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Linear GBT-Based Analysis of Thin-Walled Steel Members

This paper presents and illustrates the application of an elastic-plastic Generalised Beam Theory (GBT) formulation, based on J2-flow plasticity theory, that makes it possible to perform physically and geometrically non-linear (post-buckling) analyses of prismatic thin-walled members (i) with arbitrary cross-section shapes, (ii) exhibiting any type of deformation pattern (global, local, distortional, warping, shear), (iii) made from nonlinear materials with isotropic strain-hardening and (iv) containing initial imperfections, namely residual stresses and/or geometric imperfections, having generic distributions. After providing a brief overview of the main GBT assumptions, kinematical relations and equilibrium equations, the development of a novel non-linear beam finite element (FE) is addressed in some detail. Moreover, its application is illustrated through the presentation and discussion of numerical results concerning the post-buckling behaviour of a fixed-ended I-section steel column exhibiting local initial geometrical imperfections, namely (i) non-linear equilibrium paths, (ii) displacement profiles, (iii) stress diagrams/distributions and (iv) deformed configurations. For validation purposes, the GBT results are also compared with values yielded by ABAQUS rigorous shell FE analyses.

Introduction

The use of high performance steels leads to considerable weight savings in built structures. In fact, steel structural elements, namely cold-formed ones, often exhibit slender thin walls, which makes them highly susceptible to global (flexural, torsional and flexural-torsional) and local instability phenomena, which play a key role in their ultimate strength and design. Up to now, the numerical determination of accurate collapse loads for such elements (e.g., columns or beams) has only been possible by resorting to complex non-linear shell finite element analyses (SFEA). Since this task is very timeconsuming, due to the large amount of degrees of freedom (d.o.f.) involved and the laborious/difficult data input and result interpretation, a very promising alternative to the above approach is the use of one-dimensional (beam) finite element formulations based on Generalised Beam Theory (GBT).

Due to its unique modal features, GBT is widely recognized as an elegant, computationally efficient and structurally clear approach to analyse prismatic thin-walled members and structural systems. The displacement field is expressed as a linear combination of cross-section deformation modes whose amplitudes vary along the member length. In the last decade, GBT formulations have been developed to cover different (i) analyses (first-order, buckling, vibration, post-buckling) and (ii) materials (steel and composite -FRP and steel-concrete) [START_REF] Camotim | Latest developments in the GBT analysis of thinwalled steel structures[END_REF]. Most of these works assume a linear elastic material behaviour, with no plasticity (or any other degradation source) involved. The first physically non-linear GBT formulation was developed by Gonçalves and Camotim [START_REF] Gonçalves | GBT local and global buckling analysis of aluminium and stainess steel columns[END_REF], in the context of elastic-plastic bifurcation, and these authors [START_REF] Gonçalves | Generalised beam theory-based finite elements for elastoplastic thin-walled metal members[END_REF][START_REF] Gonçalves | Geometrically non-linear generalised beam theory for elastoplastic thin-walled metal members[END_REF] recently proposed GBT-based FE formulations based on the J2-flow plasticity theory and intended to perform physically and geometrically non-linear analyses. In parallel, Abambres et al. [START_REF] Abambres | Elastoplastic analysis of thin-walled bars in the context of generalised beam theory[END_REF][START_REF] Abambres | Physically non-linear analysis of steel beams in the context of GBT[END_REF] developed alternative GBT first-order elastic-plastic formulations, also based on the J2-flow plasticity theory, to analyse members with (i) global (axial, flexural, torsional) and (ii) an arbitrary deformation pattern. They differ from those reported in [START_REF] Gonçalves | Generalised beam theory-based finite elements for elastoplastic thin-walled metal members[END_REF][START_REF] Gonçalves | Geometrically non-linear generalised beam theory for elastoplastic thin-walled metal members[END_REF] since (i) other deformation modes are adopted, obtained via the GBT cross-section analysis procedure proposed in [START_REF] Silva | GBT cross-section analysis of thin-walled members with arbitrary crosssections: a novel approach[END_REF], and (ii) warping rotations about each wall through-thickness direction are included as additional d.o.f. The aim of this paper is to present and illustrate the application of an extension of the previous work by the authors, which includes geometrical non-linearity and makes it possible to perform secondorder (post-buckling) elastic-plastic analyses of members (i) with arbitrary thin-walled cross-section shapes, (ii) exhibiting any deformation pattern, (iii) having non-linear constitutive laws with isotropic strain-hardening and (iv) containing initial imperfections, namely residual stresses and/or geometrical imperfections, with generic distributions. Following a brief overview of the main GBT assumptions, kinematics and equilibrium equations, the paper addresses the development of a new non-linear beam FE and illustrates its application by presenting and discussing numerical results concerning the postbuckling behaviour of a fixed I-section steel column with local initial geometrical imperfections. Such results comprise (i) non-linear equilibrium paths, (ii) displacement profiles, (iii) 2D/3D stress diagrams, and (iv) 3D deformed configurations. For validation purposes, the GBT results are also compared with values obtained by means of ABAQUS [START_REF] Ds Simulia Inc | ABAQUS Standard[END_REF] rigorous SFEA.

Brief Overview of the GBT Assumptions and Kinematics

At each wall mid-surface, consider the local coordinate system (x, s, z) illustrated in Fig 1(a), where x, s e z are longitudinal (0 ≤ x ≤ L, L is the member length), transverse (0 ≤ s ≤ b, b is the wall width) and through-thickness (-t/2 ≤ z ≤ t/2, t is the wall thickness) coordinates. The corresponding local displacements are (i) u (along x -warping), (ii) v (along s -transverse) and (iii) w (along zflexural). A GBT analysis consists of (i) a cross-section analysis and (ii) a member analysis. While the former comprises the determination of the cross-section deformation modes (uk(s), vk(s), wk(s)) and associated mechanical properties, the latter leads to the corresponding modal amplitude functions k(x), characterising the variation of the deformation mode amplitude along the member length. Each member mid-surface displacement field component is expressed as a linear combination of products involving cross-section deformation modes and their amplitude functions,
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where subscript k follows the Einstein (summation) convention.

The cross-section analysis procedure proposed in [START_REF] Silva | GBT cross-section analysis of thin-walled members with arbitrary crosssections: a novel approach[END_REF] is adopted: four deformation mode families (conventional, warping shear, transverse extension and cell shear flow) are defined and obtained by solving a sequence of auxiliary eigenvalue problems -detailed information in [START_REF] Silva | GBT cross-section analysis of thin-walled members with arbitrary crosssections: a novel approach[END_REF][START_REF] Silvestre | First order generalised beam theory for arbitrary orthotropic materials[END_REF][START_REF] Silvestre | Non-linear generalised beam theory for cold-formed steel members[END_REF]. However, this cross-section analysis also includes an innovation recently proposed by the authors [START_REF] Abambres | Physically non-linear GBT analysis of thin-walled members[END_REF]: the inclusion of the warping rotation (about z) as a fifth d.o.f. in each node. Finally, it is worth noting that the formulation developed retains the GBT fundamental plane-stress assumption (after all, GBT is a theory for thin-walled members), which means that (i) the stress components σ xz , σ sz , σ zz , and (ii) the strain components γ xz , γ sz and ε zz (see Fig. 1(a)) are deemed null everywhere, regardless of the material behaviour under consideration. 

GBT Formulation for Second-Order Elastic-Plastic Analysis

Equilibrium Equations

The GBT equilibrium equation can be obtained from the Principle of Virtual Work, stating that [START_REF] Abambres | Physically non-linear GBT analysis of thin-walled members[END_REF] ( )
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dz ds dx q u q v q w ds dx , (2) where (i) σ xx , σ ss , σ xs are the axial normal, transverse normal and shear stress components, (ii) qx, qs, qz are the local components of an external distributed force applied at the member mid-surface (see Fig.

1(b)), and (iii)  xx ,  ss , γ xs are the virtual Green-Saint-Venant strain components: axial extension, transverse extension and shear strain, expressed in terms of the displacement components u, v, w as
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where u, v and w are given in Eq. ( 1) and α is a factor equal to 0 or 1, depending on whether the non-linear bending terms dependent on z are neglected or not. Note that all existing geometrically non-linear GBT formulations neglect the non-linear bending terms dependent on z and z 2 . Although this choice has consistently led to fairly accurate results [START_REF] Camotim | Latest developments in the GBT analysis of thinwalled steel structures[END_REF][START_REF] Gonçalves | Geometrically non-linear generalised beam theory for elastoplastic thin-walled metal members[END_REF], the formulation proposed retains the terms dependent on z (not those dependent on z 2 ), in order to assess their relevance. Moreover, all stress and strain components are evaluated taking into account the possible presence of initial imperfections, namely residual stresses and/or geometrical imperfections.

Non-Linear Beam Finite Element

In non-linear analysis, reaching an equilibrium configuration requires using an incremental-iterative strategy. This work adopts the cylindrical arc-length method [START_REF] Borst | Computational Methods in Non-linear Solid Mechanics[END_REF][START_REF] Clarke | A study of incremental-iterative strategies for non-linear analysis[END_REF], whose implementation involves evaluating internal force vectors f int and subsequently establishing incremental equilibrium equations, based on the tangent stiffness matrix Ktan. After introducing the strain components considered in the first member of Eq. ( 2), all amplitude functions in Eq. ( 1) are replaced by their FE approximations, yielding
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where f is the external force vector corresponding to a unit load parameter  The numerical results presented and discussed further ahead were obtained by adopting Hermite cubic polynomials to approximate the longitudinal variation of the GBT deformation mode amplitudes, i.e., ( ) ( )
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where (i) k H Ψ is a 1x4 vector storing the Hermite polynomials adopted to approximate the mode k amplitude function, (ii) dk is the corresponding displacement vector (4×1), (iii) the first expression concerns only the axial and warping shear modes (no in-plane displacements: v=w=0), and (iv) the second expression applies to all other deformation modes (v≠0 and/or w≠0). According to the above procedure, the i th component (4x1 sub-vector) of the internal force vector f int can be obtained by means of ( ) ( ) ( )
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(i) subscripts i and k identify GBT deformation modes (i is a free subscript and k satisfies Einstein convention), and (ii) the displacement vectors dk and stress components σ xx , σ ss , σ xs are associated with a generic "equilibrium configuration" (during the iteration procedure and wherever the structural response is non-linear, this configuration does not satisfy equilibrium for the applied loads under consideration). After determining the internal force vector f int , the incremental equilibrium equation for an arbitrary member deformed configuration j can be established as
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where (i) d is the displacements vector and (ii) the tangent stiffness matrix (i, p) th component, Kip,tan, is a 4x4 sub-matrix concerning deformation modes i and p, which is given by [START_REF] Silvestre | Non-linear generalised beam theory for cold-formed steel members[END_REF] ( ) ( ) ( )
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and corresponds to the internal force vector (see ( 6)) i th component Jacobian, with respect to the displacement vector concerning deformation mode p -its components are dpl (l=1,…,4). The Jacobian columns are defined by the second expression in Eq. ( 12), where each term is given by 7)-( 9), and (iii) the stresses, stress gradients and displacement vectors are computed at "equilibrium configuration" j. Finally, for an arbitrary elastic-plastic material, the stress gradients in Eq. ( 13) are defined at every point by , [START_REF]MATLAB -The Language of Technical Computing[END_REF] where the deformation gradients ∂ε/∂dpl are defined after rewriting all deformation components in Eq.

( ) ( ) ( ) int int int       =+        
                 = + +      
(3) according to the FE approximation in Eq. ( 5). The stress components and their gradients ∂σ/∂ε are obtained from (i) the elastic stress-strain law routinely used in GBT [START_REF] Camotim | Latest developments in the GBT analysis of thinwalled steel structures[END_REF] and (ii) the J2-flow model (associated flow rule) -the consistent elastic-plastic constitutive matrix is used to obtain ∂σ/∂ε and the mean normal return-mapping algorithm is adopted to evaluate σ if plastic flow occurs [START_REF] Borst | Computational Methods in Non-linear Solid Mechanics[END_REF]. For the plasticity model implemented, after each iteration one must sequentially compute, at each point, (i) the strain variation Δε w.r.t. the last equilibrium configuration (pathindependent strategy), (ii) the elastic stress variation Δσ (due to Δε), added to the previous stress σi (last equilibrium configuration) to provide the predicted stress σpred = σi + Δσ, and, if these stresses fall outside the previous yield surface (dependent on the deformation history if there is strainhardening), (iii) the stress correction Δσcor (to σpred), by using the return-mapping algorithm, thus leading to the final stress σf = σpred + Δσcor, "located" on the current yield surface. Due to space limitations, the implemented (J2-flow) plasticity model and arc-length procedure are not presented here -they can be found in [START_REF] Abambres | Physically non-linear analysis of steel beams in the context of GBT[END_REF][START_REF] Abambres | Physically non-linear GBT analysis of thin-walled members[END_REF].

Illustrative Example

The developed physically and geometrically non-linear GBT formulation was implemented using MATLAB R2010a [START_REF]MATLAB -The Language of Technical Computing[END_REF] and, for validation purposes, the results obtained are compared with values yielded by an ABAQUS [START_REF] Ds Simulia Inc | ABAQUS Standard[END_REF] SFEA based on the J2-flow theory -since ABAQUS provides true stress outputs, the GBT normal stresses results are converted to true stresses through σ t =σ n (1+ε n ), where t and n denote true and nominal (the GBT von Mises stresses are based on nominal stresses).

The numerical results presented and discussed concern the fixed-ended I-section steel column shown in Fig. 2(b), (i) with length L=1500 mm and the mid-line cross-section dimensions (flange width bf, web height bw and thickness t) given in Fig. 2(a), and (ii) under uniform compression F=10000 λ N (λ is the load parameter)the load is deemed uniformly distributed along the end section mid-lines in both the GBT and ABAQUS models (q=30.30 N/mm). The steel constitutive behaviour is assumed linearelastic/perfectly plastic, and characterised by (i) Young's modulus E=200000 N/mm 2 , (ii) Poisson's ratio ν=0.3 and (iii) nominal uni-axial yield stress σ y =460 N/mm 2 (shear modulus G=E/2(1+ν)).The GBT cross-section discretisation, shown in Fig. 3, involves 22 wall segments (10 in the web and 6 per flange), leading to 23 nodes and 117 deformation modesonly 59 are included in the analysis and the most relevant are depicted in Fig. 3. Moreover, 22 GBT-based unequal beam FE are considered along the column length: 8 for x<0.4L and x > 0.6L, and 6 for 0.4L≤ x ≤ 0.6L. Finally, the number of Gauss points involved in the numerical integration are (i) 4 Gauss per FE (x direction) and (ii) 4 (s direction) and 3 (z direction) per wall segment (see Fig. 1(a)).

In ABAQUS, four-node isoparametric shell FE with full integration (S4) are adopted and 3 Gauss points are involved in the through-thickness integrations. The FE mesh comprises 100 FE along the column length and 22 along the cross-section mid-line contour -15x15 mm dimensions. In order to ensure fixed end supports, "layers" of 22 additional "rigid" (E=2x10 8 N/mm 2 ) FE, with t=100 mm, were attached to each column end cross-section -only all their axial d.o.f. are not fully restrained.

Regarding the initial imperfections, no residual stresses are considered but the column contains criticalmode (local) geometrical imperfections with amplitude 0.25 t=0.5 mm -in both the GBT and ABAQUS analyses, this shape was obtained by performing a buckling analysis. Note that the results presented include (i) stresses and displacements at z=0 (membrane) and (ii) stress diagrams concerning the mid-span cross-section (x=750 mm), plotted along the walls indicated in Fig. 2(a) (dashed arrow).

Fig. 4(a) shows the GBT and ABAQUS elastic-plastic equilibrium paths λ(δ), as well as the ABAQUS elastic path (for comparison purposes), where δ is the horizontal displacement of the web mid-point at mid-span (see Fig. 2). It is observed that the two elastic-plastic curves are in very good agreement, as (i) they fully coincide in the elastic range and (ii) do not differ by more than 1.8% after the onset of yielding (λ≈15). Moreover, note that the elastic-plastic equilibrium paths strongly diverge from their ABAQUS elastic counterpart -δ keeps increasing monotonically at a decaying rate, unlike in the elastic case, where a steep/stiffer increase is followed by a clear decrease, which is due to emergence of minor-axis bending, involving δ values in the opposite direction. For the three equilibrium states identified by white circles in Fig. 4(a), corresponding to the elastic range (E), collapse (C) and postcollapse range (PC), the load parameter values are: (i) λGBT=9.03, λABQ=8.98 (E), (ii) λGBT=17.68 and λABQ=17.50 (C) and (iii) λGBT=16.55 and λABQ=16.40 (PC) -this quantifies the excellent agreement clearly visible in Fig. 4(a). Minor-axis bending also emerged in the elastic-plastic behaviour, but its contributions only became meaningful after the failure load (limit point C) was reached -this is because, due to the spread of plasticity, the cross-section stiffness centre (effective centroid) shifts, creating an applied load eccentricity. Fig. 4(b) shows the GBT and ABAQUS deformed configurations at the PC equilibrium state (amplified 5 times) and it is possible to notice their remarkable similarity. Note also that the higher deformations occur at the mid-span region (not visible in Fig. 4(b)), due to minor-axis bending -this feature can be easily quantified by means of the corresponding GBT modal participation [START_REF] Abambres | Physically non-linear GBT analysis of thin-walled members[END_REF]: 0.019%, 0.057% and 8.56%, respectively for equilibrium states E, C and PC.

Finally, the substantial difference between the failure (λu=17.5) and critical (λcr=9.9) load parameter values, corresponding to λu /λcr=1.77, evidences the significant column post-buckling strength, as it would be logical to expect in view of the collapse mode local nature. The dominance of the secondorder effects can be assessed by the fact that the failure is only 57.64% of the squash load Py=A σ y . 

Conclusion

A second-order elastic-plastic GBT formulation was proposed and its application was illustrated by means of numerical results concerning an initially imperfect linear-elastic-perfectly plastic fixedended I-section steel column. The GBT results agree very well with ABAQUS SFEA values, in spite of the huge disparity between the d.o.f. numbers involved (2537 vs. 13984), confirms that the GBT approach constitutes a viable and efficient alternative to perform geometrically and physically non-linear analyses of thin-walled members and structural systems.
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