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Abstract

The design of model-based flow controllers requires the knowledge of a dynamical model of the flow.
However, real-time and robust estimation of the flow state remains a challenging task when only limited
spatial and temporal discrete measurements are available. In this study, the objective is to draw upon
the methodologies implemented classically in meteorology to develop dynamic observers for flow control
applications. A well established data assimilation method based on Kalman filter is considered. This
approach is here extended to both estimate model states and flow parameters. The strategy is numerically
demonstrated on a POD Reduced-Order Model of a 2D-cylinder wake flow at low Reynolds number.

Keywords : data assimilation, Dual Ensemble Kalman Filter, PODReduced-OrderModel, cylinder
wake flow

1 Introduction

Despite decades of intensive research in shape optimization, aerodynamic mechanisms such as sepa-
ration and mixing still represent an important source of energy expenditure in transport vehicles. The
manufacturers have consequently developed, over the years, a range of strategies to improve the aerody-
namic performance of their vehicles. One of these strategies consists in using active devices that can be
actuated on and off based on the change of the inflow conditions. To drive such actuators, command laws
and more globally valid controllers are required. To design these controllers, different control strategies
can be employed, one of which being the model-based approach. This one requires the knowledge of a
dynamical model of the flow that one wants to control in real-time. In reality, the identification of such
a model is challenging because it is generally obtained from limited spatial and time discrete measure-
ments.

This problem of state estimation is well-known in the field of meteorology where data is collected at
several locations, with spatial and temporal scales varying in orders of magnitude, to estimate the evo-
lution of the weather (Talagrand and Courtier, 1987). Classical methodologies involve the use of data
assimilation (DA) techniques where data is assimilated, when available, with a dynamical model to
correct the state estimate obtained by the model, and eventually, to correct the model itself for further,
more accurate predictions. In the specific context of aerodynamic-related problems, the complexity re-
sides essentially in the large number of degrees of freedom of the flow dynamics, in the broad range
of scales to examine and in non-linearities driving the flow dynamics. To design a physical model that
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can be managed in real-time applications, the Navier-Stokes equations are traditionally projected onto
an appropriate reduced basis leading to a reduced-order model of the flow (Rowley and Dawson, 2017).
Proper Orthogonal Decomposition (POD, Lumley 1967) is typically used to design the orthonormal ba-
sis which captures the flow features which are believed essential to represent the dynamics. In general,
this basis is then used in a Galerkin approach to derive a POD Reduced-Order Model (POD ROM) of
the flow by projecting the Navier-Stokes equations onto the POD modes. Unfortunately, this dynamical
system is sometimes not sufficiently accurate for application in flow control, and identification methods
are then used to improve the prediction ability of the POD ROM (Cordier et al., 2010). An alternative
is to use the ROM in conjunction with DA techniques to design dynamic observers able to predict the
flow state from limited information (Papadakis, 2007).

In this paper, the stochastic data assimilation method known as Dual Ensemble Kalman Filter (Dual
EnKF) is used on a numerical dataset of a 2D-cylinder wake flow considered at low Reynolds number
(Re = 100). In the DA setting, the POD temporal modes serve as observations for the assimilation
procedure which is used to test the predictability of the DA method. In § 2, an overview of snapshot
POD (§ 2.1), POD ROM (§ 2.2), and Dual EnKF (§ 2.3) is first given. POD Reduced-Order model is
then applied to the cylinder wake flow in § 3. The use of data assimilation to predict the temporal POD
coefficients for the numerical flow is discussed in § 4. Section 5 offers concluding remarks.

2 Model reduction and ensemble Kalman filter

2.1 Snapshot POD

Proper Orthogonal Decomposition is a reduced-order model approach which was introduced to the fluid
dynamics community as a mathematical tool to extract coherent structures from turbulent flow fields
(Lumley, 1967). It provides an objective algorithm to decompose a set of data into a minimal number
of basis functions or modes to capture as much as possible the original dynamics. It is a data-driven
method and therefore requires only the flow field data for modal decomposition and does not necessarily
require the knowledge of the dynamical equations. POD extracts the modes based on optimizing the
mean square of the field variable under observation (Cordier and Tissot, 2013).

Letχ be the spatial coordinates and t represents the scalar time, we assume that the unsteady component
of the vector field u(χ, t) can be decomposed as

u(χ, t)− u(χ) =
∑
i

aPOD
i (t)φPOD

i (χ), (1)

where u is the temporal mean of u. In (1), φPOD
i (χ) and aPOD

i (t) represent the spatial modes and the
time-dependent projection coefficients, respectively. In the POD framework, we seek the optimal set of
basis functions for a given flow field data.

The POD method requires an ensemble of snapshots of any scalar (e.g. pressure, temperature) or vec-
torial (e.g. velocity, vorticity) fields defined at discrete spatial points χi (i = 1, · · · , Nχ) and discrete
time instants tk (k = 1, · · · , Nt). From this data set, we prepare snapshots of the flow field stacked in
terms of a collection of column vectors u′(χi, tk). We then consider a collection of finite-dimensional
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data vectors that represent the flow field fluctuation

u′(χi, tk) = u(χi, tk)− u(χi) ∈ RNs , i = 1, 2, . . . , Nχ, k = 1, 2, . . . , Nt (2)

whereNs is the number of the spatial degrees of freedom of the data andNt is the number of snapshots.
For a fluid flow data, Ns is equal to the number of grid points (Nχ) times the number of components
(Nc) to be considered in the data. The snapshot vector can be stacked in matrix form as

X =
[
u′(χi, t1) u′(χi, t2) . . .u′(χi, tNt)

]
∈ RNs×Nt . (3)

To obtain the PODmodes, we employ themethod of snapshots. The objective is to find the optimal basis
vectors that can best represent the flow data in an average sense. In other words, we seek the vectors
φPOD
i (χ) in (1) that can represent u′(χi, tk) in an optimal manner and with the least number of modes.

The solution to this problem can be determined by finding the eigenvectors ψi and eigenvalues λi from

XTXψi = λiψi, ψi ∈ RNt (4)

whereXTX is the temporal correlation matrix1 of size Nt ×Nt.

In most numerical cases, spatial size of the data is very large compared to the temporal size, Ns � Nt.
The method of snapshots thus uses a smaller correlation matrix than the spatial correlation matrixXXT

of sizeNs×Ns used in classical spatial POD method. It has been shown in literature that the temporal
correlation matrix will yield the same dominant spatial modes while giving rise to a much smaller
and computationally more tractable eigenvalue problem (Rowley and Dawson, 2017). The number of
snapshotsNt in this case should be chosen such that the important fluctuations in the flow field are well
resolved in time.

After obtaining the eigenvectors ψi from the smaller eigenvalue problem (4), the (spatial) POD modes
can be recovered as

φi =
1√
λi
Xψi ∈ RNs , i = 1, 2, . . . , Nt, (5)

which can be also written as
Φ = XΨΛ−1/2, (6)

where Φ = [φ1 φ2 . . . φNt ] ∈ RNs×Nt and Ψ = [ψ1 ψ2 . . . ψNt ] ∈ RNt×Nt . Note that these
matrices are orthonormal, i.e. ΦTΦ = ΦΦT = I and ΨTΨ = ΨΨT = I . The temporal coefficients
are determined accordingly as

ai(t) =
〈
u′(χ, t),φi(χ)

〉
, i = 1, 2, . . . , Nt, (7)

where 〈·〉 represents the spatial inner product defined as

〈
vI(χ, t),vII(χ, t)

〉
=

∫
Ω
vI(χ, t) · vII(χ, t) dχ (8)

for two given vector fields vI and vII defined in a spatial domain Ω.
1For simplicity, we have considered the field data to be placed on a uniform grid. In general, the cell volume needs to be

included in the formulation to represent the inner product. The covariance matrix should therefore be written as XTWX
whereW holds the spatial weights.
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2.2 POD Reduced-Order Model (POD ROM)

A POD ROM may be derived by the standard Galerkin projection of the Navier-Stokes equations onto
the spatial POD modes φi. After some algebraic manipulation (Cordier et al., 2010), the following
expression is obtained for the POD ROM

ȧROM
i (t) =

daROM
i (t)

dt
= Ci +

NGal∑
j=1

Lija
ROM
j (t) +

NGal∑
j=1

NGal∑
k=j

Qijka
ROM
j (t)aROM

k (t), (9)

where the superscript ROM is used to separately identify the temporal coefficients obtained from the
POD ROM as compared to the ones (aPOD

i (t)) which are directly obtained from snapshot POD. The
parametersCi, Lij andQijk are the constant, linear and quadratic coefficients which depend exclusively
on the spatial POD modes φi and mean field u. As such, their values can be directly determined (see
Cordier et al., 2010). For the initial conditions, we have

aROM
i (0) = aPOD

i (0) = 〈u(χ, 0)− u(χ),φi(χ)〉 . (10)

The number of model parameters Ci, Lij and Qijk is given as Nb = N0 +N1 +N2, where

- N0 = 1 for the constant terms Ci,

- N1 = NGal for the linear terms Lij , and

- N2 = NGal(NGal + 1)/2 for the quadratic terms Qijk.

From the knowledge of Nt samples of the quantities ȧROM
i (tk) and aROM

i (tk) at discrete times tk, the
dynamical parameters can be determined by a least mean-square estimation procedure. This problem
leads to the minimisation of an error function ε = ‖Aθ −B‖2 (Perret et al., 2006), with

- A ∈ RNt×Nb as the matrix of the terms 1, aROM
j (tk) and aROM

j (tk)a
ROM
k (tk),

- θ ∈ RNb×1 as the vector of unknown parameters, and

- B ∈ RNt×1 containing the Nt values of ȧROM
i (tk).

The estimation problem is solved by forming a linear system (ATA)θ = ATB and using SVD of the
matrixA to find the pseudo-inverse ofATA and solve for the parameters in θ.

However, it is well known that for various reasons (structural instability of the Galerkin projection,
truncation of the POD basis, inaccurate treatment of the boundary and pressure terms), the dynamical
system does not represent sufficiently well the correct dynamics. This problem is now tackled by data
assimilation.

2.3 Dual Ensemble Kalman Filter (Dual EnKF)

As the POD ROM determined by Galerkin projection is not sufficient in general to replicate the correct
dynamics, we seek data assimilation methods to correctly identify the model parameters. In the follow-
ing, we briefly present the specific DA method known as Dual Ensemble Kalman Filter which has been
used in the current study and then discuss its applicability to the POD ROM.
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Data assimilation is a generic methodology which combines heterogeneous observations with the under-
lying dynamical principles governing the system under consideration to estimate at best the states and/or
physical quantities parameterizing the dynamics. Starting from a background solution and incoming im-
perfect information, an optimal estimation of the unknowns of the system is determined which takes into
account the respective statistical confidences of the different observations.

We consider a non-linear, time-discrete dynamic system given as

xtk+1 =Mk,k+1(xtk,θk) + ηk, (11)

where the superscript t stands for true. In (11), k = 0, . . . , N − 1 is the time index and N is the total
number of time steps. In this system, the propagation of the true state xtk ∈ RNs (where Ns is the
dimension of the system of the state after spatial discretisation) from time tk to tk+1 is performed by a
non-linear functionMk,k+1. The propagator depends on the vector of model parameters θk at time tk.
The model error ηk is considered to be Gaussian distributed with zero mean and covariance matrixQk

i.e.
ηk ∼ N (0,Qk). (12)

The observation vector yok+1 ∈ RNo (whereNo is the dimension of the observations) at time tk is given
by

yok+1 = Hk+1(xtk+1) + εk+1, (13)

where the observation functionHk+1 is also non-linear. The observation noise vector εk+1 is constructed
by taking all the sources of observation error into consideration. It is approximated as a Gaussian dis-
tribution with zero mean and covarianceRk+1 i.e.

εk+1 ∼ N (0,Rk+1). (14)

If the model parameters are known to be true, a DA method is specifically used for the state estimation.
On the other hand, in practice, we frequently encounter cases where the parameters are unknown or
imprecise.

One of the approaches to solve this dual estimation problem is to use an iterative method where the
filtering is alternatively applied to estimate the state and parameters in the course of each iteration.
More precisely, the model parameters are obtained from the corrected state at the previous time state
and the new state is evaluated from the current analysed parameters. This method is formally known as
Dual EnKF (Moradkhani et al., 2005).

The mechanism of evolution of the Kalman filter is based on a prediction-correction scheme. First, an
ensemble of Ne forecasted parameters is created using a forced random walk of the parameters set up
according to a Gaussian law ξk with zero mean and covariance matrix Ck i.e.

ξk ∼ N (0,Ck). (15)

During the prediction step, the ensemble of forecasted parameters is constructed as

θ
f,(n)
k+1 = θ

a,(n)
k + ξ

(n)
k , (16)

where the superscript (n) represents the n-th member of the ensemble of parameters. In (16), the su-
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perscripts f and a denote the forecasted and assimilated values of the parameters, respectively. The
predicted ensemble of parameters are then updated using the available observations. For this, the pre-
dicted state at the instant tk+1 is built starting from the predicted parameters at the instant tk+1 and the
corrected state at the instant tk i.e.

x
f,(n)
k+1 =Mk,k+1(x

a,(n)
k ,θ

f,(n)
k+1 ). (17)

The predicted ensemble of observations is then obtained as

y
f,(n)
k+1 = Hk+1(x

f,(n)
k+1 ). (18)

Next, the random observations are built to be centered around the actual observation yok+1 following

y
o,(n)
k+1 = yok+1 + ε

o,(n)
k+1 , (19)

where the covariance matrix of the observation error at the instant tk+1 is given as

Re
k+1 =

1

Ne − 1

Ne∑
n=1

(ε
o,(n)
k+1 )(ε

o,(n)
k+1 )T . (20)

As the number of Monte Carlo elements tends to infinity, the empirical estimator Re
k+1 tends to the

covariance matrix of the observation errorRk+1.

Given the random observations from (19) and the empirical estimator (20), the update of the predicted
ensemble of parameters is realised by the Kalman analysis, given as

θ
a,(n)
k+1 = θ

f,(n)
k+1 +Kθ,e

k+1(y
o,(n)
k+1 − y

f,(n)
k+1 ). (21)

The Kalman gain allowing the correction of the parameter trajectories is expressed using the ensemble
predictions as

Kθ,e
k+1 = P f,e

θy,k+1(P f,e
yy,k+1 +Re

k+1)−1. (22)

In this expression, the terms P f,e
θy,k+1 and P f,e

yy,k+1 designate at the instant tk+1 the unbiased empirical
estimators of the cross-correlation matrix between the parameters and the observations, and the corre-
lations between the observations, respectively.

Once the predicted parameters have been updated, the second filter is implemented to estimate the state
of the system at the instant tk+1 by assuming the parameters as known. In other words, the parameters
just corrected by the first filter are trusted. The following prediction-correction mechanism is identical
to the classical ensemble Kalman filter. In the first step, the predicted ensemble of states at the instant
tk+1 is built starting from the ensemble of assimilated states at the instant tk and the corrected ensemble
of parameters at the instant tk+1 i.e.

x
f,(n)
k+1 =Mk,k+1(x

a,(n)
k ,θ

a,(n)
k+1 ) + η

(n)
k . (23)

For the second time, an ensemble of observations is calculated as

y
f,(n)
k+1 = Hk+1(x

f,(n)
k+1 ). (24)
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At this stage, the observations are again considered as random variables and the covariance matrix of
the observation error involved in calculating the Kalman gain is also empirically estimated. Next, the
update of the predicted ensemble of the state is realised by Kalman analysis, given as

x
a,(n)
k+1 = x

f,(n)
k+1 +Ke

k+1(y
o,(n)
k+1 − y

f,(n)
k+1 ). (25)

The use of a Kalman gain permits the correction of the state trajectories as

Ke
k+1 = P f,e

xy,k+1(P f,e
yy,k+1 +Re

k+1)−1. (26)

In this expression,P f,e
xy,k+1 andP

f,e
yy,k+1 designate at the instant tk+1 the unbiased empirical estimators of

the cross-correlation matrix between the state and the observations, and the correlation matrix between
the observations, respectively. The prediction-correction step is repeated by using the analysed state at
tk+1 from (25) and new parameter forecast at tk+2 from (16) to build the new state forecast in (17). The
phase of prediction-correction of the system state can precede the operation on the parameters without
consequence on the quality of the estimation.

Now, we can return to the POD ROM and present the use of the Dual EnKF method to correctly identify
the model parameters that will help to replicate the correct dynamics. In the DA problem, the temporal
coefficients aROM

i (tk) can be considered to form the state vectorxk. The PODROM in (10) serves as the
dynamical modelMk,k+1 and the POD coefficients aPODi (tk) form the observations vector yok. Finally,
the coefficients Ci, Lij and Qijk form the parameters θ. The initial background conditions xb0 and θb

are determined by using the temporal coefficients directly obtained from POD at the initial condition,
and from the parameter values identified in § 2.2 for the POD ROM.

3 POD ROM of a 2D-cylinder wake flow

In order to test the data assimilation framework in a simple numerical configuration, we choose in this
paper to estimate the dynamics of a 2D-cylinder wake flow. The snapshots necessary to determine the
POD modes (see § 2.1) are obtained from a numerical simulation performed using the finite-element
solver FreeFem++ (Hecht, 2012). A POD reduced-order model is then built using the procedure de-
scribed in § 2.2. This POD ROM serves as the dynamical model used for the application of the Dual
EnKF method presented in § 2.3.

The computational domain along with the dimensions and boundary conditions is shown in Fig. 1. All
the dimensions have been parameterised with the diameter of the cylinder D, here set to one. For
the purpose of mesh size control, we divide the domain into sub-domains and use the automatic mesh
generation offered by FreeFem++’s buildmesh command (Hecht, 2012). The mesh has Nvert =

10263 vertices and Ntri = 20360 triangles.

To solve the space discretised Navier-Stokes equations, an optimised Newton method is used. This
approach is a variant of the classical Newton method for which the non-linear term is discretised semi-
implicitly. The finite element space for velocity and pressure variables are discretised using P2 and P1

elements, respectively. After convergence of the iterative procedure, the pressure field is such that the
resulting velocity is divergence free.

The Reynolds number of the numerical simulation based on the cylinder diameterD is set toRe = 100.



24ème Congrès Français de Mécanique Brest, 26 au 30 Août 2019

10D 25D

14D

Figure 1: Computational domain and boundary conditions for the 2D-cylinder wake flow.

The snapshots are taken in a time range of [150, 250] s after all initial disturbances have been canceled.
The simulation generates Nt = 1000 snapshots at a sampling frequency of fs = 10 Hz. The snapshots
contain the information of the two components of the fluctuating velocity vector u′ = [u′, v′]T . The
degree of freedom (number of discretised state variables) for the problem is Ns = 81772. The time
evolution of the drag and lift coefficients are shown in Fig. 2.
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Figure 2: Time evolution of drag coefficient (Cd), lift coefficient (Cl), and pressure drop across the
cylinder’s leading and trailing surfaces (dP ) for the 2D-cylinder flow atRe = 100. The periodic vortex
shedding is observed from t ' 100 s.

The PODmodes are then calculated for the fluctuating velocity fields obtained from the snapshot database.
The energy content of the modes is plotted in Fig. 3. We observe that the first four modes in total rep-
resent 99% of the energy. Therefore, for the further evaluation of the ROM, we reduce the degrees of
freedom of the problem to NGal = 4, where NGal � Nt.

The four most dominant temporal and spatial modes are plotted in Fig. 4 and Fig. 5, respectively. The
temporal coefficients aPOD

i show a sinusoidal response with the amplitude for the first pair (aPOD
1 and

aPOD
2 ), greater by an order of magnitude when compared with the next pair of modes (aPOD

3 and aPOD
4 ).

The frequency of the dynamics of the first pair of modes is half of that of the second pair. The spatial
mode pairs are shifted spatially as a result of the convective nature of the flow. The first spatial mode pair
(φPOD

1 andφPOD
2 ) jointly depicts the dynamical vortex shedding and their downstream convection. The

next mode pair (φPOD
3 andφPOD

4 ) corresponds to smaller scale structures attributed to the manifestation
of the separated shear layers along the sides of the cylinder and their longitudinal expansion further
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Figure 3: Energy content of the POD modes obtained for the fluctuating velocity fields of the 2D-
cylinder wake flow at Re = 100. The first four modes are the most dominant and account for 99% of
the total energy.
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Figure 4: Time evolution of the temporal POD coefficients aPOD
i corresponding to the four most ener-

getic modes for the 2D-cylinder wake flow at Re = 100.
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Figure 5: Spatial PODmodesφPOD
i corresponding to the four most energetic modes for the 2D-cylinder

wake flow at Re = 100.
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Finally, knowing the time evolution of the temporal PODmodes, we can apply the identification method
described in § 2.2. For theDA application (see § 4), the parameters of the ROM is identified using the first
50 s of the time range [150, 200], the remaining time range (200, 250] s being used for verification of the
procedure. As we retainedNGal = 4 modes in the current case, we haveNb = 15 unknown parameters
in the model for each mode. Moreover, as we sample the time span [150, 200] s at a sampling frequency
of 10 Hz, we haveNt = 501 for the identification. The parameters of the POD ROM obtained from the
subsequent L2-minimisation are given in Table 1.

Table 1: Initial conditions and identified coefficients of the POD ROM for the 2D-cylinder wake flow
at Re = 100 (i = 1, 2, 3, 4).

aROM
1 (0) aROM

2 (0) aROM
3 (0) aROM

4 (0)

1.08222 0.66946 -0.12609 -0.23122

ȧROM
1 ȧROM

2 ȧROM
3 ȧROM

4

Ci 0.362064 -0.098294 -0.000607 0.035313
Li1 0.092654 1.749100 -0.083613 -0.224252
Li2 -1.774020 0.063207 0.210161 -0.057925
Li3 -0.283876 -0.197742 0.313415 2.837220
Li4 0.246881 -0.256934 -2.829170 0.294689
Qi11 -6.12E-07 0.001337 0.025321 -0.037705
Qi12 -0.001339 -0.023584 0.080276 0.058309
Qi13 -0.025362 -0.027676 0.014383 0.096379
Qi14 0.037990 -0.022375 -0.093679 0.002203
Qi22 0.023581 -1.03E-06 -0.031571 0.043928
Qi23 -0.052789 0.031436 0.011520 -0.023409
Qi24 -0.035259 -0.043554 0.032056 0.016921
Qi33 -0.014382 -0.011518 4.85E-06 -0.000360
Qi34 -0.002704 -0.008651 0.000320 -0.012959
Qi44 -0.002201 -0.016919 0.013066 -7.09E-05

4 Results of Dual EnKF

As already mentioned in § 2.2, the POD ROM is in general not sufficiently accurate to describe the
original dynamics followed by the POD modes. This is illustrated in Fig. 6 where the ROM built using
the parameter values in Table 1 is employed to determine the time evolution of the POD coefficients.
We observe that the true dynamics are not exactly captured by the identified ROM. This was the main
motivation to use a DA method like the Dual EnKF to correct the values of the ROM parameters.

Before proceeding with the DA, we emphasize the fact that most of the physical systems have only
a few non-linear terms in the dynamics, making the right hand side of the equations (9) sparse in a
high-dimensional nonlinear function space. Hereafter, we exploit this sparsity in the non-linear model
to balance the model complexity with accuracy. To introduce sparsity in our solution, we follow the
procedure presented in Brunton et al. (2016) and introduce the concept of sparsification knob. The
role of this quantity is to set the maximum value allowed for any parameter. By first running the data
assimilation with no sparsification, a value of 0.5 has been found empirically for the sparsification knob.
In this section, the covariances are set to diagonal matrices equal to Q = 10−4I , C = 10−4I and
R = 10−5I . The parameters obtained from the Dual EnKF DA are given in Table 2. As anticipated,
the parameter space is sparse as only four significant parameters are retained to build the ROM.

The estimation and forecast results of the Dual EnKF assimilation are shown in Fig. 7. The data is
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Figure 6: True aPOD
i (dashed) and estimated aROM

i (solid) temporal PODmodes (i = 1, 2, 3, 4) obtained
with the identified POD ROM (NGal = 4) for the 2D-cylinder wake flow at Re = 100.

Table 2: Coefficients of the POD-ROM issued from Dual EnKF for the 2D-cylinder wake flow at Re =
100 (i = 1, 2, 3, 4).

ȧROM
1 ȧROM

2 ȧROM
3 ȧROM

4

Ci 0 0 0 0
Li1 0 1.09517 0 0
Li2 -1.06468 0 0 0
Li3 0 0 0 2.16846
Li4 0 0 -2.14971 0
Qi11 0 0 0 0
Qi12 0 0 0 0
Qi13 0 0 0 0
Qi14 0 0 0 0
Qi22 0 0 0 0
Qi23 0 0 0 0
Qi24 0 0 0 0
Qi33 0 0 0 0
Qi34 0 0 0 0
Qi44 0 0 0 0

assimilated for the time window [150, 200] s and the parameters of the ROM are estimated. The ROM
with the assimilated parameters is then used to forecast the evolution of the temporal coefficients in
the time window t = (200, 250] s. The results are compared with the reference POD coefficients. A
good agreement between the forecast and the reference values is observed as a result of the corrected
parameters of the POD ROM.

5 Conclusion

The Dual EnKF data assimilation is a well-established method in meteorology. It combines different
inhomogeneous sources of information (data, dynamical model) for the dual estimation of the true state
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Figure 7: Time evolution of the four most energetic temporal POD coefficients for the 2D-cylinder wake
flow at Re = 100. Comparison between the values obtained by POD and the ones obtained by the POD
ROM with the parameters determined by Dual EnKF. The true values aPOD

i are used for t ≤ 200 s as
observation in the DA. The dotted line at t = 200 s indicates the end of the DA window and beginning
of the forecast window.

and model parameters. This allows the prediction of the dynamical evolution with time. In this paper,
this approach has been applied in a fluid mechanics context to a POD ROM of a 2D-cylinder wake flow
at low Reynolds number (Re = 100). We observe that the initial PODROMobtained from identification
is not sufficient to predict the long-term dynamics. Therefore, we apply the Dual EnKF algorithm to
correct the model parameters and subsequently apply sparsification owing to the non-complex nature
of the dynamics. We observe that the original dynamics was well reproduced and a good predictability
of the analysed dynamical model was found. In the future, this DA method needs to be expanded with
the inclusion of parameters related to control and applied to experimental flow cases. It is a work in
progress.
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