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Introduction

In 1971, Kurepa [START_REF] Kurepa | On the left factorial function !n[END_REF] introduced the left factorial function !n defined, for any positive integer n, as the sum of factorials !n = 0! + 1! + • • • + (n -1)!. Kurepa conjectured that the greatest common divisor of !n and n! is equal to 2 for all integers n > 2. Equivalently, the conjecture claims that there are no odd primes p such that p divides !p. This problem has been studied extensively and was called Kurepa's conjecture by the subsequent authors. For a historical background, the reader can consult [START_REF] Andrejić | Searching for a counterexample to Kurepa's conjecture[END_REF]. The conjecture is also listed in Richard Guy's classical book [START_REF] Guy | Unsolved Problems in Number Theory[END_REF]Section B44]; as of 2020, it is still an open problem.

In the past, there were several attempts to disprove the conjecture by finding a counterexample. In the most recent search [START_REF] Andrejić | Searching for a counterexample to Kurepa's conjecture[END_REF], no counterexample was found for any p < 2 34 . All such searches are based on calculations of residues r p = !p mod p for primes p. In all previous attempts, the time complexity of algorithms was O(p) for a single p and O(n 2 / log n) for all p < n. We now show that the computational complexity can be significantly improved and we extend the search range up to 2 40 .

These improvements are based on the simple observation that n! and !n can be represented altogether in a matrix factorial form as

M n := C 1 C 2 • • • C n = n! !n 0 1 , where C k = k 1 0 1 .
Applying [START_REF] Bostan | Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator[END_REF]Theorem 8] on the matrix factorial M p , yields an improved algorithm for computing a single remainder r p in time O(p 0.5+ε ). In practice, due to the overhead of the polynomial multiplication based on Fast Fourier Transform, this method does not significantly outperform the one given in [START_REF] Andrejić | Searching for a counterexample to Kurepa's conjecture[END_REF] for p around 2 34 . However, the improvement is notable for larger values of p. We used this method to verify the individual values r p obtained by the algorithm we will describe next.

The main method we used in our search is based on the work presented in [START_REF] Costa | A search for Wilson primes[END_REF]. The algorithm was originally designed for computing Wilson primes, and is easy to adapt to matrix factorials. As a consequence, the remainders r p for 2 ≤ p ≤ n can be computed altogether in time O(n log 3+ε n). However, for large n, due to the limited computing resources, we need to run the search on smaller intervals. The time complexity of the method we used to compute the remainders

r p for m ≤ p ≤ n is O(m log 3+ε m + (n -m) log 3+ε n).
Let us denote the terms we will use in the following section, where some definitions are similar to those that appear in [5, Theorem 2]. Let h = log 2 (n -m) . For each 0 ≤ i ≤ h and 0 ≤ j ≤ 2 i we set

S i,j = k ∈ Z : m + j n -m 2 i < k ≤ m + (j + 1) n -m 2 i .
Then we introduce

A i,j = k∈Si,j C k , P i,j = p∈Si,j p,
and

R i,j = M m 0≤r<j A i,r (mod P i,j ).
For each prime p ∈ S h,j it follows that r p is congruent to the (1, 2)-entry of the matrix R h,j .

Implementation

For large integer arithmetic computations, we used the libraries GMP [START_REF] Granlund | the GMP development team, GNU MP: The GNU Multiple Precision Arithmetic Library[END_REF] and NTT [START_REF] Harvey | NTT: A library for large integer arithmetic[END_REF]. The NTT library supports multithreading without an additional memory overhead and performs integer multiplication faster than GMP routines when the operands are sufficiently large. This setup is similar to the solution given in [START_REF] Costa | A search for Wilson primes[END_REF]. To generate a list of primes, we used the implementation of the sieve of Eratosthenes provided by the FLINT library [START_REF] Hart | FLINT: Fast Library for Number Theory[END_REF]. The source code of our implementation is available at https://github.com/milostatarevic/left-factorial.

To compute all remainders r p for primes p in an interval (m, n], we implemented the following four phases.

2.1. Phase 1: computation of the P i,j . This phase consists of two parts. First, we generated a list of primes in (m, n], then we computed and stored all P i,j using a product tree. The time complexity of this phase is

O((n -m + √ n) log 2+ε n).
2.2. Phase 2: computation of M m (mod P 0,0 ). We computed M m by using a product tree. The time complexity of this phase is O(m log 3+ε m). This phase represents the bottleneck of the proposed algorithm.

In practice, each time we extended the computation to the next interval (m, n], we reused the intermediate multiplication results we stored from the previous iteration. This approach allows us to reduce the computation time by a constant factor. The optimal results were achieved when the stored values were just slightly less than 2P 0,0 , which additionally required that the tree be partitioned carefully.

Unfortunately, this approach significantly increased space requirements (measured in terabytes). As the data storage solutions are less expensive compared to the cost of RAM or the price per CPU core, we decided to reduce the computation time on account of the increase of the storage space. To reduce the hard disk I/O we used a smaller solid-state drive, where we stored intermediate results. This way the disk I/O did not represent a bottleneck.

As this phase is the most time expensive, the best performance is obtained if the interval (m, n] is as large as possible, which is limited by the available RAM.

2.3. Phase 3: computation of the A i,j . To compute A i,j , we also used a product tree. To optimize space usage, we stored only A i,j (mod P i,j ). Additionally, we used the results from this phase to prepare the computation of M m for the next search interval as described in Phase 2. The time complexity of this phase is O((n -m) log 3+ε n).

2.4.

Phase 4: computation of the R i,j . This phase is similar to Phase 3, with the difference that we performed the computation starting from the top level of the product tree i = 0, going down to the level i = h. The only values we had to store during this process belonged to the level we were currently processing and those contained in one level above. The time complexity of this phase is also O((n -m) log 3+ε n).

Verification of the results.

To verify a subset of computed values r p , we used a procedure based on the algorithm described in [START_REF] Bostan | Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator[END_REF], with the time complexity O(p 0.5+ε ) per prime p. The polynomial multiplication is performed by using the NTL library [START_REF] Shoup | NTL: A Library for doing Number Theory[END_REF]. 2.6. Hardware. The computation was performed using a 6-core CPU (i7 6800K). The configuration was equipped with 64GB of RAM and 16TB of disk space. The entire computation took approximately 33 000 core hours, where about 65% of the time was spent in Phase 2. For a couple of the last blocks we processed, the time spent in Phase 2 was approaching 80%.

Results

We calculated and stored r p for all primes p less than 2 40 . Heuristic considerations suggest that !p is a random number modulo p with uniform distribution, so the probability that r p has any particular value is approximately 1/p, and the sum of reciprocals of the primes diverges. Thus, we might expect that the probability to find a counterexample in an interval (2 m , 2 n ) is approximately 1 -m/n, and the expected number of primes p with |r p | < is approximately (2 -1) log(n/m) [START_REF] Andrejić | Searching for a counterexample to Kurepa's conjecture[END_REF].

The new search covered the interval (2 34 , 2 40 ). The above heuristic predicts that our chances of finding a counterexample were approximately 15%. Although we only found 24 primes with = 100 in our interval in comparison with the expected value 32, the heuristics give good estimates for higher values of . For = 10 000 the expected number of primes in this interval is 3250, which is close to the actual value 3237. Similarly, for = 10 000 000, the predicted value 3 250 379 is close to the actual value 3 250 456. The results for |r p | < 100 are presented in Table 1.

Additionally, we have used our new algorithms in a search for socialist primes. The socialist primes are the primes p for which the residues of 2!, 3!, . . . , (p -1)! modulo p are all distinct [START_REF] Trudgian | There are no socialist primes less than 10 9[END_REF]. Erdős conjectured that no prime p > 5 is socialist, see [START_REF] Guy | Unsolved Problems in Number Theory[END_REF]Section F11]. In our previous work [START_REF] Andrejić | On Distinct residues of factorials[END_REF] we proved that a socialist prime p needs to satisfy (!p-2) 2 ≡ 1 (mod p), and showed there are no socialist primes with 5 < p < 10 11 . Our new results confirm that there are no primes p in the interval (2 34 , 2 40 ) such that the remainder r p satisfies the desired congruence. Consequently, there are no socialist primes p with 5 < p < 2 

Remarks

After our article appeared in preprint, we learned that the theoretical aspects of using remainder trees to compute the left factorial residues were also covered in Rajkumar's master's thesis [START_REF] Rajkumar | Searching for a counterexample to Kurepa's conjecture in average polynomial time[END_REF]. We encourage the readers to read it. Let us note that our work is independent and was published online at approximately the same time as Rajkumar's work. The computations and the results we presented in our paper are going back to 2017 and were initially presented at 14th Serbian Mathematical Congress in 2018 [START_REF] Andrejić | On Kurepa's left factorial conjecture[END_REF].

Table 1 .

 1 40 . The 24 primes in the interval (2 34 , 2 40 ) such that |r p | < 100.

	p	r p	p	r p	p	r p
	22 370 028 691 -55 153 736 627 747 24	450 798 203 041 52
	34 212 035 633	47	203 109 046 969 -73 541 389 125 113 -9
	35 420 262 113 -24 252 164 235 031 84	576 365 852 729	5
	39 541 338 091	-1 296 599 719 739 -67 581 743 725 197 28
	71 848 806 989 -87 315 631 019 399 72	668 487 297 869 -92
	94 844 067 751 -59 342 077 311 241 -85 740 405 032 753 -24
	102 281 886 901 19	348 036 477 379 -77 817 880 148 803 -46
	141 853 427 273 95	425 430 768 359	9	885 831 128 921 -35
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