
HAL Id: hal-02412446
https://hal.science/hal-02412446v1

Submitted on 3 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building Distributed Chronicles for Fault Diagnostic in
Distributed Systems using Continuous Query Language

(CQL)
Juan Vizcarrondo, Jose Aguilar, Ernesto Expósito, Audine Subias

To cite this version:
Juan Vizcarrondo, Jose Aguilar, Ernesto Expósito, Audine Subias. Building Distributed Chronicles
for Fault Diagnostic in Distributed Systems using Continuous Query Language (CQL). International
Journal of Engineering Research and Development, 2015, 3 (1), pp.131-144. �hal-02412446�

https://hal.science/hal-02412446v1
https://hal.archives-ouvertes.fr


© 2014 IJEDR | Volume 3, Issue 1 | ISSN: 2321-9939 

IJEDR1501028 International Journal of Engineering Development and Research (www.ijedr.org) 131 

 

Building Distributed Chronicles for Fault Diagnostic 

in Distributed Systems using Continuous Query 

Language (CQL) 

1
 Vizcarrondo Juan, 

2
 Aguilar José, 

3
Exposito Ernesto, 

3
Subias Audine 

1
Centro Nacional de Desarrollo e Investigación en Tecnologías Libres (CENDITEL),  

1
Mérida, Venezuela 

2
CEMISID, Dpto. de Computación, Facultad de Ingeniería, Universidad de Los Andes,  

2
Mérida, Venezuela 

3
CNRS, LAAS, 7, avenue du Colonel Roche, F-31400,  

3
Toulouse, France 

________________________________________________________________________________________________________ 

 

Abstract - The chronicles paradigm has been used to determine fault in dynamic systems, allows modeling the temporal 

relationships between observable events and describing the patterns of behavior of the system. The mechanisms used until 

now usually use semi-centralized approaches, which consist of a central component, that is responsible for making the 

final inference about the fault diagnosis of the system based on the information collected from the local diagnosers. This 

model has problems when is implemented for monitoring very large systems, due to the bottleneck representing the 

central component. In this paper we define a recognition mechanism for a recognition fully distributed of chronicle using 

Continuous Query Language (CQL). This approach is tested in a classical Web Service Application. 

 

Index Terms - Distributed Pattern Recognition, Temporal patterns recognition, Chronicles, Distributed Fault Diagnostic, 

Web service composition, fault tolerance 

________________________________________________________________________________________________________ 

I. INTRODUCTION 

The chronicles have been used like diagnosis mechanisms for recognizing fault situations [2]. Dousson shown in earlier works 

on chronicles as a set of patterns, each characterized by observable events and temporal constraints among themselves and with 

respect to the context, represents an interpretation of what is happening in the dynamics of the system under study at a given time 

[5]. Thus, each chronicle represents a situation or scenario of normal or abnormal behavior of the system.  

Some studies have used the formalism of chronicles for fault diagnosis [1, 2, 3, 4], but little has been carried out in a distributed 

context. The closest approach to our proposal provides a mechanism for semi-centralized recognition [1]. In this work, they propose 

an architecture composed of local diagnosers that monitor a set of events in its scope, and in case of any problem, it invokes a 

global diagnoser, who is in charge of making the recognition of the Chronicle (recognizes the failure). A tool for chronicles 

recognizing, called CRS (Chronicle Recognition System), has been developed by Dousson [11, 12]. Additionally, another tool, 

called Intelligent Event Processor (IEP), has been developed as a JBI1 service engine based on the language CQL [17] coupled as a 

module into openESB2, used for a events complex processing, allowing great power of inference about the detection of events. 

In addition, SOA (Service Oriented Architecture) is a software development model in which an application is broken down into 

small units, logical or functional, called services. SOA allows the deployment of distributed applications very flexible, with loose 

coupling among software components, which operate in heterogeneous distributed environments [20], [21]. The services are 

inherently dynamics and cannot be assumed to be always stables [19], because the natural evolution of a service (changes in its 

interfaces, misbehavior during its operation, among others) can alter its results. Additionally, in the case of service composition the 

failure of a single service leads to error propagation in the others services involved, and therefore, the failure of the system. Such 

failures often cannot be detected and corrected locally (single service), thus it is necessary to develop architectures for enable 

diagnosis and correction of faults, both at individual (service) as global (composition) levels.  

In previous work, we proposed a distributed architecture for faults diagnosis in the services composition, in which the faults 

diagnosis is performed through the interaction of diagnosers present in each service [10]. Similarly, repair strategies are developed 

through consensus among distributed repair services. This paper present our  formalism of distributed chronicles previously 

developed [23], as mechanism for modeling distributed failure patterns, and particularly, its implementation using CQL and the IEP 

component, for the recognition  distributed of a distributed chronicle.  

 

                                                           

1 Java Business Integration (JBI) is approach developed under the Java Community Process (JCP) to implement SOA 

2 OpenESB is a Java-based open source enterprise service bus, http://www.open-esb.net/ 



© 2014 IJEDR | Volume 3, Issue 1 | ISSN: 2321-9939 

IJEDR1501028 International Journal of Engineering Development and Research (www.ijedr.org) 132 

 

II. RELATE WORKS 

Chronicles have been used to determine the faults present in the system [1, 2, 3, 4], commonly using a centralized or global 

diagnoser. On the other hand, few studies have proposed a distributed scheme of fault diagnosis using chronicles, in which local 

diagnosers are assigned to different components of the system, and synchronized to obtain a global diagnosis [6, 9]. In particular, 

[6] proposes a distributed verification of constraints using local and global events, which is enhanced by introducing delay between 

the communications present in the different diagnosers. Additionally, [5] studied the chronicles using petri nets, enriching the 

chronicles with pre and post information about event conditions. Also, [9] propose another mechanism for distributed failure 

diagnosis using chronicles, for which the chronicles are decomposed into many sub-chronicles as components are in the system, 

and observations are communicated between diagnosers, to thereby obtain the necessary information that is not available locally. 

The recognition system allows, on one level, recognizing each sub-chronicle, and the result is communicated to a global diagnoser 

to build the global diagnosis based on a story that contains the diagnosis of the union of the subchronicles that compose the system 

under study.  

Another chronicle approach used in service composition is presented in [1]. This work has already been discussed above and 

basically proposes a decentralized architecture for fault diagnosis in composition services using chronicles. This architecture is 

comprised of two levels, in the first level local diagnosers are placed for each service that is part of the composition, which 

communicates with an global diagnoser (central) for the diagnosis of the entire composition. The global diagnoser is responsible for 

coordinating local diagnosers, using the message exchange to find the service and the activity responsible for the failure. In [14] 

propose a fully distributed architecture among local diagnosers, each diagnoser sends the received events to neighboring 

diagnosers, to enable the recognition of the global chronicle.  

A tool for chronicles recognizing, called CRS (Chronicle Recognition System), has been developed by Dousson [11, 12]. It is 

responsible for analyzing the flow of events and recognizing, in real time, any pattern matching with a situation described by a 

chronicle. When a new event is logged in the system, new instances of chronicles are generated in the set of hypotheses. CarDeCRS 

(chronicle-based distributed diagnosis platform) is an extension of CRS, and allows semi-distributed diagnosis of chronicles [9]. 

Both tools CRS and CarDeCRS use the CRS language, which does not allow mathematical operators in the constraints of 

atemporal variables [18], and its implementation as a component of an SOA platform has not yet been developed, reducing its 

portability.  

Furthermore, CQL is a declarative language used to perform queries on flow streams over long periods. Its syntax is very 

similar to SQL language, allowing great power of inference about events received, by having a large number of operators own of 

the SQL language as selection, aggregation, joining, grouping and other operators. Intelligent Event Processor (IEP) is an approach 

for Complex Event Processing (CEP) based on the Continuous Query Language (CQL) [17], whose implementation is 

automatically performed as SOA component-based. 

Recently, in [10] we proposed reflexive middleware architecture for faults management in services composition, in which each 

service is overseen by a Local diagnoser using chronicles. To complete the proposal, this paper proposes the fault diagnosis system 

in web service composition, based on a chronicles recognition mechanism fully distributed using the Continuous Query Language, 

whose implementation is carried out in a SOA environment. 

III. OUR EXTENSION TO THE PARADIGM OF CHRONICLES: DISTRIBUTED  CHRONICLES 

A chronicle is a set of events with time constraints between them, which represents an interpretation of what is happening in the 

dynamics of the system under study at a given time [11]. Each chronicle represents a normal or abnormal situation or scenario of 

the system, which can be seen as a pattern of behavior of the system in this context. It is composed of a group of observable events, 

with temporal restrictions between them. A chronicle could generate new events and actions at the time of recognition of its 

occurrence, which could be used as input for other chronicles (it is a process of inference between chronicles [1]). Thus, in [13] 

defines a chronicle C as a "pair (E, T), where E is the set of events and T a set of constraints between their times of occurrence. 

When their variables and times of occurrence are instantiated is called an instance of the chronicle". 

Thus, the representation of a chronicle is carried out by specifying [14]:  

 A set of time points. 

 A set of constraints between time points. 

 A set of atemporal propositions representing activities that occur in the chronicle. 

 A set of Reifying predicates representing the context of occurrence of the atemporal propositions. 

 A set of external actions to execute when the chronicle is recognized. 

Then, a chronicle model can be written as: 

Chronicle Model { 

  Events{ 

    event(e1, T1), event(e2, T2), event(e3, T3) 

  } 

  Constrains{ 

    T2-T1 < C1 

    T3-T2 < C2 

  } 

  When recognized{ 

    action1 

    action2 



© 2014 IJEDR | Volume 3, Issue 1 | ISSN: 2321-9939 

IJEDR1501028 International Journal of Engineering Development and Research (www.ijedr.org) 133 

 

  } 

} 

Where: 

[1] ei represents  the set of atemporal propositions representing activities (events) in the chronicle. 

[2] Ti is the time points of occurrence of the events. 

[3] Constrains: they are the set of constraints between Ti. 

[4] Ci they are constants representing the difference among the time points of occurrence of two events. 

[5] Actions: they are the set of actions to execute when the chronicle is recognized. 

 

Because the implementation of chronicles using centralized mechanisms requires a large number of components, it is costly. 

Therefore, the uses of distributed recognition mechanisms are suitable to achieve the diagnosis of failures in large systems. In the 

next section, we present our extension to the paradigm of Chronicles. 

Definition of distributed  chronicles 

To begin to define our extension, it is essential to clarify that the detection of distributed chronicles is carried out by detecting 

a set of events E={E1, …, E2, ...., Ep}, distributed among the different n processes of the system  [6]. In general, such events can 

be grouped into n sub-chronicles distributed. The recognition of the n sub-chronicles results in the recognition of a full chronicle. 

So, we can say that:  

Definition 1: "A chronicle can be decomposed into n-sub-chronicles, in which each sub-chronicle SCi is assigned to a 

site/process Pi of the system under study, and describes a sub-set of events Eaci, with Taci temporal restrictions, that must occur 

and respect in that site i in order to recognize the chronicle". 

C(E,T) = UNIONi=1, n(SCi(Eaci, Taci ))    

where,  

 

 Eaci and Taci correspond to a set of events and temporal restrictions of the chronicle assigned to each component i, where 

Eaci ={Ek,,..., El}, Taci ={Tk,,..., Tl} and  Ek, …, El E,  Tk , …, Tl  T, and these events Ek,, …, El  occur in site i}. 

  UNION is a predicate defined by the union of the set of events  ( U
i=1

n

Eaci ) and of the set of temporal constraints 

( U
i=1

n

Taci ) distributed in the n sub-chronicles.  

Definition 2: because a chronicle C can be decomposed into n sub-chronicles (SC), the recognition of the global chronicle can be 

carried out in a sub-chronicle SCi, recognizing its events (Eaci, Taci), with the union of the partial recognition of the other sub-

chronicles (SCj ∀  j=1,n | j≠i) of the other events (in this case, the other sub-chronicles must send it a message to inform it the 

recognition of their events). In this way. the sub-chronicle SCi  recognizes the chronicle C(E, T): 

 

C(E, T) = {(Eaci, Taci), UNIONj=1, n | j ≠ i(SCj(Eacj, Tacj))}     (6) 

 

Particularly, because a chronicle is decomposed into n sub-chronicles, it is necessary to extend the representation of sub-

chronicles to correlate the events recognized between different sub-chronicles, and be able to recognize the global chronicle. For 

this, we extend the formalism of chronicles by adding several aspects to manage the synchronization process between the sub-

chronicles, as follows (see Fig 1): 

 
Figure 1. Example of chronicle decomposed in sub-chronicles 



© 2014 IJEDR | Volume 3, Issue 1 | ISSN: 2321-9939 

IJEDR1501028 International Journal of Engineering Development and Research (www.ijedr.org) 134 

 

Definition 3 Variables State: It shows if the value of a variable of an event in the chronicle is normal (¬Err) or abnormal (Err). 

Usually, we can denote it using a Boolean value (0 and 1), but the abnormal state can be expanded to enrich the classification of 

this behavior. 

 

Definition 4 Binding Events (BE): Are events from sub-chronicles, to connect them to other sub-chronicles, and thus to 

represent the communication between sub-chronicles. A binding event BEj is instanced when a neighbor sub-chronicle is 

recognized and then is propagated to the other sub-chronicles. Thus, the recognition (output event) of a sub-chronicle SCi can be 

linked to the BEi events belonging to a sub-chronicle SCj   

 

Definition 5: we define a Distributed Chronicle as "a classical chronicle C decomposed into a set of sub-chronicles SCi, which are 

linked together via Binding Events". 

Distributed Chronicles Recognition 

The recognition process of distributed chronicles must be fully distributed. For this, it is placed a recognition system in each 

component of the system, which will be responsible to recognize the sub-chronicle in this place. As mentioned above, each sub-

chronicle is linked to other events through binding events, which will allow to the local recognition system infers information 

from their neighboring components. Using this information, the recognition system can recognize local sub-chronicles, generate 

events to neighboring sites, and in general, spread the inferred. The inclusion of binding events allows each site to have a global 

vision of the entire system.   

The architecture of each site is shown in Fig. 2, and consists of a local chronicle recognition module, which receives events 

from the local monitor, and events generated by other neighboring sites (BE). For example, we see in Figure 2 as the site 2, in a 

given time, receives events from the monitor 2, and those generated by the sub-chronicles at sites 3 (BE3) and 1 (BE1). 

 

 
Figure 2. Distributed CRS  

 

The Chronicle Model of the  Fig. 2 can be written as: 

 

 

 



© 2014 IJEDR | Volume 3, Issue 1 | ISSN: 2321-9939 

IJEDR1501028 International Journal of Engineering Development and Research (www.ijedr.org) 135 

 

 

Chronicle Subchronicle 1 { 

  Events{ 

    event(E1, T1), event(E2, T2), 

event(E10, T10), event(E11, T11) 

  } 

  Constrains{ 

    T2-T1 ≤ C1 

    T10-T2 ≤ C2 

    T11-T10 ≤ C3 

  } 

  When recognized{ 

    Emit event(BESC1,TSC1) to   

   Diagnoser 2 
    

  } 

} 

Chronicle Subchronicle 2 { 

  Events{ 

    event(E3, T3), event(E4, T4), 

event(E5, T5), event(BESC3, TSC3), 

event(E9, T9), event(BESC1, TSC1) 

  } 

  Constrains{ 

    T4-T3 ≤ C4 

    T5-T4 ≤ C5 

    TSC3-T5 ≤ C6 

    T9 -TSC3≤ C7 

    TSC1-T9 ≤ C8 

  } 

  When recognized{ 

    Create log(Fault 1) 
   } 

} 

Chronicle Subchronicle 3 { 

  Events{ 

    event(E6, T6),event(E7, T7), event(E8, 

T8) 

  } 

  Constrains{ 

    T7-T6 ≤ C9 

    T8-T7 ≤ C10 

  } 

  When recognized{ 

    Emit event(BESC3,TSC3) to   

    Diagnoser 2 
       } 

} 

Figure 3. Chronicle Model example 

Representation of Distributed Chronicles using CQL 

CQL is a declarative language for manage continuous queries in a flow streams
3
. Syntactically, CQL is very similar to the 

SELECT statement of SQL, but queries execution are different from conventional database queries in SQL, where queries are 

executed on demand and run until all requested data is completed. Conversely, in CQL queries are continuous on streams running 

indefinitely (infinite stream of tuples), or until they are terminated.  

The CQL syntax contains many operators found in SQL as projection, selection, aggregation, joining, grouping, etc., but CQL has 

other operators to convert streams in relations
4
 [15, 16]:  

 Stream to Relation Operators: Are based on the concept of a sliding window over a stream. These are divided into: 

o Time-based: converts a stream to a relation based on a specified period of time, EG: Event 1 [Range 30 

Seconds].  

o Tuple-based: converts a stream to a relation based on a specified number of events, EG: Event 1 [Rows 3].  

o Attribute based: converts a stream to a relation based on a specified attribute and a size that defines the range 

of values for the attribute, Eg: Event 1 [Partition By Status = TRUE] . 

o Partitioned: convert a stream to a relation based on a specified attribute and a specified number of events, EG: 

Event 1 [Partition By Status = TRUE Rows 2] . 

 Relation-to-Relation Operator: maps semantic relations of temporal variables, using similar queries used in SQL 

statements:  

SELECT event1 .id  

FROM event1 [Range 30 Seconds]  

WHERE event1.id > 10  

 Relation to Stream Operators: Are used when is required convert query relations to stream.:  

◦ ISTREAM: converts to stream a relation that is at time T but was not at time T-1.  

◦ DSTREAM: converts to stream a relation that was at time T-1 but was not at time T.  

◦ RSTREAM: converts to stream a relation that is at time T.  

Particularly, reified temporal logic can be used on the representation of chronicles, allowing propositional terms with temporal 

objects (reifying predicates). The Reifying predicates used in chronicles are described in [14]. Below are presented the necessary 

structure to represent the reifying predicates used in chronicles in CQL language: 

Table 1. Reifying predicates in CQL language. 

Temporal Predicate of the 

Chronicles 

Description Temporal Predicate of the 

Chronicles in CQL 

Query CQL description 

hold(P : v, (t1 , t2 ))  The domain attribute P must keep 

the value y on the interval [t1 , t2]. 
SELECT  
  ISTREAM('newevent')  

FROM  
  Event0[t2 - t1], 

  Event1[now]  

WHERE  
  Event0.P = 'v' AND  

  NOT(Event0.P <> 'v') AND 

  Event1.P = 'v' 

To sure that the attribute P keeps the 

value v on the interval [t1 , t2], the 

attribute of the incoming stream 
Event1 (time = NOW) must have the 

value v. Additionally, at least one 

previous value of the attribute of the 
relation Event0(time = [t2 – t1] has 

been y. Note that this guarantees the 

interval keeps previous value of 

                                                           

3 Streams are a series of time stamped events that have the same schema. 

4 Relations are collection of events that match a condition at a point in time. 



© 2014 IJEDR | Volume 3, Issue 1 | ISSN: 2321-9939 

IJEDR1501028 International Journal of Engineering Development and Research (www.ijedr.org) 136 

 

Event0 at time NOW - t2 + t1 equal 

to v. 

event(P : (v1 , v2 ), t) The attribute P changes its value 

from v1 to v2 at t.  

SELECT  

  ISTREAM('newevent') FROM 

  Event0[∆T], 

  Event1[NOW]  

WHERE 

  Event0.P = 'v1' AND 

  NOT(Event0.P = 'v2') 

  AND Event1.P = 'v2' 

The current stream Event1 has 

attribute P (time = NOW) as value 
v2. Additionally there is at least one 

relation with the attribute P equal to 

v1 at time ∆T (∆T has a value which 
sures that the attribute P can have the 

value v1. 

event(P, t)  Message P occurs at t. SELECT  
  ISTREAM('newevent')  

FROM 

  event[NOW] 

WHERE 

  event.msg = 'P' 

The current stream Event has 

Message P at time NOW. 

noevent(P, (t1 , t2 )) The chronicle would not be 

recognized if any change of the 
value of the domain attribute P 

occurs between t1 and t2. 

SELECT 

  ISTREAM('newevent')  

FROM 

  Event0[t2 - t1], 

  Event1[NOW]   

WHERE 

  NOT (event0.msg = 'P') AND 

  NOT (event1.msg = 'P') 

The current stream Event has not  

Message P at time NOW and do not 
exist previous relation with Message 

P from time: NOW - t2 + t1. 

occurs((n1 , n2 ), P, (t1 , t2 ))  The event that matches the pattern P 

occurred exactly N times between 
the two time points t1 and t2 . The 

value ∞ can be used for n2.  

SELECT  

  ISTREAM('newevent')  

FROM  

  event[NOW] 

WHERE 

  event.msg = 'P' AND 

  (SELECT 

     count(event) 

   FROM 

     event[t2 - t1]   

   WHERE 
     event.msg = 'P' 

  ) >= n1 - 1 AND 

  (SELECT 

     count(event) 

   FROM 

     event[t2 - t1] 

   WHERE 

     event.msg = 'P' 

  ) <= n2 - 1 

The current stream Event has 

Message P at time NOW and  
occurred a number N of time 

between n1 - 1 and n2 - 1 at time  t2 

- t1. 

Then, a chronicle model can be written in CQL using Relation-to-Stream Operators as: 

SELECT  ISTREAM(e3.id, e3.time, 'Situations of interest') 

FROM e1 [Range C1 Seconds], e2 [Range C2 Seconds], e3 [now] 

WHERE Constrains 

 

Where: 

 SELECT defines the outcome of a recognized chronicle (When is recognized), generating with this a relation that can 

be used by another chronicle or component system 

◦ ISTREAM describes the content of the relation generated by the chronicle, which may have a mixture of different 

attributes of the relations and streams present in chronicle. In this case the operator ISTREAM is used, but could be 

used any other. Additionally, id and time attributes are used in the generation of the stream:  

▪ ei.id represents the identifier events in the chronicle. 

▪ ei.time is the time points of occurrence of the events. 

▪ The last attribute is the assignment of the name of the event that is being generated. In this case is established a 

generic name called 'Situations of interest”. 

 FROM represents the set of streams and relations that are used in the chronicles to extract the events. This section has all 

events that are part of a chronicle, expressed as streams and relations: 

◦ Ci they are constants representing the difference among the time points of occurrence of two events. 

◦ ei [Range Ci Seconds] describes a relation which were converted from the stream ei using the time-based Operators 

(Stream to Relation) and are stored by Ci seconds. 

◦ ej [now] defines the stream ej is happening at this time (now). 

 WHERE: are the set of constraints between Ti (temporal variables) and other event attributes (atemporal variables). 



© 2014 IJEDR | Volume 3, Issue 1 | ISSN: 2321-9939 

IJEDR1501028 International Journal of Engineering Development and Research (www.ijedr.org) 137 

 

In this way, when chronicle is recognized, it emits a stream with some attributes and other information using the select statement. 

Thus, the distributed chronicle which was shown in Fig. 3 can be implemented in CQL with the following code: 

 

Chronicle Subchronicle 1 { 

  SELECT 

    ISTREAM( 

      'BESC1',  

      'Diagnoser 2' 

    )  

FROM 

    E1[C1 + C2 +C3], 

    E2[C2 + C3], 

    E10[C3], 

    E11[now]  

WHERE 

    E2.time > E1.time AND 

    E10.time > E2.time AND 

    E11.time > E10.time 

} 

Chronicle Subchronicle 2 { 

  SELECT  

    ISTREAM(  

      'log',  

      'Fault 1'  

    )  

FROM  

    E3[C4 + C5 + C8],  

    E4[C5 + C8],  

    E5[C8]  

    BESC3[C8 - C7]  

    BESC1[now]  

WHERE  

    E4.time > E3.time AND  

    E5.time > E4.time AND  

    BESC3.time > E5.time AND  

    BESC1.time > BESC3.time  

} 

Chronicle Subchronicle 3 { 

  SELECT  

    ISTREAM(  

      'BESC3',  

      'Diagnoser 2'  

    )  

FROM  

    E6[C9 + C10],  

    E7[C10],  

    E8[now]  

WHERE  

    E7.time > E6.time AND  

    E8.time > E7.time  

} 

Figure 4. Chronicle Model example in CQL 

As is shown in figure 4, we can express the chronicle of Figure 3 in CQL statement, for this we  became the set of events in 

streams and relations. The explanation of the conversion for sub-chronicle 1 is shown below: 

 SELECT: At moment when sub-chronicle 1 is recognized, it is necessary to emit the event BESC1 to Diagnoser 2, for this 

we define the production of a stream using the converter ISTREAM with event name BESC1 and destination Diagnoser 2. 

 FROM: The last event which reaches sub-chronicle is E11, it is a stream that occurs at this time (now). Additionally, E1, 

E2 and E10 events are converted in relations using the operator Time-based with constant period of time C3 to E10, C2 + C3 

to E2 (time of occurrence of E2, which must occur before E10, so the event E2 must consider the period of E10 plus period 

of E2: C2 + C3) and C1 + C2 +C3 to E1 (time of occurrence of E1 must occur before E2, so the event E1 must consider the 

period of E2 plus period of E1:  C1 + C2 + C3) . 

 WHERE: the single definition of events as relations does not guarantee the correct order of arrival of events (p.e. E1 

event could occur after E2). Thus, it is necessary to establish restrictions on the order in which events should arrive in the 

sub-chronicle, in this way, is established that the event E1 must occur before E2, then the event E10, and finally the event 

E11. 
How the chronicles 2 and 3 are performed similarly, in the case of sub-chronicle 2 is assumed that the event E8 occurs after E7 

(C8 > C7). Additionally, we added the attribute time to events stream to facilitate inference about the sequence of occurrence of 

these and express their exact occurrence in the real system, which is not necessarily the arrivals time in the chronicle recognizer 

(communication times can affect the arrivals time from real system to the recognizer). Finally, the 3 sub-chronicles have emitted 

the corresponding events BESC1, BESC3 and log, which should be routed to theirs destination (for example, diagnoser 2 from sub-

chronicles 1 and 3). 

IV. CASE STUDY 

In order to test our proposal, we will use a common example of e-commerce SOA implementation (see Fig 5), which comprises 

three business processes (which will constitute our services):  

 Shop: the shop where users purchase products.  

 Supplier offers products to the store, it needs to check their availability before making a response to the store.  

 Warehouse: where the products are stored in the providers. This process has a service level agreement (SLA)
5
 with 

Supplier, which is that at least one product from the list should be returned
6
. It can invoke to other warehouse to search 

products in other warehouses of the company. This property allows to answer at least one product when the required 

amount is not in the local warehouse.  

 

                                                           

5 SLA is a contract between the service consumer and service provider and define the level of service 

6 This SLA define how message delivery is guaranteed, the Warehouse delivery messages in the proper order (least one product 

in order) 



© 2014 IJEDR | Volume 3, Issue 1 | ISSN: 2321-9939 

IJEDR1501028 International Journal of Engineering Development and Research (www.ijedr.org) 138 

 

 
Figure 5. Example of choreography (e-commerce).  

Now, we describe a classical behavior of this application:  

(1) SuppListOut: Shop provides the list of products required to the supplier. 

(2) SuppItemIn: Supplier checks its deposit invoking the Warehouse process. 

(3) SuppItemOut: Warehouse provides the answer about the list of products in the deposit to the Supplier, which must 

contain at least one product.  

(4) SuppListIn: The Supplier notifies the Shop which products can provide. 

 

Design of Chronicles 

Let us now characterize the distribution of events among different diagnosers (sites) that are part of the composition, which will 

allow us to build a generic chronicle for that particular application (connecting all events that may occur). With this generic 

chronicle we can derive each specific chronicle to detected abnormal situations. For practical reasons, we consider that the time is 

measure in seconds, and delay in communications and the recognition time of chronicles are negligible. 

The sequence of events in the generic chronicle for this example is: 

 

Shop 
 E1: Shop sends product order 

to Supplier.  

 E13:  Shop receives the list of 

products.  

 E14: Shop makes products 

payment. 

Supplier 
 E2: Supplier receives product 

order  

 E3: Supplier checks the 

products in the catalog.  

 E4: Supplier provides product 

order to Warehouse for the 

products that it has not.  

 E10: Supplier receives the 

response of the products.  

 E11: Supplier makes the 

invoice.  

 E12: Supplier responds to 

shop with products 

shipped.  

Warehouse 
 E5: Warehouse receives the 

request of the Supplier.  

 E6: Warehouse searches 

products (maybe it invokes 

other warehouses).  

 E7: Warehouse updates 

inventory.  

 E8: Warehouse packs and 

ships products to the buyer.  

 E9: Warehouse provides 

the answer about the list 

of products in the deposit 

to the Supplier . 

Figure 6. Events in each service in the E-Commerce case. 

 

Now, we can define the specific chronicle for each failure that we like diagnose. We will consider the following failure scenario:  

 A failure because there is a violation of a Warehouse Service Agreement (SLA violation).  

From current events in the choreography, we build specific chronicles for each fault. In general, each specified chronicle is 

decomposed into the same three sub-chronicles defined above. Sometimes, for a given situation maybe we can need less sub-

chronicles, as in the case of the failures studied (see Fig. 7, which shows the structure of the specified chronicle for the 

Warehouse SLA Violation). 

Supplier Warehouse

(1) SuppListOut

(4) SuppListIn

Shop

(2) SuppItemIn

(3) SuppItemOut

External 
Property



© 2014 IJEDR | Volume 3, Issue 1 | ISSN: 2321-9939 

IJEDR1501028 International Journal of Engineering Development and Research (www.ijedr.org) 139 

 

To design the Chronicle Model for SLA Violation Warehouse, we analyze events in the Warehouse: the problem of SLA 

violation occurs when the Warehouse Service performs the products search in the event E6 (Warehouse searches products), and it 

does not get anything, or it does not invoke another Warehouse (E7), or Warehouse fails in packs and ships some products to the 

buyer (E8). In all cases, it emits the response to Supplier with a list empty of products. Then, the Shop service detects a fault in the 

event E10 (Supplier receives the response of the products). For this reason, the sub-chronicle in Supplier sends the event BESLA to 

Warehouse diagnoser (really, the CRS in supply diagnoser sends the message), and then this diagnoser can recognize the fault 

SLA Violation. When the Warehouse Diagnoser recognizes the chronicle, it invokes the repair with the fault found. 

 
Figure 7. Distribution of events in sub-chronicles on SLA Violation Warehouse and Warehouse Service Delay faults. 

 

For the case of SLA Violation fault (case of products search), the chronicle would be (at the beginning in classical Chronicles 

notation and then in CQL): 

 

Chronicle SLA Violation fault (case of products search) in Reifying predicates (CRS and CarDeCRS) 

Subchronicle Shop SLA { 

} 

Subchronicle Supplier SLA {  

  Events{  

    event(E4, T4, lp = TRUE),   event(E10, T10, lp 
= FALSE)  

  }  

  Constrains{  

    T10-T4 ≤ 10  

  }  

  When recognized{  

    Emit event(BESLA,TBESLA) to   

   Diagnoser Warehouse  

   }  

}  

Subchronicle Warehouse SLA Search {  

  Events{  

    event(E5, T5, lp = TRUE), event(E6, T6, lp = 
FALSE), event(EBESLA, TBESLA, lp = 

FALSE)  

  }  

  Constrains{  

    T6-T5 ≤ 2  

    TBESLA-T6 ≤ 8  

  }  

  When recognized{  

    Emit 
event('ServiceLevelAgreement','SearchProducts') 

to   

   Repair Warehouse  

   }  

} 

Chronicle SLA Violation fault (case of products search) in CQL language 

Subchronicle Shop SLA { 

} 

Subchronicle Supplier SLA { 

  SELECT  

    ISTREAM( 

      id => E4.id,  

      event => 'BESLA', 
      time => E10.time, 

      lpsupplier => E10.lp, 

      lp => E4.lp, 
      to => 'Diagnoser 3',  

    )  

FROM  

    E4[10],  

    E10[now]  

WHERE  

Subchronicle Warehouse SLA Search { 

  SELECT  

    ISTREAM(  

      id => E5.id,  

      fault => 'ServiceLevelAgreement', 
      faulttype => 'SearchProducts', 

      time => EBESLA.time, 

      lp => E6.lp,   
      to => 'Repair 3',  

    )  

FROM  

    E5[10],  

    E6[8],  

    EBESLA[now]  



© 2014 IJEDR | Volume 3, Issue 1 | ISSN: 2321-9939 

IJEDR1501028 International Journal of Engineering Development and Research (www.ijedr.org) 140 

 

    E10.time > E4.time AND  

    E10.id = E4.id AND  
    E4.lp - E10.lp > 0  

} 

WHERE  

    E6.time > E5.time AND  
    EBESLA.time > E6.time AND  

    E5.lp > 0 AND  

    E6.lp = 0 AND 
    E6.id > E5.id AND  

    EBESLA.id > E6.id AND  

} 

Figure 8. Chronicle Model  for SLA Violation Warehouse (case of Products search) 

 

where pl is the product list.  

 

It is important to note the difference in how the value of attribute lp in sub-chronicle Supplier SLA is represented in temporal 

predicates and in CQL. CQL can represent the difference of the attribute lp for the events E4 and E10 very easy (E4.lp – E10.lp). To 

CRS and CarDeCRS do not allow mathematical operators in the constraints of atemporal variables (p.e. attributes), making very 

complex the management of the values of the lp attribute in different events (for that, we need to determine when the value of lp is 

correct (TRUE) and when it is wrong (FALSE)). Using the CQL, it enriches the way as the chronicles are represented, because it 

allows mathematical operators in the constraints of atemporal variables. 

The Chronicle model for SLA Violation fault (case of fails due to pack and ship) is very similar, but pl=0 in event E8 

(Warehouse fails due to pack and ship) is minor that event E7 (Warehouse updates inventory); 

 

Subchronicle Shop SLA { 

} 

Subchronicle Supplier SLA { 

  SELECT  

    ISTREAM(  

      id => E4.id,  

      event => 'BESLA', 

      time => E10.time, 

      lpsupplier => E10.lp, 

      lp => E4.lp, 

      to => 'Diagnoser 3',  

    )  

FROM  

    E4[10],  

    E10[now]  

WHERE  

    E10.time > E4.time AND  

    E10.id = E4.id AND  

    E10.lp < E4.lp  

} 

Subchronicle Warehouse SLA Packs 

and ships { 

  SELECT  

    ISTREAM(  

      id => E5.id,  

      fault => 'ServiceLevelAgreement', 

      faulttype => 'Ship and Packed', 

      time => EBESLA.time, 

      lp => E8.lp,   

      to => 'Repair 3',  

    )  

FROM  

    E5[10],  

    E6[8], 

    E7[7],   

    E8[5],  

    EBESLA[now]  

WHERE  

    E6.time > E5.time AND 

    E7.time > E6.time AND  

    E8.time > E7.time AND   

    EBESLA.time > E8.time AND 

    E5.lp > 0 AND   

    E5.lp = E6.lp AND  

    E6.lp = E7.lp AND 

    E8.lp < E7.lp AND  

    E6.id = E5.id AND  

    E7.id = E6.id AND 

    E8.id > E7.id AND   

    EBESLA.id > E7.id 

} 

Figure 9. Chronicle Model  for SLA Violation Warehouse (case of Fails packs and ships) 

 

In general, according to the chronicles, there is an agreement that list of products must be equal to the number of products 

ordered, otherwise there is a violation of the agreement (E8.lp < E7.lp).  

We must emphasize that the sub-chronicle Supplier SLA in both cases is identical: "Products search" and "Failure due to pack 

and ship". 

OpenESB and Intelligent Event Processor (IEP Component) 

OpenESB is a services oriented architecture used to build SOA applications and support their executions; it is a Java-based 

open source
7
 Enterprise Service Bus [22]. The bus provides simplicity, efficiency, to SOA applications, based on the standards JBI 

                                                           

7 Open source are software that can be used, changed, and shared (in modified or unmodified form) freely by anyone  



© 2014 IJEDR | Volume 3, Issue 1 | ISSN: 2321-9939 

IJEDR1501028 International Journal of Engineering Development and Research (www.ijedr.org) 141 

 

(Java Business Integration), XML, XML Schema, WSDL, BPEL and Composite application. OpenESB defines 2 classes of 

components: Binding Component (BC)
8
 and Services Engine (SE)

9
. Among the services is the IEP component which allows 

collects, processes, and send events in real time. 

IEP uses the CQL language for the event processing [17], providing the combination of streams from different sources, to infer 

event or pattern to identify situations of interest. The IEP component allows implementing all CQL operators for the events 

processing. By default, the IEP receives events from a SOAP service interface, and each recognized sub-chronicle is stored in a file 

called NameServicediagnoser.xml (eg: Supplierdiagnoser.xml ), that can be readed by other components (produces new events), as 

diagnosers or repair. 

To verify the recognition of our distributed chronicles, we implement the application of E-commerce in OpenESB and our 

chronicle model in IEP module. At the Warehouse service we have added two additional operations to easily induce both SLA 

faults and to verify the recognition of our chronicles: 

 tuneSearchBehavior: used to inject the fault Search product operation (E5). If it is activated (tuneSearchBehavior = 

TRUE) the operation "Search product" does not produce results in search (return lp = 0), otherwise Search product 

operation works normally. Thus, an example of this operation is if tuneSearchBehavior = FALSE and receives the 

requirement to search 20 products (lpin = 20), "Search product" operation returns all products found (lpout = 20), 

conversely if tuneSearchBehavior = TRUE and receives the same requirement to search 20 products (lpin = 20), the 

"Search product" operation not find any product (lpout = 0).  

 tuneShip: used to induce the fault in ship products operation (E8). If it is activated (tuneShip = TRUE) the operation 

leaves unpackaged a product of all required. To show the performance of this operation supposes that tuneShip = FALSE 

and receives the request to pack 20 products (lpin = 20), operation returns the packaged of the 20 products (lpout = 20), 

otherwise, supposes that tuneShip is changed to TRUE and receives the same request to pack 20 products (lpin = 20), 

operation returns only 19 products, leaving a product unpacked (lpout = 19). 

We run the e-commerce application 9 times, adding an id attribute for each invocation. In Table 2 the results of invocations 

are shown with the different values used for tuneSearchBehavior and tuneShip. 

 

Table 2. the result of invocations in e-commerce application 

id tuneSearchBehavior tuneShip Operation result (lp) 

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 

1 FALSE FALSE 15 15 15 15 15 15 15 15 15 15 15 15 15 15 

2 FALSE FALSE 30 30 30 30 30 30 30 30 30 30 30 30 30 30 

3 FALSE FALSE 10 10 10 10 10 10 10 10 10 10 10 10 10 10 

4 TRUE FALSE 8 8 8 8 0 0 0 0 0 0 0 0 0 0 

5 FALSE FALSE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

6 FALSE FALSE 13 13 13 13 13 13 13 13 13 13 13 13 13 13 

7 FALSE FALSE 14 14 14 14 14 14 14 14 14 14 14 14 14 14 

8 FALSE TRUE 22 22 22 22 22 22 22 21 21 21 21 21 21 21 

9 FALSE FALSE 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

 

In table 2 we can see that the values of lp are very well managed with the CQL sentences, in order to recognize the chronicles. 

In this way, our chronicles are recognized using the CQL sentences. When each sub-chronicle is recognized the event generated is 

stored in a file (in the case of SLA Supplier the event generated BESLA is stored in Supplierdiagnoser.xml (this is identical in both 

cases of SLA faults)), and emits event BESLA to sub-chronicle Warehouse SLA Search and sub-chronicle Warehouse SLA Pack 

and ship. Sub-chronicle Warehouse SLA Search stores generated events in Warehousediagnoser.xml, and emits a fault event to 

warehouse repair. Sub-chronicle Warehouse SLA Packs and ships stores generated events in Warehousediagnoser1.xml, and emits 

a fault event to o repairer in Warehouse. The contents of the files derived from each sub-chronicle recognition are shown in Fig. 10: 

 

                                                           

8 Binding Component are used for performing the Communication between applications in a service-oriented architecture 

(SOA). 

9 Services Engine allow to add functionality to facilitate and monitor the processes executed within the BUS 



© 2014 IJEDR | Volume 3, Issue 1 | ISSN: 2321-9939 

IJEDR1501028 International Journal of Engineering Development and Research (www.ijedr.org) 142 

 

 
File: Supplierdiagnoser.xml emit event BESLA 

 
File: Warehousediagnoser.xml  Service Level Agreement 

(Search Products) chronicle recognition 

 
File: Warehousediagnoser1.xml  Service Level Agreement 

(Ship and Packed) chronicle recognition 

Figure 10. Distributed Chronicle detection to Service Level Agreement (case Search Products and Ship and Packed) in E-

commerce application. 

 

As is shown in the Fig. 10, when the operation of the application of e-commerce is normal (id = 1, 2, 3, 5, 6, 7 9) any sub-

chronicle is activated. Otherwise the invocation in id = 4 generates the recognition of the failure “search SLA”, and the results are 

stored in Supplierdiagnoser.xml. Additionally, it emits BESLA event, which is readed by the diagnoser warehouse in sub-

chronicle Warehouse SLA Search. This last sub-chronicle emits the fault event to repairer in Warehouse (file 

Warehousediagnoser.xml). Similarly, for the SLA Packs and ships (id = 8) the failure is partially recognized by the supplier and 

then it emits the  BESLA event to warehouse diagnoser, and with this event is possible to recognize the fault (see 

Warehousediagnoser1.xml file). 

Analysis of results 

The implementation of chronicles using CQL language has provided greater expressiveness to add constraints of atemporal 

variables. In our case of study could distinguish two faults of Service Level Agreement at the level of the warehouse service in 

two distinct activities (Search Products and Ship and Packed) using the atemporal variables lp. To express these constraints in 

CRS and CarDeCRS tools, we should implement additional components (E6 as E6.lp = FALSE in Search Products), and E8.lp = 

FALSE in ship and pack)). Although we need more implementations of Chronicles in CQL to verify the recognitions of other 

chronicles, the results are promising because add more expressiveness in the event processing. 

The distributed chronicles implemented in CQL Statement detect the faults in the composition of Service Level Agreement 

violations in both cases (Search Products and Ship and Pack). It is important to mention in this section that the CQL language 

allows adding mathematical operators in the constraints of atemporal variables in the case of the products amount verification 

(lp), which is not possible in CRS and CarDeCRS tools without implementing a previous component to introduce this situation as 

Reifying predicate, such is the case of the 2 SLA chronicles in our case study. To implement the difference in product list (lp) 

between events using Reifying predicate is necessary to implement a translator indicating whether lp is correct, however the 

language CQL naturally implements and deploys mathematical operators on attributes constraints (atemporal constraints). 

The extension of the formalism of chronicles and the implementation of our CRS (model based on CQL) facilitate the 

interaction between local Diagnosers, making the recognition of the global chronicle without need a coordinator to manage their 

interactions. At communication level, this represents a remarkable improvement over the mechanisms shown in other studies [1, 

2, 3 , 4, 11 ]. Additionally, the implementation of the mechanism in the cases studied is natural (a recognizer by service). Also, 

being a distributed approach, the scalability problem of the distributed applications can be handled properly by our approach. 

V. CONCLUSION 

We have proposed reflective middleware architecture for autonomic management of service-oriented applications [10]. Our 

middleware is fully distributed through all services that are part of the SOA application. For this, our architecture has placed a 

diagnoser in each service, allowing both the diagnostic of faults of services and of compositions. In order to support this 

architecture, in this paper we have implemented our proposed of distributed mechanism based on chronicles, which allows fully 

distribute the recognition of the possible faults in SOA applications, which favors its implementation in large systems.  



© 2014 IJEDR | Volume 3, Issue 1 | ISSN: 2321-9939 

IJEDR1501028 International Journal of Engineering Development and Research (www.ijedr.org) 143 

 

We have extended the formalism of chronicles, introducing the notion of sub-chronicles, binding events, etc. Additionally, we 

have described the process of recognition of our chronicle fully distributed. Our distributed approach contrasts with the semi-

centralized and decentralized approaches that have been developed so far. In the case study, we test the distributed recognition 

mechanism to detect failures in two situations, at the two level of the warehouse service (Search Products and Ship and Packed). 

Additionally, we have shown in the case study that the proposed recognition mechanism is simple to implement. 

In Fig. 11 we compare the benefits of the implementation of our middleware through various instances of our diagnosers using 

CQL and IEP component in OpenESB vs the CRS and CarDeCRS tools. 

 

Tool Interoperatividad Distributed Atemporal variables constraints 

CRS NO NO Temporal Predicates 

CarDeCRS Internal protocol Semi-decentralized Temporal Predicates 

CQL Implements a variety of 
input and output protocols 

Fully distributed Temporal Predicates. 
Atemporal variables 

Figure 11. IEP vs CRS and CarDeCRS 

 

In our middleware all the services exhibit the ability of interoperability with other components due to the CQL language. 

Additionally, we see that the CRS and CarDeCRS tools do not permit communication with others, CarDeCRS enables 

interoperability with other diagnosers, implementing an internal protocol based in semi-decentralized architecture. IEP component 

allows deploying of instances of our diagnosers using different protocols (SOAP, database, email, ftp, among others). Because IEP 

supports many protocols, it is easy to implement the distributed architecture of the different diagnosers (fully distributed). In the 

case studies we have implemented the distributed architecture with message exchange using SOAP and xml files. By contrast, the 

CRS only allows implementation of a monolithic architecture and CarDeCRS a Semi-Decentralized architecture.  

Additionally, CRS and CarDeCRS tools do not allow the implementation of restrictions in atemporal variables, which detracts 

expressiveness when implementing chronicles. On the other hand, CQL allows to implement atemporal variables, as we have 

shown in the case studies, and all the classical Temporal Predicates commonly used in chronicles (holds, events, no events and 

occurs, see table 1). 

VI. ACKNOWLEDGMENT 

This work has been supported by FP7-ICT IMAGINE research and development project, funded by the European Commission 

under the Virtual Factories and Enterprises (FoF-ICT-2011.7.3, Grand Agreement No: 285132) and the PCP program “Supervision 

and maintenance tasks in a shared organizational environment”. 

REFERENCES 

[1] WS-Diamond: WS-Diamond, IST-516933, Deliverable D4.3, 2008. Specification of diagnosis algorithms for Web 

Services – phase 2. Version 0.5. 

[2] Cordier, M, Krivine, J., Laborie, P., Thi  baux, S., 1998. Alarm processing and reconfiguration in power distribution 

systems. In: Proc. of IEA-AIE’98, pp 230-240. 

[3] Cordier, M., Dousson, C., 2000. Alarm driven monitoring based on chronicles. In: Proc. of Safeprocess’2000, pp 286-

291.  

[4] Quiniou, R., Cordier, M., Carrault, G., Wang, F., 2001. Application of ilp to cardiac arrhythmia characterization for 

chronicle recognition. In: ILP’2001, pp 220-227. 

[5] Guerraz, B., Dousson, C., 2004. Chronicles construction starting from the fault model of the system to diagnose. In: 

Proc. of the 15th Int. Workshop on Principles of Diagnosis (DX’04), pp 51–56.  

[6] Boufaied, A., Subias, A., Combaceau, M., 2004. Distributed fault detection with delays consideration. In: Proc. of the 

15th Int. Workshop on Principles of Diagnosis (DX’04).  

[7] Aghasaryan, A., Fabre, E., Benveniste, A., Boubour, R., Jard, C., 1998. Fault detection and diagnosis in distributed 

systems : an approach by partially stochastic petri nets. In: Discrete Event Dynamic Systems 8(2), pp 203-231.  

[8] Grosclaude, I., 2004. Model-based monitoring of component-based software systems. In: Proc. of the 15th Int. 

Workshop on Principles of Diagnosis (DX’04), pp 51–56. 

[9] Mhalla, A., Jerbi, N., Collart, S., Craye, E., Benrejeb, M., 2010. Distributed Monitoring Based on Chronicles 

Recognition for Milk Manufacturing Unit. In: Journal. of Aut. & Syst. Eng. (JASE), Vol. 4(1). 

[10] Vizcarrondo, J., Aguilar, J., Exposito, E., Subias, A., 2012. ARMISCOM: Autonomic Reflective MIddleware for 

management Service COMposition. In: Proceedings of the 4th Global Information Infrastructure and Networking 

Symposium (GIIS 2012), IEEE Communication Society, Choroni, Venezuela.  

[11] Dousson, C., 2002. Extending and unifying chronicle representation with event counters. In ECAI, pp 257–261. 

[12] Dousson, C., Gaborit, P., Ghallab, M., 1993. Situation recognition: representation and algorithms. In: Proc. of the Int. 

Joint Conf. on Artificial Intelligence (IJCAI’93), pp 166-172. 

[13] Le Guillou, X. , Cordier, M.O. , Robin, S. , Rozé, L., 2008. Chronicles for On-line Diagnosis of Distributed Systems. In 

Proceeding of the 2008 conference on ECAI 2008: 18th European Conference on Artificial Intelligence, pp 194-198. 



© 2014 IJEDR | Volume 3, Issue 1 | ISSN: 2321-9939 

IJEDR1501028 International Journal of Engineering Development and Research (www.ijedr.org) 144 

 

[14] Morin, B., Debar, H., 2003. Correlation on intrusion: an application of chronicles. In 6th International Conference on 

recent Advances in Intrusion Detection RAID, Pittsburgh, USA. 

[15] Boufaied, A., Subias, A., Combacau, M., 2002. Chronicle modeling by Petri nets for distributed detection of process 

failures. In: Second IEEE International Conference on Systems, Man and Cybernetics (SMC 2002). IEEE Computer 

Society Press. 

[16] Arasu, A., Babu, S., Widom, J., 2006. The CQL continuous query language: semantic foundations and query execution. 

In Journal The VLDB Journal - The International Journal on Very Large Data Bases, Volume 15 Issue 2. 

[17] Kajic, R., 2010. Evaluation of the Stream Query Language CQL. Institutionen för informationsteknologi, Uppsala 

universitet. 

[18] Salter, D., Jennings, F., 2008. Building SOA-Based Composite Applications Using NetBeans IDE 6. Packt Publishing 

Ltd., ISBN 978-1-847192-62-2. 

[19] Artikis, A., Paliouras, G., Portet, F., Skarlatidis A., 2010. Logic-based representation, reasoning and machine learning 

for event recognition. In: Proceedings of the Fourth ACM International Conference on Distributed Event-Based Systems. 

[20] Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C., 2001. Grid Information Services for Distributed Resource 

Sharing. In: Proceeding of the 10th IEEE International Symposium on High Performance Distributed Computing, pp 

181-184. 

[21] Lin, A., 2007. Conceptual Model for Business-Oriented Management of Web Services. In Proceedings of the 6th 

WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, pp 80-85.  

[22] Ismaili, F., Sisediev, B.: Web services research challenges,limitations and opportunities. In: WSEAS Transactions on 

Information Science and Applications archive Vol. 5, Issue 10, pp. 1460-1469, 2008. 

[23] Keen, M., Hopkins, A., Milinski, S., Nott, C., Robinson, R., Adams, J., Verschueren, P., Acharya, A., 2004. Patterns: 

Implementing an SOA Using an Enterprise Service Bus. IBM Redbooks publication, First Edition. 

[24] Vizcarrondo, J., Aguilar, J., Exposito, E., Subias, A., 2014. Distributed Chronicles to Faults Recognition, Technical 

report, CEMISID, ULA.  


