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This paper investigates the existence, enumeration and asymptotic performance of self-dual and LCD double circulant codes over Galois rings of characteristic p 2 and order p 4 with p and odd prime. When p ≡ 3 (mod 4), we give an algorithm to construct a duality preserving bijective Gray map from such a Galois ring to Z 2 p 2 . Using random coding, we obtain families of asymptotically good self-dual and LCD codes over Z p 2 , for the metric induced by the standard F p -valued Gray maps.

Introduction

Double circulant self-dual codes over finite fields have been studied recently in [START_REF] Alahmadi | On self-dual double circulant code, Designs, Codes Cryptogr[END_REF]. Double circulant self-dual codes over a commutative ring can only exist if there is a square root of -1 over that ring [START_REF] Ling | On the Algebraic Structure of Quasi-cyclic Codes II: Chain Rings[END_REF]. Such a root does not exist over Galois rings of even characteristic which are not fields, but does exist over Galois rings of odd characteristic and even extension degree [8, Lemma 3.1, Lemma 3.2]. We study these codes in the case of Galois rings of characteristic p 2 and size p 4 , for p an odd prime. A recent topic related to self-dual codes is LCD codes. They are popular because of their connections with cybersecurity [START_REF] Carlet | Complementary Dual Codes for Counter-Measures to Side-Channel Attacks[END_REF]. We also study LCD double circulant codes over the same Galois rings. For every such Galois ring we construct a duality preserving Gray map with image Z 2 p 2 , which maps self-dual (resp. LCD) codes to self-dual (resp. LCD) codes. Note that self-dual codes over Z p 2 , for p an odd prime, have been studied by many authors [START_REF] Dougherty | Self-Dual Codes over Z 8 and Z 9 , Designs, Codes, and Cryptography[END_REF][START_REF] Harada | On the classification of self-dual Z k -codes[END_REF]. This alphabet Z p 2 , in turn can be mapped into F p p by the Gray map studied in [START_REF] Ling | Z p k+1 -linear codes[END_REF]. For the two families of codes under scrutiny we give a complete enumeration formula in length 2n when n is coprime with p. This formula relies on the CRT approach to quasi-cyclic codes over rings [START_REF] Shi | Codes and Rings: Theory and Practice[END_REF][START_REF] Ling | On the Algebraic Structure of Quasi-cyclic Codes II: Chain Rings[END_REF], and requires to count the number of solutions of certain algebraic equations over Galois rings and over their residue fields. From there, building on Artin conjecture in arithmetic progressions [START_REF] Moree | On primes in arithmetic progression having a prescribed primitive root[END_REF], we construct infinitely many odd primes n such that x n -1 has only three factors over F p 2 the residue class ring of the Galois ring alphabet. Depending on the congruence class of n modulo 4, these irreducible factors are all three self-reciprocal, or consist of x -1, and one reciprocal pair. When n varies in one of these two families of primes, we obtain two infinite families of double circulant codes, one self-dual, one LCD, of length 2n. By expurgated random coding, we derive a lower bound on the relative Hamming distance of the F p image of both families. This shows, in particular, that both families are good.

The material is organized as follows. The next section collects the notions and notations needed in the forthcoming sections. Section 3 contains the main results on enumeration and Section 4 the main results on asymptotics. Section 5 displays some numerical examples. Section 6 concludes the article and points out some open problems.

Definitions and notation

Some rings

Throughout the paper, let p be an odd prime. The ring Z p s is the ring of integers modulo p s . A linear code of length N over Z p 2 is a submodule of Z N p 2 . The dual C ⊥ and C ⊥ H are understood with respect to the standard inner product and Hermitian inner product, respectively. A code is self-dual if it is equal to its dual. It is LCD (linear complementary dual) if it intersects its dual trivially. The Galois ring GR(p s , p ms ) of order p ms and characteristic p s is the Galois extension of Z p s with degree m. It is a local ring, with maximal ideal (p). The Teichmuller set T = {x ∈ GR(p s , p ms )|x p m = x} is a set of representatives of the residue field F p m = GR(p s , p ms )/(p). If r ∈ GR(p s , p ms ), let r denote its image in F p m by reduction modulo (p). It is known that GR(p s , p ms ) = T ⊕ pT ⊕ • • • ⊕ p s-1 T (base p decomposition of GR(p s , p ms )). See [START_REF] Wan | Finite Fields and Galois Rings[END_REF] for background and details.

Double circulant codes

Denote by R the ring

Z p 2 [y] (h(y))
, where h(y) is a basic irreducible polynomial over Z p 2 with deg(h(x)) = 2. For any ring M, we denote by M * the set of units in M. Assume that n is an integer with gcd(n, p) = 1, and consider the code C of length 2n over R whose generator matrix has the form of (I n , A), where I n is the identity matrix of order n and A is a circulant matrix over R. Note that C can be viewed as a submodule of ( R[x] (x n -1) ) 2 , with generator (1, a(x)) where the x-expansion of a(x) is the first row of A.

For all p's, we know there exists w ∈ R such that w 2 = -1, by [START_REF] Kim | Construction of MDS self-dual codes over Galois rings[END_REF]. When p ≡ 3 (mod 4), the polynomial y 2 + 1 is irreducible over F p , hence over Z p 2 . We may write R = Z p 2 [y]/(y 2 + 1), and take w = y.

Gray map

Recall Lagrange's four-square theorem, also known as Bachet's conjecture [START_REF] Ireland | A Classical Introduction to Modern Number Theory[END_REF].

Lemma 1. Every natural number can be represented as the sum of four integer squares.

We will also need the sum of two squares theorem, and the Diophantus identity [START_REF] Ireland | A Classical Introduction to Modern Number Theory[END_REF].

Lemma 2. An integer greater than one can be written as a sum of two squares if and only if its prime decomposition contains no prime congruent to 3 (mod 4) raised to an odd power.

Lemma 3. The product of two sums of two squares is a sum of two squares in following two different ways.

a 2 + b 2 c 2 + d 2 = (ac -bd) 2 + (ad + bc) 2 (1) 
= (ac + bd) 2 + (ad -bc) 2 .

(

) 2 
Assume p ≡ 3 (mod 4). By Lemma 1, we define a Gray map from R to Z 2 p 2 as follows:

φ : R → Z 2 p 2 a + by → (ka + sb, ta + rb),
where 3p 2 = k 2 + s 2 + t 2 + r 2 . Then extend it in the obvious way to R N . This Gray map is bijective, as the next result shows.

Theorem 1. The matrix k t s r is nonsingular.

Proof. Suppose that, looking for a contradiction, a linear dependence between the two rows of the matrix. Let µ, ν be two integers satisfying ν(k, t) = µ(s, r). Substituting k and s by their values in 3ν 2 p 2 we get

3ν 2 p 2 = (µ 2 + ν 2 )(r 2 + s 2 ).
By Diophantus identity (Lemma 3) the RHS is a sum of two squares. This contradicts Lemma 2, because the integer 3 times a square will always contain 3 to an odd power in its primary factors decomposition.

Theorem 2. Assume p ≡ 3 (mod 4). For all codes C over R, we have φ(C)

⊥ = φ(C ⊥ ). If C is a self-dual (resp. LCD) code of length N over R, then φ(C) is self- dual (resp. LCD) of length 2N over Z p 2 .
Proof. For any vector u

= (u 1 , u 2 , • • • , u N ), v = (v 1 , v 2 , • • • , v N ) ∈ R N , where u i = a i 1 + b i 1 y, v i = a i 2 + b i 2 y ∈ R (i = 1, 2, • • • , N)
. Suppose uv = 0 (mod p 2 ), and noting that p ≡ 3 (mod 4), we have y 2 + 1 = 0 over R. Considering the standard inner product, we then obtain

N i=1 (a i 1 + b i 1 y)(a i 2 + b i 2 y) = N i=1 [(a i 1 a i 2 -b i 1 b i 2 ) + (a i 1 b i 2 + a i 2 b i 1 )y] = 0, which is equivalent to    N i=1 (a i 1 a i 2 -b i 1 b i 2 ) ≡ 0 (mod p 2 ), N i=1 (a i 1 b i 2 + a i 2 b i 1 ) ≡ 0 (mod p 2
). We then naturally obtain

φ(u)φ(v) = N i=1 φ(u i )φ(v i ) = N i=1 (ka i 1 + sb i 1 , ta i 1 + wb i 1 )(ka i 2 + sb i 2 , ta i 2 + wb i 2 ) ≡ N i=1 [(k 2 + t 2 )(a i 1 a i 2 -b i 1 b i 2 ) + (ks + tw)(a i 1 b i 2 + a i 2 b i 1 )y] ≡ 0 (mod p 2 ). This implies φ(C ⊥ ) ⊆ φ(C) ⊥ ,
and, since φ is a bijection the first statement follows by showing that both sides have the same size.

The second statement for LCD codes is as in [START_REF] Dougherty | The combinatorics of LCD codes: linear programming bound and orthogonal matrices[END_REF]Th. 5.2]. The second statement for self-dual codes follows by plugging C ⊥ = C in the first statement.

Example: If p = 3, then 3p 2 = 27 = 16 + 9 + 1 + 1. The Gray map can be taken to be a + by → (4a + 3b, a + b).

Finite fields

If L, K are two finite fields of respective orders p rs and p r satisfying K ⊆ L, we write the trace from L down to K as 1) , where r, s are positive integers.

T r p rs p r (z) = z + z p r + • • • + z p r(s-

Codes over fields and asymptotics

Let p be an odd prime, and denote by F p the finite field of order p. By a code of length N over F p , we shall mean a proper subset of F N p . This code is linear if it is a F p -vector subspace of F N p . The dimension of a code C, denoted by k, is equal to its dimension as a vector space. Its (minimum) distance, denoted by d or d(C), is defined as the minimum Hamming weight of its nonzero elements. The Hamming weight of A family of codes is said to be good iff rδ > 0.

x = (x 1 , x 2 , • • • , x n ) ∈ F n p ,
Recall that the q-ary entropy function H q (•) is defined for 0 < y < q-1 q by H q (y) = y log q (q -1) -y log q (y) -(1 -y) log q (1 -y).

3 Main results

Enumeration in a special case

Assume that p is a primitive root modulo n with n an odd prime. Then, (p 2 )

n-1 2 ≡ 1 (mod n), and we have x n -1 = (x-1) g2 (x)g 3 (x) with g2 (x), g3 (x) monic irreducible polynomials over F p 2 . By Hensel lifting, since (n, p) = 1, we have x n -1 = ϑ(x -1)g 2 (x)g 3 (x) over R, with g 2 (x) ≡ g2 (x) (mod p), g 3 (x) ≡ g3 (x) (mod p) and ϑ ∈ R * . Both g 2 (x) and g 3 (x) are monic basic irreducible polynomials over R. The following lemma is taken from [START_REF] Wan | Finite Fields and Galois Rings[END_REF].

Lemma 4. Let R 1 = GR(p s , p sm ) and h(x) be a monic basic irreducible polynomial of degree l over R 1 . Then the residue class ring R 1 [x] (h(x)) is a Galois ring of characteristic p s and cardinality p sml and contains R 1 as a subring. Thus

R 1 [x] (h(x)) = GR(p s , p sml ).
Thus this lemma shows that the alphabet rings R i for i = 2, 3 of the constitutent codes defined below are also Galois rings. 2 . With this notation b = α u + pβ u . We can then define a Hermitian scalar product on R 2 2 , by the formula x • y = x 1 y 1 + x 2 y 2 for x = (x 1 , x 2 ), y = (y 1 , y 2 ) ∈ R 2 2 . From the introduction we know there is w ∈ R such that

3.1.1 n ≡ 1 (mod 4) Firstly, if n ≡ 1 (mod 4), since p is primitive modulo n, we can deduce (p 2 ) n-1 4 ≡ -1 (mod n). This implies that -1 is in the p 2 -cyclotomic coset modulo n. Conse- quently, we obtain g * i (x) = g i (x) for i = 2, 3. Note that deg(g i (x)) = n-1 2 . By the CRT, we have C = C 1 C 2 C 3 , where C 1 is a code of length 2 over R and C i is a code of length 2 over the ring R[x] (g i (x)) for i = 2, 3. Let R i = R[x] (g i (x)) for i = 2,
w 2 = -1. Write w = w 1 + pw 2 , w 1 , w 2 ∈ T 1 = {x ∈ R | x p 2 = x}. Then w 2 = w 2 1 + 2pw 1 w 2 = -1, which is equivalent to w 2 1 = -1, w 2 = 0.
That is to say, only has two choices for w in R such that w 2 = -1. Let us denote one of this two w ′ s by √ -1.

Theorem 3. Writing C 1 = [1, a] , where a ∈ R. Then we have C 1 is self-dual over R iff a = ± √ -1. Proof. C 1 is self-dual iff 1 + aa = 0, which implies a = ± √ -1.
The following lemma generalizes the Yamada normal form of [START_REF] Wan | Finite Fields and Galois Rings[END_REF].

Lemma 5. Let A, B ∈ T , then we have

A + B = T 1 + pT 2 with T 1 , T 2 ∈ T is uniquely given by    T 1 = (A 1 p + B 1 p ) p , T 2 ≡ -P p (A 1 p , B 1 
p ) (mod p),
where pP p (A, B) = p-1 i=1 ( p i )A i B p-i , and P p (A, B) is a polynomial in A, B with integral coefficients.

Proof. Note that (A + B) p = A p + B p + pP p (A, B).

We then claim that (A + B)

p i = A p i + B p i + pP p (A p i-1 , B p i-1
) for any integer i. This can be proved by induction on n as follows.

(A + B)

p n = (A p n-1 + B p n-1 + pP p (A p n-1 , B p n-1 )) p = (A p n-1 + B p n-1 ) p = A p n + B p n + pP p (A p n-1 , B p n-1 ),
where the first and last equality hold by induction hypothesis. We then obtain

A + B = (A 1 p + B 1 p ) p -pP p (A 1 p , B 1 p ), which implies    T 1 = (A 1 p + B 1 p ) p , T 2 ≡ -P p (A 1 p , B 1 
p ) (mod p),
since it can be checked by the formulas above that (A

1 p + B 1 p ) p n = (A 1 p + B 1 p ) p , showing that (A 1 p + B 1 p
) p ∈ T . This determines T 1 uniquely. We can only determine T 2 (mod p), which is enough for our purpose. Then the result follows.

With Lemma 5, we then obtain the following important theorem, which gives a necessary and sufficient condition for C 2 to be a self-dual code over R 2 . Proof. C 2 is self-dual iff 1 + bb = 0, i.e. 1 + bF n-1 4 (b) = 0, which is equivalent to

1 + α 1+u + pβα u + pβ u α = 0 = T 1 + pT 2 , (3) 
where T 1 ∈ T , T 2 ∈ T and T 1 = T 2 = 0.

By Equation (3) and Lemma 5, we can then have

1 + α 1+u = (1 + α 1+u p ) p -pP p (1, α 1+u p ).
Then Equation ( 3) is equivalent to

(1 + α 1+u p ) p + p(βα u + β u α -P p (1, α 1+u p )) = 0. That implies    1 + α 1+u p ≡ 0 (mod p) βα u + β u α -P p (1, α 1+u p ) ≡ 0 (mod p)
Then the result follows.

Next, we will enumerate the number of possible choices for C 2 .

Theorem 5. The number of self-dual codes C 2 over R 2 is equal to u(1 + u).

Proof. Let x = α 1 p and we then consider the equation

x 1+u ≡ -1 (mod p).
It can be obtained that, noting that 2(1 + u) is a divisor of u 2 -1, the number of choices for x, hence for α, is 1 + u. Then by the equation βα u + β u α -P p (1, α 1+u p ) ≡ 0 (mod p), we get T r u 2 u ( β α u ) = f ( α), where f ( α) denotes P p (1, α 1+u p ) ≡ 0 (mod p). That implies that there are u choices for β when fixed α. Thus, the number of C 2 is equal to u(1 + u).

By the CRT, the following theorem can be derived. Theorem 6. The number of self-dual codes C over R is equal to 2u 2 (u + 1) 2 .

Proof. By Theorems 3 and 5, we obtain the number of C's as 2u 2 (u + 1) 2 .

We are now ready to investigate the number of LCD codes. We firstly introduce the following proposition.

Proposition 1. C 2 is LCD over R 2 iff 1 + b • b ∈ R * 2 . Proof. " ⇐ " 1. If b ∈ R * 2 , we then obtain C ⊥ H 2 = [1, -1 b ] . Suppose C 2 is not LCD, then there exist nonzero t, k ∈ R 2 such that t(1, b) = k(1, -1 b ). We then obtain t(1 + bb) = 0, which implies t = 0 since 1 + b • b ∈ R * 2 . Contradiction ! 2. If b ∈ R 2 \R * 2 , write b = pb ′ with b ′ ∈ T . Then we have C ⊥ H 2 = 2b ′ 1 0 2b ′′ with b ′′ ∈ T . Suppose C 2 is not LCD, then there exist nonzero m, n, l ∈ R 2 such that m(1, 2b ′ ) = n(2b ′ , 1) + l(0, 2b ′′ ). That implies    m = 2nb ′ , 2mb ′ = n + 2lb ′′ ,
then we obtain m = 0, a contradiction !

" ⇒ " Suppose 1 + b • b ∈ R 2 \R *
2 , then we have the following two cases.

1. If b ∈ R * 2 , we have p(1 + b • b) = 0 = p(1, b) • (1, b). Note that C ⊥ H 2 = [1, -1 b ] , we then obtain p(1, b) ∈ C ⊥ H 2 , which implies p(1, b) ∈ C ⊥ H 2 ∩ C 2 . Contradiction! 2. If b ∈ R 2 \R * 2 , we then get 1 ∈ R 2 \R * 2 , a contradiction !
This completes the proof.

Similarly, we have Proposition 2 about C 1 , which is a constituent code over R.

Proposition 2. The code C 1 is LCD over R iff 1 + a • a ∈ R * .
In particular, the number of possible choices for a is p 4 -2p 2 .

(2) If λ is not a unit, writing λ = pλ 1 with λ 1 ∈ T e j , we can obtain 1

+ b ′ c ′ ∈ pR ′ 2 , Contradiction !
Then the result follows.

Theorem 11. Suppose u ′ = p n-1 , the number of LCD codes over R is equal to

(p 4 -2p 2 ) • (u ′4 -u ′2 + u ′ ).
Proof. Just keep the same notations as in Lemma 6. In the following, we aim to count the possible choices for C ′ 2 and C ′ 3 . Then we have

(1) If b ′ is a unit, then c ′ is arbitrary except the case when c ′ ∈ -1 b ′ + pR ′ 2 , which implies the number of pairs (b ′ , c ′ ) is (u ′2 -u ′ ) 2 . (2) If b ′ is not a unit, i.e., b ′ = pb ′ 1 with b ′ 1 ∈ T ′ , then c ′ is arbitrary. In detail, c ′ = c ′ 1 + pc ′ 2 with c ′ 1 , c ′ 2 ∈ T ′ , we have 1 + b ′ c ′ = 1 + pc ′ 1 b ′ 1 / ∈ pR ′ 2 . Thus, the number of pairs (b ′ , c ′ ) is u ′ • u ′2 = u ′3 . Thus, the total number of C ′ j , C ′′ j is (u ′2 -u ′ ) 2 + u ′3 = u ′4 -u ′3 + u ′2
. Therefore, the total number of LCD double circulant codes is equal to, based on Proposition 2,

(p 4 -2p 2 ) • (u ′4 -u ′3 + u ′2 ).
This completes the proof.

Enumeration in the general case

The following result, while not needed for the asymptotics, is of interest in its own right.

Theorem 12. Let n be an odd integer, assume that the factorization of x n -1 into irreducible polynomials over R is of the form

x n -1 = ς(x -1) s i=2 g i (x) t j=1 h j (x)h * j (x),
with ς ∈ R * , and g i (x) is a self-reciprocal polynomial of degree d i with d i a even integer, the polynomial h j (x) is of degree e j and * denotes reciprocation. The number of self-dual double circulant codes over R is

2 s i=2 (u 2 i + u i ) t j=1 (u ′2 j -u ′ j ),
The number of LCD double circulant codes over R is

(p 4 -2p 2 ) s i=2 (u 4 i -u 3 i -u 2 i ) t j=1 (u ′4 j -u ′3 j + u ′2 j ),
where

u i = p d i , u ′ j = p 2e j . Proof. Let R = R[x] (x n -1) . We know that R ≃ R[x] (x -1) ⊕ s i=2 R[x] (g i (x)) ⊕ t j=1 ( R[x] (h j (x)) ⊕ R[x] (h * j (x))
) by the CRT. Denote by

G i the ring R[x] (g i (x)) , by H ′ j the ring R[x] (h j (x))
and by H ′′ j the ring

R[x] (h * j (x))
. This decomposition naturally extends to R 2 as

R 2 ≃ R 2 ⊕ s i=2 G 2 i ⊕ t j=1 (H ′2 j ⊕ H ′′2 j ) .
In particular, each R-linear code of length 2 can be decomposed as the "CRT sum"

C ≃ C 1 ⊕ s i=2 C i ⊕ t j=1 (C ′ j ⊕ C ′′ j ) .
By Theorem 3, and the analogues of Theorems 5 and 9, the number of self-dual codes is

2 s i=2 u i (1 + u i ) t j=1 (u ′2 j -u ′ j ).
Based on Theorems 8 and 11, the number of LCD codes is equal to

(p 4 -2p 2 ) s i=2 (p 4d i -u 2 i (u i + 1)) t j=1 (u ′4 j -u ′3 j + u ′2 j ),
where

u i = p d i , u ′ j = p 2e j .
Then the result follows.

Relative distance bound

This section only uses enumeration for the special case of the factorization of x n -1 into two irreducibles. We assume p ≡ 3 (mod 4) to use the duality-preserving Gray map given by Section 2.3. If C is an R-code, we call its F p image the image of φ(C) by the Gray map of [START_REF] Ling | Z p k+1 -linear codes[END_REF] with k = 1. Note that if C is a code of length 2n over R then φ(C) is of length 4n over Z p 2 and the F p -image of φ(C) has length 4pn over F p . We prepare for the proof of the main result by the following result.

Theorem 13. If e, f ∈ R n , and (0, 0) = (e, f ) has Hamming weight < n, then the vector (e, f ) is in at most λ double circulant codes of length 2n with λ = p 3n+1 .

Proof. Write (e, f ) = (e 1 , f 1 ) ⊕ (e 2 , f 2 ) ⊕ (e 3 , f 3 ) for the CRT decomposition of (e, f ).

Consider C 1 = [1, a] , a = α 1 +pβ 1 , α 1 , β 1 ∈ T 1 = {x ∈ R | x p 2 = x}. Let (e 1 , f 1 ) ∈ C 1 , we have f 1 = e 1 a. (i) If e 1 is a unit, a = f 1 e 1 .
(ii) If e 1 ( = 0) is not a unit, write e 1 = pe ′ 1 with e ′ 1 ∈ T * 1 . We then obtain f 1 = pae ′ 1 .

(ii-1) α 1 = 0, we have

f 1 = pf ′ 1 = pα 1 e ′ 1 , which implies α 1 = f ′ 1 e ′ 1
, β 1 is arbitrary.

(ii-2) α 1 = 0, we have a = pβ 1 , which implies f 1 = 0, β 1 is arbitrary.

(iii) If e 1 = 0, we then get f 1 = 0. That implies a is arbitrary. We can easily get there are at most p 4 double circulant codes that containing (e 1 , f 1 ).

Consider C 2 = [1, b] , b = α 2 + pβ 2 , α 2 , β 2 ∈ T 2
, where the case is similar to that of C 1 with T 2 playing the role of T 1 . Note that T 2 = T or T ′ . Thus, the number of constituent codes C 2 is at most

|T | 2 = |T ′ | 2 .
The case is the same as that of C 3 . However, these two analyses cannot be run independently. The detail is as follows.

1. If both e 2 and e 3 are 0, then we obtain e ∈ (g 2 (x)g 3 (x)), the repetition code of length n. So either e = 0 yielding f = 0, or w H (e) = n, contradicting the hypothesis. This argument shows that the case (iii) cannot happen simultaneously for C 2 and C 3 .

2.

If both e 2 and e 3 are not units, and e 2 , e 3 = 0, we can easily get e ≡ e 2 e 3 ≡ 0 (mod g 2 (x)g 3 (x)).

(a) If e = 0, we then obtain w H (e) ≥ w H ( e) = n, a contradiction ! Theorem 15. Assume the Artin conjecture for primes in arithmetic progression [START_REF] Moree | On primes in arithmetic progression having a prescribed primitive root[END_REF] holds. There is an infinite family of double circulant self-dual (resp. LCD) R-codes with rate 

(δ 0 ) = 1
4p for LCD codes. The result follows by observing that, by definition of the family of codes so constructed, δ ≥ δ 0 .

Numerical examples

Assume p = 3 and C = [I, A 0 + yA 1 ] , where A 0 , A 1 are circulant matrices of size n and I is the identity matrix of the same size. The generator matrix of φ(C) can be computed as

4I I 4A 0 + 3A 1 A 0 + A 1 3I I 3A 0 -4A 1 A 0 -A 1 .
Define the base 3 decomposition of x ∈ Z 9 as x = r 0 (x) + 3r 1 (x), where r i (x) ∈ {0, 1, 2}. Then we can define the Gray map of [START_REF] Ling | Z p k+1 -linear codes[END_REF] as Φ : Z 9 → Z where a i = r 1 (a) + ir 0 (a). The explicit map is tabulated below.

x Φ(x) w H (Φ(x)) 0 (0,0,0) 0 1 (0,1,2) 2 2 (0,2,1) 2 3 (1,1,1) 3 4 (1,2,0) 2 5 (1,0,2) 2 6 (2,2,2) 3 7 (2,0,1) 2 8 (2,1,0) 2

In Table 1 and Table 2 we have collected some examples of double circulant LCD and self-dual codes obtained by random search in Magma. The coefficients of degree n polynomial a(x) are written in decreasing powers of x, for example for n = 3, the entry 811 means 8x 2 + x + 1. The parameters over Z 9 and Z 3 are given in the form (4n, 9 2n , d φ(C) ) and [12n, 4n, d Φ(C) ] respectively, where d φ(C) and d Φ(C) are the Hamming minimum distancess of their Gray images φ and Φ respectively. The entry in the rightmost column is the best known distance of an [12n, 4n] tenary linear code, obtained by looking up at the tables in www.codetables.de. 

Conclusion

In this article we have studied double circulant codes either self-dual or LCD over Galois rings of characteristic p 2 and size p 4 . Extending the study to GR(p s , p ms ), with s > 2 would result in more terms in the base p expansion of a ring element and would make the computations of Section 3 more difficult. A similar remark can be made about using m > 2. More tractable could be to study quasi-cyclic codes of higher index, like four-circulant codes, for instance.

We have used the composition of two Gray maps to derive codes over F p . While the choice of the Hamming metric over F p is the most natural one, the study of the Lee minimum distance of the F p -image could also be worthwhile.

  denoted by w(x), is the number of indices i where x i = 0. The three parameters of a code are written compactly as [n, k, d]. We extend this notation to a possibly nonlinear code C ⊆ F n p , by letting then k = log p (|C|), and letting d be the minimum pairwise distance between two nonzero codewords. If C(n) is a family of codes of parameters [n, k n , d n ], the rate r and relative distance δ are defined as r = lim sup n→∞

conjugate b of b is F n- 1 4

 1 3. The properties of C 3 being similar to that of C 2 , we only investigate C 2 for simplicity's sake. Write C 2 = [1, b] , where b ∈ R 2 . Note that b can be uniquely decomposed in base p as b = α + pβ, where α, β ∈ T = {x ∈ R 2 | x p n-1 = x}. Define a generalized Frobenius map F as F (b) = α p 2 + pβ p 2 , then F (b). Throughout this paper, we let u = p n-1

Theorem 4 .

 4 C 2 is self-dual over R 2 with respect to Hermitian inner product iff  mod p), βα u + β u α -P p (1, α 1+u p ) ≡ 0 (mod p).

  1 2 and relative Hamming distance of the F p image δ ≥ H -1 Artin conjecture for primes in arithmetic progression shows in particular that p and ǫ ∈ {±1} being given, there are infinitely many primes n ≡ ǫ (mod 4) such that p is primitive modulo n. It should be noted that the size Ω n of the family of codes we consider is asymptotically equivalent to 2u 4 for self-dual codes and to p 4n for LCD codes. This holds for the case ǫ = 1 by Subsection 3.1.1 like for the case ǫ = -1 by Subsection 3.1.2. Assume we can prove that for n large enough Ω n > λB(d n ), where λ = p 3n+1 for LCD codes and λ = 2u 2 (u + 1) for self-dual codes and B(r) denotes the number of vectors in R 2n with Hamming weight of their F p image < r. This would imply by Theorem 13 that there are codes of length 2n in the family with F p image distance ≥ d n . Denote by δ the relative distance of this family of p-ary codes. If we take d n the largest number satisfying the said inequality, and assume a growth of the form d n ∼ 4pδ 0 n, then, using an entropic estimate for B(d n ) ∼ p 4pnHp(δ 0 ) (cf. [6, Lemma 2.10.3]) yields, with the said values of Ω n and λ the estimate H p (δ 0 ) = 1 8p for self-dual codes and H p

	p (1/8p) (resp.
	δ ≥ H -1 p (1/4p)).
	Proof.

3 3 Table 1 :

 31 Double circulant LCD codes over Z 9 + uZ 9 and their Gray images φ, Φ n a 1 (x) a 0 (x) (4n, 9 2n , d φ(C) ) Z 9 [12n, 4n, d Φ(C) ] Z 3 Distance of BKLC over Z 3

	2 41	51	(8, 9 4 , 4)	[24, 8, 6]	11
	3 811	081	(12, 9 6 , 6)	[36, 12, 12]	15
	4 3651 6505	(16, 9 8 , 5)	[48, 16, 14]	18
	5 10856 57664	(20, 9 10 , 6)	[60, 20, 16]	21

a → (a 0 , a 1 , a 2 ),

Table 2 :

 2 Double circulant self-dual codes over Z 9 + uZ 9 and their Gray images φ, Φ n a 1 (x) a 0 (x) (4n, 9 2n , d φ(C) ) Z 9 [12n, 4n, d Φ(C) ] Z 3 Distance of BKLC over Z 3

	2 10	00	(8, 9 4 , 3)	[24, 8, 10]	11
	3 811	081	(12, 9 6 , 6)	[36, 12, 12]	15
	4 6731 4752	(16, 9 8 , 6)	[48, 16, 15]	18
	5 26758 62532	(20, 9 10 , 6)	[60, 20, 18]	21

* This research is supported by National Natural Science Foundation of China (61672036), Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Personnel of China (05015133) and the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (2015D11) and Key projects of support program for outstanding young talents in Colleges and Universities (gxyqZD2016008).

Proof. The proof of the first statement is similar to that of Proposition 1, with the Euclidean inner product replacing the Hermitian inner product. We omit it here. Write a = a 1 + pa 2 with a 1 , a 2 ∈ T 1 . By this criterion the number of possible choices for a is equal to

where

Then the result follows.

To determine the number of LCD codes C 2 , we will reason by complementation.

Theorem 7. C 2 is not LCD code over R 2 with respect to Hermitian inner product iff

where T 1 = 0, T 2 ∈ T . By Equation ( 4) and Lemma 5, we can then have

Then Equation ( 4) is equivalent to

That implies 1 + α 1+u p ≡ 0 (mod p), with β is arbitrary.

Combining Proposition 2 and Theorem 7, we have the following important theorem.

Proof. We know that the total number of codes over R and R 2 are p 4 and p 2(n-1) , respectively. Based on Theorems 3 and 5, the choice for non LCD codes is (u + 1)u 2 , then the result follows by subtraction.

n ≡ 3 (mod 4)

If n ≡ 3 (mod 4), we have g

Then by the CRT, we obtain

The following result is needed to count the number of self-dual C's.

Thus, from the form of the generator matrix of

is exactly the size of R ′ * 2 , i.e., is equal to p 2(n-1) -p n-1 .

Theorem 10. The number of self-dual codes C over R is equal to 2 • (p 2(n-1) -p n-1 ).

Proof. Based on Theorems 3 and 9, we can obtain the desired results.

(b) If e = 0, assume that 0 = e = pe ′ , then we have f = pf ′ . Write C = [1, d] ,

where

e ′ and d 2 is arbitrary. In this case, there are at most p 2n double circulant codes containing (e, f ). Thus, we obtain λ = p 4 |T | 2 |T | = p 3n+1 when e 1 = e 2 = 0 and e 3 is not unit.

Theorem 14. If e, f ∈ R n , and (0, 0) = (e, f ) has Hamming weight < n, then the vector (e, f ) is in at most λ self-dual double circulant codes of length 2n with λ = 2u 2 (u + 1).

Proof. Write (e, f ) = (e 1 , f 1 ) ⊕ (e 2 , f 2 ) ⊕ (e 3 , f 3 ) for the CRT decomposition of (e, f ).

We can easily get there at most exist 2 self-dual codes which contain (e 1 , f 1 ). Consider (e 2 , f 2 )

(ii-1) α 2 = 0, we have

, β 2 is arbitrary.

(ii-2) α 2 = 0, we have b = pβ 2 , which implies f 2 = 0, β 2 is arbitrary.

(iii) If e 2 = 0, we then get f 2 = 0. That implies b is arbitrary. We can easily get there are at most u(1 + u) self-dual codes that containing (e 2 , f 2 ).

By Theorem 13, then e 2 , e 3 = 0. If e 2 , e 3 are not units with e 2 , e 3 = 0, based on 2 in Theorem 13, for the subcase 2(b), we obtain 1 + d 2 = 0. We then get 1 + d . Then d 2 is uniquely determined by d 1 . That is to say, there are at most 2 self-dual codes containing (e, f ) when e 2 , e 3 are not units. Thus, by Theorem 5, we obtain λ = 2u 2 (u + 1) with at most u self-dual codes containing (e 3 , f 3 ) if n ≡ 1 (mod 4). When n ≡ 3 (mod 4), C 3 is determined by C 2 .

Then, the result follows.

We can now state and prove the main result of this paper.