
HAL Id: hal-02411660
https://hal.science/hal-02411660v1

Submitted on 19 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distinguishing the signatures of local environmental
filtering and regional trait range limits in the study of

trait–environment relationships
Pierre Denelle, Cyrille Violle, Francois Munoz

To cite this version:
Pierre Denelle, Cyrille Violle, Francois Munoz. Distinguishing the signatures of local environmental
filtering and regional trait range limits in the study of trait–environment relationships. Oikos, 2019,
128 (7), pp.960-971. �10.1111/oik.05851�. �hal-02411660�

https://hal.science/hal-02411660v1
https://hal.archives-ouvertes.fr


1 

Distinguishing the signatures of local environmental filtering and 1 

regional trait range limits in the study of trait-environment 2 

relationships. 3 

Pierre DENELLE1, Cyrille VIOLLE1, François MUNOZ2 4 

 5 

1 CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier – 6 

EPHE -1919 route de Mende, F-34293 Montpellier, CEDEX 5, France 
7 

2 University Grenoble-Alpes, LECA, 2233 Rue de la Piscine, 38041 Grenoble Cedex 9, France 
8 

Corresponding authors: Pierre Denelle – pierre.denelle@gmail.com; Cyrille Violle - 9 

cyrille.violle@cefe.cnrs.fr; François Munoz – fmunoz@univ-grenoble-alpes.fr 10 

 11 

Numbers of words in the abstract: 298 12 

Number of words in the main text: 5926 13 

Number of references: 61 14 

Number of Appendices: 11 15 

Key words: community assembly, functional biogeography, environmental filtering 16 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 23, 2019. ; https://doi.org/10.1101/528836doi: bioRxiv preprint 

https://doi.org/10.1101/528836


2 

Abstract 17 

Understanding the imprint of environmental filtering on community assembly along 18 

environmental gradients is a key objective of trait-gradient analyses. Depending on local 19 

constraints, this filtering generally entails that species departing from an optimum trait value have 20 

lower abundances in the community. The Community-Weighted Mean (CWM) and Variance 21 

(CWV) of trait values are then expected to depict the optimum and intensity of filtering, 22 

respectively. However, the trait distribution within the regional species pool and its limits can 23 

also affect local CWM and CWV values apart from the effect of environmental filtering. The 24 

regional trait range limits are more likely to be reached in communities at the extremes of 25 

environmental gradients. Analogous to the mid-domain effect in biogeography, decreasing CWV 26 

values in extreme environments can then represent the influence of regional trait range limits 27 

rather than stronger filtering in the local environment. We name this effect the “Trait-Gradient 28 

Boundary Effect” (TGBE). First, we use a community assembly framework to build simulated 29 

communities along a gradient from a species pool and environmental filtering with either 30 

constant or varying intensity while accounting for immigration processes. We demonstrate the 31 

significant influence of TGBE, in parallel to environmental filtering, on CWM and CWV at the 32 

extremes of the environmental gradient. We provide a statistical tool based on Approximate 33 

Bayesian Computation to decipher the respective influence of local environmental filtering and 34 

regional trait range limits. Second, as a case study, we reanalyze the functional composition of 35 

alpine plant communities distributed along a gradient of snow cover duration. We show that leaf 36 

trait convergence found in communities at the extremes of the gradient reflect an influence of 37 

trait range limits rather than stronger environmental filtering. These findings challenge 38 
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correlative trait-environment relationships and call for more explicitly identifying the 39 

mechanisms responsible of trait convergence/divergence along environmental gradients. 40 
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Introduction 41 

Quantifying the physiological responses of organisms and communities along 42 

environmental gradients is pivotal in ecology and biogeography (Lomolino et al. 2006, Violle et 43 

al. 2014). However, we know little about the sensitivity of such responses to environmental or 44 

physiological limits, i.e. to boundary effects. Boundary effects have been broadly addressed in 45 

biogeography, in terms of taxonomic diversity at the limits of environmental gradients. 46 

Specifically, the mid-domain effect represents an artefactual peak of species richness at the center 47 

of latitudinal gradient (Colwell and Lees 2000, Colwell et al. 2004) or of species range at the 48 

center of an environmental gradient (Letten et al. 2013) due to sampling issues. Here we recast 49 

this hypothesis through the lens of trait-based ecology. More specifically, we argue that the 50 

parameters of the local trait distribution at the edge of environmental and/or trait gradients can be 51 

misinterpreted because the regional trait distribution is not properly quantified. While the 52 

influence of the taxonomic composition and richness of a source species pool on local 53 

community assembly have received much interest, the influence of the functional composition of 54 

the pool has only recently come to focus (Patrick and Brown 2018, Spasojevic et al. 2018). This 55 

influence, that we coined ‘trait-gradient boundary effect’ (TGBE), can combine with the effect of 56 

environmental filtering, as both constrain the moments of the local trait distribution at community 57 

scale (Kraft et al. 2015). We here provide a method to separate the influence of environmental 58 

filtering on local community assembly from the imprint of regional trait distribution, in order to 59 

avoid misinterpretations on the strength of environmental filtering. 60 

Functional traits are attributes reflecting the ability of individuals to survive and 61 

reproduce in a local environment (Violle et al. 2007). Assembly processes shape the distribution 62 

of functional trait values within communities (McGill et al. 2006), and in particular 63 
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environmental filtering represents the control of the local trait distribution by abiotic factors 64 

(Kraft et al. 2015). Environmental filtering generally includes two components (Shipley 2010): 65 

(i) an optimal trait value or combination allowing maximal performance and greater abundance in 66 

the community, and (ii) an intensity value quantifying how sharp the decrease of species 67 

performance around the optimal trait value is (Fig. 1). Varying the functional composition of 68 

communities along environmental gradients is then expected to reflect changing optimal values 69 

and/or filtering intensity (Ackerly and Cornwell 2007). Because the variation of performance 70 

around the optimal value translates into a variation of species abundances related to trait values, 71 

the mean value of trait in communities (Community-Weighted Mean, CWM) and their variance 72 

(CWV) (Garnier et al. 2016) are expected to reflect local optimal trait value and filtering 73 

intensity, respectively (Cingolani et al. 2007, Violle et al. 2007, Enquist et al. 2015, Borgy et al. 74 

2017a). However, a clear relationship between trait-based statistics and the parameters of 75 

environmental filtering (“CWM-optimality” hypothesis, Muscarella and Uriarte 2016) may not 76 

always hold. 77 

In extreme environments, more intense environmental filtering due to local constraints is 78 

commonly hypothesized (Weiher et al. 1998, Callaway et al. 2002, Cornwell et al. 2006), but the 79 

filtered trait values can also be closer to regional trait range limits. A reduction of variance in 80 

extreme environments can thus be allotted to either local environmental filtering or to larger-scale 81 

and longer-term constraints leading to a restricted trait variation among immigrants. Regional 82 

trait range limits should yield a decrease in local trait variance at the extremes of an 83 

environmental gradient and therefore entail a hump-shaped variation of CWV across the 84 

environmental gradient, even when the intensity of environmental filtering is constant throughout 85 

the gradient (Fig. 1). TGBE can also originate phenomenological relationships between CWM 86 
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and CWV because of the local convergence induced by the species pool limited trait range. Such 87 

hump-shaped patterns between CWM and CWV have been reported previously (Dias et al. 2013), 88 

and can reflect the influence of TGBE in real data. A major issue is then to determine whether 89 

lower trait variance in extreme environments reflects more intense filtering or the influence of 90 

trait limits at a regional scale. To solve the issue, we propose an inference approach that 91 

explicitly estimates the influences of regional trait range limits and local environmental filtering.  92 

We investigated TGBEs in the context of a spatially-implicit model of community 93 

assembly representing how immigration from a species pool and local environmental filtering 94 

jointly shape local community composition (ecolottery package, Munoz et al. 2018) (Fig. 1). 95 

Environmental filtering is modeled as a Gaussian function determining the successful 96 

establishment of immigrants and thus defines a decrease of the performance of species around an 97 

optimum trait value, the intensity of the filtering being the standard deviation of the function 98 

(Webb et al. 2010, Shipley 2010, Enquist et al. 2015). An environmental gradient can then be 99 

viewed as a gradient of distinct optima imposed by distinct local environmental filters. When trait 100 

range limits among immigrants constrain the functional range in community composition, we 101 

expect reduced variance and a skewed local distribution with CWM deviating from optimal trait 102 

value (Fig. 1). We used the model to simulate community composition with explicit 103 

environmental filtering along an environmental gradient, with and without variation of filtering 104 

intensity. It illustrates how TGBEs can arise. In addition, we propose an Approximate Bayesian 105 

Computation approach based on intensive simulations of community composition to get an 106 

unbiased estimate of the optimum and intensity of environmental filtering, while controlling for 107 

the influence of TGBE. This powerful and mechanistic approach allows comparing the outputs of 108 

our community assembly model, with different sets of parameters related to distinct processes, to 109 
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the local trait patterns observed in a given community dataset, so as to unravel the causes 110 

originating them (Csilléry et al. 2010, Munoz et al. 2018). We applied the approach to examine 111 

TGBE and environmental filtering in alpine plant communities along a gradient of snow cover 112 

duration in the French Alps (Choler, 2005).  113 

 114 

Material and Methods 115 

Framework of community assembly 116 

Immigrants drawn from a species pool establish and persist in a community depending on 117 

environmental filtering (Fig. 1). Each individual displays a synthetic fitness-related trait value, t, 118 

and the probability of successful immigration decreases as t departs from an optimal trait value 119 

topt depending on local environmental conditions (Shipley 2010). We used a Gaussian function of 120 

t with mean topt and standard deviation σopt to represent this filtering. σopt depicts the intensity of 121 

environmental filtering: the smaller σopt, the narrower the extent of trait values allowing 122 

immigration in the local community (Munoz et al. 2018). Each community is then assigned topt 123 

and σopt values characterizing local environmental filtering. 124 

Our main objective is to disentangle the influence of (i) trait range limits in the species 125 

pool, denoted as a for the lower and b for the upper limit, and (ii) the parameters of 126 

environmental filtering denoted as topt and σopt, on the distribution of trait values in local 127 

communities. When topt is close to a, we expected that the distribution of trait values in the local 128 

community is limited below a (Fig. 1), and conversely when topt is close to b. In the following, we 129 

present the consequences of the regional trait limits on (i) the calculation of the first four 130 
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moments (Enquist et al. 2015) of the local trait distribution, and (ii) how these moments vary 131 

across communities along an environmental gradient. 132 

 133 

Community-level trait based statistics 134 

Synthetic trait-based statistics are commonly used to characterize the functional response 135 

of communities. The two first moments of the distribution of trait values in a community, 136 

namely, the community weighted mean (CWM) and community weighted variance (CWV), are 137 

commonly used to analyze the functional structure of communities while the two following 138 

moments, community weighted skewness (CWS) and community weighted kurtosis (CWK) are 139 

more rarely considered (Enquist et al. 2015, Gross et al. 2017). The first four moments are 140 

expected to be influenced, among other processes, by environmental filtering and are often used 141 

for the inference of filtering (Shipley 2010, Enquist et al. 2015, Loranger et al. 2018). With a 142 

Gaussian environmental filtering (Fig. 1), we expect CWM and CWV to equal topt and σopt, 143 

respectively. As a measure of 'peakedness', CWK should also increase with decreasing σopt 144 

(Enquist et al. 2015, Gross et al. 2017). If the environmental filter is symmetrical, as considered 145 

here (Fig. 1), local CWS is not expected to deviate from 0. 146 

When the trait range in the species pool is bounded and when the environment selects for 147 

trait values close to these boundaries, the local distribution of trait values is bounded beyond the 148 

limits of the pool, and is asymmetrical (Fig. 1). This asymmetry should entail a shift in CWM to 149 

larger values if the closer trait limit in the species pool is the lower boundary and to lower values 150 

if the closer limit is the upper boundary (Fig. 1). In addition, the trait limits should further reduce 151 

the range of values in local communities and thus reduce CWV (Fig. 1), increase CWK and 152 
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increase CWS in absolute value when topt is closer to the limits. In Appendix S1, we provide the 153 

mathematical formulas of the four moments, as a function of topt, σopt, and of trait range limits a 154 

and b, in a simple case where regional trait abundances are uniformly distributed between a and 155 

b. 156 

 157 

Simulation of communities with environmental filtering and trait range limits 158 

We used a coalescent-based algorithm (package ecolottery in R language, Munoz et al. 159 

2018) to simulate community assembly with migrants drawn from a species pool and subject to a 160 

Gaussian environmental filtering. The coalescent-based approach reconstructs the shared ancestry 161 

of coexisting individuals (i.e., their genealogy) at present without simulating complete 162 

community dynamics from an initial state through time. The topology of the genealogy depends 163 

on immigration, environmental filtering, and demographic stochasticity (Munoz et al. 2018). We 164 

considered two types of species pools with either a uniform or a log-series distribution of 165 

abundances. Results were comparable with both distributions, and subsequent analyses will 166 

concern the case of uniform abundances only. A uniform pool includes 100 species with 1,000 167 

individuals per species, hence a total of 100,000 candidate immigrants. Species trait values ti 168 

were drawn from a uniform distribution between either a = 0 and b = 1 (trait range = 1), or a = 0 169 

and b = 2 (trait range = 2). We varied the range of trait values to assess the relative influence of 170 

filtering intensity and trait range. We also simulated a set of communities with intraspecific 171 

variation, i.e., with a standard deviation of trait values per species set to σi = 0.1 in the species 172 

pool. The environmental filtering function determined the probability p of establishment of an 173 

individual with a trait value t according the following function: � �  �
��

��������²

����
�
 (Fig. 1). We set 174 
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the intensity of environmental filtering, ruled by the parameter σopt, to either 0.25 or 0.05, to 175 

represent weak and intense environmental filtering, respectively, compared to the regional range 176 

of trait values varying between 0 and 1. For a given species pool, we simulated n = 100 177 

communities, each including J = 500 individuals, with varying topt values randomly drawn 178 

between a and b. The variation of topt represents a variation of optimal values along the 179 

environmental gradient. 180 

We also considered another set of simulations where σopt varied along the gradient, with 181 

minimum values of σopt = 0.05 at the extremes a and b towards a maximum of σopt = 0.25 in the 182 

middle of the gradient. In this case, environmental filtering was more intense at the extremes of 183 

the gradient. We therefore designed two sets of simulated communities undergoing a fixed and 184 

varying environmental filtering, respectively. From these simulated data, local weighted 185 

moments were calculated and the environmental filtering parameters �̂��� and �����² were 186 

estimated (see below). A repeatable example of community simulation is provided in Appendix 187 

S2.  188 

 189 

ABC estimation of parameters of environmental filtering  190 

We performed an Approximate Bayesian Computation (ABC) analysis (Csilléry et al. 191 

2010, coalesc_abc function in ecolottery R package) to estimate the parameters �̂��� and �����² of 192 

environmental filtering from a given community composition. ABC provides posterior 193 

distributions of parameter estimates by comparing some summary statistics in communities 194 

simulated over a broad range of topt and σopt values, to the same summary statistic values in the 195 

given community (Csilléry et al. 2010). In our case, the summary statistics were metrics of 196 
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taxonomic (richness and Shannon diversity) and functional (CWM, CWV, CWS and CWK) 197 

composition of a community. Many communities were simulated in ABC analysis using the same 198 

coalescent-based algorithm presented above (package ecolottery in R language, Munoz et al. 199 

2018). In any case, simulated communities received immigrants from the same species pool. We 200 

also considered an alternative analysis where the summary statistics included functional 201 

dispersion (Laliberté and Legendre 2010) and Rao’s quadratic entropy (Botta-Dukát 2005) 202 

instead of CWV, CWS and CWK (Appendix S10). Insofar as species pool composition was 203 

known, its trait range limits a and b were fixed based on the upper and lower trait range limits in 204 

the complete species pool. However, we also devised a case where the trait range limits and the 205 

species pool composition were based on the sum of observed communities (Appendix S11). The 206 

median values of �̂��� 
and �����² in posterior distributions were compared to observed CWM and 207 

CWV values, respectively. 208 

We performed ABC analysis on each of the simulated community presented above, to get 209 

a cross-validation of estimated �̂���and �����² values for simulated data with known topt and σopt
2 

210 

values. We also compared CWM and CWV in communities to topt and σopt
2. Figures 2b and 2d 211 

represent the variation in ABC estimates along a gradient of topt values. For simulations with 212 

fixed σopt
2, any variation in CWV at the extremes was expected to reveal an influence of regional 213 

trait limits only (TGBE). Conversely, we expected decreasing �����
� at the extremes of the 214 

gradient of topt, for the set of simulations where σopt
2 was indeed smaller at the extremes. The �̂��� 215 

~ �����² relationship was also compared to the CWM ~ CWV relationship, to check the 216 

consistency of the variation in estimated environmental filtering parameters with 217 

phenomenological patterns of functional convergence measured with CWV (Appendix S3). 218 

 219 
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Application to alpine plant communities 220 

We analyzed the variation in functional composition of plant communities along a 221 

gradient of snow cover duration in alpine grassland vegetation (Choler 2005). This gradient 222 

ranged from 140 to 210 days of snow cover in 1998. The alpine vegetation dataset (aravo in ade4 223 

R package) includes 75 communities for a total of 82 species, located between 2700 and 2750 224 

meters in French Alps. This vegetation undergoes harsh high-elevation conditions but also covers 225 

a broad environmental gradient of duration of snow cover, due to topographical and 226 

microclimatic heterogeneity (Choler 2005). The gradient determines varying abiotic stress and 227 

length of growing season, and thus largely influences functional trait variation among 228 

communities, such as leaf nitrogen concentration on a mass basis (Nmass) and specific leaf area 229 

(SLA) (Choler 2005), which are two foliar traits characterizing the resource acquisition-230 

conservation tradeoff in plants (Garnier et al. 2016). Long snow cover protects from freezing 231 

stress but reduces the length of growing season, which should favor resource-acquisitive plants, 232 

relatively to the local species pool, with higher Nmass and SLA. On the contrary, short snow cover 233 

increases exposure to wind and frost while increasing length of growing season, which should, in 234 

this specific context, favor resource-conservative plants with lower Nmass and SLA (Choler 2005). 235 

We estimated parameters of environmental filtering topt and σopt for foliar traits in this 236 

dataset, and examined their variation along the gradient of snow cover duration. The species pool 237 

used in ABC analysis was built from the species present in all the observed communities. 238 

 239 

Results 240 

TGBE in simulated communities 241 
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We simulated communities along an environmental gradient with different topt values but 242 

constant filtering intensity σopt
2 (Fig. 2). The variations in CWM and CWV illustrate the influence 243 

of TGBE. First, CWM went below topt when closer to the upper limit of trait range, and above topt 244 

when closer to the lower limit (Fig. 2a). The observed range of CWM values was thereby smaller 245 

than the range of topt. Second, we found a hump-shaped variation in CWV, with lower values at 246 

the extremes of the topt gradient (Fig. 2c). CWS and CWK also varied along the topt gradient with 247 

a decrease in CWS and an increase in CWK towards the extremes (Appendix S5). Because 248 

filtering intensity was set constant, the reduction of CWV at the extremes, and the respective 249 

variations of CWS and CWK, was attributable to the influence of trait range limits in the species 250 

pool (Fig. 1). We obtained consistent results under more intense but constant environmental 251 

filtering (σopt = 0.05, Appendix S4, more contrasted), with intraspecific variability (Appendix S6, 252 

σ = 0.1), with log-series distribution of regional abundances (Appendix S7) and when using the 253 

sum of observed communities as a species pool (Appendix S11). 254 

We expected the influence of TGBE to extend farther from the extremes when σopt
2 was 255 

larger for a fixed range [a; b]. The extent of the influence of regional trait limits was thereby 256 

expected to depend on the intensity of local filtering relatively to trait range [a; b]. Appendix S8 257 

shows how the ratio of σopt
2 and trait range influences the deviation of CWM from topt. It shows 258 

that the ratio of trait range (b - a) and filtering intensity (σopt
2) determines the influence of TGBE 259 

along the gradient. For instance, σopt = 0.5 and [0; 1] trait range gives the same deviation than σopt 260 

= 1 and [0; 2] trait range. 261 

 262 

Deciphering environmental filtering and TGBE in extreme environments 263 
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In communities where filtering intensity was set constant, we obtained unbiased 264 

estimation of topt (Fig. 2b, slope coefficient of the regression between �̂��� and topt = 0.97), and 265 

unbiased and constant estimation of σopt, while there was variation in CWV due to TGBE (Fig. 266 

2d). Indeed, the square distance between σopt
² and �����² was, in average, twice low over the topt 267 

gradient (Fig. 2d) than the square distance between σopt
² and CWV (Fig. 2c) (8.91e-3 and 2.23e-2 268 

respectively). When using other metrics than CWV to evaluate local functional convergence and 269 

to estimate topt
 and σopt

², namely functional dispersion and Rao’s quadratic entropy, we obtained 270 

similar results with significant quadratic relationships between these metrics and topt along topt 271 

gradient while the environmental filtering intensity remained constant (Appendix S10). In 272 

addition, we simulated an environmental gradient where filtering was more intense at the 273 

extremes (i.e., smaller σopt value, black line on Fig. 3a and 3b). Figure 3d shows that the 274 

estimated value of σopt followed the expected variation of filtering intensity. In this case, CWV 275 

also displayed a hump-shaped pattern along the gradient, similar to Figure 2c, but here this was 276 

due to both regional trait limits and actual variation in filtering intensity. 277 

Therefore, the variation in CWV could not inform on the respective influences of 278 

environmental filtering and trait range limits in the pool (Fig. 1c, Fig. 3c), while the ABC-based 279 

estimation of σopt
2 allowed grasping the specific influence of environmental filtering. 280 

 281 

TGBE and environmental filtering in alpine plant communities 282 

We estimated topt and σopt
2, and the variations in CWV and CWM values of foliar traits in 283 

alpine plant communities (Figs. 4 & 5). As expected with TGBE, CWM departed from estimated 284 

�̂��� in extreme environmental conditions, and the range of topt values was larger than the range of 285 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 23, 2019. ; https://doi.org/10.1101/528836doi: bioRxiv preprint 

https://doi.org/10.1101/528836


15 

CWM values (Fig. 4ab & 5ab). CWV decreased at lowest duration (great exposure to cold) for 286 

both SLA and Nmass and at highest duration (short vegetative period) of snow cover for Nmass only 287 

(Fig. 4). On the contrary, ABC-based estimations showed that ����
 2
 did not vary along the snow 288 

cover gradient (Fig. 4cd & 5cd). Except for SLA at long snow cover duration (Fig. 5cd), ����
 ² 289 

was larger than the corresponding CWV. 290 

In addition, departure of community weighted skewness (CWS) from 0 reflected the 291 

influence of regional trait limits and asymmetry in local trait distribution, as observed in 292 

simulated communities with constant σopt (Appendix S5). In alpine plant communities, 293 

increasingly negative community weighted skewness (CWS) with increasing snow cover duration 294 

in alpine vegetation was consistent with an influence of an upper trait limit on the local 295 

distribution of Nmass and SLA at longest snow cover duration (Appendix S9). 296 

 297 

 298 

Discussion 299 

In ecology and biogeography, trait-gradient analyses examine the functional trait 300 

distributions in communities to characterize community responses along environmental gradients 301 

(Ackerly and Cornwell 2007, Lepš et al. 2011, Garnier et al. 2016, Borgy et al. 2017a). Here we 302 

showed that a reduced variance of the local trait distribution, i.e., trait convergence, can reflect a 303 

combined influence of local environmental constraints within the community and of a bounded 304 

trait distribution in the regional species pool. These two influences need to be disentangled in 305 

order to identify the specific role of local environmental filtering. However, while much 306 

emphasis has been put on the idea that environmental filtering can be more intense at the 307 
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extremes of environmental gradients (Weiher et al. 2011), far less attention has been devoted to 308 

how the functional composition of species pools influences local community composition 309 

(Spasojevic et al. 2018). To address the issue, we used a simulation-based, Approximate 310 

Bayesian Computation (ABC) approach (ecolottery package, Munoz et al. 2018). By explicitly 311 

modelling immigration and environmental filtering, the approach allows separating out the 312 

influence of constraints on trait distributions at species pool and local community levels. With 313 

this approach, we can obtain unbiased estimation of topt and σopt in simulated communities along 314 

gradients. The mid-domain effect is a better-known example of the influence of regional limits 315 

(of species niches and distributions) influencing local taxonomic diversity at the extremes of 316 

gradients (in geographical, Colwell and Lees 2000, or environmental space, Letten et al. 2013). 317 

The TGBE issue presented here extends this perspective to examine how trait range limits in 318 

species pools influence functional composition in local communities. We discuss the 319 

consequences of TGBE for trait-based approaches in functional ecology, community ecology and 320 

(functional) biogeography. 321 

Environmental filtering is often viewed as a humped filtering function along a niche axis, 322 

similar to a Gaussian function with optimal value topt and filtering intensity σopt. Although 323 

environmental filtering generally concerns the influence of abiotic constraints (Kraft et al. 2015), 324 

the framework proposed here can apply to any filtering around an optimal trait value topt 325 

conferring, e.g., greater competitive ability (Mayfield and Levine 2010), better colonization or 326 

chances of establishment (Ehrlén and Eriksson 2000, Bernard-Verdier et al. 2012). The current 327 

paradigm in functional ecology is that community weighed mean (CWM) is a proxy for topt, the 328 

“CWM-optimality” hypothesis (Muscarella and Uriarte 2016), and that community weighed 329 

variance (CWV) is a proxy for σopt
2 under environmental filtering. The “CWM-optimality” 330 
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hypothesis found some support in recent studies linking the distance between species’ traits and 331 

CWM to species’ abundances for single traits (Umaňa et al. 2015) or multivariate measures 332 

(Muscarella and Uriarte 2016), but was challenged in other contexts (Mitchell et al. 2017, 333 

Laughlin et al. 2018). CWM can be disconnected from topt when stabilizing mechanisms such as 334 

competitive interactions and limiting similarity break the linkage of trait values with fitness 335 

differences (Chesson 2000, Adler et al. 2013), or when neutral stochastic dynamics affect species 336 

abundance independently from trait values (Hubbell 2001). Here we challenge the CWM-337 

optimality hypothesis by demonstrating that CWM and CWV can depart from topt and σopt
2, 338 

respectively, when the local distribution is bounded due to trait range limits in the pool of 339 

immigrants. The distribution of trait values in the regional species pool therefore influences local 340 

community assembly (Patrick and Brown 2018, Spasojevic et al. 2018) and can challenge the 341 

CWM-optimality hypothesis by preventing CWM to reach the optimum for certain environments. 342 

It is likely that trait range limits of the species pool are reached in extreme environments, i.e. trait 343 

values required for persistence are not possible, due to physiological limits or evolutionary 344 

history (Koch et al. 2004, Alpert 2005). It is essential to distinguish the respective signatures of 345 

local environmental filtering and of processes driving the functional composition of species pools 346 

at a larger scale and over a long term (Jiménez-Alfaro et al. 2018). Consequently, identifying 347 

TGBEs means determining the specific influence of local community assembly amidst the 348 

influence of large-scale and long-term evolutionary legacy (Lessard et al. 2016).  349 

We found that TGBE can be responsible of a hump-shaped variation in CWV along 350 

environmental gradients even when the intensity of environmental filtering is constant (Fig. 2c). 351 

TGBE also generated a hump-shaped relationship between CWV and CWM (Appendix S3), 352 

similar to patterns reported in a previous study (Dias et al. 2013). Although a link between CWM 353 
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and CWV (or similar functional diversity metrics) can represent a statistical artifact (Ricotta and 354 

Moretti 2011, Dias et al. 2013), our study also shows that TGBE can yield this relationship. The 355 

analysis of alpine plant communities illustrated trait variance reduction in extreme environmental 356 

conditions (Fig. 4 & 5), while the estimated ����
 ² did not show reduction. Variance reduction 357 

could thus be due to TGBE and not to more intense environmental filtering in these alpine plant 358 

communities (Fig. 4). Similarly, the ����
 -environment relationships had a steeper slope than the 359 

CWM-environment relationship (Fig. 2, Fig. 4ab & Fig. 5ab), suggesting that CWM did not 360 

represent optimal trait values all along the environmental gradient. 361 

We have proposed a spatially-implicit framework of community assembly acknowledging 362 

immigration from a species pool and local environmental filtering (Munoz et al. 2018). The 363 

definition of the pool is flexible and several options have been proposed, either based on a 364 

regional list of species (Zobel 1997), on the complete composition of a metacommunity (Leibold 365 

et al. 2004), or on a spatially restricted source of dispersers (Lessard et al. 2016). The pool can 366 

represent an external forcing based on long-term and large-scale regional dynamics (top-down 367 

perspective as in Hubbell 2001) or reflect the emergent composition of available immigrants in a 368 

metacommunity (bottom-up perspective, Leibold et al. 2004, Mittelbach and Schemske 2015). In 369 

both cases, its composition illustrates the influence of long-term assembly dynamics across 370 

communities in a specific area, and its boundaries represent the limits imposed by these 371 

processes. In the present analyses, while we simulated and used the composition of complete 372 

species pools in ABC analyses of simulated communities, the species pool of alpine communities 373 

was based on the sum of sampled communities (see in Appendix S11 the results for simulations 374 

with a species pool based on the sum of sampled communities). The composition and the relative 375 

abundances considered in the reference species pool can greatly influence analyses of community 376 
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assembly dynamics (Lessard et al. 2011). Dark diversity, representing the species that are absent 377 

from the pool but could contribute to immigration and community assembly (Pärtel et al. 2011), 378 

can extend trait range limits in the reference species pool. Further investigation of the influence 379 

of trait range limits with different definitions of the species pool should help address under which 380 

conditions TGBE can be reliably detected. Furthermore, the influence of the shape of the trait 381 

distribution in the pool should be addressed in more details in the future (Spasojevic et al. 2018) 382 

and appears essential since it can vary from a biogeographical context to another even though 383 

local environmental filtering can operate in a similar way. For sake of simplicity, we considered a 384 

uniform distribution of trait values among species at regional scale, and two types of distribution 385 

of regional abundances, uniform and log-series. Even though the results were robust to some 386 

variation in these parameters, further investigation of the sensitivity of the model will be needed. 387 

Lastly, we defined environmental filtering in our study as a Gaussian function around a single 388 

optimum (Shipley 2010). However, other filtering functions, such as disruptive filtering with two 389 

modes yielding trait divergence (Loranger et al. 2018), could be considered to study trait patterns 390 

at the community level, and are already implemented in ecolottery R package (Munoz et al. 391 

2018). 392 

Independently from the assumptions mentioned above, the way CWM and CWV deviate 393 

from topt and σopt
2 due to TGBE depends on the ratio between the trait range limits and the 394 

strength of local environmental filtering along a gradient (Appendix S8). In a biogeographical 395 

perspective, a physiological trait ~ environment relationship could yield different patterns of 396 

CWM and CWV variation across regions where distinct biogeographical histories entailed 397 

different range limits (Forrestel et al. 2017). Moreover, for a given regional species pool, the 398 

influence of TGBE should change depending on the strength of local environmental filtering. 399 
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Therefore, when the filtering acting on a specific trait is strong, the deviation should concern only 400 

communities closest to the extremes. The influence of TGBE on trait ~ environment relationship 401 

can also differ across functional traits, depending on the nature of underlying filters acting on 402 

different traits (Borgy et al. 2017b). The detection and influence of TGBE will therefore be 403 

dependent upon the interplay of biogeographical history and the local mechanisms filtering, with 404 

certain intensity, trait values. 405 

ABC-based estimation of environmental filtering relies on simulating and comparing 406 

basic statistics that summarize the observed and simulated trait distributions. The moments of 407 

local trait distributions can be used as summary statistics to infer the trait-based assembly 408 

processes, as advocated by the Trait Driver Theory (TDT) (Enquist et al. 2015). While much 409 

emphasis has been put on analyzing the two first moments CWM and CWV, TDT underlines that 410 

the next moments, skewness (CWS) and kurtosis (CWK), also convey insights on assembly 411 

dynamics. Gross et al. (2017) emphasized that CWS and CWK allow better characterizing the 412 

coexistence of multiple functional strategies beyond the influence of a single optimum. We 413 

showed that TGBE strongly impacts CWV variations (Figs. 1, 2c and 2d) but also other moments 414 

(Appendices S5 and S9). As a consequence, applying TDT along gradients also probably implies 415 

addressing TGBE issues. Community-level metrics are more and more used to characterize the 416 

functional composition of communities of plants (Violle et al. 2007), but also other organisms 417 

(e.g., Newbold et al. 2012, Fierer et al. 2014, Pey et al. 2014). We stress here that these metrics 418 

should not be viewed as direct proxies of underlying assembly processes, especially in harsh 419 

environmental conditions that are the focus of much research and where TGBE more likely 420 

occurs. Furthermore, acknowledging intraspecific variation in trait-based community analyses 421 

has gained much momentum in recent years (Lepš et al. 2011, Violle et al. 2012, Siefert et al. 422 
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2015). Having intraspecific trait variation could extend beyond the trait limits of a pool defined 423 

based on trait values averaged at species level (Violle et al. 2012), which should affect associated 424 

trait range limits and therefore TGBE. Our individual-based modelling framework can 425 

acknowledge the influence of intraspecific trait variation in community dynamics (Appendix S6), 426 

but these data are mostly unavailable at large spatial scales of functional biogeography, so that 427 

trait values averaged at species level are still mainly used in practice (Borgy et al. 2017b). 428 

Community-level trait metrics are common currencies for functional biogeography 429 

(Violle et al. 2014). They can be used to elucidate the drivers of taxonomic diversity patterns 430 

(Lamanna et al. 2014) as well as to target conservation areas (Violle et al. 2017) or to map and 431 

predict ecosystem properties from landscape to regional and global scales (Violle et al. 2015). 432 

The approach is primarily based on the “CWM-optimality” hypothesis (Muscarella and Uriarte 433 

2016), and the idea that CWV reflects the intensity of the local environmental filtering. Other 434 

processes can affect local community assembly and functional composition (Hubbell 2001, 435 

Levine and Murrell 2003, Mayfield and Levine 2010, Muscarella and Uriarte 2016), and our 436 

work further underlines that the functional composition of the species pool providing immigrants 437 

is influential. Taking into account the functional diversity of the species pool, and acknowledging 438 

the underlying biogeographical and evolutionary dynamics, is an important issue that has only 439 

recently come to focus (Patrick and Brown 2018, Spasojevic et al. 2018). TGBE shows the need 440 

to better integrate local and regional dynamics when examining the functional composition of 441 

local communities. Therefore, ecologists need to be aware of TGBE when interpreting patterns of 442 

functional composition and their causes, notably at the extremes of environmental gradients. 443 
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Figures 575 

Figure 1. Departure of CWM and CWV from the parameters of environmental filtering, topt and 576 

σopt
2, respectively, due to trait limits in the species pool. 577 

The trait distribution in communities (histograms) reflects the joint influence of trait range limits among 578 

immigrants from the species pool (top horizontal black line), and of a Gaussian environmental filter 579 

determining immigrant establishment success with mean topt (dashed blue lines) and standard deviation 580 

σopt
2 (blue horizontal arrows) in specific environments (grey rectangles). The dashed red lines 581 

represent the observed Community Weighted Mean (CWM) values in each community. CWM deviates 582 

from topt when closer to the limits of the trait range in the species pool because of the bounded species 583 

pool’s trait range. The range of observed CWM values (red segment) is then smaller than the one of topt 584 

values as shown in the CWM ~ Environment plot. Similarly, while σopt
2, which represents the 585 

environmental filtering intensity, remains constant over the environment gradient, CWV, depicted by the 586 

horizontal red arrows, decreases when approaching environment selecting for trait values closed to the 587 

species pool boundaries. The hump-shaped relationship between realized CWV and the environment thus 588 

represents the influence of the trait range limits and not a more intense filtering at the extremes of the 589 

gradient. 590 
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Figure 2. Variation in CWM and CWV values (left, red color), and of estimated �̂��� 
and �����

� 1 

(right, blue color), for simulated communities along topt gradient. 2 

Communities were simulated with constant environmental filtering (σopt = 0.25), uniform distribution of 3 

trait values and uniform abundances in the species pool. Top figures (a) and (b) represent CWM and �̂���, 4 

and figures (c) and (d) represent CWV and �����
�. The �̂��� and �����

� values were obtained with the 5 

ABC approach and correctly estimated the topt and σopt
2 values (b and d). Conversely, CWM departed from 6 

topt and CWV was below σopt
2 when the influence of trait range limits increased at the extremes. The black 7 

solid line represents equality of CWM and CWV to the parameters of environmental filtering (topt and 8 

σopt
2, respectively). Slope coefficients and the associated confidence intervals of the linear regression 9 

equations between CWM and topt are displayed in panel (a) and (b). The mean of the difference between 10 

σopt
2 and CWV (c) is twice higher than for the difference between σopt

2 and �����
� (d) (respectively 2.23e-2 11 

and 8.91e-3). 12 
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Figure 3. Variation in CWM and CWV (left, red color), and in estimated �̂���and �����
� (right, 1 

blue color) along the topt gradient, with increasing intensity of environmental filtering at the 2 

extremes of the gradient. 3 

 Top figures (a) and (b) represent CWM and �̂���, and figures (c) and (d) represent CWV and �����
�. The 4 

estimation of parameters �̂��� and �����
�, obtained with the ABC approach, acknowledges the effect of 5 

trait range limits, and departs from CWM and CWV, respectively when the influence of the trait range 6 

limits increases at the extremes. The black solid line represents equality of CWM and CWV to the 7 

parameters of environmental filtering (topt and σopt, respectively). Slope coefficients and the associated 8 

confidence intervals of the linear regression equations between CWM and topt are displayed in panel (a) 9 

and (b). The mean of the difference between σopt
2 and CWV (c) and between σopt

2 and �����
� (d) is 10 

comparable but lower for the latter case (respectively 4.08 e-2 and 3.37e-2).  11 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 23, 2019. ; https://doi.org/10.1101/528836doi: bioRxiv preprint 

https://doi.org/10.1101/528836


 

32 

 1 

 2 

 3 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 23, 2019. ; https://doi.org/10.1101/528836doi: bioRxiv preprint 

https://doi.org/10.1101/528836


 

33 

 1 

Figure 4. Relationships of CWV (red color) and estimated σopt² (blue color) for the leaf nitrogen 2 

content on a mass basis (Nmass, panel a) and the specific leaf area (SLA, panel b), 3 

according to the gradient of snow cover melting date (in Julian days, abscissa). 4 

Linear regressions were fitted for each variable against the snowmelt date in panels a and c. While both 5 

highly significant, the slope term was higher for with the estimated �̂���  (slope = 0.29) than with the 6 

CWM (slope = 0.23). For the panels c and d, a quadratic regression between CWV and snowmelt date was 7 

significant while the quadratic term became non-significant with �����². Nmass is measured in mg[N]/mg. 8 

 9 
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 1 

Figure 5. Relationships of CWV (red color) and estimated σopt² (blue color) for the specific leaf 2 

area (SLA), according to the gradient of snow cover melting date (in Julian days, 3 

abscissa). 4 

Linear regressions were fitted for each variable against the snowmelt date in panels a and c. While both 5 

highly significant, the slope term was higher for with the estimated �̂���  (slope = 0.25) than with the 6 

CWM (slope = 0.16). For both panels c and d, both quadratic regressions between CWV and �����² with 7 

snowmelt date were non-significant. SLA is measured in m²/kg. 8 

  9 
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Supporting information 1 

Appendix S1. Moments of the located trait distribution. 2 

With a uniform distribution of species trait values in the species pool ranging between a and 3 

b, and a local Gaussian environmental filter with parameters topt and σopt, the local trait 4 

distribution should follow a truncated Gaussian distribution, such as: 5 

��� 1 �  ��	 
 ���� � 
��� � 
���
� ���� 

��� 2 � ��� 
  ����² �1 � �
��� � �
���
� � �
��� � 
���
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Where � �
���
��

�
��
, � �

���
��

�
��
, � � 	
�� � 	
��, φ is the probability density function of the 7 

standard normal distribution and � is its cumulative density function (Barr & Sherrill, 1999), mk 8 

is the kth moment of the truncated normal distribution (based on m-1 = 0 and m0 = 1), a and b are 9 

the trait range limits (with a < b), topt the mean and σopt the standard deviation of the Gaussian 10 
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filtering function, � �
���
��

�
��
, � �

���
��

�
��
, � � 	
�� � 	
��, φ is the probability density function 1 

of the standard normal distribution and � is its cumulative density function (Barr and Sherrill 2 

1999). 3 

 4 

Reference 5 

Barr, D. R. and Sherrill, E. T. 1999. Mean and variance of truncated normal distributions. - Am. Stat. 53: 6 

357–361. 7 

  8 
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Appendix S2. R code to simulate and analyze communities. 1 

This example is divided into two parts. The first part simulates communities using the R package 2 

ecolottery (Munoz et al. 2018), https://cran.r-project.org/web/packages/ecolottery/index.html). In 3 

the example of the paper, the parameters used to build communities are the following: species 4 

pool with 100.000 individuals belonging to 100 species with equal abundances (i.e., 1000 5 

individuals each), and species trait values drawn from a uniform distribution between a=0 and 6 

b=1. Each community includes 500 individuals and the immigrants establishing in communities 7 

are drawn from the species pool. Stabilizing environmental filtering determines establishment 8 

probability of immigrants depending on the departure of their trait value t from a local optimum 9 

topt. We thus choose a Gaussian filtering function of mean topt, which varies among communities, 10 

and standard deviation σopt equal to 0.25. The data frame of simulated communities is called sim. 11 

The community-weighted mean (CWM) and variance (CWV) are calculated for each community, 12 

as well as functional dispersion (Laliberté and Legendre 2010) and Rao’s entropy (Botta-Dukát 13 

2005). 14 

The second section estimates the two parameters topt and σopt in each community, by comparing 15 

observed summary statistics of the community to summary statistics simulated over a broad 16 

range of topt and σopt values, with approximate Bayesian computation (ABC) analysis 17 

(coalesc_abc function, Munoz et al. 2018).  18 

Finally, the third just presents the code to generate the plot equivalent to the Figure 2 of the 19 

manuscript.20 
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rm(list = ls()) 21 

#----------------------------------------------------------------------------- 22 

# PART I/ Generate simulations: uniform species abundances and trait values in 23 

# regional pool, trait values bounded between 0 and 1 24 

#----------------------------------------------------------------------------- 25 

# Installing package from CRAN and loading 26 

install.packages("ecolottery") 27 

library(ecolottery) 28 

J <- 500  29 

m <- 1 30 

sim <- c() 31 

# Trait range 32 

a <- 0 33 

b <- 1 34 

# Generate a regional pool/metacommunity with equal species abundances and 35 

# uniform trait distribution 36 

# 100000 individuals, 100 species, trait values bounded between 0 and 1 37 

pool <- cbind(1:100000, rep(sample(1:100), 1000), rep(NA, 100000)) 38 

colnames(pool) <- c("ind", "sp", "tra") 39 

t.sp <- runif(1000, min = a, max = b) 40 

pool[, "tra"] <- t.sp[pool[, "sp"]] 41 

# Intraspecific variability 42 

pool[, "tra"] <- rnorm(pool[, "tra"], pool[, "tra"], 0.001) 43 
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pool[, "tra"] <- ifelse(pool[, "tra"] > 1, 0.99, pool[, "tra"]) 44 

pool[, "tra"] <- ifelse(pool[, "tra"] < 0, 0.01, pool[, "tra"]) 45 

# Generate communities with habitat filtering, in 100 communities with 46 

# distinct topt 47 

# sigmaopt is fixed at 0.25 48 

topt <- seq(from = a, to = b, by = (b-a) / 99) 49 

sigmaopt <- 0.25 50 

for(j in 1:length(topt)) { 51 

  comm <- coalesc(J, m, pool=pool, traits=NULL, 52 

                  filt = function(x) exp(-(x-topt[j])^2/(2*sigmaopt^2))) 53 

  sim <- rbind(sim, cbind(rep(j, nrow(comm$com)), 54 

                                        rep(topt[j], nrow(comm$com)), comm$com)) 55 

} 56 

# Column names of the metacommunity dataset 57 

colnames(sim) <- c("com", "topt", "ind", "sp", "tra") 58 

# Conversion to data.frame 59 

sim <- as.data.frame(sim) 60 

# Table of species abundances per community 61 

temp <- as.data.frame(table(sim$sp, sim$com)) 62 

colnames(temp) <- c("sp", "com", "ab") 63 

# Relative abundances 64 

temp$abrel <- temp$ab / J 65 

# Merging abundances with simulation 66 
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library(dplyr) 67 

sim$sp_com <- paste(sim$sp, sim$com, sep="_") 68 

temp$sp_com <- paste(temp$sp, temp$com, sep="_") 69 

sim <- inner_join(sim, temp[, c("sp_com", "ab", "abrel")], 70 

                         by="sp_com") 71 

# Computing CWM => not weighted by abundances because of intraspecific variability 72 

cwm <- tapply(sim$tra, sim$com, mean) 73 

cwm <- data.frame("com" = names(cwm), "cwm" = as.numeric(cwm)) 74 

sim$com <- as.character(sim$com) 75 

sim <- inner_join(sim, cwm, by = "com") 76 

 77 

# Computing CWV => not weighted by abundances because of intraspecific variability 78 

cwv <- tapply(sim$tra, sim$com, var) 79 

cwv <- data.frame("com" = names(cwv), "cwv" = as.numeric(cwv)) 80 

sim <- inner_join(sim, cwv, by = "com") 81 

 82 

# Computing Fdis and Rao 83 

library(FD) 84 

FD_com <- c() 85 

for(i in 1:length(unique(sim$com))){ 86 

  com <- sim[which(sim$com == unique(sim$com)[i]), c("ind", "tra", "abrel")] 87 

  com <- com[!duplicated(com), ] 88 

  tra_ind <- com[, c("ind", "tra")] 89 
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  rownames(tra_ind) <- tra_ind$ind 90 

  tra_ind <- tra_ind[, "tra", drop = FALSE] 91 

  ab_ind <- rep(1, nrow(com)) 92 

  names(ab_ind) <- com$ind 93 

  tmp <- dbFD(tra_ind, a = ab_ind, w.abun = FALSE) 94 

  FD_com <- rbind(FD_com, c(unique(sim$com)[i], as.numeric(tmp$FDis),               95 

as.numeric(tmp$RaoQ))) 96 

} 97 

FD_com <- data.frame(FD_com) 98 

colnames(FD_com) <- c("com", "fdis", "rao") 99 

sim <- inner_join(sim, FD_com, by = "com") 100 

sim$fdis <- as.numeric(as.character(sim$fdis)) 101 

sim$rao <- as.numeric(as.character(sim$rao)) 102 

# Plot showing correlations between CWV and functional diversity metrics 103 

library(GGally) 104 

ggpairs(sim[!duplicated(sim$com), c("cwv", "fdis", "rao")]) + 105 

  theme_classic() 106 

#----------------------------------------- 107 

# PART II/ ABC-based parameter estimation  108 

#----------------------------------------- 109 

require(vegan) 110 

# Function to compute 6 summary statistics: the four first orders of community 111 

# weighted moments (mean, variance, skewness and kurtosis) and two taxonomic 112 
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# statistics (specific richness and Shannon diversity index) 113 

f.sumstats <- function(com){ 114 

  array(dimnames = list(c("cwm", "cwv", "cws", "cwk", "S", "Es")), 115 

        c(mean(com[, 3]), var(com[, 3]), e1071::skewness(com[, 3]), 116 

          e1071::kurtosis(com[, 3]), vegan::specnumber(table(com[, 2])), 117 

          vegan::diversity(table(com[, 2])))) 118 

} 119 

 120 

# Observed summary statistics 121 

ss.obs <- c() 122 

for(i in 1:length(unique(sim$com))) { 123 

  comm <- sim[which(sim$com == unique(sim$com)[i]), c("ind", "sp", "tra")] 124 

  ss.obs[[i]] <- f.sumstats(comm) 125 

} 126 

comm.sd <- unlist(lapply(ss.obs, function(x) sqrt(x["cwv"]))) 127 

comm.cwm <- unlist(lapply(ss.obs, function(x) x["cwm"])) 128 

# Possibility to reconstruct the pool of species from communities composition 129 

# true_pool <- pool 130 

# pool <- sim[, c("ind", "sp", "tra")] 131 

 132 

# Filtering function 133 

filt_gaussian <- function(t, params) exp(-(t-params[1])^2/(2*params[2]^2)) 134 

# Parameters values 135 
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params <- data.frame(rbind(c(min(pool[, "tra"]), max(pool[, "tra"])), 136 

                           c(min(comm.sd), sd(pool[, "tra"]))))  137 

row.names(params) <- c("topt", "sigmaopt") 138 

# Number of values to sample in prior distributions 139 

nb.samp <- 10^6 140 

# ABC estimation of the parameters based on summary statistics of the observed 141 

# community 142 

# The function makes vary the migration rate, m, and the parameters of 143 

# environmental filtering defined in params 144 

res <- c() 145 

for(i in 1:length(unique(sim$com))) { 146 

  comm <- sim[which(sim$com == unique(sim$com)[i]), c("ind", "sp", "tra")] 147 

  res[[i]] <- coalesc_abc(comm, pool, f.sumstats = f.sumstats, 148 

                          filt.abc = filt_gaussian,  149 

                          params=params, nb.samp = 1000, parallel = TRUE, 150 

                          tol = 1, pkg = c("e1071","vegan"), 151 

                          method = "neuralnet") 152 

} 153 

# Mean estimated values of the parameters  154 

topt.abc <- unlist(lapply(res, function(x) weighted.mean(x$abc$adj.value[, "topt"], w = 155 

x$abc$weights))) 156 

sigmaopt.abc <- unlist(lapply(res, function(x) weighted.mean(x$abc$adj.value[, 157 

"sigmaopt"], w = x$abc$weights))) 158 
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m.abc <- unlist(lapply(res, function(x) weighted.mean(x$abc$adj.value[, "m"], w = 159 

x$abc$weights))) 160 

# Adding topt and sigmaopt to original dataset 161 

library(dplyr) 162 

topt_sim <- data.frame("com" = unique(sim$com), "topt_abc" = topt.abc) 163 

sim <- inner_join(sim, topt_sim, by = "com") 164 

sigmaopt_sim <- data.frame("com" = unique(sim$com), "sigmaopt_abc" = sigmaopt.abc) 165 

sim <- inner_join(sim, sigmaopt_sim, by = "com")  166 

m_sim <- data.frame("com" = unique(sim$com), "m_abc" = m.abc) 167 

sim <- inner_join(sim, m_sim, by = "com") 168 

 169 

##---------------------------------------------------------------------- 170 

# PART III/ Plots 171 

##---------------------------------------------------------------------- 172 

 173 

simplot <- sim[!duplicated(sim$com), ] 174 

# Slope tests 175 

mobs <- lm(cwm ~ topt, data = simplot) 176 

mabc <- lm(topt_abc ~ topt, data = simplot) 177 

# Quadratic regression for CWV 178 

mvobs <- lm(cwv ~ topt + I(topt^2), data = simplot) 179 

mvabc <- lm(sigmaopt_abc ~ topt + I(topt^2), data = simplot) 180 

obs_slope <- paste0("Slope coefficient = ",round(summary(mobs)$coefficients[2, 1], 2), 181 

" [", round(confint(mobs)[2, 1], 2), ", ",round(confint(mobs)[2, 2], 2), "]") 182 
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abc_slope <- paste0("Slope coefficient = ",round(summary(mabc)$coefficients[2, 1], 2), 183 

" [", round(confint(mabc)[2, 1], 2), ", ",round(confint(mabc)[2, 2], 2), "]") 184 

# Four panels 185 

par(mfrow = c(2, 2), mai = c(1, 0.9, 0.1, 0.3))  186 

y_lim <- c(round((min(simplot$cwm, simplot$topt_abc)*2/2), 2), 187 

           round((max(simplot$cwm, simplot$topt_abc)*2/2), 2)) 188 

# CWM ~ topt 189 

plot(simplot$topt, simplot$cwm, xlab = "", ylab = "", xaxt = "n", yaxt = "n", 190 

     xlim = c(0, 1), ylim = c(y_lim[1], y_lim[2]), 191 

     col = "firebrick3", pch = 16, cex = 1.5) 192 

axis(1, cex.axis = 1.4) 193 

mtext(expression("t"["opt"]), side = 1, line = 2.2, cex = 2) 194 

axis(2, cex.axis = 1.4) 195 

mtext("CWM", side = 2, line = 2.2, cex = 2) 196 

abline(0, 1, lwd = 1) 197 

legend(x = -0.1, y = 11/10 * y_lim[2], 198 

       bty = "n", legend = "a", cex = 2, col = "black") 199 

legend(-0.2, 10/10 * y_lim[2], obs_slope, bty = "n", cex = 2) 200 

 201 

# topt_ABC ~ topt 202 

plot(simplot$topt, simplot$topt_abc, xlab = "", ylab = "", xaxt = "n", 203 

     yaxt = "n", xlim = c(0, 1), ylim = c(y_lim[1], y_lim[2]), 204 

     col = "dodgerblue", pch = 16, cex = 1.5) 205 
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axis(1, cex.axis = 1.4) 206 

mtext(expression("t"["opt"]), side = 1, line = 2.2, cex = 2) 207 

axis(2, cex.axis = 1.4) 208 

mtext(expression(hat("t")["opt"]), side = 2, line = 2.2, cex = 2) 209 

abline(0, 1, lwd = 1) 210 

legend(x = -0.1, y = 11/10 * y_lim[2], 211 

       bty = "n", legend = "b", cex = 2, col = "black") 212 

legend(-0.2, 10/10 * y_lim[2], abc_slope, bty = "n", cex = 2) 213 

 214 

# CWV ~ topt 215 

y_lim <- c(round((min(simplot$cwv, simplot$sigmaopt_abc^2) * 9/10), 2), 216 

           round((max(simplot$cwv, simplot$sigmaopt_abc^2) * 11/10), 2)) 217 

 218 

cwv_diff <- mean(abs(simplot$cwv - 0.25^2)) 219 

cwv_diff <- scales::scientific_format()(cwv_diff) 220 

plot(simplot$topt, simplot$cwv, xlab = "", ylab = "", xaxt = "n", yaxt = "n", 221 

     xlim = c(0, 1), ylim = c(y_lim[1], y_lim[2]), 222 

     col = "firebrick3", pch = 16, cex = 1.5) 223 

legend(x = -0.1, y = y_lim[2] * 11/10, bty = "n", legend = "c", cex = 2, col = "black") 224 

axis(1, cex.axis = 1.4) 225 

mtext(expression("t"["opt"]), side = 1, line = 2.2, cex = 2) 226 

axis(2, cex.axis = 1.4) 227 

mtext("CWV", side = 2, line = 2.2, cex = 2) 228 
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abline(0.25^2, 0, cex = 2) 229 

 230 

# sigmaopt_ABC^2 ~ topt 231 

sigmaopt_abc_diff <- mean(abs(simplot$sigmaopt_abc^2 - 0.25^2)) 232 

sigmaopt_abc_diff <- scales::scientific_format()(sigmaopt_abc_diff) 233 

plot(simplot$topt, simplot$sigmaopt_abc^2, xlab = "", ylab = "", xaxt = "n", 234 

     yaxt = "n", xlim = c(0, 1), ylim = c(y_lim[1], y_lim[2]), 235 

     col = "dodgerblue", pch = 16, cex = 1.5) 236 

legend(x = -0.1, y = y_lim[2] * 11/10, 237 

       bty = "n", legend = "d", cex = 2, col = "black") 238 

axis(1, cex.axis = 1.4) 239 

mtext(expression("t"["opt"]), side = 1, line = 2.2, cex = 2) 240 

axis(2, cex.axis = 1.4) 241 

mtext(expression(hat(sigma)["opt"]^"2"), side = 2, line = 2.2, cex = 2) 242 

abline(0.25^2, 0, cex = 2)  243 
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Appendix S3. Variation of CWV values with CWM (top, red color), and of �����
� with topt

 
and 244 

(bottom, blue color), for two sets of simulated communities with constant (left, σopt = 0.25) or 245 

varying (σopt from 0.25 to 0.05, peaking at topt = 0.5) intensity of environmental filtering. 246 

 247 
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Appendix S4. Analysis of simulated communities with constant and strong environmental filtering (σopt = 248 

0.05), low intraspecific variability (σ = 0.001 for each species trait value) and uniform distribution of 249 

species pool abundances. 250 

The left red curves show the variation of CWM (top) and CWV (bottom) according to topt. The right blue 251 

curves show the estimated �̂��� (top) and �����
� (bottom) values according to topt. The black solid line 252 

represents equality of CWM and CWV to the parameters of environmental filtering (topt and σopt, 253 

respectively). Slope coefficients and the associated confidence intervals of the linear regression equations 254 

between CWM / �̂���and topt are displayed in panel (a) and (b). The mean of the difference between σopt
2 255 

and CWV (c) is comparable to the difference between σopt
2 and �����

� (d) (respectively 6.02e-2 and 6e-2). 256 

 257 

258 
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Appendix S5. Community-weighted skewness (CWS) and kurtosis (CWK) of simulated communities.  259 

CWS is calculated for community j as 260 

���. 5 �  ���
 
 ∑ .�
���
 � ��	
���
��	

���



�/�
 

and CWK is calculated for community j as 261 

���. 6 �  ��!
 
 ∑ .�
���
 � ��	
���
��	 ���
� � 3 

Where S is the number of species in community j, pij is the relative abundance of species i in community j, 262 

tij is the average trait value of species i in community j.  263 

Panel (a) displays the variation of CWS and panel (b) of CWK in simulated communities according to topt, 264 

with uniform species pool abundances and constant environmental filtering (σopt = 0.25; same dataset as in 265 

Fig. 2). 266 
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Appendix S6. Variation of CWM and CWV according to topt, with constant environmental filtering 268 

intensity (σopt = 0.25), large intraspecific variability (σ = 0.1 for each species trait value) and a uniform 269 

distribution of species pool abundances. 270 

The left part (red curves) shows the variation of CWM (top) and CWV (bottom) according to topt. The 271 

right part (blue curves) shows the estimated �̂��� (top) and �����
� (bottom) values. The black solid line 272 

represents equality of CWM and CWV to the parameters of environmental filtering (topt and σopt, 273 

respectively). Slope coefficients and the associated confidence intervals of the linear regression equations 274 

between CWM / �̂���and topt are displayed in panel (a) and (b). The mean of the difference between σopt
2 275 

and CWV (c) is twice higher than the difference between σopt
2 and �����

� (d) (respectively 2.3e-2 and 276 

4.78e-3). 277 
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Appendix S7. Variation of CWM and CWV according to topt, with constant environmental filtering 280 

intensity (σopt = 0.25) and a log-series (biodiversity parameter θ = 50) distribution of species pool 281 

abundances. 282 

The left red curves show the variation of CWM (top) and CWV (bottom) according to topt. The right blue 283 

curves show the estimated �̂��� (top) and �����
� (bottom) values. The black solid line represents equality 284 

of CWM and CWV to the parameters of environmental filtering (topt and σopt
2

, respectively). Slope 285 

coefficients and the associated confidence intervals of the linear regression equations between CWM / 286 

�̂���and topt are displayed in panel (a) and (b). The mean of the difference between σopt
2 and CWV (c) is 287 

twice higher than the difference between σopt
2 and �����

� (d) (respectively 2.18e-2 and 4.79e-3). 288 

 289 
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Appendix S8. Influence of environmental filtering intensity and trait range extent on the 291 

departure of CWM from topt.  292 

The global deviation of CWM from topt over the trait range (average distance between CWM and 1:1 line), 293 

summarizes the influence of the trait range limits on CWM over the whole environmental gradient. Blue, 294 

resp. black, points represent simulations with a trait range on [0; 1], resp. [0; 2], and varying filtering 295 

intensity (σopt, on abscissa). 296 

 297 
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Appendix S9. Observed weighted skewness in communities (CWS) for the aravo dataset. 299 

Panels a & b display the result for the alpine plant communities for Nmass (panel a) and SLA (panel b). 300 

 301 

 302 
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Appendix S10. Variation of functional dispersion, Rao’s quadratic entropy and ����� according to topt, 304 

with constant environmental filtering intensity (σopt = 0.25) and auniform distribution of species pool 305 

abundances. 306 

The first two red curves show the variation of functional dispersion (first panel) and Rao’s quadratic 307 

entropy (second panel) according to topt. The third right blue curve shows the estimated ����� values. The 308 

black solid line represents equality of CWV to the parameter of environmental filtering σopt,. The fraction 309 

of variance explained by quadratic regression between the three metrics and σopt (R²) are displayed. 310 
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Appendix S11. Variation in CWM and CWV values (left, red color), and of estimated �̂��� 
and 315 

�����
� (right, blue color), for simulated communities along topt gradient with the observed species 316 

pool. 317 

Communities were simulated with constant environmental filtering (σopt = 0.25), uniform distribution of 318 

trait values and uniform abundances in the species pool. Top figures (a) and (b) represent CWM and �̂���, 319 

and figures (c) and (d) represent CWV and �����
�. The �̂��� and �����

� values were obtained with the ABC 320 

approach and correctly estimated the topt and σopt
2 values (b and d). The species pool used for ABC 321 

estimation of the parameters corresponds to the actual sum of observed communities. Conversely, CWM 322 

departed from topt and CWV was below σopt
2 when the influence of the trait range limits increased at the 323 

extremes. The black solid line represents equality of CWM and CWV to the parameters of environmental 324 

filtering (topt and σopt
2, respectively). Slope coefficients and the associated confidence intervals of the 325 

linear regression equations between CWM / �̂���and topt are displayed in panel (a) and (b). The mean of 326 

the difference between σopt
2 and CWV (c) is twice higher than the difference between σopt

2 and �����
� (d) 327 

(respectively 2.23e-2 and 8.91e-3). 328 
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