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Abstract—In this paper, we consider the problem of scheduling
an agile sensor to perform an optimal control action in the
case of the multi-target tracking scenario. Our purpose is to
present a random finite set (RFS) approach to the multi-
target sensor management problem formulated in the Partially
Observed Markov Decision Process (POMDP) framework. The
reward function associated with each sensor control (action) is
computed via the Expected Risk Reduction between the multi-
target predicted and updated densities. The proposed algorithm is
implemented via the Probability Hypothesis Density filter (PHD).
Numerical studies demonstrate the performance of this particular
approach to a radar beam-pointing problem where targets need
to be prioritized.

I. INTRODUCTION

Advances in sensor technologies led to the emergence of a
large number of controllable degrees of freedom in sensing de-
vices. Sensor management becomes relevant when the sensing
system has the capability of actively managing these resources
in reaction to previous measurements [1], [2]. Examples of
systems in which sensor management is currently used include
autonomous robots, unmanned aerial vehicles, surveillance,
waveform-agile radars, and pan-tilt-zoom cameras. The term
Sensor Management refers to the control of the degrees of
freedom in an agile sensor system to satisfy operational
constraints and achieve operational objectives [1]. This paper
focuses on the problem of scheduling a multifunction radar
(MFR) to perform an optimal control action in order to track
an unknown number of targets.

The multi-target tracking is one of the main applications
of sensor management. It refers to the problem of jointly
estimating the number of targets and their states or trajec-
tories from noisy sensor measurements [3]–[5]. The key to a
successful multi-target tracking lies in the optimal extraction
of useful information about the target’s state from the obser-
vations in the presence of sensor’s imperfections. This task is
usually realized by maintaining an estimate of the target’s state
over time using algorithms such as the Multiple Hypothesis
Tracking (MHT) and the Join Probabilistic Data Association
(JPDA) [4]. The main characteristic of these approaches is the
strategy applied to solve the data association problem which
unfortunately results in a non-Bayes-optimal estimation [5].

More recently, an alternative formulation that avoids explicit
associations between measurements and targets was proposed
by Mahler [6]. This new approach implements the Random
Finite Set (RFS) theory in order to solve the multi-target
tracking problem in a Bayesian framework. It offers a math-
ematically elegant and intuitive representation of a finite but
time-varying number of targets and measurements [5], [6]. The
optimal multi-target Bayes filter based on RFS is computa-
tionally intractable due to the fact that, in general, it involves
multiple integrals that have no closed form solutions [6], [7].
To overcome these limitations, approximations are required.
Several algorithms, such as the Probability Hypothesis Density
(PHD) filter [6], the Cardinalized PHD (CPHD) filter [8], the
Multi-Object Multi-Bernoulli (MeMBer) filter [9], [10], and
the Generalized Labeled Multi-Bernoulli (GLMB) filter [11],
[12], were proposed.

Multi-target sensor management is typically an optimal non-
linear control problem. Its objective is to allocate resources
optimally directing the right sensor on the right platform to
the appropriate target at the proper time [1], [13]. Also, in
the case of the multi-target sensor management problem, not
only does the number of targets vary in time, but also the
measurements are susceptible to miss detections and false
alarms. With reference to the RFS approach, Mahler developed
theoretical foundations of the multi-target sensor management
reward function relating to the posterior expected number of
targets (PENT) [14]. In order to identify targets of importance,
the author also proposed the posterior expected number of
targets of interest (PENTI) tasking reward function [5], [15].
Delande, in turn, introduced a reward function called Balanced
Explorer and Tracker (BET) that provides an efficient sensor
management in situations where the sensor’s field of view
cannot cover the whole state space at the same time [16]. Ristic
and Vo proposed a reward function to sensor management
using the Rényi divergence between the multi-target prior
and multi-target posterior densities [17], [18]. More recently,
Hoang, Vo, Vo, and Mahler offered a new intuitive and
tractable objective function based on the Cauchy-Schwartz
information functional [19].

When only a subset of the total targets can be successfully
tracked, the prioritization of target tracks is crucial and cannot



be achieved by means of information gain-based metrics. To
overcome the limitations of existing metrics, a statistical risk
model used to calculate an expected cost as a metric, started
to be applied in recent research. Papageorgiou et. al. proposed
a risk-based approach to sensor resource management for
the problem of missile defense [20]. Wang et. al. developed
a Bayesian risk sensor management for integrated detection
and estimation [21]. Martin introduced a statistical risk-based
metric for a field of view problem [22]. The current research
differs from the above-mentioned studies in that it presents a
risk-based sensor management using the RFS and the POMDP
framework.

This paper is devoted to sensor management using the PHD
filter and can be seen as a sequel to [23] in which a kinematic
state estimation based on the Extended Kalman filter was
carried out. We define the Expected Risk Reduction (ERR)
approach to multi-target sensor management which is similar
to that in [20]–[23]; however, to jointly estimate the number
of targets and their states, the GM-PHD tracker [24], [25] is
implemented.

We take into consideration a surveillance context with
electromagnetic emission constraints as presented in [26]. It is
assumed that there are too many maneuverable targets to be
tracked by the radar system. Only a subset of all the targets
need to be tracked and, initially, we have knowledge of their
kinematic states, yet their classification states are unknown.
Finally, it is also presumed that there is a cost resulting from
an incorrect decision on a target’s true classification. Thus, the
task of a sensor manager is to decide which targets the sensor
should focus on in order to reduce the expected cost of an
incorrect classification decision.

Section II presents a brief background on Finite Set Statis-
tics (FISST) and the PHD filter. Section III describes the
derivation and implementation of the expected risk reduction
as a reward function for PHD filter with controllable sensors.
Section IV demonstrates the performance of the proposed
reward function in the context of multi-target tracking in
a radar beam-pointing problem where targets need to be
prioritized. The conclusions are presented in Section V.

II. FINITE SET STATISTICS AND THE PHD FILTER

In this paper we consider that the task of a sensor manager
is not to reduce the uncertainty in the target state estimation,
nor to make classification decisions on target tracks. Instead,
its role revolves around actively scheduling and managing
sensor resources to chose the best control action that will
result in the most significant reduction in the expected cost
of making an incorrect classification decision. The cost as-
sociated with different sensor actions is computed using the
prior and posterior multi-target densities. The calculation of
these densities requires a Bayesian multi-target filter, which is
described hereafter.

In a multi-target tracking, random finite sets are used to
model uncertainty in the multi-object state Xk ⊂ X and
multi-object measurement Zk ⊂ Z at each time k. Due
to imperfections of detectors, it is possible that at time k

some of the targets in Xk are not detected. Furthermore,
the observation set Zk normally includes false detections and
clutter in addition to target-originated detections [5].

The objective of the recursive Bayesian multi-object state-
space estimator is to determine, at each time k, the posterior
probability density of multi-object state πk(Xk|Z1:k), where
Z1:k = (Z1, · · · , Zk) denotes the observation set sequence up
to time k. The multi-object posterior density can be computed
recursively via the prediction and update steps. The predicted
density at time k, denoted as πk|k−1(Xk|Z1:k−1), is computed
by the multi-object Chapman-Kolmogorov equation [5]:

πk|k−1(Xk|Z1:k−1) =

∫
fk|k−1(Xk|X)πk−1(Xk|Z1:k−1) δX,

(1)
where fk|k−1(Xk|X) is the Markov transition density from

time k − 1 to time k. When new observations are available,
which is described by a multi-object likelihood function
gk(Zk|Xk), the new posterior density is computed via the
multi-object Bayes rule:

πk(Xk|Z1:k) =
gk(Zk|Xk)πk|k−1(Xk|Z1:k−1)∫
gk(Zk|X)πk|k−1(X|Z1:k−1) δX

(2)

A. The PHD filter

In general, computing the exact Bayesian multi-object pos-
terior is intractable, and approximations are required. In this
paper, the PHD filter is treated as an approximation to the
multi-object Bayesian filter to propagate the multi-object pos-
terior density recursively in time. Given the posterior intensity
Dk−1 at time k − 1, the intensity function Dk|k−1 to time k,
the PHD recursion computes the posterior intensity function
of the target RFS as follows:

Dk|k−1(x) = γk(x) +

∫ (
pS,k(ξ) fk|k−1(x|ξ)

+ βk|k−1(x|ξ)
)
Dk−1(ξ) dξ, (3)

Dk|k(x) =
[
1− pD,k(x)

]
Dk|k−1(x)

+
∑
z∈Zk

pD,k(x) gk(z|x)Dk|k−1(x)

κk(z) +
∫
pD,k(ξ) gk(z|ξ)Dk|k−1(ξ) dξ

(4)

where γk(·) denotes the intensity of spontaneous target birth
at time k; βk|k−1(·|ξ) represents the intensity of the target RFS
spawned by a target of previous state ξ at time k; pS,k(ξ) is
the probability that a target still exists at time k given that
its previous state is ξ; pD,k(x) stands for the probability of
detections given a state x at time k; κk(·) is the intensity of
the clutter RFS and equals γcCk(·) (assumed to be Poisson).

In general, the PHD recursion given in (3)-(4) do not admit
closed-form solutions. Under linear Gaussian assumptions, the
multi-object posterior density can be approximated using the
GM-PHD filter. In the remainder of this section we summarize



the main points of the GM-PHD filter, and for a complete
description, see [27], [28].

B. Linear Gaussian Multi-Target Models

The linear Gaussian multi-target model includes certain
assumptions on the birth, death and detection of targets. They
are summarized as follows:

1) Each target follows a linear Gaussian dynamical model,
i.e.,

fx|k−1(x|ζ) = N (x;Fk−1 ζ,Qk−1) (5)
gk(z|k) = N (z;Hkx,Rk) (6)

where Fk−1 is the state transition matrix and Qk−1
is the process noise covariance, Hk is the observation
matrix, and Rk is the observation noise covariance. The
term N (·;m,P ) is the Gaussian density with mean m
and covariance P .

2) The detection and survival probabilities are both state
independent, i.e., pD,k(x) = pD,k and pS,k(x) = pS,k.

3) The intensities of the birth and spawn RFSs are both
Gaussian mixtures of the form:

γk(x) =

Jγ,k∑
i=1

w
(i)
γ,kN

(
x;m

(i)
γ,k, P

(i)
γ,k

)
, (7)

βk|k−1(x|ζ) =

Jβ,k∑
j=1

w
(j)
β,kN

(
x;F

(j)
β,k−1 ζ (8)

+d
(j)
β,k−1, Q

(j)
β,k−1

)
where w(i)

γ,k, m(i)
γ,k, P (i)

γ,k, Jγ,k, are the weights, means,
covariances, and a total number of Gaussian components
regarding the birth intensity. In the same way w

(j)
β,k,

F
(j)
β,k−1, d(j)β,k−1, Q(j)

β,k−1, Jβ,k are the weights, means,
covariances, and a total number of Gaussian components
concerning the spawning intensity of a target with pre-
vious state ζ. For more details, see [28].

III. PHD-BASED SENSOR MANAGEMENT

Sensor management will be addressed in the Partially Ob-
served Markov Decision Process (POMDP) framework. The
elements of a POMDP include an information state repre-
sented by the multi-object posterior pdf πk(Xk|Z1:k), a set of
admissible controls Uk(·), and a reward function associated
with different control selection R(·). The problem lies in the
fact that at the time when we wish to perform a control
action, we have no knowledge of the posterior density that
will result from that particular action that has been chosen to
be undertaken. In this way, the optimal control action is given
by maximizing the expected value of a reward function R(·)
over the set of admissible actions [13], [17], [29]:

uk = arg max
u∈Uk

E[R(u, πk(Xk|Z1:k), Zk+1(u))] (9)

where uk denotes the control vector applied at time k;
R(u, f, Z) is the reward function associated with the control
u; Zk+1(u) is the predicted measurement obtained if the
control vector u is applied. Reward functions are generally
based either on a decrease of uncertainty or an increase of
information gain between the predicted and posterior multi-
object densities.

A. PENT-based sensor management

The Posterior Expected Number of Targets (PENT) sensor
management was developed by Mahler to solve the problem of
the optimal placement of the sensor’s field of view (FOV) [14].
PENT selects the control action that maximizes the number
of targets to be seen by the sensor. PENT is an objective
function constructed using the Predicted Ideal Measurement-
Set (PIMS) [5]. By maximizing the value of the PENT reward
function, sensor’s FOV can be directed to those places where
the sensor is most likely to collect the PIMS. When a PHD
filter is used, the radar-beam direction based on PENT reward
function is given as follows:

uk = arg max
u∈Uk

[∫
Dk|k(x|ZPIMS

k+1 , u)

]
(10)

where u = atan(x(j)/y(j)), ∀j ∈ [1, · · · , Ntargets] is
the sensor control, and ZPIMS

k+1 is a simulated ideal set of
measurements based on PIMS, as proposed by [5], [15].

The PENT sensor management was also extended to con-
sider the tactical significance of a target, resulting in the
Predicted Expected Number of Targets of Interest (PENTI)
approach [15]. When a PHD filter is applied, the radar-beam
direction based on PENTI reward function is given as follows:

uk = arg max
u∈Uk

[∫
τ(x)Dk|k(x|ZPIMS

k+1 , u)

]
(11)

where τ(x) ∈ [0, 1] is the tactical importance function for
each target [5], [15].

B. ERR-based sensor management

In this section, we propose to minimize the expected risk
reduction in the case of a radar beam-pointing problem where
targets need to be prioritized. There is a decision to be made
on a target classification. If it is incorrect, it results in a cost,
i.e. a loss of a target of interest or a loss of sensor resources.
In this paper, an incorrect decision is tagged as being a type
1 error during statistical hypothesis testing. A type 1 error
corresponds to an incorrect rejection of a true null hypothesis
H0, and occurs when it is true yet rejected.

The matrix CM1, as defined by Equation 12, contains the
cost of committing a type 1 error. Each column represents the
true classification, and each row stands for the decision on a
classification. The diagonal is zero since there is no cost when
the correct decision takes place.



CM1 =


1 2 . . . n

1 0 c112 . . . c11n
2 c121 0 . . . c12n
...

...
...

. . .
...

n c1n1
c1n2

. . . 0

 (12)

where each c1ij entry occurs when a decision falsely rejects
H0, resulting in a type 1 error.

C. The Expected Cost of Committing a Type 1 Error

The expected cost of making a type 1 error when deciding
on the classification of a target track is influenced by many
factors, including the current classification, the probability of
the actual target being lost (or not), and the decision about
this classification. The above-mentioned factors are modeled
by random variables. The expected cost can be obtained by
applying the law of total expectation, as described in [22] and
detailed below.

Let C1 be a discrete random variable representing the cost
of the type 1 error. The cost matrix CM1 contains entries
{c1ij} where each c1ij entry occurs when a decision falsely
rejects H0, resulting in a type 1 error. J corresponds to a
categorical random variable representing the current classi-
fication, {j|j ∈ [1, n]}. I is a categorical random variable
denoting the decision on a classification, {i|i ∈ [1, n]}. Î
is a discrete, uniformly distributed, random variable denoting
the classification decision on a reacquired target after it has
been lost, {i|i ∈ [1, n]}. L is a Bernoulli random variable
representing whether or not the actual target is lost, where the
event space is {0, 1}. We use the law of the iterated expectation
for each random variable that determines the expected cost
described as:

Ec1 (C1|I = i)

= Ec1 (C1|I = i, L = 1, J = i)P (L = 1)P (J = i)

+ Ec1 (C1|I = i, L = 1, J 6= i)P (L = 1)P (J 6= i)

+ Ec1 (C1|I = i, L = 0, J = i)P (L = 0)P (J = i)

+ Ec1 (C1|I = i, L = 0, J 6= i)P (L = 0)P (J 6= i)

= Ec1 (C1|I = i, L = 1, J = i)P (L = 1)P (J = i)

+ Ec1 (C1|I = i, L = 1, J 6= i)P (L = 1)P (J 6= i)

+ 0

+ Ec1 (C1|I = i, L = 0, J 6= i)P (L = 0)P (J 6= i)

(13)

In the above summation, the first term is the expected cost
resulting from a situation in which a correct decision is made
but the target is lost. The second term represents a wrong
decision and a loss of a target. The third term becomes zero
since the decision is correct and the target is not lost. As for
the fourth term, one can observe that a target is not lost in
spite of a wrong decision being made. At this point, it would
be necessary to consider the case in which the target would
be reacquired. Note that regardless of the classifier’s accuracy,

it is possible that the acquired target is not the original one.
Thus, (13) would be as follows:

Ec1 (C1|I = i)

= Ec1 (C1|I = i, L = 1, J = i, Î = i)P (L = 1)P (J = i)P (Î = i)

+ Ec1 (C1|I = i, L = 1, J = i, Î 6= i)P (L = 1)P (J = i)P (Î 6= i)

+ Ec1 (C1|I = i, L = 1, J 6= i, Î = i)P (L = 1)P (J 6= i)P (Î = i)

+ Ec1 (C1|I = i, L = 1, J 6= i, Î 6= i)P (L = 1)P (J 6= i)P (Î 6= i)

+ Ec1 (C1|I = i, L = 0, J 6= i)P (L = 0)P (J 6= i)

= 0

+ Ec1 (C1|I = i, L = 1, J = i, Î 6= i)P (L = 1)P (J = i)P (Î 6= i)

+ Ec1 (C1|I = i, L = 1, J 6= i, Î = i)P (L = 1)P (J 6= i)P (Î = i)

+ 0

+ Ec1 (C1|I = i, L = 0, J 6= i)P (L = 0)P (J 6= i)

(14)

In the above summation, the first term becomes zero once
the correct decision has been made, even though the track
has been lost and later reacquired. Hence, there is no cost. In
the second term, the cost is observed when the target is lost
and reacquired and a wrong decision about its classification
takes place. In the third term, the cost is present and the target
classification decision is never correct, even after the target
has been lost and reacquired. The fourth term of summation
represents the case in which the classification decision is
incorrect (i.e. I = i and J 6= i), and the reacquired target
is characterized by a different classification (i.e. Î 6= i and
J 6= i). Consequently, the cost is zero because it does not
exist with regard to the initial decision of I = i before the
track has been lost. The last term illustrates the cost stemming
from a wrong target classification since the target is never lost.
These terms are related to specific rows and columns of the
cost matrix CM1 as shown below:

Ec1 (C1|I = i)

= Ec1 (C1|I = i, L = 1, J = i, Î 6= i)P (L = 1)P (J = i)P (Î 6= i)

+ Ec1 (C1|I = i, L = 1, J 6= i, Î = i)P (L = 1)P (J 6= i)P (Î = i)

+ Ec1 (C1|I = i, L = 0, J 6= i)P (L = 0)P (J 6= i)

=
∑
c1ij

c1ij

(
P (C1 = c1ij |I = i, L = 1, J = i, Î 6= i)

P (L = 1)P (J = i)P (Î 6= i)
)

+
∑
c1ij

c1ij

(
P (C1 = c1ij |I = i, L = 1, J 6= i, Î = i)

P (L = 1)P (J 6= i)P (Î = i)
)

+
∑
c1ij

c1ijP (C1 = c1ij |I = i, L = 0, J 6= i)P (L = 0)P (J 6= i)

=
∑
r∈I

c1riP (L = 1)P (J = i)P (Î 6= i)

+
∑
r∈J

c1irP (L = 1)P (J = r)P (Î = i)

+
∑
r∈J

c1irP (L = 0)P (J = r) ∀r 6= i

(15)



In Equation 15, the cost of the type 1 error C1 for all r = i
is zero since there is no cost when the correct decision takes
place. Note that the first term in (15) is a function of the rows
of the cost matrix over column J = i. This implies an incorrect
decision after the target was reacquired. Finally, assuming Î
being uniformly distributed, and Plost the probability of the
actual target to be lost, Equation (15) can be rewritten as
below:

Ec1(C1|I = i) =
∑
r∈I

cri P (J = i)Plost
n− 1

n

+
∑
r∈J

cir P (J = r)Plost
1

n

+
∑
r∈J

cir P (J = r)(1− Plost) ∀r 6= i

(16)

D. The Expected Risk Reduction

When a decision on a target classification is made, the
goal is to minimize the risk. In this way, the minimum
expected cost is chosen among all possible decisions for
each track classification. The risk always decreases with new
measurements and reduces the probability of the target being
misclassified or lost [20]–[23].

The expected risk reduction (ERR) is achieved using the
minimum expected cost presented in (16). Note that the
probabilities in this equation change as measurements are
accumulated by a sensor. It is assumed that this probabilities
change as a Bayesian update. Denoting R as the minimum
cost before a measurement update, we can calculate the ERR
as:

Ri , Ec1(C1|I = i) (17)
R = min

i
{Ri} (18)

Assuming that the posterior probabilities are denoted by
P ′lost and P ′(J = i), the risk using these updated probabilities
is:

R′ = min
i
{R′i}

= min
i



∑
r∈I

cri P
′(J = i)P ′lost

n−1
n

+
∑
r∈J

cir P
′(J = r)P ′lost

1
n

+
∑
r∈J

cir P
′(J = r)(1− P ′lost)


(19)

When the classification probability is updated through the
direct application of Bayes’ theorem, then (19) can be rewrit-
ten as follows:

R′ = min
i
{R′i}

= min
i



∑
r∈I

cri
P (M=m|J=i)P (J=i)

P (M=m)
P ′lost

n−1
n

+
∑
r∈J

cir
P (M=m|J=r)P (J=r)

P (M=m)
P ′lost

1
n

+
∑
r∈J

cir
P (M=m|J=r)P (J=r)

P (M=m)
(1− P ′lost)


(20)

Since any classification measurement M is possible, it
is necessary to calculate an additional expectation over all
possible measurements 〈R′〉 which can be illustrated as:

〈
R′
〉

=
∑

m∈M
R′ P (M = m)

=
∑

m∈M
min
i



∑
r∈I

cri (P (M = m|J = i)P (J = i)

P ′lost
n−1
n

)
+

∑
r∈J

cir (P (M = m|J = r)P (J = r)

P ′lost
1
n

)
+

∑
r∈J

cir (P (M = m|J = r)P (J = r)

(1− P ′lost)
)


(21)

Taking into consideration that the expected cost decreases
in value with new measures [20], [22], [23], the radar-beam
direction based on ERR is given as follows:

uk = arg max
u∈Uk

[
ERR(u)

]
(22)

where u = atan(x(j)/y(j)), ∀j ∈ [1, · · · , Ntargets] is the
sensor control, and ERR(u) = R(j) −

〈
R′(j)

〉
. The sensor

control that provides the greatest reduction in this ERR value
is chosen to take the actual measurement.

IV. NUMERICAL EXAMPLE

In order to demonstrate the proposed approach we use
a numerical example where a multifunction radar (MFR) is
controlled to track an unknown number of targets. It is able
to track targets in the sector defined by [0, 2000] meters in
range and [−π/2, π/2] rad in bearing using its "pencil" beam.
The radar has a 4-degree beamwidth. The true trajectories are
shown in Figure 1. The duration of the scenario is 300 seconds.

For each target, there is information about kinematic true
state and its classification. Both data are represented by X as
follows:

X = [Xkinematic Xclassification]

A nearly constant turn kinematics model having a varying
turn rate is considered [30]. Thus, the true kinematic state



Fig. 1. The trajectories of three observed targets. The radar is at the origin
of the axes. Start and stop positions for each track are shown with ◦ and 4.

consists of a two dimensional position, velocity and the turn
rate:

Xkinematic =
[
x, ẋ, y, ẏ, ω

]T
The transition model in target tracking can be formulated

as follows:

xk = F (ωk−1)xk−1 +Gwk−1

ωk = ωk−1 + Tuk−1

where

F (ω) =


1 sinω T

ω 0 − 1−cosω T
ω

0 cosω T 0 − sinω T

0 1−cosω T
ω 1 sinω T

ω
0 sinω T 0 cosω T

 , G =


T2

2 0
T 0

0 T2

2
0 T

 ,

T = 1s is the sampling period; wk−1 ∼ N (·; 0, σ2
w I) and

uk−1 ∼ N (·; 0, σ2
u I) are the process noise with standard

deviation σw = 15m/s2 and σu = (π/180) rad/s. The
targets are observed via a radar that provides range and
bearing measurements. Each target is detected with probability
pD,k = 0.98, and the measurement uses the observation model
given by:

zk =

[
arctan(x/y)√

x2 + y2

]
+ εk

where εk ∼ N (·; 0, Rk); Rk = diag([σ2
θ , σ

2
r ]) is the mea-

surement noise covariance matrix, with σθ = (0.5π/180) rad,
and σr = 10m. The detected measurements are immersed
in clutter which is typically modeled as a Poisson RFS with
intensity function:

κk(z) = λc V u(z),

where u(·) represents the uniform density over the surveil-
lance region, V = 3.14 × 105 (radm) is the area of the
surveillance region, and λc = 3.18 × 10−5 (radm)−1 is the

average clutter intensity. In that case, an average of 10 clutter
points per scan is received with PFA = 0.10 at each time
instance.

The classification state estimate is formulated hereafter.
Assuming that there are n possible classification states for
each target, J is a random variable that stands for the true
classification with support {j | j ∈ [1, n]}.

Xclassification =

 P (J = 1)
...

P (J = n)


The classification probability is updated by applying the

Bayes’ theorem as shown below. The classification measure-
ment is represented by a discrete random variable M with
support {m |m ∈ [1, n]}.

P ′(J = i) , P (J = i |M = m)

=
P (M = m | J = i)P (J = i)

P (M = m)

=
P (M = m | J = i)P (J = i)∑n

r=1 P (M = m | J = r)P (J = r)
(23)

where P ′ indicates the posterior probability. To simplify
classification notations in this paper, measurement likelihoods
P (M = m | J = i) are represented by a normalized confusion
matrix CC.

CC =


1 . . . n

1 P (M = 1 | J = 1) . . . P (M = 1 | J = n)
...

...
. . .

...
n P (M = n | J = 1) . . . P (M = n | J = n)

 (24)

The radar has a 4-degree beamwidth. If the target ground
truth corresponding to the track position is outside this FOV
(i.e. the state estimate is very poor), the track is considered
lost. The probability Plost is assumed to be the portion of a
multivariate normal distribution N (x̂k, P̂k) not contained in
the sensor’s FOV when the sensor’s aim-point is centered on
a kinematic state of the target (x̂ is the mean state estimate
and P̂ is the state estimate covariance).

In this paper we use the GM-PHD tracker to propagate
a parametrized approximation to the multi-target posterior
applying the gating and pruning/merging procedures. Gating
is performed at each time step using a 99% validation gate
(the region centered on the predicted measurement with a
0.99 probability of containing a primary object generated
measurement), as described in [3], [4]. Pruning and merging
are performed at each time step using a weight threshold of
Tth = 10−5 and a merging threshold of U = 4m, see [25].

For comparison purposes, the Expected Risk Reduction
(ERR) approach was contrasted with three different sensor
management methods involving the Posterior Expected Num-
ber of Targets (PENT), the Posterior Expected Number of



Targets of Interest (PENTI), and the random assignment.
One thousand Monte Carlo runs were conducted using each
method. All target classifications are initially unknown and
each target starts with a high accuracy kinematic track. There-
fore, the main tasks of the radar are to correctly classify, track
the targets and allocate measurements to the target of interest.
Tracking accuracy is measured using the Optimal Sub-Pattern
Assignment (OSPA) metric [31]. The OSPA measures the error
between the true and the estimated multi-target states, Xk and
X̂k, respectively. Two simulation examples are used to test
the proposed approach to sensor management. An additional
example can be found in [23].

1) Example 1: In order to evaluate the expected risk reduc-
tion (ERR) metric, a binary classification state is considered
where the target to be tracked is either a target of interest
(J = 1) or a target of non interest (J = 2). The binary
classification measurement M has support {m|m ∈ [1, 2]}.
Cost matrix CM1 and confusion matrix CC are:

CM1 =

( 1 2

1 0 1
2 30 0

)
CC =

( 1 2

1 0.8 0.2
2 0.2 0.8

)
In this example, targets 2 and 3 are those of interest and,

consequently, should be prioritized. Figure 2 shows a typical
run of the proposed algorithm at the instant k = 40 seconds.

Fig. 2. Typical run to the ERR approach at instant k = 40 seconds. The radar
is at the origin of the axes. Target tracking and identification are provided
using the GM-PHD tracker.

The ERR was compared with the PENTI and the random
sensor management. Of all three sensor management ap-
proaches, the OSPA metric, along with the cardinality estima-
tion and localization error, is averaged over 1000 independent
Monte Carlo runs. In Figure 3, the Monte Carlo average of
the OSPA distance for p = 1 and c = 100m is shown. It can
be observed that the curves stabilize to an average error close
to 60m per target for the PENTI and the random schemes,
and close to 50m per target for the ERR approach.

Examining the cardinality estimation and the localization
error given in Figures 4 and 5, it can be seen that in terms
of localization error, the PENTI and ERR sensor management

Fig. 3. OSPA metric. Error performance of the three sensor management
approaches with target prioritization, averaged over 1000 Monte Carlo runs.

Fig. 4. Localization error performance of the three sensor management
approaches with target prioritization, averaged over 1000 Monte Carlo runs.

Fig. 5. Estimated number of targets for three sensor management approaches
with target prioritization, averaged over 1000 Monte Carlo runs.

settle to an error consistent with the standard deviation of the
measurement noise, while the random schedule achieves an
unexpectedly lower localization error. Analyzing Figure 5, we
can observe that, on average, the random method can keep



track only on 2 targets, while the ERR method is capable of
tracking about 2.5 targets. The ERR approach is penalized
much more than the PENTI and the random scheme since it
is more successful at keeping track on more targets at the
expense of the localization estimation which is less accurate.
In fact, in terms of cardinality estimation, the ERR scheme is
at a significant advantage in this scenario.

2) Example 2: In order to evaluate the ERR metric without
prioritization, a mono classification state is considered. In that
case, each target belongs to precisely the same class (J = 1),
and targets 1, 2, and 3 should be tracked with the same priority.
In this example, the ERR is compared with the PENT and the
random sensor management. The OSPA metric, as well as the
cardinality estimation and localization error of all three sensor
management approaches are averaged over 1000 independent
Monte Carlo runs.

Figure 6 shows the Monte Carlo average of the OSPA
distance for p = 1 and c = 100m. The ERR sensor
management presents a behavior quite similar to the PENT
approach. It can be seen that after the initial settle-in phase the
curves stabilize to an average error close to 50m per target
for the PENT and the ERR approaches, and close to 60m
per target for the random schemes. Examining the cardinality
estimation and the localization error given in Figures 7 and
8, it can be noticed that the random schedule achieves an
unexpectedly lower localization error, with a similar result to
example 1.

As far as the localization error is concerned, the results
indicate that the ERR and the PENT approaches are penalized
much more than the random scheme since they are more
successful at keeping track on more targets at the expense of
the localization estimation which is less accurate. Even though
the PENT and the PENTI approaches turned out to be effective
in this case study, they are not expected to perform well when
confronted with target localization problems [16], [18]. To
get a deeper insight into pros and cons of each method, the
performance analyses regarding other scenarios are required.

V. CONCLUSION

This paper introduces the Expected Risk Reduction (ERR)
approach to sensor management in the case of a radar beam-
pointing problem by combining POMDP theory and RFS
framework. The GM-PHD tracker was employed to efficiently
but approximately propagate the multi-target posterior density,
which was then used to calculate a reward function in order
to determine the sensor control. The ERR is based on the
expected cost of an incorrect decision on target’s classification.
This cost was then conditioned on the event of losing a
target track which allowed for achieving the combination
of a classification and kinematic uncertainty in the same
metric. It has been put forward that the ERR approach can
maintain a track on targets of interest when it is not possible
for a single sensor to track all targets in the environment.
The numerical example demonstrated the effectiveness of the
proposed reward function for PHD filtering in a radar beam-
pointing problem where targets need to be prioritized. Future

works will investigate computationally efficient solutions for
PHD and Multi-Bernoulli filtering with multiple-steps-ahead
sensor control as well as sensor management in distributed
fusion architecture.

Fig. 6. OSPA metric. Error performance of the three sensor management
approaches without target prioritization, averaged over 1000 Monte Carlo runs.

Fig. 7. Localization error performance of the three sensor management
approaches without target prioritization, averaged over 1000 Monte Carlo runs.

Fig. 8. Estimated number of targets for three sensor management approaches
without target prioritization, averaged over 1000 Monte Carlo runs.
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