
HAL Id: hal-02411619
https://hal.science/hal-02411619

Submitted on 17 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On self-dual and LCD quasi-twisted codes of index two
over a special chain ring

Minjia Shi, Liqin Qian, Patrick Sole

To cite this version:
Minjia Shi, Liqin Qian, Patrick Sole. On self-dual and LCD quasi-twisted codes of index two over a
special chain ring. Cryptography and Communications - Discrete Structures, Boolean Functions and
Sequences , 2019, 11, pp.717 - 734. �10.1007/s12095-018-0322-5�. �hal-02411619�

https://hal.science/hal-02411619
https://hal.archives-ouvertes.fr


Cryptography and Communications (2019) 11:717–734
https://doi.org/10.1007/s12095-018-0322-5

On self-dual and LCD quasi-twisted codes of index
two over a special chain ring

Liqin Qian2 ·Minjia Shi1,2 ·Patrick Solé3
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Abstract
Let q be a prime power, and let Fq denote the finite field of order q. Consider the chain
ring Rk = Fq [u]/〈uk〉 with k ≥ 1 an integer. We study self-dual and LCD quasi-twisted
codes of index two and twisting constant λ over Rk for the metric induced by the standard
Gray map. Some special factorizations of xm − λ over Rk are studied. By random coding,
we obtain four classes of asymptotically good self-dual λ-circulant codes and four classes
of asymptotically good LCD λ-circulant codes over Rk .
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1 Introduction

Self-dual codes are important for a number of practical and theoretical reasons, as wit-
nessed by [1, 3, 12]. Another important class of codes defined by their duality properties
is that of Linear codes with Complementary Duals (LCD), which were introduced by
Massey in 1992 for information theoretic reasons (see [18]). They have found applications
recently in Boolean masking [6, 7]. Massey [18] shows that LCD codes are asymptot-
ically good. LCD codes are universal: for q > 3 there is an algorithm that turns any
linear code into an equivalent LCD code [5]. Still, it is of interest to find direct meth-
ods of construction of LCD codes as in [4]. One such method is to use quasi-cyclic and
quasi-twisted codes. In that direction, self-dual double circulant (resp. double negacircu-
lant) codes over finite fields have been studied recently in [1, 3], from the viewpoint of
enumeration and asymptotic performance. Some classes of quasi-twisted codes have been
studied over finite chain rings in [19]. In [2], A. Alahmadi et al. have studied the linear
complementary-dual multinegacirculant codes. Motivated by the techniques in [1–3, 8, 19,
20], we use the Chinese Remainder Theorem (CRT) approach to quasi-twisted codes as
introduced in [11, 13, 14]. In particular, we study two classes of self-dual (resp. LCD)

negacirculant codes of index 2 over Rk . Combining with [19], we study two families of
factorizations of xm − λ over Rk with m an odd prime, gcd(m, q) = 1. When these spe-
cial factorizations are thus enforced, we derive exact enumeration formulae, and obtain
asymptotic lower bounds on the minimum Hamming distance of the Gray image of these
codes.

The material is arranged as follows. In Section 2, we give some background materials
on the ring Rk and study the case when the element −1 is a square in Rk . In Section 3,
we derive the enumeration formulae of self-dual (resp. LCD) double circulant and dou-
ble negacirculant codes of co-index m and we study the special factorizations of xm − λ

with m an odd prime, and gcd(m, q) = 1. Then, we also obtain the enumeration formu-
lae of self-dual (resp. LCD) double λ-circulant codes. In Section 4, we derive a modified
Varshamov-Gilbert bound on the relative distance of the codes considered, building on exact
enumeration results. Finally, Section 5 contains conclusions and open problems.

2 Preliminaries

2.1 The ring Rk = Fq [u]/〈uk 〉
Let q be a prime power, and let Fq denote the finite field of order q. Consider the local
ring Rk = Fq [u]/〈uk〉 where uk = 0 with unique maximal ideal 〈u〉. In double λ-circulant
codes case, we will consider the chain ring Rk = Fq [u]/〈uk〉 when it contains a square root
of −1.

Theorem 2.1 If a0 + ua1 + · · · + uk−1ak−1 ∈ Rk = Fq [u]/〈uk〉 is a square root of −1 if
and only if

(1) q is a power of 2, a20 = −1, a1 = a2 = · · · = a k−2
2

= 0, where a k
2
, a k+2

2
, · · · , ak−1 ∈

Fq when k is even; a20 = −1, a1 = a2 = · · · = a k−1
2

= 0, a k+1
2

, a k+2
2

, · · · , ak−1 ∈ Fq ,

when k is odd; or
(2) q = pκ where p ≡ 1(mod 4) or q = p2κ where p ≡ 3(mod 4), a20 = −1, a1 = a2 =

· · · = ak−1 = 0.



Cryptography and Communications (2019) 11:717–734 719

Proof Note that the condition is obviously sufficient. To prove its necessity, when q is a
power of 2, we have (a0 + a1u + · · · + ak−1u

k−1)2 = a20 + a21u
2 + · · · + a2k−1u

2(k−1) =
−1,when k is even, a20 = −1, a1 = a2 = · · · = a k−2

2
= 0, a k

2
, a k+2

2
, · · · , ak−1 ∈ Fq ; when

k is odd, a20 = −1, a1 = a2 = · · · = a k−1
2

= 0, a k+1
2

, a k+2
2

, · · · , ak−1 ∈ Fq . When q is a

power of an odd prime, we have (a0 + a1u + · · · + ak−1u
k−1)2 = a20 + 2a0a1u + (2a0a2 +

a21)u
2 +· · ·+ (a0ak−1 + a1ak−2 +· · ·+ ak−1a0)u

k−1 = −1,where ai ∈ Fq, 0 ≤ i ≤ k − 1.
Then we get a20 = −1, a1 = a2 = · · · = ak−1 = 0. Thus a0 is a square root of −1 over Fq

if and only if q ≡ 1(mod 4).

2.2 Codes

A linear code C over Rk of length n is an Rk-submodule of Rn
k . If x = (x1, x2, · · · , xn)

and y = (y1, y2, · · · , yn) are two elements of Rn
k , their standard (Euclidean) inner product

is defined by

〈x, y〉 =
n∑

i=1

xiyi,

and their Hermitian scalar inner product is defined by

〈x, y〉H =
n∑

i=1

xi ȳi ,

where the operation is performed in Rk . For all z = z0 + uz1 + · · · + uk−1zk−1 ∈ Fq2Q +
uFq2Q + · · · + uk−1

Fq2Q , the conjugation of z over Fq2Q + uFq2Q + · · · + uk−1
Fq2Q is

z = z
qQ

0 + uz
qQ

1 + · · · + uk−1z
qQ

k−1, where Q is a positive integer. The Euclidean (resp.
Hermitian) dual code of C is denoted by C⊥ (resp. C⊥H ) and defined as C⊥ = {y ∈ Rn

k |
〈x, y〉 = 0, ∀x ∈ C} (resp. C⊥H = {y ∈ Rn

k | 〈x, y〉H = 0, ∀x ∈ C}).
A linear code C of length n over Rk is called a self-dual code (resp. Hermitian self-

dual code) if C = C⊥ (resp. C = C⊥H ). A linear code C of length n over Rk is called a
linear code with complementary dual (LCD) if C

⋂
C⊥ = {0} or C

⋂
C⊥H = {0}.

A matrix A over Rk is said to be λ-circulant if its rows are obtained by successive λ-
shifts from the first row. In this paper, we consider double λ-circulant codes over Rk , that
is [2m, m] codes with generator matrices G = (I, A) with A an m × m λ-circulant matrix,
we can view such a code as an Rk-module in R2

k , generated by (1, h) with the first row of

A being the x-expansion of h in the ring Rk [x]
〈xm−λ〉 .

If C(m) is a family of codes with parameters [m, km, dm] over Fq , the rate ρ and relative
distance δ are defined as ρ = lim sup

m→∞
km

m
and δ = lim inf

m→∞
dm

m
, respectively. A family of codes

is good if ρδ > 0.
In number theory, Artin’s conjecture on primitive roots states that a given integer q which

is neither a perfect square nor −1 is a primitive root modulo infinitely many primes [16].
This was proved conditionally under the Generalized Riemann Hypothesis (GRH) by Hoo-
ley [9]. Hence, we can get infinite families of double λ-circulant codes C(m) over Rk where
the analysis is made for xm − 1 with a special factorization.

Recall the q-ary entropy function defined for 0 ≤ t̃ ≤ q−1
q

by

Hq(t̃) =
{
0, if t̃ = 0,
t̃ logq(q − 1) − t̃ logq(t̃) − (1 − t̃ )logq(1 − t̃ ), if 0 < t̃ ≤ q−1

q
.
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This quantity is instrumental in the estimation of the volume of high-dimensional Hamming
balls when the base field is Fq . The result we are using is that the volume of the Hamming
ball of radius t̃m is asymptotically equivalent, up to subexponential terms, to qmHq(t̃), when
0 < t̃ < 1, and m goes to infinity [10, Lemma 2.10.3].

2.3 Graymap

Any integer z can be written uniquely in base p as z = p0(z) + pp1(z) + p2p2(z) + · · · ,
where 0 ≤ pi(z) ≤ p − 1, i = 0, 1, 2, . . .. The Gray map � : R → F

pk−1

p is defined as
follows:

�(a) = (b0, b1, b2, . . . , bpk−1−1),

where a = a0 + a1u + · · · + ak−1u
k−1. Then for all 0 ≤ i ≤ pk−2 − 1, 0 ≤ τ ≤ p − 1,we

have

bip+τ =
⎧
⎨

⎩
ak−1 +

k−2∑
l=1

pl−1(i)al + τa0, if k ≥ 3,

a1 + τa0, if k = 2.

Note that, more generally, Gray maps have been defined at the level of finite chain rings
in [15, 23], linking codes over rings to codes over finite fields. For instance, when p =
k = 2, it is easy to check that the Gray map adopted in the trace codes of [21] is the
same as the Gray map defined here. As an additional example, when p = k = 3, write
�(a0 + a1u + a2u

2) = (b0, b1, b2, · · · , b8). According to the definition above, we have

0 ≤ i ≤ 2, 0 ≤ τ ≤ 2 and
k−2∑
l=1

pl−1(i)al = p0(i)a1 = ia1. Then we get

b0 = a2, b1 = a2 + a0, b2 = a2 + 2a0, b3 = a2 + a1, b4 = a2 + a1 + a0,

b5 = a2 + a1 + 2a0, b6 = a2 + 2a1, b7 = a2 + 2a1 + a0, b8 = a2 + 2a1 + 2a0.

It is easy to extend the Gray map from Rm
k to Fpk−1m

p , and we also know from [22] that � is
injective and linear.

3 Algebraic structure of λ-circulant codes of index two

In this section, we study the exact enumeration of the double self-dual and LCD λ-circulant
codes over Rk .

3.1 Double circulant codes (λ = 1)

In this subsection, we assume m is an odd integer and gcd(m, q) = 1. We can cast the
factorization of xm − 1 into distinct basic irreducible polynomials over Rk = Fq [u]/〈uk〉 in
the form

xm − 1 = δ(x − 1)
s∏

i=2

gi(x)

t∏

j=1

hj (x)h∗
j (x), (1)



Cryptography and Communications (2019) 11:717–734 721

where δ is a unit in Rk , the polynomial gi(x) is self-reciprocal of degree 2ei for 2 ≤ i ≤ s,
and h∗

j (x) is the reciprocal polynomial of hj (x) with degree dj for 1 ≤ j ≤ t . By the
Chinese Remainder Theorem (CRT), we have

Rk[x]
〈xm − 1〉  Rk[x]

〈x − 1〉 ⊕
(

s⊕

i=2

Rk[x]/〈gi(x)〉
)

⊕
⎛

⎝
t⊕

j=1

(
Rk[x]/〈hj (x)〉 ⊕ Rk[x]/〈h∗

j (x)〉
)
⎞

⎠

 Fq [u, x]
〈uk, x − 1〉 ⊕

(
s⊕

i=2

Fq [u, x]
〈uk, gi(x)〉

)
⊕

⎛

⎝
t⊕

j=1

(
Fq [u, x]

〈uk, hj (x)〉 ⊕ Fq [u, x]
〈uk, h∗

j (x)〉

)⎞

⎠

 Rk⊕
(

s⊕

i=2

(Fq2ei + uFq2ei + · · · + uk−1
Fq2ei )

)
⊕

⎛

⎝
t⊕

j=1

((
F

q
dj + uF

q
dj + · · ·

+uk−1
F

q
dj

)
⊕ (F

q
dj + uF

q
dj + · · · + uk−1

F
q

dj )
)

⎞

⎠

:=Rk⊕
(

s⊕

i=2

Rk(2ei )

)
⊕

⎛

⎝
t⊕

j=1

(Rk(dj ) ⊕ Rk(dj ))

⎞

⎠ .

Note that all of these rings are extensions of Rk . This decomposition naturally extends to
(

Rk [x]
〈xm−1〉 )

2 as

(
Rk[x]

〈xm − 1〉
)2

 Rk ⊕
(

s⊕

i=2

R2
k(2ei )

)
⊕

⎛

⎝
t⊕

j=1

(
R2

k(dj ) ⊕ R2
k(dj )

)
⎞

⎠ .

In particular, each linear code C of length 2 over Rk [x]
〈xm−1〉 can be decomposed as the “CRT

sum”

C  C1 ⊕
(

s⊕

i=2

Ci

)
⊕

⎛

⎝
t⊕

j=1

(C′
j ⊕ C′′

j )

⎞

⎠ ,

where C1 is a linear code over Rk of length 2, Ci is a linear code over Rk(2ei ) of length 2 for
each 2 ≤ i ≤ s, and C′

j and C′′
j are linear codes over Rk(dj ) of length 2 for each 1 ≤ j ≤ t ,

which are called the constituents of C.

Lemma 3.1 Keep the same notations as above, then

(1) C1 is LCD if and only if 1 + r2 ∈ R×
k with C1 = 〈(1, r)〉;

(2) Ci is LCD if and only if 1 + ηη̄ ∈ R×
k(2ei )

with Ci = 〈(1, η)〉;
(3) C′

j ⊕ C′′
j are LCD if and only if 1 + η′η′′ ∈ R×

k(dj ) with C′
j = 〈(1, η′)〉 and C′′

j =
〈(1, η′′)〉.

Proof (1) “ =⇒ ” If C1 is LCD, suppose 1 + r2 �∈ R×
k , then 1 + r2 ∈ 〈u〉. We have

uk−1(1 + r2) = 0,i.e., 〈uk−1(1, r), (1, r)〉 = 0,then uk−1(1, r) ∈ C⊥
1 ,which implies

uk−1(1, r) ∈ C1 ∩ C⊥
1 , a contradiction.
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“ ⇐= ” If 1+ r2 ∈ R×
k , assume C1 is not LCD, then C1 ∩ C⊥

1 �= {0}. Hence, there
exists r ′ ∈ R×

k such that r ′(1, r) ∈ C1 ∩ C⊥
1 , then 〈r ′(1, r), (1, r)〉 = r ′(1 + r2) =

0,since 1 + r2 ∈ R×
k , then r ′ = 0, a contradiction.

(2) “ =⇒ ” If Ci is LCD, suppose 1 + ηη̄ �∈ R×
k(2ei )

, then 1 + ηη̄ ∈ 〈u〉. We have

uk−1(1 + ηη̄) = 0,i.e., 〈uk−1(1, η), (1, η)〉H = 0,then uk−1(1, η) ∈ C
⊥H

i ,which

implies uk−1(1, η) ∈ Ci ∩ C
⊥H

i , a contradiction.

“ ⇐= ” If 1 + ηη̄ ∈ R×
k(2ei )

, assume Ci is not LCD, then Ci ∩ C
⊥H

i �= {0}. If
η ∈ R×

k(2ei )
,then C

⊥H

i = 〈(1, − 1
η̄
)〉,there exist k1, k2 ∈ R×

k(2ei )
such that k1(1, η) =

k2(1, − 1
η̄
),i.e., k1(1+ ηη̄) = 0. And 1+ ηη̄ ∈ R×

k(2ei )
, then k1 = 0, a contradiction. If

η ∈ 〈u〉,we can let η = ua1 + u2a2 + · · · + uk−1ak−1, ai ∈ Fq2ei , 0 ≤ i ≤ k − 1,then

the generator matrix of C
⊥H

i is of the form
( −(uā1 + u2ā2 + · · · + uk−1āk−1) 1

0 uk−1k3

)
,

where k3 ∈ Fq2ei . Thus, there exist k4, k5, k6 ∈ R×
k(2ei )

such that k4(1, ua1 + u2a2 +
· · · + uk−1ak−1) = k5(−(uā1 + u2ā2 + · · · + uk−1āk−1), 1) + k6(0, uk−1k3),we then
obtain

{
k4 = −(uā1 + u2ā2 + · · · + uk−1āk−1)k5,

(ua1 + u2a2 + · · · + uk−1ak−1)k4 = k5 + uk−1k3k6,
(2)

by (2), we get k4 ∈ R×
k(2ei )

,but −(uā1 + u2ā2 + · · · + uk−1āk−1)k5 ∈ 〈u〉, a
contradiction.

(3) “ =⇒ ” If C′
j ⊕ C′′

j is LCD, assume 1 + η′η′′ �∈ R×
k(dj ), then 1 + η′η′′ ∈ 〈u〉. We

have uk−1(1 + η′η′′) = 0,i.e., 〈uk−1(1, η′), (1, η′′)〉 = 0,then uk−1(1, η′) ∈ C′′⊥
j

(or uk−1(1, η′′) ∈ C′⊥
j ), which implies uk−1(1, η′) ∈ C′

j ∩ C′′⊥
j (or uk−1(1, η′′) ∈

C′′
j ∩ C′⊥

j ), a contradiction.

“ ⇐= ” If 1 + η′η′′ ∈ R×
k(dj ), assume C′

j ⊕ C′′
j is not LCD, then

{
C′

j ∩ C′′⊥
j �= {0},

C′′
j ∩ C′⊥

j �= {0}.
If C′

j ∩ C′′⊥
j �= {0}, then there exists k′ ∈ R×

k(dj ) such that k′(1, η′) ∈ C′
j ∩ C′′⊥

j ,i.e.,

〈k′(1, η′), (1, η′′)〉 = k′(1 + η′η′′) = 0, a contradiction.

Theorem 3.2 Let m denote a positive odd integer, and q a prime coprime with m. If xm −1

can be factored into irreducible polynomials over Rk as in (1), where m = 1 +
s∑

i=2
2ei +

2
t∑

j=1
dj . Then

(1) the total number of self-dual double circulant codes over Rk is

B

s∏

i=2

(qei + 1)qei (k−1)
t∏

j=1

(qdj − 1)qdj (k−1),where

1) when q is a power of 2, B = 2q
k
2 , k is even, or B = 2q

k−1
2 , k is odd;
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2) when q is a power of odd prime, B = 2.

(2) the total number of LCD double circulant codes over Rk is

(q − 2)qk−1
s∏

i=2

(q2ei − (qei + 1))q2(k−1)ei

t∏

j=1

(q2kdj − q2(k−1)dj (qdj − 1)).

Proof (1) We can count the number of self-dual double circulant codes by counting their
constituent codes.

Let (1, r) be the generator of the self-dual code C1 over Rk . By Theorem 2.1, when

q is a power of 2, the number of r is equal to 2q
k
2 , where k is even (2q

k−1
2 ,where k is

odd); when q is a power of odd prime, the number of choices for r is equal to 2.
Let (1, cei

) be the generators of Hermitian self-dual codes Ci over Rk(2ei ), 2 ≤ i ≤
s, then 〈(1, cei

), (1, cei
)〉H = 1 + cei

cei
= 0. Let cei

= c0 + uc1 + · · · + uk−1ck−1,
where c	 ∈ Fq2ei , 0 ≤ 	 ≤ k − 1, we then have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0c
qei

0 = −1,

c0c
qei

1 + c1c
qei

0 = 0,

c0c
qei

2 + c1c
qei

1 + c2c
qei

0 = 0,

c0c
qei

3 + c1c
qei

2 + c2c
qei

1 + c3c
qei

0 = 0,

c0c
qei

4 + c1c
qei

3 + c2c
qei

2 + c3c
qei

1 + c4c
qei

0 = 0,
...

c0c
qei

k−1 + c1c
qei

k−2 + · · · + ck−1c
qei

0 = 0.

(3)

⇐⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Norm(c0)=−1,

T r(c0c
qei

1 )=0,

T r(c0c
qei

2 )+Norm(c1)=0,

T r(c0c
qei

3 )+T r(c1c
qei

2 )=0,

T r(c0c
qei

4 )+T r(c1c
qei

3 )+Norm(c2)=0,
...

T r(c0c
qei

k−1)+T r(c1c
qei

k−2)+· · ·+T r(c k−2
2

c k
2
)=0, when k is even, or

T r(c0c
qei

k−1)+T r(c1c
qei

k−2)+· · ·+T r(c k−3
2

c k+1
2

)+Norm(c k−1
2

)=0, when k is odd,

where the Norm() and T r() are maps norm and trace from Fq2ei to Fqei . So there are
qei + 1 roots for Norm(c0) = −1 and qei choices for ci for 1 ≤ 	 ≤ k − 1. Clearly,
the number of solutions of (3) is equal to (qei + 1)qei (k−1).

As for reciprocal pairs, note that a pair (hj (x), h∗
j (x)) both of degree dj leads to

counting dual pairs of codes (for the Euclidean inner product) of length 2 over Rk(dj ),
that is to count the number of solutions of 1 + c′

dj
c′′
dj

= 0, where (1, c′
dj

) and (1, c′′
dj

)

are the generators of C′
j and C′′

j , respectively. If c′
dj

∈ R×
k(dj ), then c′′

dj
= − 1

c′
dj

, there

are |R×
k(dj )| = (qdj − 1)qdj (k−1) choices for (c′

dj
, c′′

dj
). If c′

dj
∈ Rk(dj )\R×

k(dj ), then

c′
dj

= ux1 + u2x2 + · · · + uk−1xk−1 ∈ 〈u〉. In this case, 1 + c′
dj

c′′
dj

= 0, which is
impossible.

(2) The code C1 is an LCD code, by Lemma 3.1 (1), we can get 1 + r2 ∈ R×
k . Let r =

r0+ur1+· · ·+uk−1rk−1 ∈ Rk,then 1+r2 = 1+(r0+ur1+u2r2+· · ·+uk−1rk−1)
2 =
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1+ r20 +2r0r1u+ (2r0r2 + r21 )u2 +· · ·+ (r0rk−1 + r1rk−2 +· · ·+ rk−1r0)u
k−1 ∈ R×

k .
Hence, the number of r is equal to (q − 2)qk−1.

The code Ci is an LCD code, by Lemma 3.1 (2), we can get 1 + ηη̄ ∈ R×
k(2ei )

. Let

η = η0+uη1+· · ·+uk−1ηk−1,then 1+ηη̄ = 1+(η0+uη1+· · ·+uk−1ηk−1)(η
qei

0 +
uη

qei

1 + · · · + uk−1η
qei

k−1) = 1 + η
qei +1
0 + u(η0η

qei

1 + η1η
qei

0 ) + · · · + uk−1(η0η
qei

k−1 +
η1η

qei

k−2 + · · · + ηk−1η
qei

0 ) ∈ R×
k(2ei )

. Hence, the number of η is equal to (q2ei − (qei +
1))q2(k−1)ei .

Next, we count the number of LCD double circulant codes of length 2 over Rk(dj )

for the pairs hj (x) and h∗
j (x) with deg(hj (x)) =deg(h∗

j (x)) = dj . By Lemma 3.1 (3),
we then get

{
C′

j

⋂
C′′

j
⊥ = {0},

C′′
j

⋂
C′

j
⊥ = {0}. ⇐⇒ 1 + η′η′′ ∈ R×

k(dj ).

Without loss of generality, we discuss on the unit character of η′ as follows.

1) If η′ ∈ R×
k(dj ), then η′′ ∈ − 1

η′ +R×
k(dj ) and |−1

η′ +R×
k(dj )| = |R×

k(dj )| = q(k−1)dj (qdj −1).

Hence, there are |R×
k(dj )|2 = q2(k−1)dj (qdj − 1)2 choices for (η′, η′′).

2) If η′ ∈ Rk(dj )\{R×
k(dj )∪{0}}, let η′′ = η′′

0+uη′′
1+· · ·+uk−1η′′

k−1, then η′ = uη′
1+u2η′

2+
· · ·+uk−1η′

k−1, where η′
	1
can’t be all zero, 1 ≤ 	1 ≤ k−1, η′′

	2
∈ F

q
dj , 0 ≤ 	2 ≤ k−1.

We then have 1+η′η′′ = 1+uη′
1η

′′
0 +u2(η′

1η
′′
1 +η′

2η
′′
0)+· · ·+uk−1(η′

1η
′′
k−2+η′

2η
′′
k−3+

· · · + η′
k−1η

′′
0) ∈ R×

k(dj ). Thus, there are (q(k−1)dj − 1)qkdj choices for (η′, η′′).
3) If η′ = 0, then η′′ ∈ Rk(dj ), thus there are qkdj choices for η′′.

Hence, the number of the last case about reciprocal pairs is q2(k−1)dj (qdj −1)2+(q(k−1)dj −
1)qkdj +qkdj = q2kdj −q2(k−1)dj (qdj −1). The proof of the theorem is now completed.

3.2 Double negacirculant codes (λ = −1)

In this subsection, assume m is an even integer and gcd(m, q) = 1, where q is a prime
power. We can cast the factorization of xm + 1 into distinct basic irreducible polynomials
over Rk as follows.

xm + 1 = ε

s∏

i=1

gi(x)

t∏

j=1

hj (x)h∗
j (x), (4)

where ε ∈ R×
k , gi(x) = g∗

i (x)with deg(gi(x)) = 2ei , 1 ≤ i ≤ s, and h∗
j (x) is the reciprocal

polynomial of hj (x) with deg(hj (x)) =deg(h∗
j (x)) = dj , 1 ≤ j ≤ t . Using the same

notations and argument as in Subsection 3.1, we can easily carry out the result as follows:

Rk[x]
〈xm + 1〉 

(
s⊕

i=1

Rk(2ei )

)
⊕

⎛

⎝
t⊕

j=1

(Rk(dj ) ⊕ Rk(dj ))

⎞

⎠ ,

and

C 
(

s⊕

i=1

Ci

)
⊕

⎛

⎝
t⊕

j=1

(C′
j ⊕ C′′

j )

⎞

⎠ .
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Theorem 3.3 Let m denote a positive even integer, and q a prime power coprime with m.

The factorization of xm + 1 over Rk is of the form (4) with m =
s∑

i=1
2ei + 2

t∑
j=1

dj . Then

(1) the total number of self-dual double negacirculant codes over Rk is
s∏

i=1

(qei + 1)qei (k−1)
t∏

j=1

(qdj − 1)qdj (k−1).

(2) the total number of LCD double negacirculant codes over Rk is
s∏

i=1

(q2ei − (qei + 1))q2(k−1)ei

t∏

j=1

(q2kdj − q2(k−1)dj (qdj − 1)).

Proof This proof is similar to that of Theorem 3.2, so we omitted it here.

Now, we consider a special factorization of xm + 1, where m is a power of 2, q is an odd
prime. According to [17, Theorem 1] and [2, Theorems 5.1,5.3], we know that xm + 1 can
be factored into two (resp. four) basic irreducible polynomials, which are reciprocal of each
other over Rk , by limiting the size of � and U , because Fq is a subring of Rk . We can get
the following lemma.

Lemma 3.4 Let m be a power of 2, q ≡ ±1(mod 4).

(1) If q = 22e ± 1, e is odd, then xm + 1 factors into two basic irreducible polynomials
over Rk as follows.

xm + 1 = h(x)h∗(x)

with deg(h(x)) =deg(h∗(x)) = m
2 . In this case, the number of self-dual (resp. LCD)

double negacirculant codes over Rk is

(q
m
2 − 1)q

m(k−1)
2 (resp.qkm − qm(k−1)(q

m
2 − 1))).

(2) If q = 23e ± 1, e is odd, then xm + 1 factors into four basic irreducible polynomials
over Rk as follows.

xm + 1 = h1(x)h∗
1(x)h2(x)h∗

2(x) (5)

with deg(h1(x)) =deg(h∗
1(x)) =deg(h2(x)) =deg(h∗

2(x)) = m
4 . In this case, the

number of self-dual (resp. LCD) double negacirculant codes over Rk is

(q
m
4 − 1)2q

m(k−1)
2 (resp.(q

km
2 − q

m(k−1)
2 (q

m
4 − 1))2).

3.3 Quasi-twisted codes of index two (λ = 1 + ωut)

In this subsection, we focus on the case (1+ ωut) = (1+ ωut)−1 = (1− ωut). According
to [19], xm − (1 + ωut) can be uniquely expressed as

xm − (1 + ωut) = ςg1(x)

s∏

i=2

gi(x)

t∏

j=1

hj (x)h∗
j (x), (6)

where m is an odd, then g1(x) = x − (1 + ωut), ς ∈ R×
k , gi(x) = g∗

i (x) with
deg(gi(x)) = 2ei , 2 ≤ i ≤ s, and h∗

j (x) is the reciprocal polynomial of hj (x) with
deg(hj (x)) =deg(h∗

j (x)) = dj , 1 ≤ j ≤ t .
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In fact, we notice that a (1+ωut)-QT code overRk is self-dual only if 1+ωut = 1−ωut,
i.e., 2ωut = 0 =⇒ char(Rk) = 2 over Rk .

Conjecture 3.5 Assume that m is an odd prime and gcd(m, q) = 1, where q is a prime
power. Let α | (m − 1) and ordm(q) = m−1

α
, we can cast the factorization of xm − λ into

distinct basic irreducible polynomials over Rk = Fq [u]
〈uk〉 as follows.

(1) If α is an odd integer, then we have xm − λ = A(x)
α∏

i=1
gi(x),where gi(x) = g∗

i (x),

deg(gi(x)) = m−1
α

;
(2) If α is an even integer, then we have xm − λ = A(x)

α
2∏

j=1
hj (x)h∗

j (x),where

deg(hj (x)) =deg(h∗
j (x)) = m−1

α
; if

(i) λ = 1, A(x) = x − 1, or
(ii) λ = −1, A(x) = x + 1, or
(iii) λ = 1 + ωut, q is a power of 2, A(x) = x + 1 + ωut, where t ≥ � k

2�, ω ∈ R×
k .

Now, we only give some examples to illustrate its correctness. In fact, we have tried a
lot of examples by Magma, the conjecture is also correct. But we fail to prove it. Thus we
would like to put it here as a conjecture.

Example 3.6 Let Rk = F3[u]/〈uk〉,m = 11, α = 2 be an even integer, implies α | (m −
1) = 2 | 10,ord11(3) = m−1

α
= 5, then by Conjecture 3.5,

x11 − 1 = (x − 1)(x5 + 2x3 + x2 + 2x + 2)(x5 + x4 + 2x3 + x2 + 2),

x11 + 1 = (x + 1)(x5 + 2x3 + 2x2 + 2x + 1)(x5 + 2x4 + 2x3 + 2x2 + 1).

Example 3.7 Let Rk = F2[u]/〈uk〉, m = 5, uk = 0, t ≥ � k
2�, α = 1 be an odd integer,

implies α | (m − 1) = 1 | 4,ord5(2) = m−1
α

= 4, then by Conjecture 3.5,

x5 − 1 = (x − 1)(x4 + x3 + x2 + x + 1),

x5 − (1 + ut) = (x + 1 + ut)(x4 + (1 + ut)x3 + x2 + (1 + ut)x + 1).

Example 3.8 Let Rk = F4[u]/〈uk〉,m = 7, uk = 0, t ≥ � k
2�, α = 2 be an even integer,

implies α | (m − 1) = 2 | 6,ord7(4) = m−1
α

= 3, then by Conjecture 3.5,

x7 − 1 = (x − 1)(x3 + x + 1)(x3 + x2 + 1),

x7 − (1 + ut) = (x + 1 + ut)(x3 + x + 1 + ut)(x3 + (1 + ut)x2 + 1 + ut).

The proof of Theorem 3.9 is similar to that of Theorem 3.2, and is omitted.

Theorem 3.9 Assume that the factorization of xm − λ into basic irreducible polynomials

over Rk = Fq [u]
〈uk〉 is of the form of

1) case (1) in Conjecture 3.5, the total number of self-dual (resp. LCD) double λ-circulant
codes over Rk is

Bq
(m−1)(k−1)

2 (q
m−1
2α + 1)α(resp.(q − 2)qm(k−1)(q

m−1
α − (q

m−1
2α + 1))α).
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2) case (2) in Conjecture 3.5, the total number of self-dual (resp. LCD) double λ-circulant
codes over Rk is

Bq
(m−1)(k−1)

2 (q
m−1

α − 1)
α
2 (resp.(q − 2)qk−1(q

2k(m−1)
α − q

2(m−1)(k−1)
α (q

m−1
α − 1))

α
2 ).

4 Main results

Firstly, we give some lemmas as follows.

A. Case (1) in Lemma 3.4 In this case, by the Chinese Remainder Theorem (CRT), we have

Rk[x]
〈xm + 1〉  Rk[x]

〈h(x)〉 ⊕ Rk[x]
〈h∗(x)〉

 Fq [u, x]
〈uk, h(x)〉 ⊕ Fq [u, x]

〈uk, h∗(x)〉
 (Fqn−1 + uFqn−1 + · · · + uk−1

Fqn−1) ⊕ (Fqn−1 + uFqn−1 + · · · + uk−1
Fqn−1)

 Rk( m
2 ) ⊕ Rk( m

2 ).

Lemma 4.1 If 0 �= ε = (μ, ν) ∈ C, and C = 〈(1, h)〉 is a double negacirculant code over
Rk . Then

(1) there are at most q
m(2k−1)

2 generators (1, h) such that ε = (μ, ν) ∈ C.

(2) there are at most q
m(k−1)

2 generators (1, h) such that ε = (μ, ν) ∈ C and C = C⊥.
(3) there are at most q

m(2k−1)
2 generators (1, h) such that ε = (μ, ν) ∈ C and C∩

C⊥ = {0}.

Proof By the CRT, (μ, ν) = (μ′, ν′) ⊕ (μ′′, ν′′). Since (μ, ν) ∈ C, then ν = μh,
ν′ = μ′h′ and ν′′ = μ′′h′′, where μ′, ν′, h′ ∈ Rk[x]/〈h(x)〉 = Rk( m

2 ) and μ′′, ν′′,
h′′ ∈ Rk[x]/〈h∗(x)〉 = Rk( m

2 ). Let h′ = h′(0) + uh′(1) + · · · + uk−1h′(k−1) and h′′ =
h′′(0) + uh′′(1) + · · · + uk−1h′′(k−1), where h′(i), h′′(i) ∈ F

q
m
2
, 0 ≤ i ≤ k − 1.

(1) In the first constituent of C, we discuss on the unit character of μ′ as follows.
• If μ′ ∈ R×

k( m
2 )
, there exists only one solution h′ = ν′

μ′ .

• If μ′ ∈ Rk( m
2 )\{R×

k( m
2 )

∪{0}}, then μ′ = ulμ′(l) +ul+1μ′(l+1) +· · ·+uk−1μ′(k−1)

where 1 ≤ l ≤ k − 1, μ′(l) ∈ F
∗
q

m
2
, μ′(i) ∈ F

q
m
2
, l + 1 ≤ i ≤ k − 1 and

ν′ = ulν′(l) + ul+1ν′(l+1) + · · · + uk−1ν′(k−1) where ν′(j) ∈ F
q

m
2
, l ≤ j ≤ k − 1.

Since ν′ = μ′h′, uk = 0, then ν′ = ulν′(l) + ul+1ν′(l+1) + · · · + uk−1ν′(k−1) =
(ulμ′(l) +ul+1μ′(l+1) + · · ·+uk−1μ′(k−1))h′ = ulμ′(l)h′(0) +ul+1(μ′(l+1)h′(0) +
μ′(l)h′(1)) + · · · + uk−1(μ′(k−1)h′(0) + μ′(k−2)h′(1) + · · · + μ′(l)h′(k−1−l)). Hence,
we have

⎧
⎪⎪⎨

⎪⎪⎩

ν′(l) = μ′(l)h′(0),
ν′(l+1) = μ′(l+1)h′(0) + μ′(l)h′(1),
· · ·
ν′(k−1) = μ′(k−1)h′(0) + μ′(k−2)h′(1) + · · · + μ′(l)h′(k−1−l).

(7)
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By (7), we can get ⎛

⎜⎜⎜⎝

μ′(l) 0 · · · 0
μ′(l+1) μ′(l) · · · 0

...
...

...
...

μ′(k−1) μ′(k−2) · · · μ′(l)

⎞

⎟⎟⎟⎠ . (8)

Since μ′(l) ∈ F
∗
q

m
2
, the determinant of the matrix (8) is not equal to 0, then

h′(0), h′(1), · · · , h′(k−1−l) have a unique solution, h′(k−l), h′(k−l+1), · · · , h′(k−1) ∈
F

q
m
2
. Thus there are at most q

ml
2 choices for h′. When l = k − 1, we can get the

maximum possible for h′, i.e., there are at most q
m(k−1)

2 choices for h′.
• If μ′ = 0, then h′ ∈ Rk( m

2 ), there are q
km
2 choices for h′.

Using the same argument as above in the second constituent of C, there are also at

most q
km
2 choices for h′′. But ε �= 0,then μ′ and μ′′ can not be zero simultaneously.

Hence there are at most q
m(k−1)

2 × q
km
2 generators (1, h) such that ε ∈ C.

(2) Since C is a self-dual double negacirculant code, then

〈(1, h′), (1, h′′)〉 = 1 + h′h′′ = 0. (9)

It is equivalent to⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h′(0)h′′(0) = −1,
h′(0)h′′(1) + h′(1)h′′(0) = 0,
h′(0)h′′(2) + h′(1)h′′(1) + h′(2)h′′(0) = 0,
· · ·
h′(0)h′′(k−1) + h′(1)h′′(k−2) + · · · + h′(k−1)h′′(0) = 0.

(10)

Combining with the proof of (1), we have:

• if μ′, μ′′ ∈ R×
k( m

2 )
, we know that h′ = ν′

μ′ and h′′ = ν′′
μ′′ , then there are at most one

generator (1, h).
• if μ′ ∈ R×

k( m
2 )

, μ′′ ∈ Rk( m
2 )\{R×

k( m
2 )

∪ {0}}, we know that h′ = ν′
μ′ ,by (9), h′′ can

be uniquely fixed, then there are at most one generator (1, h).
• if μ′ ∈ R×

k( m
2 )

, μ′′ = 0, we know that h′ = ν′
μ′ and h′′ is free, by (10), then there

are at most one generator (1, h).
• if μ′, μ′′ ∈ Rk( m

2 )\{R×
k( m

2 )
∪ {0}}, we know that h′(0) can be uniquely

fixed, h′(1), h′(2), · · · , h′(k−1) ∈ F
q

m
2
, h′′(0) can be uniquely fixed,

h′′(1), h′′(2), · · · , h′′(k−1) ∈ F
q

m
2
, and because of (10), then there are at most

q
m(k−1)

2 generators (1, h).
• if μ′ ∈ Rk( m

2 )\{R×
k( m

2 )
∪ {0}}, μ′′ = 0, we know that h′(0) can be uniquely fixed,

h′(1), h′(2), · · · , h′(k−1) ∈ F
q

m
2
, h′′ ∈ Rk( m

2 ), and because of (10), then there are

at most q
m(k−1)

2 generators (1, h).

(3) Since C is an LCD double negacirculant code, then

〈(1, h′), (1, h′′)〉 = 1 + h′h′′ ∈ R×
k( m

2 )
. (11)

Using the similar way, there are at most q
m(2k−1)

2 generators (1, h) such that ε =
(μ, ν) ∈ C and C ∩ C⊥ = {0}. We have thus proved the lemma.
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B. Case (2) in Lemma 3.4 In this case, by the CRT, we have

Rk[x]
〈xm + 1〉 

2⊕

i=1

(
Rk[x]
〈hi(x)〉 ⊕ Rk[x]

〈h∗
i (x)〉

)


2⊕

i=1

(
Fq [u, x]

〈u2, hi(x)〉 ⊕ Fq [u, x]
〈u2, h∗

i (x)〉
)

 Rk( m
4 ) ⊕ Rk( m

4 ) ⊕ Rk( m
4 ) ⊕ Rk( m

4 ).

Lemma 4.2 If C = 〈(1, h)〉 is a double negacirculant code over Rk , and 0 �= ε = (μ, ν) ∈
C, then

(1) there are at most q
m(4k−1)

4 generators (1, h) such that ε = (μ, ν) ∈ C.

(2) there are at most q
m(2k−1)

4 generators (1, h) such that ε = (μ, ν) ∈ C and C = C⊥.
(3) there are at most q

m(4k−3)
4 (q

m
2 − q

m
4 + 1) generators (1, h) such that ε = (μ, ν) ∈ C

and C ∩ C⊥ = {0}.

Proof By the CRT, (μ, ν) =
2⊕

i=1

(
(μ′

i , ν
′
i ) ⊕ (μ′′

i , ν
′′
i )

)
. Since (μ, ν) ∈ C, then ν = μh,

ν′
i = μ′

ih
′
i and ν′′

i = μ′′
i h

′′
i , where μ′

i , ν′
i , h′

i ∈ Rk( m
4 ) and μ′′

i , ν′′
i , h′′

i ∈ Rk( m
4 ). Let

h′
i = h

′(0)
i +uh

′(1)
i +· · ·+uk−1h

′(k−1)
i and h′′

i = h
′′(0)
i +uh

′′(1)
i +· · ·+uk−1h

′′(k−1)
i , where

h
′(j)
i , h′′(j)

i ∈ F
q

m
4
, 1 ≤ i ≤ 2, 0 ≤ j ≤ k − 1.

(1) In the first constituent of C, we discuss on the unit character of μ′
1 as follows.

• If μ′
1 ∈ R×

k( m
4 )
, there exists only one solution h′

1 = ν′
1

μ′
1
.

• If μ′
1 ∈ Rk( m

4 )\{R×
k( m

4 )
∪ {0}}, then μ′

1 = ulμ
′(l)
1 + ul+1μ

′(l+1)
1 + · · · +

uk−1μ
′(k−1)
1 , 1 ≤ l ≤ k − 1, μ′(l)

1 ∈ F
∗
q

m
4
, μ

′(i)
1 ∈ F

q
m
4
, l + 1 ≤ i ≤ k − 1

and ν′
1 = ulν

′(l)
1 + ul+1ν

′(l)
1 + · · · + uk−1ν

′(k−1)
1 , ν

′(j)

1 ∈ F
q

m
4
, l ≤ i ≤ k − 1.

Since ν′
1 = μ′

1h
′
1, u

k = 0, then ν′
1 = ulν

′(l)
1 + ul+1ν

′(l)
1 + · · · + uk−1ν

′(k−1)
1 =

(ulμ
′(l)
1 +ul+1μ

′(l+1)
1 +· · ·+uk−1μ

′(k−1)
1 )h′

1 = ulμ
′(l)
1 h

′(0)
1 +ul+1(μ

′(l+1)
1 h

′(0)
1 +

μ
′(l)
1 h

′(1)
1 ) + · · · + uk−1(μ

′(k−1)
1 h

′(0)
1 + μ

′(k−2)
1 h

′(1)
1 + · · · + μ

′(l)
1 h

′(k−1−l)
1 ). Hence,

we obtain
⎧
⎪⎪⎨

⎪⎪⎩

ν
′(l)
1 = μ

′(l)
1 h

′(0)
1 ,

ν
′(l+1)
1 = μ

′(l+1)
1 h

′(0)
1 + μ

′(l)
1 h

′(1)
1 ,

· · ·
ν

′(k−1)
1 = μ

′(k−1)
1 h

′(0)
1 + μ

′(k−2)
1 h

′(1)
1 + · · · + μ

′(l)
1 h

′(k−1−l)
1 .

(12)

By (12), we can get
⎛

⎜⎜⎜⎜⎝

μ
′(l)
1 0 · · · 0

μ
′(l+1)
1 μ

′(l)
1 · · · 0

...
...

...
...

μ
′(k−1)
1 μ

′(k−2)
1 · · · μ

′(l)
1

⎞

⎟⎟⎟⎟⎠
. (13)
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Since μ
′(l)
1 ∈ F

∗
q

m
4
, the determinant of the matrix (13) is not equal to 0, then

h
′(0)
1 , h

′(1)
1 , · · · , h

′(k−1−l)
1 have a unique solution, h′(k−l)

1 , h
′(k−l+1)
1 , · · · , h

′(k−1)
1 ∈

F
q

m
4
. Thus, there are at most q

ml
4 choices for h′

1. When l = k − 1, we can get the

maximum possible for h′
1, i.e., there are at most q

m(k−1)
4 choices for h′

1.

• If μ′
1 = 0, then h′

1 ∈ Rk( m
4 ), there are q

km
4 choices for h′

1.

Using the same argument as above in the other constituent of C, there are also at

most q
km
4 choices for h′

2, h
′′
1, h

′′
2. But ε �= 0,then μ′

1, μ
′
2, μ

′′
1 and μ′′

2 can not be zero

simultaneously. Hence, there are at most q
m(k−1)

4 × (q
km
4 )3 generators (1, h) such that

ε ∈ C.
(2) Since C is a self-dual double negacirculant code, then

{ 〈(1, h′
1), (1, h

′′
1)〉 = 0,

〈(1, h′
2), (1, h

′′
2)〉 = 0.

(14)

Combining with the proof of (1), similar to the discussion of (2) in Lemma 4.1, there

are at most q
(2k−1)m

4 generators (1, h) such that ε = (μ, ν) ∈ C and C = C⊥.
(3) Since C is an LCD double negacirculant code, then

〈(1, h′
i ), (1, h

′′
i )〉 = 1 + h′

ih
′′
i ∈ R×

k( m
4 )

, i = 1, 2. (15)

Using the similar way, there are at most q
m(4k−3)

4 (q
m
2 − q

m
4 + 1) generators (1, h)

such that ε = (μ, ν) ∈ C and C ∩ C⊥ = {0}. We have thus proved the lemma.

C. Case (1) in Theorem 3.9

Lemma 4.3 If 0 �= ε = (μ, ν) ∈ C, and if there exists a positive integer i such that μ is
not generated by gi(x), and if, furthermore, C = 〈(1, h)〉 is a double λ-circulant code over
Rk , then

(1) there are at most q
m(kα−1)+1

α generators (1, h) such that ε ∈ C.

(2) there are at most Bq
(m−1)(k−1)

2 (q
m−1
2α + 1)α−1 generators (1, h) such that ε ∈ C and

C = C⊥.
(3) there are at most (q − 2)qm(k−1)(q

m−1
α − q

m−1
2α − 1)α−1 generators (1, h) such that

ε = (μ, ν) ∈ C and C ∩ C⊥ = {0}.

Proof By the CRT, we have (μ, ν)  (μ0, ν0) ⊕
(

α⊕
i=1

(μi, νi)

)
. Since ε = (μ, ν) ∈ C,

then ν = μh, ν0 = μ0h0 and νi = μihi , where μ0, ν0, h0 ∈ Rk = Rk[x]/〈A(x)〉 and μi ,
νi , hi ∈ R

k( m−1
α

)
= Rk[x]/〈gi(x)〉. Let h0 = h

(0)
0 + uh

(1)
0 + · · · + uk−1h

(k−1)
0 and hi =

h
(0)
i +uh

(1)
i +· · ·+uk−1h

(k−1)
i , where h

(j)

0 ∈ Fq , h
(j)
i ∈ F

q
m−1

α
, 1 ≤ i ≤ α, 0 ≤ j ≤ k −1.

(1) In the first constituent of C, we discuss on the unit character of μ0 as follows.

• If μ0 ∈ R×
k , there exists unique solution h0 = ν0

μ0
.

• If μ0 ∈ Rk\{R×
k ∪ {0}}, similar to discuss in Lemma 4.1, there are at most qk−1

choices for h0.
• If μ0=0, then h0 is arbitrary in Rk , there are qk choices for h0.
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In the ith constituent of C, we discuss on the unit character of μi as follows.

• If μi ∈ R×
k( m−1

α
)
, there exists only one solution hi = νi

μi
.

• If μi ∈ R
k( m−1

α
)
\{R×

k( m−1
α

)
∪{0}}, this case can be discussed similarly. Hence, there

are at most q
(m−1)(k−1)

α choices for hi .
• If μi = 0, there are q

k(m−1)
α choices for h′

1.

Thus there are at most q
m(kα−1)+1

α generators (1, h) such that ε ∈ C.
(2) In the first constituent of C, there are at most B generators (1, h0) such that C0 is a

self-dual double λ-circulant code over Rk by Theorem 3.2.
In the ith constituent of C, combining with (1), we can get

• if μi ∈ R×
k( m−1

α
)
, there exists only one solution hi = νi

μi
.

• if μi ∈ R
k( m−1

α
)
\{R×

k( m−1
α

)
∪ {0}}, h

(0)
i can be uniquely fixed,

h
(1)
i , h

(2)
i · · · , h

(k−1)
i ∈ F

q
m−1

α
. And because C is a self-dual double λ-circulant

code, then 〈(1, hi) · (1, hi)〉H = 1 + hihi = 0, which implies
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h
(0)
i h

(0)
i

q
m−1
2α = −1,

h
(0)
i h

(1)
i

q
m−1
2α + h

(1)
i h

(0)
i

q
m−1
2α = 0,

h
(0)
i h

(2)
i

q
m−1
2α + h

(1)
i h

(1)
i

q
m−1
2α + h

(2)
i h

(0)
i

q
m−1
2α = 0,

· · ·
h

(0)
i h

(k−1)
i

q
m−1
2α + h

(1)
i h

(k−2)
i

q
m−1
2α + · · · + h

(k−1)
i h

(0)
i

q
m−1
2α = 0.

⇐⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Norm(h
(0)
i ) = −1,

T r(h
(0)
i h

(1)
i

q
m−1
2α

) = 0,

T r(h
(0)
i h

(2)
i

q
m−1
2α

) + Norm(h
(1)
i ) = 0,

· · ·

T r(h
(0)
i h

(k−1)
i

q
m−1
2α

) + T r(h
(1)
i h

(k−2)
i

q
m−1
2α

) + · · · + T r(h
( k−2

2 )

i h
( k
2 )

i

q
m−1
2α

) = 0,
when k is even , or

T r(h
(0)
i h

(k−1)
i

q
m−1
2α

) + · · · + T r(h
( k−3

2 )

i h
( k+1

2 )

i

q
m−1
2α

) + Norm(h
( k−1

2 )

i ) = 0,
when k is odd ,

then there are at most q
(m−1)(k−1)

2α choices for hi .
• if μi = 0, since C is a self-dual double λ-circulant code, there are at most

q
(m−1)(k−1)

2α (q
m−1
2α + 1) choices for hi .

Thus there are at most Bq
(m−1)(k−1)

2 (q
m−1
2α + 1)α−1 generators (1, h) such that ε ∈ C

and C = C⊥.
(3) Since C is an LCD double λ-circulant code, then

〈(1, hi), (1, hi)〉H = 1 + hih̄i ∈ R×
k , i = 1, 2, · · · , α. (16)
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Hence, there are at most (q − 2)qm(k−1)(q
m−1

α − q
m−1
2α − 1)α−1 generators (1, h) such that

ε = (μ, ν) ∈ C and C ∩ C⊥ = {0}.

D. Case (2) in Theorem 3.9

Lemma 4.4 If C = 〈(1, h)〉 is a double λ-circulant code over Rk , such that 0 �= ε =
(μ, ν) ∈ C, and that there exists a positive integer i such that μ is not generated by hi(x),
then

(1) there are at most q
m(kα−1)+1

α generators (1, h) such that ε ∈ C.

(2) there are at most Bq
(m−1)(kα−2)

2α generators (1, h) such that ε ∈ C and C = C⊥.
(3) there are at most (q − 2)q

(m−1)(αk−α+1)
α (q

2(m−1)
α − q

m−1
α + 1)

α
2 −1 generators (1, h) such

that ε = (μ, ν) ∈ C and C ∩ C⊥ = {0}.

Proof Again using the CRT, we have (μ, ν)  (μ0, ν0) ⊕
(

α/2⊕
j=1

(
(μ′

j , ν
′
j ) ⊕ (μ′′

j , ν
′′
j )

))
.

Since ε = (μ, ν) ∈ C, then ν = μh, ν0 = μ0h0, ν′
j = μ′

j h
′
j and ν′′

j = μ′′
j h

′′
j , where μ0,

ν0, h0 ∈ Rk = Rk[x]/〈A(x)〉, μ′
j , ν′

j , h′
j ∈ R

k( m−1
α

)
= Rk[x]/〈hj (x)〉 and μ′′

j , ν′′
j , h′′

j ∈
R

k( m−1
α

)
= Rk[x]/〈h∗

j (x)〉. Let h0 = h
(0)
0 +uh

(1)
0 + · · ·+uk−1h

(k−1)
0 , h′

j = h
′(0)
j +uh

′(1)
j +

· · ·+ uk−1h
′(k−1)
j , h′′

j = h
′′(0)
j +uh

′′(1)
j + · · ·+uk−1h

′′(k−1)
j , where h

(0)
0 , h(1)

0 , · · · , h
(k−1)
0 ∈

Fq , h
′(0)
j , h

′(1)
j , · · · , h

′(k−1)
j F

q
m−1

α
, h

′′(0)
j , h

′′(1)
j , · · · , h

′′(k−1)
j ∈ F

q
m−1

α
.

(1) Since 0 �= ε ∈ C, there are at most q
m(kα−1)+1

α generators (1, h).
(2) In the first constituent of C, there are at most B generators (1, h0) such that C0 is a

self-dual double λ-circulant code over Rk according to Theorem 3.2.
In the j th constituent of C, we have a similar discussion for pairs (μ′

j , μ′′
j ), there

are at most Bq
(m−1)(kα−2)

2α generators (1, h) such that ε ∈ C and C = C⊥.
(3) Since C is an LCD double λ-circulant code, then

〈(1, h′
j ), (1, h

′′
j )〉 = 1 + h′

j h
′′
j ∈ R×

k( m−1
α

)
, j = 1, 2, · · · ,

α

2
. (17)

Hence, there are at most (q − 2)q
(m−1)(αk−α+1)

α (q
2(m−1)

α − q
m−1

α + 1)
α
2 −1 generators

(1, h) such that ε = (μ, ν) ∈ C and C ∩ C⊥ = {0}.
We are now ready for the main result of this paper.

Theorem 4.5 If q is a power of prime, then there are infinite families of:

(1) self-dual (resp. LCD) negacirculant codes of index 2 over Rk of relative distance δ

satisfying Hq(δ) ≥ 1
4pk−1 (resp.Hq(δ) ≥ 1

4pk−1 ) for case (1) in Lemma 3.4;

(2) self-dual (resp. LCD) negacirculant codes of index 2 over Rk of relative distance δ

satisfying Hq(δ) ≥ 1
8pk−1 (resp.Hq(δ) ≥ 1

8pk−1 ) for case (2) in Lemma 3.4;

(3) self-dual (resp. LCD) λ-circulant codes of index 2 over Rk of relative distance δ

satisfying Hq(δ) ≥ 1
4αpk−1 (resp.Hq(δ) ≥ 1

2αpk−1 ) for case (1) in Theorem 3.9;

(4) self-dual (resp. LCD) λ-circulant codes of index 2 over Rk of relative distance δ

satisfying Hq(δ) ≥ 1
2αpk−1 (resp.Hq(δ) ≥ 1

2αpk−1 ) for case (2) in Theorem 3.9.
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Proof By the Gray map over Rk , we see that the Gray image of the several families of codes
of length 2m are linear codes of length 2mpk−1. Combining Lemmas 3.4, 4.1, 4.2, 4.3, 4.4
and Theorem 3.9, the result follows by the same method as Theorem 5.2 in [20], so we omit
the detailed proof here.

5 Conclusion

In the present paper, we have studied self-dual (resp. LCD) double λ-circulant codes over
the ring Rk = Fp[u]/〈uk〉,i.e., index 2 quasi-twisted codes with twisting constant λ = ±1
and λ = 1 + wut.

We not only have considered the special factorization of xm + 1 to construct the double
negacirculant codes when it factors into two (resp. four) basic irreducible factors reciprocal
of each other for m a power of 2 in [1, 2], but also have studied another special kind of fac-
torization, for m odd prime, and (m, q) = 1 when xm−λ factors into α+1 basic irreducible
polynomials with α | (m − 1) and ordm(q) = m−1

α
. With this particular factorization, we

have constructed self-dual (resp. LCD) quasi-twisted codes of index 2 over Rk , and derived
an exact enumeration formula for this family of codes. Further, we have derived a modi-
fied Varshamov-Gilbert bound on the relative distance of the codes considered, building on
exact enumeration results.

The main open problem is Conjecture 3.5. More general directions are quasi-twisted
codes of index > 2 and replacing Rk by a general chain ring.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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13. Ling, S., Solé, P.: On the algebraic structure of quasi-cyclic codes I: finite fields. IEEE Trans. Inf. Theory

47, 2751–2760 (2001)

https://doi.org/10.1007/s10623-017-0393-x


734 Cryptography and Communications (2019) 11:717–734
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