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Abstract
The dodecacode is a nonlinear additive quaternary code of length 12. By puncturing it at any
of the twelve coordinates, we obtain a uniformly packed code of distance 5. In particular, this
latter code is completely regular but not completely transitive. Its coset graph is distance-
regular of diameter three on 210 vertices, with new intersection array {33, 30, 15; 1, 2, 15}.
The automorphism groups of the code, and of the graph, are determined. Connecting the
vertices at distance two gives a strongly regular graph of (previously known) parameters
(210, 495, 238, 240). Another strongly regular graph with the same parameters is constructed
on the codewords of the dual code. A non trivial completely regular binary code of length 33
is constructed.

Keywords Distance-regular graphs · Completely regular codes · Uniformly packed codes ·
Additive quaternary codes

Mathematics Subject Classification 05E30 · 94B05

1 Introduction

Distance-regular (DR) graphs form the most extensively studied class of structured graphs
due to their many connections with codes, designs, groups and orthogonal polynomials

Communicated by J. H. Koolen.

This research is supported by National Natural Science Foundation of China (61672036), Excellent Youth
Foundation of Natural Science Foundation of Anhui Province (1808085J20).

B Minjia Shi
smjwcl.good@163.com

Denis S. Krotov
krotov@math.nsc.ru

Patrick Solé
sole@enst.fr

1 School of Mathematical Sciences, Anhui University, Hefei 230601, Anhui, China

2 Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, Novosibirsk, Russia 630090

3 4CNRS/LAGA, University of Paris 8, 2 rue de la Liberté, 93 526 Saint-Denis, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-019-00609-w&domain=pdf
http://orcid.org/0000-0002-8516-755X
http://orcid.org/0000-0002-4078-8301


2092 M. Shi et al.

[1,7]. Since the times of Delsarte [13], a powerful way to create DR graphs, especially in low
diameters, has been to use the coset graph of completely regular codes. A code is completely
regular if theweight distribution of each coset solely depends on theweight of its coset leader.
In [7] can be found many such examples from Golay codes, Kasami codes, and others. A
recent survey is [4]. A special class of completely regular codes is that of uniformly packed
codes. A code with packing radius e is uniformly packed if the spheres of radius e + 1 about
the codewords overlap in a very uniform way: there are two constants λ and μ such that
the number of codewords at distance e + 1 from some x in ambient space is either λ if x
is at distance e from the code or μ if x is at distance ≥ e + 1 from the code. In 1974 the
following hypothetical parameters [n, k,≥ 2e + 1] for quaternary uniformly packed codes
with packing constants (λ, μ) were found [2] by computer search as

n = 22m+1 + 1

3
, n − k = 2m + 1, e = 2, μ = λ + 1 = 22m − 1

3

for m ≥ 2, but no corresponding code was found. The case m = 2 of the above parameters
leads to a putative coset graph listed in [7, p.428] as a distance-regular graph on 1024 = 45

vertices of diameter 3. It does not appear to be solved as of 2016 in the recent survey [23].
In 1998, an additive quaternary code of parameters (12, 46, 6) was introduced in [11] for the
purpose of quantum-error correction, and called the dodecacode. This code was used in [17]
to construct designs by shortening. In this note, we construct an additive non-linear code with
the Bassalygo et al. parameters for m = 2 by puncturing the dodecacode. From the coset
graph of that code, we obtain a first known distance-regular graph with intersection array
{33, 30, 15; 1, 2, 15}, already studied in [20], as a hypothetical object, from the standpoint
of symmetry. This is the main result of this note. As a byproduct, connecting the vertices at
distance two gives a strongly regular graph of parameters (210, 495, 238, 240). Surprisingly,
connecting the codewords in the dual code at distance 8 gives also a strongly regular graph
with the same parameters.Other results coming fromquaternary additive codes are as follows.
By triple puncturing of the dodecacode, we obtain an additive code of length 9, and taking its
coset graph, we construct a strongly regular graph of parameters (64, 27, 10, 12). We give a
universal correspondence between quaternary and binary codes that preserves coset graphs,
up to isomorphism. When applied to the two preceding codes, it constructs new completely
regular binary codes in length 27 and 33.

Thus, the observation that the punctured dodecacode is uniformly packed solves a problem
that hadbeenopen since 1974 for quaternary codes and since 1989 for distance-regular graphs.

The sections are arranged as follows. The next section collects the necessary notation and
definitions. Section 3 studies codes either quaternary or binary. Section 4 constructs the new
distance regular graph announced in the title. Section 5 concludes the article and points out
some challenging open problems.

As finding a new distance-regular graph is a most exciting result of the current work, we
give here one of its shortest descriptions: it is the Cayley graph on Z

10
2 with the connecting

set {1, 2, 4, 8, 16, 32, 54, 64, 128, 149, 151, 170, 186, 216, 217, 256, 293, 310, 329, 338,
466, 512, 597, 605, 658, 681, 745, 841, 951, 952, 956, 966, 998}, where integers are treated
as binary tuples in the standard way.

2 Definitions and notation

For any undefined term pertaining to codes we refer to [16,19], and to [1,7] for any undefined
term related to distance-regular graphs.
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2.1 Linear codes

A linear code of length n, dimension k, minimum distance d is called an [n, k, d] code. A
two-weight code is an [n, k] linear binary code having two nonzero weights w1 and w2. Its
parameters are denoted by the formula [n, k;w1, w2]. The duality is understood with respect
to the standard inner product. The external distance of a linear code is the number of nonzero
weights in its dual. A coset of a linear code C is any translate of C by a constant vector.
A coset leader is any coset element that minimizes the weight. The weight of a coset is the
weight of any of its leaders. The coset graph ΓC of a code C is defined on the cosets of C ,
two cosets being connected if they differ by a coset of weight one.

2.2 Additive codes

We consider codes of length n for the Hamming distance over F4, and denote the Hamming
weight of x by wt(x). An additive code of length n over F4 is an additive subgroup of F

n
4.

It is a free F2 module with 4k elements for some k ≤ n (here 2k is an integer, but k may be
half-integral). There are two ways to specify such a code C . Firstly, using a generator matrix
G, the code C can be cast as the F2-span of its rows. Secondly, a parity check matrix H can
be defined by using the trace inner product given in dimension 1 by x ∗ y = Tr(xy2), where
Tr(z) = z + z2, and extended coordinatewise to vectors of length n. The dual of a code C
denoted by C⊥ is understood with respect to that inner product. Define the �-product of a
m × n matrix M with rows Mi by a vector of length n as

M�x = (M1 ∗ x, . . . , Mm ∗ x)T ,

the T denoting transposition. An additive code with 4k codewords can then be specified by
an 2n − 2k by n matrix H , the parity check matrix of C , as

C = {x ∈ F
n
4 | H�x = 0}.

Note that H is a generator matrix forC⊥. We call syndrome s(x) of x ∈ F
n
4 the column vector

of size 2n − 2k defined by s(x) = H�x . A code C− is obtained by puncturing from a code
C at the coordinate i if it is the projection of C on the remaining n − 1 other coordinates. A
coset of an additive code C is any translate of C by a constant vector. The definitions of coset
leader and coset weight are the same as in the case of linear codes. The coset graph ΓC of
a code C is then the graph defined on the 4n−k syndromes, two of them being connected if
they differ by a syndrome s(x) with wt(x) = 1. By the obvious one-to-one correspondence
between syndromes and cosets [16], this graph is also the graph on the cosets, two cosets
being connected if they differ by a coset of weight one. We give without proof the following
extension of [7, 11.1.11] from linear to additive codes.

Theorem 1 If C is an additive quaternary code of minimum distance at least three, with
dual weight distribution [〈i, Ai 〉], then the spectrum of ΓC is {(3n − 4i)Ai }. Thus Ai is the
frequency of weight i in C⊥ and the multiplicity of the eigenvalue 3n − 4i .

The monomial automorphism group of a quaternary code C is the set of all monomial
transformations that leave the code wholly invariant, where a monomial transformation [16]
is the composition of a coordinate permutation and the multiplication of the value in every
position by a nonzero scalar. The complete automorphism group Aut(C) of a code C is its
stabilizer in the group of isometries of the Hamming space. The complete automorphism
group includes the monomial automorphism group and the group of translations of the code,
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but can be larger than their product.An additive quaternary code is called completely transitive
in the sense of [21] if the induced action of Aut(C) on the cosets of given weight of C is
transitive. Such codes are completely regular, with a distance-transitive coset graph. For an
alternative definition see [14]. For a partial classification see [3].

2.3 Graphs

All graphs in this note are finite, undirected, connected, without loops or multiple edges. The
neighborhood Γ (x) is the set of vertices connected to x . The degree of a vertex x is the size
of Γ (x). A graph is regular if every vertex has the same degree. The i-neighborhood Γi (x)
is the set of vertices at geodetic distance i to x . A graph is distance regular (DR) if for every
pair or vertices u and v at distance i apart the quantities

ai = |Γi+1(u) ∩ Γ (v)|
ci = |Γi−1(u) ∩ Γ (v)|

solely depend on i and not on the special choice of the pair (u, v). In that situation the
graphs Γi are regular of degree vi and we will refer to the vi s as the successive degrees of Γ .
The automorphism group of a graph is the set of permutations of the vertices that preserve
adjacency. A graph is distance-transitive if its automorphism group is transitive on its vertices
and on each of the sets Γi (x) for any i and any fixed x . A DR graph of diameter 2 is called
a Strongly Regular Graph (SRG). Its parameters (ν, κ, λ, μ) denote the number of vertices,
the degree, the number of common neighbors of a pair of connected vertices, the number of
common neighbors of a pair of disconnected vertices. The spectrum of a graph is the set of
distinct eigenvalues of its adjacency matrix. It is denoted by {λm1

1 , λ
m2
2 , . . .}, wheremi stands

for the multiplicity of the eigenvalue λi . The Hamming graph H(n, q) is the DR graph on
F
n
q , two vectors being connected if they are at Hamming distance one.

3 Codes

3.1 Quaternary codes

The dodecacode D is a code of length 12 over F4 = F2(w) of parameters (12, 46, 6) that
is additive but not linear [11]. It can be defined as a cyclic code with one generator. In the
notation of [11] we have D = (w10100100101). Thus, puncturing at any of the twelve
coordinates give an equivalent code D− of parameters (11, 46, 5), of generator matrix given
in Table 1.

Its primal and dual weight distributions and automorphism groups are easily computed in
Magma [5] and Sage [22].

Theorem 2 The weight distribution and the dual weight distribution of D− are

[〈0, 1〉, 〈5, 198〉, 〈6, 198〉, 〈7, 990〉, 〈8, 495〉, 〈9, 1650〉, 〈10, 330〉, 〈11, 234〉]
and [〈0, 1〉, 〈6, 198〉, 〈8, 495〉, 〈10, 330〉],

respectively, where 〈i, Ai 〉 means that there are Ai codewords of weight i .
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Table 1 Generator matrix of D− ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 w2 w2 0 w 1 w

0 0 0 0 0 w 0 w w w 1
1 0 0 0 0 1 0 1 w2 w2 1
w 0 0 0 0 0 w 1 w w w

0 1 0 0 0 0 1 1 1 w2 w2

0 w 0 0 0 w2 1 w2 w w 0
0 0 1 0 0 w w 1 1 0 1
0 0 w 0 0 w 1 w w2 w2 0
0 0 0 1 0 w w w 0 1 w

0 0 0 w 0 w2 1 1 w2 0 w

0 0 0 0 1 w2 w2 w2 1 0 w2

0 0 0 0 w w 1 0 1 w w

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Theorem 3 The monomial automorphism group of D− is generated by the following two
monomial matrices:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 w 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 w2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 w2 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 w 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 w

0 0 0 1 0 0 0 0 0 0 0
0 w2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 w2 0 0
0 0 0 0 0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 w2

0 0 0 0 0 w2 0 0 0 0 0
0 0 0 0 0 0 0 w2 0 0 0
0 0 0 0 0 0 0 0 w 0 0
0 0 w 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 w 0 0 0 0 0 0 0
0 0 0 0 w2 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 w 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is isomorphic to a subgroup of S33 of order 54 = 2 × 33 with generators (1 4 27 29
14 18)(2 5 25 30 15 16)(3 6 26 28 13 17)(7 9 8)(10 22 12 24 11 23)(19 31 20 32 21 33)
and (4 32)(5 33)(6 31)(7 17)(8 18)(9 16)(10 23)(11 24)(12 22)(13, 27)(14 25)(15 26)(19
28)(20 29)(21 30) in disjoint cycles product notation (this subgroup reflects the action of
the automorphism group on the words of weight 1 in the order 10 . . . 0, w0 . . . 0, w20 . . . 0,
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2096 M. Shi et al.

010 . . . 0, …, 0 . . . 0w2). The complete automorphism group of D− is the product of the
monomial automorphism group with the group of translations and has the order 54 · 212.
Remark 1 Since 54 is not divisible by 33 the code D− cannot be completely transitive [21].

To compute the parameters λ and μ, we require the following lemma, of independent
interest.

Lemma 1 If C is a uniformly packed code of distance 2e+1, length n, andweight distribution
Ai over Fq , then we have

λ(q − 1)e
(
n
e

)
= A2e+1

(
2e + 1

e

)
A2e+1

(
2e + 1

e

)
(e + 1)(q − 2) + A2e+2

(
2e + 2
e + 1

)

= (λ − μ)A2e+1

(
2e + 1

e

)
+ (μ − 1)(q − 1)e+1

(
n

e + 1

)
.

Proof Double counting the number of pairs (x, y) such that wt(x) = e, wt(y) = 2e + 1,
wt(y − x) = e + 1, y ∈ C relates λ and A2e+1. This yields the first relation.

Double counting the number of pairs (x, y) such that wt(x) = e + 1, wt(y) ∈ {2e +
1, 2e+ 2}, wt(y − x) = e+ 1, y ∈ C (note that among the (q − 1)e+1

( n
e+1

)
words of weight

e+1, exactly A2e+1
(2e+1

e

)
are at distance e from the code, and the other are at distance e+1

from the code) relates λ, μ, A2e+1, and A2e+2. This gives us the second relation. 
�
We are now in a position to state and prove the main result of this subsection.

Theorem 4 The code D− is uniformly packed with (λ, μ) = (4, 5).

Proof We know the code is uniformly packed since its minimum distance equals twice its
external distance minus one [7, Corollary 11.1.2]. To compute λ and μ we specialize the
above lemma to q = 4, n = 11, e = 2, and A5 = A6 = 198 that is known from Theorem 2.
The first relation yields λ = 4. Reporting into the second gives μ = 5. 
�

Denote by D3− any (9, 46) code obtained by puncturing D− on any pair of coordinates.
The dual of D3− is an additive two-weight code. The following result comes from an easy
Magma computation [5].

Theorem 5 The dual weight distribution of D3− is [〈0, 1〉, 〈6, 36〉, 〈8, 27〉].

3.2 Binary codes

We aim to construct a binary code with a coset graph isomorphic to that of D−. To that end,
we define a universal correspondence between quaternary and binary codes that preserves
coset graphs, up to isomorphism.

Define the concatenation map of a quaternary code of length n with the zero sum code
R⊥
3 = {000, 011, 110, 101} as follows. For binary scalars a and b, let φ(a + bw) = (b, b +

a, a). Equivalently, φ(c) = (Tr(c),Tr(wc),Tr(w2c)). The action of φ is extended to the
quaternary vectors coordinatewise.

Theorem 6 Assume that Q is a quaternary additive code of length n and B = φ(Q⊥)⊥. The
following assertions hold:

(i) if Q is an (n, 4k) code, then B is a linear [3n, n + 2k] binary code;
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A new distance-regular graph of diameter 3 on 1024 vertices 2097

(ii) if w is a weight of Q⊥ with frequency Aw , then 2w is a weight of B⊥ with frequency
Aw, and all the weights of B⊥ arise in this way;

(iii) the coset graphs ΓQ and ΓB are isomorphic.

Proof (i) Trivially, the length of B⊥ = φ(Q⊥) is 3n and the size is the same as the size of
Q⊥, i.e., 4n−k . Hence, the size of B is 23n/4n−k = 2n+2k .

(ii) From the concatenation, we readily see that wt(φ(c)) = 2wt(c).
(iii) We will show that the graphs ΓQ and ΓB built on the syndromes of the check matri-

ces P and φ(P) coincide. To see this, we first note that the both graphs are built on
the binary columns of height 2n − 2k. Next, we consider the connecting syndromes
that correspond to the weight-1 vectors. Denote by P1 the first column of the check
matrix. The syndromes corresponding to the weight-1 quaternary vectors (1, 0, . . . , 0),
(w, 0, . . . , 0), and (w2, 0, . . . , 0) are Tr(P1), Tr(w2P1), and Tr(wP1), where the trace
map acts on the column component-wise. On the other hand, by the definition of φ,
the first three columns of φ(P) are Tr(P1), Tr(wP1), and Tr(w2P1). Therefore, the
syndromes corresponding to the binary 1-weight vectors (1, 0, . . . , 0), (0, 1, 0, . . . , 0),
(0, 0, 1, 0, . . . , 0) are Tr(P1), Tr(wP1), Tr(w2P1) again. Considering in a similar way
every other columnof P , wefind that the set of syndromes corresponding to theweight-1
vectors is the same for P and φ(P). Hence, ΓQ = ΓB . 
�

Remark 2 It can be shown that Q and B are related by the following correspondence (denoted
by ψ) that associates 2n codewords of B to any codeword of Q. For simplicity, we write it
for n = 1.

0
ψ−→ 000, 111; 1

ψ−→ 100, 011; w
ψ−→ 001, 110; w2 ψ−→ 010, 101.

Thus the images of any of the four symbols form an antipodal pair of vertices in the 3-cube.
We have the following commutative diagram where the down arrow means “dual”.

Q −→ ψ(Q)⏐ ⏐
Q⊥ −→ φ(Q⊥) = ψ(Q)⊥

Thus ψ is the pullback of φ in this diagram.

Corollary 1 Let B− = φ(D−⊥
)⊥. The binary code B− is a completely regular code of

parameters [33, 23, 3], with dual weight distribution

[〈0, 1〉, 〈12, 198〉, 〈16, 495〉, 〈20, 330〉],
and weight distribution

[〈0, 1〉, 〈3, 11〉, 〈5, 198〉, 〈6, 1243〉, 〈7, 4158〉, 〈8, 13563〉, 〈9, 38445〉,
〈10, 88638〉, 〈11, 185397〉, 〈12, 352902〉, 〈13, 568788〉, 〈14, 786885〉,
〈15, 998052〉, 〈16, 1156023〉, 〈17, 1156023〉, 〈18, 998052〉, 〈19, 786885〉,
〈20, 568788〉, 〈21, 352902〉, 〈22, 185397〉, 〈23, 88638〉, 〈24, 38445〉,
〈25, 13563〉, 〈26, 4158〉, 〈27, 1243〉, 〈28, 198〉, 〈30, 11〉, 〈33, 1〉].

Proof Thedualweight distribution followsby the preceding theoremcombinedwithTheorem
2. The weight distribution is then computed by MacWilliams transform. 
�
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Remark 3 The code B− is a non trivial example of a completely regular code since its
minimum distance is 3, and its external distance is 3. Thus it is neither perfect, nor uniformly
packed.

Corollary 2 The code φ(D3−⊥
) is a binary two-weight [27, 6; 12, 16] code.

Proof The weight distribution follows by Theorem 6, where n = 9, k = 6, Q = D3−, and
B = φ(D3−⊥

)⊥, combined with Theorem 5. 
�
Remark 4 Binary completely regular codes with the last parameters are known [12]; all such
codes are related to bent functions, see Theorem 12.12 and the following paragraph in [10].
Puncturing different coordinates, we obtain 3 nonequivalent codes with these parameters.

4 Graphs

In this section, we study the coset graphs of D−, and of D3−.

Theorem 7 The graph ΓD− is distance-regular of diameter 3, of spectrum

{271, 9198, 1495, (−7)330}.
Its successive degrees are (1, 33, 495, 495).

Proof The spectrum of ΓD− is easily computed from the weight distribution of Theorem 2
upon applyingTheorem1.The distance-regularity follows from the fact that D− is completely
regular, being uniformly packed in the sense of [15], as havingminimumdistance 5 = 2×3−1
and external distance 3. In particular it is completely regular as per [15, Theorem 7]. The
fact that the error correcting capacity is 2 implies that the first three degrees are 1, 33 =
3 × 11, 495 = (11

2

)
32. The last degree follows by 210 − 1 − 33 − 495 = 495. 
�

More structural information on this graph is as follows.

Theorem 8 The intersection array of the graph ΓD− is {33, 30, 15; 1, 2, 15}.
Proof We sketch the three steps of the proof as follows. We know λ and μ from Theorem 4.
The outer distribution matrix B of an uniformly packed code is uniquely determined by n,
e, q and these two parameters [7, Corollary 11.1.2]. From the known intersection array of
H(n, 4), and this data, the result follows by [7, Theorem 11.1.8], with Γ = H(n, 4), and Π

being the completely regular partition induced by the cosets of D−. 
�
Theorem 9 The automorphism group of the graph has order 210 · 54, acts transitively on the
vertices, and has two orbits on the edges, of size 29 · 6 and 29 · 27. The stabilizer of a vertex
has a structure of type (C9 � C3) � C2. The induced subgraph fixed by an element of the
automorphism group, depending on the order p of the element, can be the following, up to
isomorphism:

(i) the whole graph, p = 1;
(ii) the null graph, p = 2;
(iii) the disjoint union of 8 complete graphs of order 4, p = 2;
(iv) the edge-free graph on 4 vertices, p = 3;
(v) the Hamming graph H(2, 4), p = 3;
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A new distance-regular graph of diameter 3 on 1024 vertices 2099

(vi) the edge-free graph on 2 vertices, p = 6;
(vii) the one-vertex graph, p = 9;
(viii) the complete graph of order 4, p = 9.

Proof Since the graph is a Cayley graph, it is vertex transitive. The other assertions were
established by Sage [22] computations. 
�

The possible induced subgraphs fixed by an element of a prime order of the automorphism
group of a distance-regular graph with intersection array {33, 30, 15; 1, 2, 15} were studied
in [20]. The case (iv) of the theorem above is missed in the main Theorem of [20], which
should be completed by the subcase where every two vertices of the fixed subgraph are at
distance three (A.A. Makhnev, Private Communication, 2018).

The following strongly regular graph is found by standard spectral techniques, as indicated
in [7, p. 428]. For the next two results, we assume that the reader is familiar with the theory
of duality in association schemes [1,7,13].

Theorem 10 The graph (ΓD−)2 is strongly regular with parameters (210, 495, 238, 240).

Proof The P-matrix of the association scheme underlying ΓD− can be computed by the
formulas in [9, pp. 135–136] or [13, Theorem5.25], as

⎛
⎜⎜⎝
1 33 495 495
1 9 15 −25
1 1 −17 15
1 −7 15 −9

⎞
⎟⎟⎠ .

The second column is the spectrum of (ΓD−)2, discounting multiplicities. The result follows
by the spectral characterization of SRGs [8]. 
�
Strongly regular graphs with these parameters are known [6]. We do not know if any of them
is isomorphic to (ΓD−)2.

There is a Q-analogue of the preceding results.

Theorem 11 TheDelsarte dual of the underlying association scheme ofΓD− is Q-polynomial
with Krein array {33, 30, 15; 1, 2, 15}, multiplicities 1, 33, 495, 495 and valencies 1,
198, 495, 330. The second relation of that association scheme is a SRG of parameters
(210, 495, 238, 240).

Proof Recall that theDelsarte dual of a coset graph is an association scheme on the codewords
of the dual code [13], called hereafter the distance scheme. If the weights are numbered

w1 = 6 < w2 = 8 < w3 = 10,

then for x, y ∈ D−⊥, we define the relation Ri as x Ri y iff wt(x + y) = wi . By convention
x R0y iff x = y. This is exactly the situation of [9] with e = 2, up to the fact that D− is not
linear but only additive. By Delsarte duality, the multiplicities of this scheme are the degrees
of ΓD− . Similarly, its valencies are the multiplicities of the spectrum of ΓD− . The Krein array
coincides with the intersection array of the coset graph. The fact that the second relation of
the distance scheme is a SRG comes from computation of the P-matrix which can be done
as in [9, pp. 135–136].
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⎛
⎜⎜⎝
1 198 495 330
1 54 15 −70
1 6 −17 10
1 −10 15 −6

⎞
⎟⎟⎠ .


�
Remark 5 ByDelsarte duality, the P-matrix of the coset scheme is theQ-matrix of the distance
scheme and conversely.

Remark 6 This Q-polynomial scheme appears as an open problem in the table of Jason
Williford [24]. We thank Bill Martin for pointing this out.

Remark 7 Wedo not know if the SRG constructed in that theorem is isomorphic with (ΓD−)2.

We also obtain a strongly regular graph on the cosets of D3−.

Theorem 12 The graph ΓD3− is a SRG of parameters (64, 27, 10, 12). The spectrum of ΓD3−
is {271, 336, (−5)27}.
Proof The spectrum of ΓD3− is easily computed from the weight distribution of Theorem 5
upon applying [7, 11.1.11]. The strong regularity follows then by the spectral characterization
of SRG’s [8]. The parameters follow by the data of the spectrum [8, Theorem 9.1.3]. 
�
Remark 8 Depending on the punctured coordinates we obtain 3 non-isomorphic SRG
(64, 27, 10, 12). One of them is isomorphic to the SRG corresponding to a linear [9, 3]
two-weight quaternary code. All the codes D3− are, however, nonlinear.

5 Conclusion and open problems

In this note, we have constructed the first additive non linear uniformly packed code in the
history of the field. This solves a forty-four year old open problem of [2]. The other values of
m in the Introduction areworth investigating, even if they lead to graph parameters beyond the
tables of [7,23]. The study of completely regular additive quaternary codes is only beginning.

On another tack, the existence of an uniformly packed code in a Doob graph of diameter
11 [7, p.27], a distance-regular graph with the same parameters as the H(11, 4), is a goal
worth pursuing. Note that perfect codes are known in Doob graphs [18].

That object would constitute a Galois ring analogue of the (punctured) dodecacode, and
might lead to another distance-regular graph with intersection array {33, 30, 15; 1, 2, 15},
non-isomorphic to the one considered in the current paper.
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