
HAL Id: hal-02411758
https://hal.science/hal-02411758

Submitted on 12 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The rise of oxygen-driven arsenic cycling at ca. 2.48 Ga
Ernest Chi Fru, Andrea Somogyi, Abderrazzak El Albani, Kadda Medjoubi,

Jérémie Aubineau, Leslie Robbins, Stefan Lalonde, Kurt O. Konhauser

To cite this version:
Ernest Chi Fru, Andrea Somogyi, Abderrazzak El Albani, Kadda Medjoubi, Jérémie Aubineau, et
al.. The rise of oxygen-driven arsenic cycling at ca. 2.48 Ga. Geology, 2019, 47 (3), pp.243-246.
�10.1130/G45676.1�. �hal-02411758�

https://hal.science/hal-02411758
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Geological Society of America  |  GEOLOGY  |  Volume 47  |  Number 3  |  www.gsapubs.org	 243

The rise of oxygen-driven arsenic cycling at ca. 2.48 Ga
Ernest Chi Fru1, Andrea Somogyi2, Abderrazzak El Albani3, Kadda Medjoubi2, Jérémie Aubineau3, Leslie J. Robbins4, 
Stefan V. Lalonde5, and Kurt O. Konhauser4

1Centre for Geobiology and Geochemistry, School of Earth and Ocean Sciences, College of Physical Sciences and Engineering, 
Cardiff University, Cardiff CF10 3AT, Wales, UK

2Nanoscopium beamline, Synchrotron SOLEIL, L’Orme des Merisiers Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
3Institut de Chimie des Milieux et Matériaux de Poitiers, UMR 7285–CNRS, Université de Poitiers, 5 rue Albert Turpin (Bât B35), 
86073 Poitiers cedex, France

4Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
5Laboratoire Géosciences Océan, CNRS-UMR6538, European Institute for Marine Studies, Université de Bretagne Occidentale, 
29280 Plouzané, France

ABSTRACT
The Great Oxidation Event (GOE) at 2.45 Ga facilitated the global expansion of oxidized 

compounds in seawater. Here, we demonstrate that the GOE coincided with a sharp increase 
in arsenate and arsenic sulfides in marine shales. The dramatic rise of these oxygen-sensitive 
tracers overlaps with the expansion of key arsenic oxidants, including oxygen, nitrate, and 
Mn(IV) oxides. The increase in arsenic sulfides by at least an order of magnitude after 2.45 Ga 
is consistent with the proposed transition to mid-depth continental-margin sulfide-rich waters 
following the GOE. At the same time, the strong increase in arsenate content, to ~60% of the 
total arsenic concentration in shales, suggests that the oxidative component of the arsenic cycle 
was established for the first time in Earth’s history. These data highlight the global emergence 
of a new selective pressure on the survival of marine microbial communities across the GOE, 
the widespread appearance of toxic, oxidized chemical species such as arsenate in seawater.

INTRODUCTION
The Great Oxidation Event (GOE) marks 

a pivotal point in Earth’s history, when appre-
ciable amounts of O2 first permanently accu-
mulated in the atmosphere (Lyons et al., 2014). 
This rise in atmospheric O2 allowed shallow 
surface seawater to become globally oxygen-
ated, while sulfide-rich conditions developed 
in middle-depth continental-margin waters and 
anoxic iron-rich conditions persisted at depth 
(Poulton and Canfield, 2011). Abundant miner-
alogical and geochemical evidence support the 
timing of the GOE, including the disappearance 
of detrital pyrite, uraninite, and siderite from 
fluvial and deltaic deposits, an increase in Fe 
retention in paleosols, chromium (Cr) and ura-
nium (U) enrichments in iron formations and 
marine shales, and perhaps most importantly, 
the disappearance of sedimentary sulfur (S)–iso-
tope mass-independent (S-MIF) anomalies (see 
Farquhar et al. [2011] and Lyons et al. [2014] 
for reviews).

With the onset of oxidative weathering, sea-
water would have been supplied with increased 
amounts of oxidized species, such as arsenate, 
As(V), the oxidized form of arsenic (As). With 

an arsenite [As(III)] As(III)/As(V) redox 
potential close to that of Fe(II)/Fe(III) and 
NO3

–/N2
– (O’Day, 2006), As(V) should have 

formed readily during the GOE. This would 
have been amplified by the accumulation of 
oxidized compounds such as NO3

– and Mn(IV) 
oxides that, in turn, serve as As(III) oxidants 
(see Oremland and Stolz, 2003; see also the 
GSA Data Repository1). Once formed, As(V) 
could have been reduced back to As(III) in 
either the water column or sediment pile after 
interacting with electron donors like H2S and 
organic carbon.

Whether on land, in the oceans, or in Earth’s 
subsurface and surface environments, the redox 
cycling of As follows a simple pathway, deter-
mined chiefly by the presence or absence of 
oxygen and sulfide (Smedley and Kinniburgh, 
2002; O’Day et al., 2004; O’Day, 2006). Based 
on this conservative behavior of the As cycle in 
nature, we posit that the abundances of As(V) 
and As sulfides (As-S) in Precambrian marine 
shales should effectively track As speciation and 
accumulation in the oxic and sulfide-rich envi-
ronments that became widespread following the 
rise of atmospheric oxygen.

METHODS
Drill-core shale samples, aged ca. 2.7–2.0 Ga, 

are from near-continental-margin deposits associ-
ated with biological activity (Table DR1; Bekker 
et al., 2004; Canfield et al., 2013; Martin et al., 
2015; Chi Fru et al., 2015, 2016a). X-ray absorp-
tion near edge spectroscopy (XANES) was per-
formed to evaluate the As speciation (see sup-
plementary methods in the Data Repository). To 
account for variation in speciation for a given 
sample, location, or geological age, each sample 
was measured between five and 60 times. Major 
elements were measured by inductively coupled 
plasma–atomic emission spectrometry (ICP-
AES), and trace elements by ICP–mass spec-
trometry (ICP-MS) and ICP–optical emission 
spectrometry (ICP-OES) as previously described 
(Ngombi-Pemba et al., 2014; Chi Fru et al., 
2015). Ferric iron oxide (Fe2O3) was determined 
as the difference between total iron [(Fe2O3)T] 
and ferrous iron (FeO). FeO was quantified by 
titration. Banded iron formation data assembled 
from a literature survey and new chemical analy-
ses are detailed in Table DR2 and supplementary 
methods in the Data Repository.

RESULTS
We sampled marine shales from 39 deposits 

across 10 nearshore marine successions formed 
between ca. 2.7 and 2.0 Ga (Table DR1 in the 
Data Repository). Essentially, the sample suite 
was chosen based on previous studies demonstrat-
ing their usefulness as proxies for Precambrian 
seawater and atmospheric composition because 
of limited post-depositional modification (Can-
field et al., 2013; Chi Fru et al., 2015, 2016a; see 
supplementary methods in the Data Repository). 
These, together with ~800 iron formation samples 
spanning ca. 3.8 Ga to present, were analyzed for 
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As, Ti, and Fe content (Table DR2). The oxida-
tion state of As and associated elements in shale 
minerals was examined by X-ray absorption near 
edge spectroscopy (XANES) (Fig. DR1 in the 
Data Repository) and X-ray fluorescence (Fig. 
DR2), respectively. After we excluded poten-
tial X-ray–induced oxidation of reduced As(III) 
species to As(V), and As(V) reduction during 
XANES analysis, our data revealed the following:

(1) Early Paleoproterozoic shale As/Fe ratios 
are mostly within the Neoarchean range, rising 
from a minimum of ~1.0 × 10–6 at the Archean-
Proterozoic boundary to a maximum of 4.0 at 
ca. 2.0 Ga (Fig. 1A).

(2) With the exception of one sample, As(III) 
was exclusively below the XANES detection 
limit (Table DR1), implying that <15% of total 
As might be present as As(III). XANES spectra 
exhibit two prominent peaks in the 11.8695–
11.8705 keV range, corresponding to As-S and 
As(V) species (Fig. DR1).

(3) The gradual increase in total As content in 
marine sediments across the GOE is mainly due 
to As-S and As(V) enrichment (Figs. 1B–1C).

(4) As-S and As(V) enrichment begins at 
2.48 Ga, intensifying in the 2.32 Ga Timeball 
Hill Formation, South Africa (Fig. 1C), consis-
tent with previously reported Cr and U enrich-
ments in iron formations (Konhauser et al., 
2011; Partin et al., 2013).

(5) As/Ti ratios in iron formations coincide 
with an increase in the oxidative supply of As from 
land to the oceans at the GOE (Fig. 2A). A lack of 
strong variability in As/Fe ratios across the GOE 
transition (Fig. 2B) suggests that the size of the Fe 
pool was not a major determinant of sediment As 
concentration and speciation trends at this time.

(6) In the Francevillian shales, Gabon, bulk 
As concentrations >50 ppm increase with rising 
Fe-oxide content (Fig. DR3A). However, there is 
a generally weak correlation between Fe-oxide 
and As concentration across the Francevillian 
Series. This is most prominent when As is 
<50 ppm (Fig. DR3A), along with a correla-
tion between Mo and As in the sulfide-rich FD 
formation of the Francevillian Series (Figs. DR4 
and DR5). This suggests that the rise of near–
continental margin sulfidic conditions across the 
GOE was a critical factor controlling sediment 
As content and oxidation state.

(7) Some Precambrian pyrite-specific As 
enrichments are significant (Large et al., 2014; 
Gregory et al., 2015), but may not represent bulk 
shale As concentrations (Figs. DR3B and DR3C).

DISCUSSION
The similar range of As/Fe ratios recorded 

during the early Paleoproterozoic relative to the 
Archean in both shales and iron formations sug-
gests that the rise of As(V) and As-S species 
across the GOE cannot be explained by rapid 
fluctuations in the sedimentary Fe reservoir (see 
the Data Repository). Instead we suggest that this 
change is linked to the intensification of oxidative 

weathering of a felsic and/or As-S–rich continental 
crust (Konhauser et al., 2011; Large et al., 2018; 
see the Data Repository for details), containing 
up to 1500 ppm of As (Henke, 2009). The peak 
in As/Ti ratios in iron formations at ca. 2.48 Ga is 
consistent with a contemporaneous spike in Cr/Ti 
ratios, interpreted to reflect the onset of terrestrial 
aerobic sulfide oxidation (Konhauser et al., 2011). 
The muted GOE iron formation As/Fe signal, rela-
tive to Archean ratios, and the knife-sharp rise in 
the As/Ti trend across the GOE (Fig. 2A) may be 
related to Snowball Earth glaciations influenc-
ing continental As supply patterns (Chi Fru et al., 
2015). This hypothesis is supported by the suppres-
sion of As/Fe and As/Ti ratios in Neoproterozoic 
iron formations (Figs. 2A and 2B; Table DR2) that 
are a product of submarine hydrothermal activity 
and a result of ice sheets restricting sediment sup-
ply and promoting water-column anoxia (Hoffman 
et al., 1998; see the Data Repository).

Under anoxic conditions, As and S chemistry 
becomes coupled, such that sulfide production 
scales with As-S deposition (O’Day et al., 2004; 
Data Repository). Arsenic sulfides, however, can 

be oxidized to As(V) in O2-rich conditions (e.g., 
the case of arsenopyrite in Reaction 1).

	 4FeAsS + 13O2 + 6H2O →  
	 4H3As4 + 4FeSO4.	 (1)

In addition, the formation of As(V) only occurs 
when relevant As(III) oxidants (e.g., O2, MnO2, 
NO3

–) are available (Oremland and Stolz, 2003; 
see the Data Repository). Electron donors are 
required to regenerate As(III) from As(V), and 
as today, microbes catalyze both the oxidative 
and reductive reactions (Oremland and Stolz, 
2003). As(V) accumulation, therefore, occurs 
when production rates are greater than consump-
tion rates, likely explaining the observed rise of 
As(V) in the data:

Anoxygenic photosynthetic and anoxic 
NO3

–-dependent chemoautotrophic oxidation of 
As(III) have been proposed as the most viable 
mechanisms by which appreciable Archean 
As(V) production could have occurred (Orem-
land and Stolz, 2003; Sforna et al., 2014). If these 
processes were prominent over As(V) reduction, 
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Figure 1. Secular sedimentary arsenic (As) dynamics across Archean-Proterozoic boundary. 
A: Bulk As/Fe ratio trends (see Chi Fru et al. [2015] for data description). Horizontal shading 
indicates range of Archean values. B: Bulk average As content in shales across sampled 
interval measured by inductively coupled plasma–optical emission spectrometry. Arrows 
are maximum X-ray fluorescence values (see Methods in text and Table DR1 [see footnote 
1]). C: X-ray absorption near edge spectroscopy (XANES) data showing distribution of As 
species in shales. Red trace line shows atmospheric oxygenation dynamics relative to 
present atmospheric level (PAL), according to Lyons et al. (2014). Red arrows show whiffs 
of O2 according to Anbar et al. (2007). Green shading indicates XANES detection limit, 
which is 15% total As content; data below detection limit are statistically uncertain and 
are rounded down to zero for graphical display. GOE—Great Oxidation Event.
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a strong sedimentary As(V) signal would be 
expected. Our data, however, suggest that anoxic 
As(III) oxidation of Archean crust was limited, 
relative to that of post-GOE deposits. To this 
end, there is a significant increase in As(V) in the 
2.32 Ga Timeball Hill Formation, suggesting that 
As(V) production outpaced consumption, com-
pared to the period before. Further, the prevalence 
of As-S coincides with significant pyrite deposi-
tion in Timeball Hill black shales (Bekker et al., 
2004). The strength and reproducibility of the 
As-S and As(V) signals (Fig. 1C) are consistent 
with the oxidation of terrestrial minerals contain-
ing reduced As to produce soluble As(V) that was 
then transported to the oceans during the GOE.

In addition to being a strong As(III) oxidant, 
O2, as it accumulated in the atmosphere, would 
have initiated the generation of additional As(III) 
oxidants, including Mn(IV) oxides and NO3

– 
(Oremland and Stolz, 2003; Roy, 2006; Zerkle 
et al., 2017). As expected, the elevated As-S 
content in shales coincides with the suggested 
expansion of microbial reduction of sulfate, coin-
cident with the GOE (Kah et al., 2004; Poulton 
and Canfield, 2011; Planavsky et al., 2012). Nei-
ther diagenesis nor the photochemical oxidation 
of As are likely to have significantly affected our 
interpretation (see the Data Repository).

Major biogeochemical As cycling pathways in 
the anoxic Archean oceans are proposed to have 
been distinct from those operating in the redox-
stratified Paleoproterozoic seawater column 
(Figs. 3A and 3B). Accordingly, the oxidative 
supply of As(V) from land promotes the large-
scale uptake of As(V) through phosphate trans-
porters by marine phytoplankton. This is followed 
by intracellular As(V) reduction via cytoplasmic 
As(V)-reductases and the extrusion of As(III) by 
membrane transporters (Fig. 3C) (Dyhrman and 
Haley, 2011; Wurl et al., 2013, 2015; Yan et al., 
2014; Sánchez-Riego et al., 2014; Saunders and 
Rocap, 2016). The conversion of As(V) to As(III) 
minimizes phosphate loss, as physicochemi-
cal similarities between As(V) and phosphate 

complicates differentiation by the cell. Not sur-
prisingly, As(V) displays nutrient-like behavior in 
the modern oxidized ocean, with a rapid increase 
in the thermocline and near-constant concentra-
tion at depth (Cutter and Cutter, 2006; Wurl et al., 
2013, 2015). The shuttling of As(V) into, and 
As(III) out of, the cell followed by rapid re-oxi-
dation back to As(V) limits As sedimentation and 
increases seawater residence time (Henke, 2009). 
This thermodynamic disequilibrium accounts 
for up to 20% of inorganic As in the oxygenated 

surface ocean being present as As(III) (Cutter 
et al., 2001; Cutter and Cutter, 2006; Wurl et al., 
2013, 2015; Fig. 3D).

Importantly, some oxidized compounds mobi-
lized for the first time during the GOE would have 
been toxic for microbes that had evolved in their 
absence under dominantly anoxic marine condi-
tions. Arsenate, for instance, is toxic to all three 
domains of life down to the nanomolar range and 
its concentration displays a strong inverse rela-
tionship with marine primary production, particu-
larly because of the interference of As(V) with 
phosphate metabolism (see Smedley and Kinni-
burgh, 2002; Dyhrman and Haley, 2011; see the 
Data Repository). Methylated arsenicals, impli-
cated in the adaptation of early life to As-rich 
environments (Chen et al., 2017) and linked to As 
detoxification, contain ≥35% of As in the photic 
zone (Cutter et al., 2001; Cutter and Cutter, 2006; 
Wurl et al., 2013, 2015). This biological process-
ing of As, plus sulfide and Fe(III)-(oxyhydr)oxide 
mineralization, would have influenced the distri-
bution of As resistance, As-based metabolisms, 
and biological phosphate uptake in extant biota 
(see the Data Repository for a discussion on 
implications for biological arsenic cycling and 
phosphate uptake). It has also been suggested that 
the large-scale deposition of iron formations at 
the Archean-Paleoproterozoic transition facili-
tated the preferential incorporation of phosphorus 
(P) over As(V) into Fe(III) (oxyhydr)oxides. This 
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would have led to a simultaneous buildup of 
As(V) and depletion of P in seawater that would 
have negatively impacted marine primary pro-
ductivity (Chi Fru et al., 2016b; Hemmingsson 
et al., 2018).

The rise in As-S and As(V) appears some 
30 m.y. before the loss of S-MIF, providing com-
pelling evidence that the GOE was protracted 
rather than instantaneous. This rise in marine 
As-S and As(V) across the Archean-Proterozoic 
boundary overlaps with the expansion of major 
As oxidants during the GOE. We propose that 
this radical change enabled the expansion of a 
global As cycle reminiscent of the modern, and is 
related to the onset of abundant As-S and As(V) 
species in sulfidic and oxygenated environments, 
respectively. The emergence and impact of these 
toxic species have yet to be considered despite 
this knowledge forming a critical prerequisite for 
understanding how life adapted to the new redox 
landscape that emerged with the GOE.
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