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Abstract. The design of model-based flow controllers requires the knowl-
edge of a dynamical model which can accurately predict the flow state.
Real-time and robust estimation of the flow state however remains a
challenging task when only limited spatial and temporal discrete mea-
surements are available. In this paper, the objective is to draw upon
the methodologies implemented classically in meteorology to develop dy-
namic observers for flow control applications. A well established data as-
similation method based on Kalman filter is considered. This approach
is here extended to both estimate model states and specific flow parame-
ters. The strategy is numerically demonstrated on a POD Reduced-Order
Model of a 2D-cylinder wake flow at low Reynolds number.

Keywords: data assimilation, dual ensemble Kalman filter, POD Reduced-
Order Model, 2D-cylinder wake flow

1 Introduction

Despite decades of intensive research in shape optimization, aerodynamic mech-
anisms such as separation and mixing still represent an important source of
energy expenditure in transport vehicles. The manufacturers have consequently
developed, over the years, a range of strategies to improve the aerodynamic per-
formance of their vehicles. One of these strategies consists in using active devices
that can be actuated on and off based on the change of the inflow conditions.
To drive such actuators, command laws and more globally valid controllers are
required. To design these controllers, different strategies can be employed, one
of which being the model-based approach. The later requires the knowledge of a
dynamical model of the flow that one wants to control in real-time. In practice,
the identification of such a model is challenging because it is generally obtained
from limited spatial and/or time discrete informations.

This problem of state estimation is well-known in the field of meteorology
where data is collected at multiple locations, with spatial and temporal scales
varying in orders of magnitude, to estimate the evolution of the weather [14].
Classical methodologies involve the use of data assimilation (DA) techniques
where data is assimilated, when available, with a dynamical model to correct the
state estimate obtained by the model, and eventually, to correct the model itself
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for further, more accurate predictions. In the specific context of aerodynamic-
related problems, the complexity resides essentially in the large number of de-
grees of freedom of the flow dynamics, in the broad range of scales to examine
and in non-linearities driving the flow system. To design a physical model that
can be managed in real-time applications, the Navier-Stokes equations are tradi-
tionally projected onto an appropriate reduced basis leading to a reduced-order
model of the flow [11]. Proper Orthogonal Decomposition (POD, [6]) is typically
used to design the orthonormal basis which captures the flow features which are
believed essential, from an energetic point of view, in representing the flow dy-
namics. In general, this basis is then used in a Galerkin approach to derive a POD
Reduced-Order Model (POD ROM) of the flow by projecting the Navier-Stokes
equations onto the POD modes. Unfortunately, this dynamical system is gen-
erally not sufficiently accurate for application in flow control, and identification
methods are then used to improve the prediction ability of the POD ROM [3].
An alternative is to use the ROM in conjunction with DA techniques to design
dynamic observers able to predict the flow state, provided limited information
of the state itself is available [8].

In this paper, a particular stochastic DA method known as Dual Ensemble
Kalman Filter (Dual EnKF) is applied to a numerical dataset of a 2D-cylinder
wake flow at low Reynolds number (Re = 100). In the DA setup considered,
time-resolved measurements of streamwise velocity component sampled at spe-
cific downstream locations serve as observations for the assimilation procedure.
At the end of the assimilation window, the measurements are used to test the
predictability of the DA method with respect to reproducing the flow dynamics
beyond the window. In § 2, an overview of snapshot POD (§ 2.1), POD-ROM
(§ 2.2), residual representation (§ 2.3), and Dual EnKF (§ 2.4) is given. POD
Reduced-Order model is then applied to the cylinder wake flow in § 3. The results
obtained from the application of DA to predict the dynamics of the numerical
flow is discussed in § 4. Finally, the concluding remarks are given in § 5.

2 Model reduction and Ensemble Kalman Filter

In this section, we present the reduced-order modelling strategy and describe the
Ensemble Kalman Filtering (EnKF) method employed for the reconstruction and
prediction of the flow fields.

2.1 Snapshot POD

The proper orthogonal decomposition (POD) is a reduced-order model approach
which was introduced to the fluid dynamics community as a mathematical tool to
extract coherent structures from turbulent flow fields [6]. It provides an objective
algorithm to decompose a set of data into a minimal number of basis functions
or modes to capture as much as possible the information contained in the data.
It is a pure data-driven method and as such requires only the flow field data for
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modal decomposition. POD extracts the modes based on optimizing the mean
square of the field variable under observation [2].

Let χ be the spatial coordinates and t represents the scalar time, we assume
that the unsteady component of the vector field u(χ, t) can be decomposed as

u(χ, t)− u(χ) =
∑
i

ai(t)φi(χ), (1)

where u is the temporal mean of u. In (1), φi and ai represent the spatial modes
and the time-dependent projection coefficients, respectively.

The POD method requires an ensemble of snapshots of any scalar (e.g. pres-
sure, temperature) or vectorial (e.g. velocity, vorticity) fields defined at discrete
spatial points χi (i = 1, . . . , Nχ) and discrete time instants tk (k = 1, . . . , Nt).
From this data set, we prepare snapshots of the flow field stacked in terms of a
collection of column vectors u′(χi, tk) where

u′(χi, tk) = u(χi, tk)− u(χi) ∈ RNs , i = 1, 2, . . . , Nχ, k = 1, 2, . . . , Nt (2)

where Ns is the number of the spatial degrees of freedom of the data. For a
fluid flow data, Ns is equal to the number of grid points (Nχ) times the number
of components (Nc) to be considered in the data. The snapshot vector can be
stacked in matrix form as

X = [u′(χi, t1) u′(χi, t2) . . .u′(χi, tNt)] ∈ RNs×Nt . (3)

Next, the objective is to find the optimal basis vectors that can best represent
the flow data in an average energetic sense. In other words, we seek the vectors
φPOD
i in (1) that can represent u′(χi, tk) in an optimal manner and with the

least number of modes. The solution to this problem can be determined by
finding the eigenvectors ψi and eigenvalues λi from

XTXψi = λiψi, ψi ∈ RNt (4)

where XTX ∈ RNt×Nt is a temporal correlation matrix1. The eigenvalues λi
are arranged in descending order such that λ1 ≥ λ2 ≥ . . . ≥ λNt ≥ 0.

In most numerical cases, spatial size of the data is very large compared to
the temporal size, Ns � Nt. For this reason, the method of snapshots proposed
by Sirovich [13] is preferred to the classical spatial POD method that leads to a
spatial correlation matrix XXT of size Ns [11].

After obtaining the eigenvectors ψi from the smaller eigenvalue problem (4),
the (spatial) POD modes are recovered as

φi =
1√
λi
Xψi ∈ RNs , i = 1, 2, . . . , Nt, (5)

1 For simplicity, we have considered the field data to be placed on a uniform grid.
In general, the cell volume needs to be included in the formulation to represent the
spatial inner product. The covariance matrix should therefore be written asXTWX
where W holds the spatial weights.
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which can be also written as

Φ = XΨΛ−1/2, (6)

where Φ = [φ1 φ2 · · · φNt ] ∈ RNs×Nt and Ψ = [ψ1 ψ2 · · · ψNt ] ∈ RNt×Nt .
Note that these matrices are orthonormal, i.e. ΦTΦ = ΦΦT = I and ΨTΨ =
ΨΨT = I (normality of XTX). The temporal coefficients are determined ac-
cordingly as

ai(t) = 〈u′(χ, t),φi(χ)〉Ω , i = 1, 2, . . . , Nt, (7)

where 〈·〉Ω represents the spatial inner product defined as

〈
vI(χ, t),vII(χ, t)

〉
Ω

=

∫
Ω

vI(χ, t) · vII(χ, t) dχ (8)

for two given vector fields vI and vII defined in a spatial domain Ω.

2.2 POD Reduced-Order Model (POD ROM)

A standard Galerkin projection is then used to derive the POD ROM. The
projection of the incompressible Navier-Stokes equations onto the spatial POD
modes φi leads, after some algebraic manipulation [3], to the following expres-
sion, 

ȧi(t) = Ci +
NGal∑
j=1

Lijaj(t) +
NGal∑
j=1

NGal∑
k=j

Qijkaj(t)ak(t) +Ri(t)

ai(0) = 〈u(χ, 0)− u(χ),φi(χ)〉Ω i = 1, . . . , NGal

(9)

where NGal is the number of POD modes kept in the Galerkin projection. The
residual term Ri reads

Ri(t) =

Nt∑
j=NGal+1

Lijaj(t) +

Nt∑
j=NGal+1

Nt∑
k=j

Qijkaj(t)ak(t). (10)

The coefficients Ci, Lij and Qijk are the constant, linear and quadratic coeffi-
cients of the model equation and can be expressed as functions of the spatial
eigenfunctions φi and the mean field u [3]. When the residual term Ri is ne-
glected, the model reduces to a so-called reduced-order model (ROM). In prac-
tice, an energetic criterion can be used to determine the value of NGal necessary
to capture the essential flow dynamics. The relative information content (RIC)
[1] is defined as

RIC(NGal) =

NGal∑
i=1

λi

/
Nt∑
i=1

λi . (11)



5

2.3 Representation of the residual

Due to the truncation in (9), the ROM is in general not sufficiently accurate
to estimate correctly the long-term dynamics (see also the discussion in § 3.2).
This truncation is equivalent to keep only the most energetic modes that are
associated to the largest flow motions. As a consequence, the contribution of the
viscous dissipation terms are neglected and the solution of (9) may diverge in
time. To account for this truncation error, a subscale turbulence representation
can be used to model the residual term Ri. Rempfer and Fasel [10] suggested to
include this dissipative effect in a linear term as a “model eddy viscosity” i.e.

Ri(t) = νTi

NGal∑
j=1

Lija
ROM
j (t). (12)

Finally, the POD ROM considered in this paper is thus given by,
ȧROM
i (t) ' Ci +

NGal∑
j=1

(1 + νTi )Lija
ROM
j (t) +

NGal∑
j=1

NGal∑
k=j

Qijka
ROM
j (t)aROM

k (t)

aROM
i (0) = ai(0) i = 1, . . . , NGal

(13)
where the superscript ROM is used to separately identify the temporal coeffi-
cients obtained from the POD ROM as compared to the ones which are directly
obtained from snapshot POD.

The model coefficient vector (C1 . . . L11 . . . Q111 . . . )
T

can be calibrated
thanks to a least-mean-square procedure (L2 minimization) such as detailed
in Perret et al. [9] or Cordier et al. [3]. In the current paper, the model coeffi-
cient vector is calculated once and for all, and the estimation of the model eddy
viscosity νTi (i = 1, . . . , NGal) is done by DA.

2.4 Dual Ensemble Kalman Filter (Dual EnKF)

As the POD ROM is not sufficient in general to replicate the correct dynamics,
we rely on data assimilation methods to correctly identify the model parame-
ters. Data assimilation is a generic methodology which combines heterogeneous
observations with the underlying dynamical principles governing the system
under consideration to estimate at best the states and/or physical quantities
parametrising the dynamics. Starting from a background solution and incoming
imperfect information, an optimal estimation of the unknowns of the system is
determined which takes into account the respective statistical confidences of the
different observations.

We consider a non-linear, time-discrete dynamical system given as

xtk+1 =Mk,k+1(xtk,θk) + ηk, (14)

where the superscript t stands for true. Here, k = 0, . . . , N − 1 is the time index
with N being the total number of time steps. The propagation of the true state
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xtk ∈ RNs (where Ns is the dimension of the state after spatial discretisation)
from time tk to tk+1 is performed by a non-linear function Mk,k+1 which also
depends on the model parameters vector θk at time tk. The model error ηk ∼
N (0,Qk) is considered to be Gaussian distributed with zero mean and covariance
matrixQk. The model is initialised with an initial background state xb0 such that
xt0 = xb0 with the corresponding initial covariance Q0.

In conjunction with the model equation, an observation equation is used
which allows the estimated state to be corrected thanks to the available mea-
surements. The observation vector yok+1 ∈ RNo (where No is the dimension of
the observations) at time tk is related to the state by the relation

yok+1 = Hk+1(xtk+1) + εk+1, (15)

where Hk+1 denotes the observation function (which may be non-linear), and
εk+1 ∼ N (0,Rk+1) the observation noise approximated as a Gaussian distribu-
tion with zero mean and covariance Rk+1.

If the model parameters are known to be true, a DA method is specifically
used for the state estimation. On the other hand, in practice, we frequently
encounter cases where the parameters are unknown or imprecise.

One of the possible approaches to solve this dual estimation problem is to
use an iterative method where the filtering is alternatively applied to estimate
the state and the parameters in the course of each iteration. More precisely,
the model parameters are obtained from the corrected state at the previous
time state and the new state is evaluated from the current analysed parameters.
This method, formally known as Dual EnKF [7], consists of a sequential double
prediction-correction scheme at the basis of the mechanism of evolution of the
traditional Kalman filter, one for the update of the parameter vector, one for
the update of the state variable.

Prediction-correction of the parameters vector
First, an ensemble of Ne forecasted parameters is created using a forced random
walk of the parameters set up according to a Gaussian law ξk ∼ N (0,Ck) with
zero mean and covariance matrix Ck. During the prediction step, the ensemble
of forecasted parameters is constructed as

θ
f,(n)
k+1 = θ

a,(n)
k + ξ

(n)
k n = 1, . . . , Ne (16)

where the superscript (n) represents the n-th member of the ensemble of pa-
rameters, while the superscripts f and a denote the forecasted (predicted) and
assimilated (corrected) values of the parameters, respectively. The predicted en-
semble of parameters are then updated using the available observations. For this,
the predicted state at the instant tk+1 is computed as,

x
f,(n)
k+1 =Mk,k+1(x

a,(n)
k ,θ

f,(n)
k+1 ) n = 1, . . . , Ne. (17)

The predicted ensemble of observations is then obtained as,

y
f,(n)
k+1 = Hk+1(x

f,(n)
k+1 ) n = 1, . . . , Ne. (18)
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Next, the random observations are built to be centred around the actual obser-
vation yok+1 following

y
o,(n)
k+1 = yok+1 + ε

o,(n)
k+1 n = 1, . . . , Ne (19)

where the covariance matrix of the observation error at the instant tk+1 is given
as

Re
k+1 =

1

Ne − 1

Ne∑
n=1

(ε
o,(n)
k+1 )(ε

o,(n)
k+1 )T . (20)

Given the random observations from (19) and the empirical estimator (20), the
update of the predicted ensemble of parameters is obtained by the Kalman anal-
ysis step which reads as,

θ
a,(n)
k+1 = θ

f,(n)
k+1 +Kθ,e

k+1(y
o,(n)
k+1 − y

f,(n)
k+1 ). (21)

The Kalman gain allowing the correction of the parameter trajectories is ex-
pressed using the ensemble predictions as

Kθ,e
k+1 = P f,e

θy,k+1(P f,e
yy,k+1 +Re

k+1)−1. (22)

In this expression, the terms P f,e
θy,k+1 and P f,e

yy,k+1 designate the unbiased empir-
ical estimators of the cross-correlation matrix between the parameters and the
observations, and the correlations between the observations, respectively.

Prediction-correction of the state variable
Once the predicted parameters have been updated, the second filter is imple-
mented to estimate the state variable at the instant tk+1 by assuming the pa-
rameters as known. In other words, the parameters just corrected by the first
filter are trusted. The following prediction-correction mechanism is identical to
the classical ensemble Kalman filter. In the first step, the predicted ensemble
of states at the instant tk+1 is built starting from the ensemble of assimilated
states at the instant tk and the corrected ensemble of parameters at the instant
tk+1 i.e.

x
f,(n)
k+1 =Mk,k+1(x

a,(n)
k ,θ

a,(n)
k+1 ) + η

(n)
k . (23)

For the second time, a forecast ensemble of observations is calculated as

y
f,(n)
k+1 = Hk+1(x

f,(n)
k+1 ). (24)

At this stage, the observations are again considered as random variables and the
covariance matrix of the observation error involved in calculating the Kalman
gain is also empirically estimated. Next, the update of the predicted ensemble
of the state is realised by Kalman analysis, given as

x
a,(n)
k+1 = x

f,(n)
k+1 +Ke

k+1(y
o,(n)
k+1 − y

f,(n)
k+1 ). (25)
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The use of a Kalman gain permits the correction of the state trajectories as

Ke
k+1 = P f,e

xy,k+1(P f,e
yy,k+1 +Re

k+1)−1. (26)

In this expression, P f,e
xy,k+1 and P f,e

yy,k+1 denote the unbiased empirical estimators
of the cross-correlation matrix between the state and the observations, and the
correlation matrix between the observations, respectively.

This double prediction-correction scheme is sequentially repeated over time.
Note that the step of prediction-correction of the system state can precede the
operation on the parameters without consequence on the quality of the estima-
tion. We can now return to the POD ROM and present the use of the Dual
EnKF method to correctly identify the model parameters. In the DA problem,
the temporal coefficients aROM

i (tk) form the state vector xk. The POD ROM in
(13) serves as the dynamical modelMk,k+1 with the model eddy viscosity νTi as
parameters θ. The initial background condition xb0 is same as the POD temporal
coefficients. Finally, as will be discussed in § 4.1, the observations vector yok is
built using velocity measurements in the computational domain.

Following the so-called representers’ formulation proposed by Evensen and
Leeuwen [4], the Kalman analysis equations (25) and (26) can be used to char-
acterise the effect of the probe location on the estimated fields. The representers
give an estimate of the expected value of the cross correlation between the state
and measurements. The influence vectors correspond to the columns of P f,e

xy,k+1

and the magnitudes are given by the product (P f,e
yy,k+1+Re

k+1)−1(y
o,(n)
k+1 −y

f,(n)
k+1 ).

The influence vectors give the areas in the computational domain where the cor-
rections from the measurements take place and the magnitudes give the level of
correction [see 12]. This framework will be used in §4.1 to analyse the effect of
the measurements’ locations.

3 Dynamical modelling of a 2D-cylinder wake flow

In order to test the data assimilation framework in a simple numerical config-
uration, we choose to estimate the dynamics of a 2D-cylinder wake flow. The
snapshots necessary to determine the POD modes (see § 2.1) are obtained from
a numerical simulation. A POD reduced-order model is then built using the pro-
cedure described in § 2.2. This POD ROM serves as the dynamical model used
for the application of the Dual EnKF method described in § 2.4.

3.1 Numerical simulation

The numerical simulations are performed using a finite-element based incom-
pressible Navier-Stokes equations solver in FreeFem++ [5]. The computational
domain along with the dimensions and boundary conditions is shown in Fig. 1.
All the dimensions have been parametrised with the diameter of the cylinder D,
here set to one. For the purpose of mesh size control, the domain is divided into
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14D

(a) (b)

Fig. 1: (a) Schematic of the computational domain and boundary conditions
for the 2D-cylinder wake flow. (b) Finite-element discretisation of the domain
obtained from FreeFem++.

sub-domains and the automatic mesh generation offered by the buildmesh com-
mand in FreeFem++ is used. The mesh has 10263 vertices and 20360 triangles.

To solve the space discretised Navier-Stokes equations, an optimised Newton
method is used. This approach is a variant of the classical Newton method for
which the non-linear term is discretised semi-implicitly. The velocity and pres-
sure variables are discretised using P2 and P1 finite element spaces, respectively.
After convergence of the iterative procedure, the pressure field is such that the
resulting velocity is divergence free.

The Reynolds number of the numerical simulation based on the cylinder
diameter D is set to Re = 100. The snapshots are taken in a time range of
[150, 250] s after all initial disturbances have been damped. The simulation gen-
eratesNt = 1000 snapshots at a sampling frequency of fs = 10 Hz. The snapshots
contain the information of the two components of the fluctuating velocity vector
u′ = [u′x, u

′
y]T . The number of degrees of freedom for the problem (size of the

discretised state variables) is Ns = 81772. The time evolution of the drag and
lift coefficient are shown in Fig. 2. From the evolution, it is observed that after
the initial transient phase, the periodic vortex shedding is observed from t = 100
s onwards. This implies that the snapshots will represent the dynamics of the
post-transient stable vortex shedding over the whole assimilation window.

3.2 Characterisation of POD ROM

The POD modes are calculated for the fluctuating velocity fields obtained from
the snapshot database. The energy content of the modes is plotted in Fig. 3.
We observe that the first ten modes together represent 99.98% of the energy.
Therefore, for the further evaluation of the ROM, we reduce the number of
modes to NGal = 10, where NGal � Nt.

The most dominant temporal and spatial modes are plotted in Fig. 4 and
Fig. 5, respectively. From now on, the coefficients and modes obtained by POD
will be denoted with the superscript POD. The amplitude of the temporal coef-
ficients aPOD

i for the first pair (aPOD
1 , aPOD

2 ) is greater by an order of magnitude
when compared with the next pair of modes (aPOD

3 , aPOD
4 ). For the following
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Fig. 3: Eigenvalues spectrum of the POD
modes.

pairs of modes, the amplitude keeps reducing subsequently, consistent with the
energy spectrum represented in Fig. 3. The frequency of the dynamics of the
first pair of modes is half of that of the second pair. The spatial mode pairs
are shifted spatially as a result of the convective nature of the flow. The first
spatial mode pair (φPOD

1 and φPOD
2 ) jointly depicts the dynamical vortex shed-

ding and their downstream convection. The next mode pairs ((φPOD
i , φPOD

i+1 ) for
i = 3, 5, . . . , NGal) correspond to smaller scale structures attributed to the man-
ifestation of the separated shear layers along the sides of the cylinder and their
longitudinal expansion further downstream. It must be noted that the length
and time scales have been non-dimensionalised by the diameter of the cylinder
D = 1 m and the cycle time of the vortex shedding Tc = 0.33 s, respectively,
leading to x∗ = x/D, y∗ = y/D and t∗ = t/Tc.
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t$

-1

0

1

a
P
O

D
i

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

Fig. 4: Time evolution of the temporal POD coefficients aPOD
i for i = 1, . . . , 10

corresponding to the most energetic modes for the 2D-cylinder wake flow at
Re = 100.

Finally, knowing the time evolution of the temporal POD modes, we can
apply the identification method described in § 2.2. For the DA application, the
initial parameters of the ROM are identified using the first 450 snapshots cor-
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(a) φPOD
1 (b) φPOD

2

(c) φPOD
3 (d) φPOD

4

Fig. 5: Spatial POD modes φPOD
i corresponding to the four most energetic modes

for the 2D-cylinder wake flow at Re = 100.

responding to t∗ ∈ [0, 136.4], the next 450 snapshots corresponding to t∗ ∈
(136.4, 272.8] being used for verification of the procedure.

As already discussed, the POD ROM is in general not sufficiently accurate to
describe the original dynamics followed by the POD modes. This is illustrated in
Fig. 6 where the ROM built using the parameter values obtained from the least-
mean-square minimisation (see § 2.2) and without the model eddy viscosity, i.e.
νTi = 0 (for all i = 1, . . . , NGal) is employed to determine the time evolution of
the POD coefficients hereafter denoted as aROM−0

i . We observe that after certain
time within the integration window, the true dynamics are not exactly captured
by the identified ROM. This is the main motivation to use a DA method like
the Dual EnKF to correct the values of the ROM parameters.

4 Results of Dual EnKF assimilation

The estimation of the state and model parameters is performed by tracking the
dynamical system. The configuration of the observer and the estimation results
are discussed in this section.
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Fig. 6: True aPOD
i (dashed) and estimated aROM−0

i (solid) temporal POD modes
(i = 1, 9) obtained with the identified POD ROM (NGal = 10) for the 2D-
cylinder wake flow at Re = 100. The parameters of the POD ROM are obtained
with a least-mean-square minimization procedure.

4.1 Setup of observations

The observation vector y in (15) is obtained in the form of measurements of
the streamwise velocity component ux at specific locations (probes) in the flow-
field. The representers introduced in § 3.1 are shown in Fig. 7 for different probe
configurations. Here, No is equal to the number of probes. By comparing the
influence fields of single probe (No = 1) in Fig. 7a and Fig. 7b, it can be concluded
that the measurements taken at points with relatively lower variations have lower
contribution to the state correction. In this paper, the DA is performed with
multiple probes (No = 14) which gives a higher magnitude of influence than the
single probes as shown in Fig. 7c.

The fluctuating component u′x is obtained after subtracting the temporal
mean of the measurements over the assimilation window. The measurements are
sampled at the same frequency and instants as the flow snapshots. The spatial
POD eigenfunction corresponding to each probe serves as the linear observation
operator which maps the temporal POD modes obtained from the dynamical
model to the observed fluctuation. The observation equation is reformulated as

u′x(χi, tk) =

NGal∑
j=1

φPOD
j (χi)aj(tk) + εk, (27)

where i = 1, . . . , Nχ, k = 1, . . . , Nt,DA, and u′x ∈ RNo .
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Fig. 7: Measurement influence fields for the streamwise velocity component for
different probe configurations (a) No = 1 located at (x∗, y∗) = (10, 1), (b) No = 1
located at (x∗, y∗) = (5, 1), and (c) No = 14 spanning the sub-domain x∗ ∈
{3.5, 5}, y∗ ∈ {−3, 3} with uniform separation of ∆x∗ = 1.5, ∆y∗ = 1.0. Note
that all the figures have the same contour levels.

4.2 State and parameter estimation

In order to separately identify the estimated values of the temporal POD co-
efficients in the assimilation window, these coefficients are denoted by aDA

i

(i = 1, . . . , NGal = Ns). In addition, the size of the parameter space θ in terms
of the model eddy viscosity νTi is Np = NGal.

The initial values of the state and parameters and the level of covariances
that are used to build the ensemble of the state, parameters and observation
are assigned at the start of the assimilation window (see § 2.4). The state and
parameters are initialised as aPOD

i (t∗ = 0) and νTi = 10−3, respectively, for i =
1, . . . , NGal. The covariance matrices are fixed for the whole assimilation window
as Qk = 10−8INGal

for the state and Rk = 10−6INo for the observations. The
parameter covariance matrix is fixed as Ck = 10−4INp . This choice of covariance
levels reflects the relatively higher confidence in the dynamical and observation
models as compared to confidence in the dynamical model parameters. The
ensemble size of the state and parameter space is Ne = 50.

The results of the Dual-EnKF assimilation for the POD-ROM is shown in
Fig. 8. Comparing the evolution of the estimated values aDA

i in the assimilation
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Fig. 8: Evolution of the temporal coefficients ai (i = 1, 9). The estimated aDA
i

and forecasted aROM−DA
i values are compared to the true values aPOD

i . The
forecasted values are also compared with the results of the POD ROM aROM−0

i

with no model eddy viscosity (νTi = 0). The dotted line at t∗ = 136.4 indicates
the end of the assimilation window and beginning of the forecast window. The
plots on the right hand side (top and bottom) show the magnified view at the
end of the forecast window.

window (t∗ ≤ 136.4) with the results obtained from the POD ROM as shown in
Fig. 6, we observe that the ensemble Kalman filter enables the model to faithfully
recover the trajectory corresponding to the POD modes aPOD

i . This reproduction
of the true background trajectory is also important with respect to the parameter
update. Indeed, by definition of the Dual EnKF method, the model parameters
(model eddy viscosity), are also updated simultaneously under the influence of
the state estimation. This parameter evolution within the assimilation window
is shown in Fig. 9. All the parameters evolve to stable values by t∗ = 100.

In order to test the long-term stability of the time integration, the POD ROM
with the updated model eddy viscosity obtained at the end of the assimilation
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Fig. 9: Evolution of the model eddy viscosity νTi (i = 1, . . . , 10) of the POD ROM
in the assimilation window. The spread of the parameter ensemble throughout
the assimilation stage is shown by the grey shaded area. The red shaded area in
the bottom shows evolution of the variance of the parameter space θ = {νTi }10i=1

(not to scale).

window is used to forecast the dynamics. The temporal modes obtained from this
updated model are denoted as aROM−DA

i to highlight the corrections introduced
by DA. The initial value for the forecast is taken at the end of the assimilation
window as aPOD

i (t∗ = 136.4). The result is shown in Fig. 8 for t∗ > 136.45 in
continuation to the assimilation. The evolution is compared with the true values
aPOD
i and aROM−0

i which is the temporal evolution of the POD ROM without the
model eddy viscosity, i.e. νTi = 0 for i = 1, . . . , NGal. It is observed that the true
values are faithfully reproduced and the characteristic instability of the POD
ROM without the model eddy viscosity terms is no longer present. This effect is
more prominent at the end of the forecast window and for the less energetically
dominant mode (i = 9). The performance is quantified by calculating the root-
mean-square error (RMSE) of the forecasted streamwise velocity obtained from
both the models. By definition, we have

RMSE(t) =

√√√√ 1

Nχ

Nχ∑
i=1

(uestx (χi, t)− ux(χi, t))
2
, (28)

where uestx is the estimated velocity determined either with the coefficients aROM−0
i

or aROM−DA
i . The time evolution of RMSE is shown in Fig. 10. The gain in sta-

bility of the POD ROM with the assimilated values of the model eddy viscosity
is evident from the bounded forecast error. Especially, for t∗ > 260, the RMSE
is lower than the forecast error obtained from the ROM without the model eddy
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Fig. 11: True and reconstructed instantaneous streamwise velocity field at the
end of forecast, t∗ = 272.8.

viscosity terms. This result highlights the robust long time performance of the
assimilated ROM and also the ability of the assimilation method to provide the
correct value of the parameters from sparse observations. Finally, once the tem-
poral POD coefficients have been determined, the already known spatial POD
eigenfunctions and mean field can be used in (1) to recover the instantaneous
velocity fields as shown in Fig. 11.

5 Conclusion

The Dual EnKF data assimilation is a well-established method in meteorology.
It combines different inhomogeneous sources of information (data, dynamical
model) for the dual estimation of the true state and model parameters. This
allows the prediction of the dynamical evolution with time. In this paper, this
approach has been applied in a fluid mechanics context to a POD ROM of a
2D-cylinder wake flow at low Reynolds number (Re = 100). We observe that
the initial POD ROM obtained from identification is not sufficiently stable to
be used for the prediction of the long-term dynamics. Therefore, we apply the
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Dual EnKF algorithm to identify the model parameters. During the assimilation,
the sparse observations of the streamwise velocity obtained from probes placed
in the flow domain are used to simultaneously estimate the state and model
parameters. These parameters correspond to the model eddy viscosity introduced
in the Galerkin POD ROM to account for the mode truncation. At the end of
the assimilation window, with the updated values of the parameters, the ability
of the POD ROM to forecast the flow dynamics is characterised.

The Dual-EnKF method provides a robust estimation of the state in the
assimilation window by combining the results of the dynamical model (POD
ROM) and the measurements. The parameters simultaneously evolve and attain
stable values by the end of the assimilation procedure. The POD ROM with
the updated parameters provides a stable and more accurate estimate of the
long-term dynamics as compared to the ROM without the model eddy viscosity
terms.

As an extension of current work, the influence of the initial covariance levels
of the state, parameter and observations on the performance of the assimilation
method must be studied. Also, the numerical test case studied here features a
large fraction of energy captured by a few dominant modes. This limits the scope
of improvement of the dynamical model by the application of DA. Therefore,
in the future, a similar study will be performed on more chaotic experimental
flow cases. Also, the influence field of the probes may be used to propose a
methodology for optimal sensor placement.
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