in surgical set-

tings [47,48], and in particular, the most commonly used indicator, the bispectral index (BIS),

fails when ketamine is administered [49]. The similarity of OB activity under isoflurane and

ketamine/xylazine anaesthesia therefore makes it a remarkably polyvalent marker to track

depth of anaesthesia.

Altogether, these observations raise the question as to why, compared with other areas, the

OB is so well suited to tracking global changes in brain state. We propose that the OB is ideally

situated to produce oscillatory activity that is exquisitely sensitive to brain state, since it
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receives massive inputs from most of the neuromodulator systems and notably those involved

in the control of vigilance: cholinergic [50,51], hypocretinergic/orexinergic [52], and norad-

renergic [53]. Moreover, receptors of these neuromodulatory systems are strongly expressed in

the OB [54,55]. In turn, the different neuromodulators have been shown to modulate gamma

oscillations [34,56–58]. More specifically, it is widely agreed upon that the mechanism for

gamma generation in the OB relies on the dendrodendritic interactions between mitral/tufted

cells and the local granule cells that provide recurrent and lateral inhibition [59–61]. The

strength of this inhibition has been shown to be modulated by global brain state via a choliner-

gic mechanism [62]. This pattern of a macroscopic physiological parameter serving to amplify

fluctuations in neuromodulatory tone is reminiscent of a recent method that has been pro-

posed to continuously track vigilance states by recording pupil diameter [63]. It was shown

that pupil diameter follows the activity of cholinergic and adrenergic activity in the cortex

[64]. Finally, the difference of OB beta power between REM and NREM strongly argues in

favour of OB activity providing a general readout of the global neuromodulatory state of the

brain.

It is possible that OB activity is not just an index of arousal but may actually take an active

part in its regulation. In seminal work, Arduini and Moruzzi studied acute cerveau isolé cats

and found that stimulation of the olfactory system by blowing air into the nostrils led to

arousal, contrary to visual stimulation [65]. These results did not depend on the use of odour

stimulations, which suggests that the role of the olfactory system in arousal goes beyond that of

the olfactory sensory modality per se. Moreover, perturbation of the olfactory system leads to

changes in sleep structure [66]. These observations have led to the proposal that the OB may

actively participate in a secondary arousal system [67,68] linked to limbic areas that comple-

ments the ascending reticular activating system [69].

Even without a direct influence on the regulation of vigilance states, OB gamma activity

could also have a functional role in regulating reactions to sensory stimuli during sleep. The

functional importance of OB gamma oscillations was first brought to light by the seminal work

of W. J. Freeman, in which analysis of the spatial spread of odour-induced gamma amplitude

revealed that these patterns changed with learning and were related to the behavioural mean-

ing of the odour [70,71]. Since, gamma oscillations in the olfactory system have also been

shown to be modified during learning [72], and their perturbation by pharmacological [73] or

genetic [74] tools interfere with odour processing. The importance of gamma oscillations in

sensory processing leads us to hypothesise that their suppression during sleep could provide a

mechanism for sensory gating, as has been suggested previously [75]. During sleep, cortical

responses to sensory stimulation are still observed [76–78], but they are not accompanied by

conscious experience of the stimuli or behavioural reactions. Olfaction is the only sensory sys-

tem in the mammalian brain that does not travel through the thalamic relay before reaching

the cortex. The thalamus is thought to play an important role in information gating during

sleep [79]. Therefore, alternative mechanisms must be at play within the olfactory system. A

global and continuous shift of the dynamical state of the olfactory system with arousal has

been suggested [32], as well as gating within the piriform cortex [80]. We suggest that direct

suppression of local gamma activity in the OB necessary for information processing may also

play a role.

The question of whether activity in the OB has a functional role in modifying sensory pro-

cessing during sleep or on sleep regulation itself would require further study. Nevertheless, the

results presented here show that recording OB oscillations is an attractive strategy for monitor-

ing a wide range of vigilance states in natural situations independently of motor confounds.

Our methodology provides the possibility of tracking levels of vigilance from wakefulness to

anaesthesia in real time and of sleep scoring independently of movement and could also
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provide a potential alternative to HPC theta for discriminating REM from NREM sleep. In

conclusion, OB gamma activity clearly opens an unprecedented window onto levels of

vigilance.

Materials and methods

Ethics statement

All behavioural experiments were performed in accordance with the official European guide-

lines for the care and use of laboratory animals (86/609/EEC) and in accordance with the Poli-

cies of the French Committee of Ethics (Decrees n˚ 87–848 and n˚ 2001–464). Animal housing

facility of the laboratory where experiments were made is fully accredited by the French Direc-

tion of Veterinary Services (B-75-05–24, 18 May 2010). Animal surgeries and experimenta-

tions were authorised by the French Direction of Veterinary Services for KB (14–43).

Subjects and surgery

A total of 15 C57Bl6 male mice (Mus musculus), 4 Gad2-IRES-Cre knock-in C57BL/6J Rj, 3

DBA/2Rj, and 2 C3H/HeNRj mice were used in this study. Mice were housed in an animal

facility (08:00–20:00 light), 1 per cage after surgery.

At 3–6 mo of age, mice were implanted with electrodes (tungsten wires) in the right OB

(AP +4, ML +0.5, DV −1.5) and in the right CA1 hippocampal layer (AP −2.2, ML +2.0, DV

−1.0). Six of these mice were also implanted with a hooked EMG wire in the right nuchal mus-

cle. Six mice were also implanted in the right prefrontal cortex (AP +2.1, ML +0.5, DV −0.5)

and parietal cortex (AP −1.7, ML +1.0, DV −0.8). One mouse was recorded with a 16-site lin-

ear probe (100 μm spacing, Neuronexus Tech, Ann Arbor, MI, United States). Four mice were

also equipped with ECG wires to monitor heart rate. Two highly flexible coiled wires were

sutured above and below the heart and then travelled under the skin to be fixed to the head-

stage and preamplified with the other recording wires. During recovery from surgery and dur-

ing all experiments, mice received food and water ad libitum. Recordings began 1 wk after

surgery.

Signals from all electrodes were recorded using an Intan Technologies amplifier chip

(RHD2216, sampling rate 20 KHz). LFPs were sampled and stored at 1,250 Hz. Analyses were

performed with custom-made Matlab programs, based on generic code that can be down-

loaded at http://www.battaglia.nl/computing/ and http://fmatoolbox.sourceforge.net/.

Fear conditioning

The protocol has been previously described [81]. Habituation and fear conditioning took place

in context A consisting of a square transparent plexiglass box in a black environment with a

shock grid floor and cleaned with ethanol (70%) before and after each session. Test sessions

were performed in context B consisting of cylindrical transparent plexiglass walls with a grey

plastic floor placed in a white environment and cleaned with acetic acid (1%) before and after

each session.

To score freezing behaviour, animals were tracked using a homemade automatic tracking

system that calculated the instantaneous position of the animal and the quantity of movement

defined as the pixelwise difference between two consecutive frames. The animals were consid-

ered to be freezing if the quantity of movement was below a manually set threshold for at least

2 s.

On day 1, mice were submitted to a habituation session in context A, in which they received

four presentations of the CS− and of the CS+ (total CS duration, 30 s; consisting of 50 ms pips
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at 0.9 Hz repeated 27 times, 2 ms rise and fall; pip frequency, 7.5 kHz or white noise, 80 dB

sound pressure level). Discriminative fear conditioning was performed on the same day by

pairing the CS+ with a US (1 s foot shock, 0.6 mA, 8 CS+ US pairings; intertrial intervals, 20–

180 s). The onset of the US coincided with the offset of the CS+. The CS− was presented after

each CS+ US association but was never reinforced (8 CS− presentations; intertrial intervals,

20–180 s). On day 2, conditioned mice were submitted to a test session in context B during

which they received 4 and 12 presentations of the CS− and CS+, respectively.

Anaesthesia experiments

For isoflurane experiments, anaesthesia was initiated by exposing mice to a mixture of 3% iso-

flurane and oxygen in an induction chamber (MSS international, IsoTec3). The mouse was

then maintained under constant isoflurane in oxygen at the desired concentration with only

the nose placed in a small mask. Whenever isoflurane level was changed, recordings or experi-

ments commenced at least 4 min later to allow stabilisation. Throughout the experiment, mice

were in contact with a warm pad.

For ketamine experiments, mice were injected with a xylazine (10 mg/kg) ketamine (100

mg/kg) mixture at the beginning of the experiment and then recorded continuously whilst in

contact with a warm pad.

Noxious stimuli were delivered using bilateral eyelid shock with implanted silver wires.

This allowed us to evaluate the response levels to a precisely timed and reproducible stimula-

tion, contrary to manual tail pinch, for example. We used 2 V stimulation in all analyses.

Righting reflex was measured by removing the mouse quickly from the induction box after

4 min of isoflurane delivery and placing it on its back on a flat surface. If the mouse righted

itself (4 paws on the tabletop) within 10 s, it was scored as having retained its righting reflex.

Histological analysis

After completion of the experiments, mice were deeply anaesthetised with ketamine/xylazine

solution (10%/1%). With the electrodes left in situ, the animals were perfused transcardially

with saline (approximately 50 ml), followed by approximately 50 ml of PFA (4 g/100 mL).

Brains were extracted and placed in PFA for postfixation for 24 h, transferred to PBS for at

least 48 h, and then cut into 50-μm-thick sections using a freezing microtome and mounted

and stained with hard set vectashield mounting medium with DAPI (Vectorlabs).

Bimodality quantification

Bimodality was quantified by fitting a mixture of two normal distributions and evaluating

either Ashman’s D [82], D ¼
ffiffiffi
2
p

jm1 � m2 j

js1þs2 j
where D > 2 is required for a clean separation or the

overlap of the two distributions.

Automatic sleep scoring algorithm

LFP recordings from the OB were filtered in the gamma (50–70 Hz) band and instantaneous

amplitude derived from the Hilbert Transform. This time series was then smoothed using a 3 s

sliding window (Fig 1D), and the distribution of values could be fit with a mixture of two

Gaussian distributions. To maximise the probability of correct classification, the threshold

between sleep and wake should be defined as the intersection of these two distributions. This

value, however, depends on the amplitude of the two distributions and therefore on the ratio

of sleep and wake recorded. To establish a threshold independent of this ratio, the two distri-

butions are normalised to each have area one (Fig 2Bi, right), and the intersection of these
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distributions is used. Values inferior to this value are classified as sleep and those superior as

wake. Periods of sleep and wake shorter than 3 s were merged into the surrounding periods to

avoid artificially short epochs. Then, LFP recordings from the HPC restricted to the sleep peri-

ods defined above were filtered in the theta (5–10 Hz) and delta (2–5 Hz) bands and instanta-

neous amplitude derived from the Hilbert transform. The ratio of the theta and delta powers

was smoothed using a 2 s sliding window, and the distribution of values was fit by a single nor-

mal distribution that accounted for the NREM data points (low theta/delta ratio). The REM/

NREM threshold was placed at the value of theta/delta ratio, above which the residuals system-

atically explained more than 50% of the actual data (Fig 2Bii). Periods of NREM and REM

shorter than 3 s were merged into the surrounding periods to avoid artificially short epochs.

Automatic EMG scoring

Automatic EMG scoring was performed in a similar fashion to automatic OB gamma power

scoring. EMG data was filtered in the 50–300 Hz band and instantaneous amplitude derived

from the Hilbert transform. This time series was then smoothed using a 2 s sliding window,

and the distribution of values could be fit with a mixture of two normal distributions. The

intersection of these two distributions, once normalised, provided the sleep–wake threshold.

The procedure for identifying REM/NREM sleep is identical to that used in the OB-based

sleep scoring algorithm as described above.

Manual sleep scoring

Automatic scoring was performed independently by two experimenters using a homemade

Matlab GUI. The scorers were provided with EMG (raw, filtered in the 50–300 Hz band and

smoothed instantaneous amplitude) and HPC (raw, low-frequency spectrogram and

smoothed instantaneous theta-to-delta ratio). Scorers were presented with 3 s windows of data

that they had to identify either as NREM, REM, or Wake. When two states were identified in

the same window, it was scored as the state occupying more than 50% of the epoch.

Evaluation of overlap of scoring methods

The percentage agreement between methods is calculated for each state and shown in the rele-

vant figures. Given that average agreement can be potentially misleading, we also used the con-

fusion matrix to calculate Cohen’s κ [83], defined as the following:

K ¼
Po � Pe

1 � Pe

with

Po ¼
P3

i¼1
pii, where pii is the probability that both methods classify data as the identical

state i (REM, NREM, wake).

Pe ¼
P3

i¼1
p1i � p2i where p1i and p2i are the independent probabilities that methods 1 and

2 will classify data as state i.

We applied the same criteria as used in [10] to evaluate the quality of the agreement

(Table 2).

Phase space analysis

Step 1: generate stay probability map

• For each time step in the data set, calculate the time to the next transition.
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• Binarise this data into ‘stay’ (1) and ‘leave’ (0). If the duration is above the fixed ‘stay period’

(3 s, in our case), then this time point is considered as remaining within its state and is given

the value 1; otherwise, it is given the value 0.

• Bin each time step according to its position in the phase space, i.e., its instantaneous OB

gamma power and HPC theta/delta ratio.

• For each coordinate of the phase space, calculate the average of the binarised stay/leave val-

ues; this yields the stay probability map.

Step 2: identify transition zones

• Along the axis of interest (OB gamma power for sleep/wake and HPC theta/delta ratio for

REM/NREM), calculate the average stay probability.

• Identify the local minima, which correspond the centre of the transition zone.

• Identify the edges of the transition zone as a percentage of the minima (50%, in our case).

Step 3: identify true and aborted transitions (example of sleep to wake)

• Identify all times at which OB gamma power crosses the limit between the sleep state and the

transition zone. If the next crossing of the transition zone limits is to the wake state, this is a

‘true transition’; if the next crossing is a return to the sleep state, this is an ‘aborted

transition’.

Step 4: diffusion analysis

• Identify all true transitions

• Align OB gamma power of these transitions so that time 0 corresponds to the time at which

the limit of the transition zone is crossed. This yields a set of trajectories across the transition

zone. We suggest retaining 4 s of data after the crossing. Subtract the gamma power at time 0

and square the result to obtain the mean square displacement in time for each trajectory.

• Average the mean square displacement across all trajectories.

• Fit the resulting curve using the equation MSD(t) = 2Dtα.

• D and α can be interpreted as explained in the text.

Box-Cox transformation

When comparing the strength of two correlations, linearity between the two is assumed, which

is not necessarily true of biological data. One option is to use rank statistics such as the Spear-

man correlation coefficient; however, this method ignores the metric distance between values

and therefore can stretch/compress values, depending on local density of points. We therefore

Table 2.

Quality of agreement Cohen’s κ

Almost perfect >0.81

Substantial 0.8–0.61

Moderate 0.6–0.41

Fair 0.4–0.21

Slight 0.2–0

Poor <0

https://doi.org/10.1371/journal.pbio.2005458.t002
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preferred to transform data using the Box-Cox transformation. This is in fact a family of trans-

formations that vary continuously depending on the variable λ and covers a large ensemble of

transformations.

T x; lð Þ ¼
xl � 1

l
; if l 6¼ 0

Tðx; lÞ ¼ logðxÞ; if l ¼ 0

Computing the Pearson correlation coefficient between the transformed variable and the

parameter of interest thus allows us to find the value of λ, for which the correlation coefficient

is maximal. This allows a fair comparison of the strength of correlation of two variables by tak-

ing into account their respective nonlinearities.

ROC curves

To quantify the relationship between stimulus reactivity and OB gamma or heart rate, we used

the ROC. We first classified stimulus responses into ‘sedated’ (i.e., below threshold) and

‘aroused’ (i.e., above threshold) based on the clearly bimodal distribution of response levels.

The ROC analysis quantifies the ability of an ideal observer to predict whether the animal’s

response was ‘sedated’ or aroused based purely on the preceding OB gamma power.

This analysis presents the advantage over other evaluations of classifier accuracy of being

insensitive to class distribution, i.e., the respective number of ‘sedated’ or ‘aroused’ stimula-

tions, in our case, which can often be strongly skewed depending on the behaviour of the

animal.

In our case, the observer discriminates the two response levels by placing a threshold (z) on

the OB gamma power (γ) during the 3 s prior to stimulation below which the corresponding

stimulation is classified as ‘sedated’ and above which it is classified as ‘aroused’. The perfor-

mance of this procedure can be fully determined by two parameters:

aðzÞ ¼ Pðg > ZjsedatedÞ or false positive rate

bðzÞ ¼ Pðg > ZjarousedÞ or true positive rate

Plotting α and β for increasing values of z yields the ROC curve, and the area under this

curve (ROC value) represents the probability that an ideal observer can discriminate between

the two stimulus response levels based on preceding OB gamma power: it is equal to 0.5 if the

spectral power carries no information about the behaviour and equals 1 if it is perfectly

predictive.

Supporting information

S1 Fig. Stability of OB gamma power thresholds up to 2 mo. (A) Evolution of scoring over-

lap between sleep and wake states defined using thresholds defined on days 0 or on the day of

recording as a function of time. (Error bars are s.e.m.: n = 14 mice with 3–15 recording ses-

sions per mouse). (B) OB gamma power distributions and corresponding threshold from the

same mouse over 1 mo (colour coded from first to last day). OB, olfactory bulb.

(TIF)

S2 Fig. Application of OB gamma based sleep scoring to fluoxetine experiment. (A) Per-

centage of REM sleep is decreased after fluoxetine administration (15 mg/kg) compared to

saline using novel OB-based sleep scoring method, as expected from previous results using
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movement-based scoring (n = 4, Friedman test χ2(3) = 4, p = 0.045). (B C) Overlap of EMG-

based scoring with OB gamma scoring is equally high after saline (B) and fluoxetine (C) injec-

tion. Each column gives the percent of time from each state identified using EMG scoring (x

label) that is classified as NREM (blue), REM (red), and wake (grey), respectively, using OB

gamma scoring (n = 4). (D) Phase space of brain states showing the distribution of NREM

(blue), REM (red), and wake (grey) after saline and fluoxetine administration. Corresponding

histograms are shown along the relevant axis with automatically determined thresholds in red.

(E) Heat map of point density averaged over all phase spaces for all mice (n = 4). Circles show

the 95% boundaries of NREM, REM, and wake for each mouse either after saline (light col-

ours) or fluoxetine (dark colours) injection. Histograms from all mice are shown along the rel-

evant axis with automatically determined thresholds (�). For comparison, the data from each

mouse are normalised by dividing the instantaneous power by the average NREM power to

align all distributions to the peak of distribution of NREM activity. EMG, electromyography;

NREM, non-REM; OB, olfactory bulb; REM, rapid eye movement.

(TIF)

S3 Fig. OB gamma–based sleep scoring validation in four different mouse strains. (A)

High-frequency spectra from C57Bl/6J Rj (n = 10), Gad2-IRES-Cre knock-in C57BL/6J Rj

(n = 4), C3H/HeNRj (n = 2), and DBA/2Rj (n = 3) mice during wake, NREM, and REM sleep

scored using movement-based scoring. The 50–70 Hz gamma band is shown in pink. (B) Dif-

ference between wake and sleep spectra in the same four mouse lines. Note that all four lines

display a clear peak in the gamma activity band (pink bar); this power peaks at a slightly lower

frequency in C3H and DBA mice. The insets show the same sleep/wake difference of spectra z-

scored and compared for each of the three lines to the C57Bl/6J Rj line. (Error bars are s.e.m.).

(C) Overlap of EMG-based scoring with OB gamma scoring. Each column gives the percent-

age of time from each state identified using EMG scoring (x label) that is classified as NREM

(blue), REM (red), and wake (grey), respectively, using OB gamma scoring. (D) Example data

set for all three mouse strains showing HPC low-frequency spectrogram with theta/delta

power ratio below and OB high-frequency spectrogram with gamma power below. The hypno-

gram is shown at the bottom. The relevant frequency bands are outlined by a dotted grey line.

(E) Phase space of brain states showing the distribution of NREM (blue), REM (red), and wake

(grey) for all three mouse strains. Corresponding histograms are shown along the relevant

axis, with automatically determined thresholds in red. EMG, electromyography; HPC, hippo-

campus; NREM, non-REM; OB, olfactory bulb; REM, rapid eye movement.

(TIF)

S4 Fig. Piriform cortex gamma tracks sleep and wake. (A) Phase space of brain states show-

ing the distribution of NREM (blue), REM (red), and wake (grey) from an example mouse.

Corresponding histograms are shown along the relevant axis, with automatically determined

thresholds in red. (B) Overlap of EMG scoring with piriform cortex gamma scoring. Each col-

umn gives the percent of time from each state identified using manual scoring (x label) that is

classified as NREM (blue), REM (red), and wake (grey), respectively, using piriform cortex

gamma scoring (n = 2). EMG, electromyography; NREM, non-REM, REM, rapid eye move-

ment.

(TIF)

S5 Fig. Dependency of gamma power in HPC on recording layer. (A) High-frequency spec-

tra from HPC as in Fig 1B but restricted to pyramidal layer recordings only. This shows the

increase in gamma activity during wake and REM states relative to NREM state. (B) Activity

recorded with a silicon probe in the HPC triggered on the trough of theta oscillation (top) and
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sharp wave ripple events (bottom). Averaged event-triggered LFPs and the derived CSDs are

shown, illustrating the expected sink/source pairs. (C) High-frequency spectra from same

HPC recording layers as shown in B. Note that the gamma power difference between REM/

wake and NREM is strongest in the pyramidal layer and changes with recording depth. CSD,

current source density; HPC, hippocampus; LFP, local field potential; NREM, non-REM;

REM, rapid eye movement.

(TIFF)

S1 Movie. Example data from sleep session. Left: Phase space of brain states showing the dis-

tribution of NREM (blue), REM (red), and wake (grey). The moving line shows the position of

current data points. Right: Top shows data from ECG showing thoracic muscular activity

(ECG), PFC LFP and EEG (dark), HPC, and OB recordings during period shown by black line

on spectrograms of OB and HPC at bottom. PFC amplitude has been increased by 25% to

increase visibility. Superimposed on spectrograms are the OB gamma power and HPC theta/

delta ratio used for scoring with the relevant thresholds shown in red. EEG, electroencephalog-

raphy; HPC, hippocampus; LFP, local field potential; NREM, non-REM; OB, olfactory bulb;

PFC, prefrontal cortex; REM, rapid eye movement.
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