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Abstract. λ-calculi come with no fixed evaluation strategy. Different
strategies may then be considered, and it is important that they satisfy
some abstract rewriting property, such as factorization or normalization
theorems. In this paper we provide simple proof techniques for these
theorems. Our starting point is a revisitation of Takahashi’s technique to
prove factorization for head reduction. Our technique is both simpler and
more powerful, as it works in cases where Takahashi’s does not. We then
pair factorization with two other abstract properties, defining essential

systems, and show that normalization follows. Concretely, we apply the
technique to four case studies, two classic ones, head and the leftmost-
outermost reductions, and two less classic ones, non-deterministic weak
call-by-value and least-level reductions.

1 Introduction

The λ-calculus is the model underlying functional programming languages and
proof assistants. The gap between the model and its incarnations is huge. In
particular, the λ-calculus does not come with a fixed reduction strategy, while
concrete frameworks need one. A desirable property is that the reduction which
is implemented terminates on all terms on which β reduction has a reduction
sequence to normal form. This is guaranteed by a normalization theorem. Two
classic examples are the leftmost-outermost and head normalization theorems
(theorems 13.2.2 and 11.4.8 in Barendregt [5]). The former states that if the
term has a β-normal form, leftmost-outermost reduction is guaranteed to find it;
the latter has a similar but subtler statement, roughly head reduction computes
a head normal form, if the term has any.

Another classic theorem for head reduction states that head reduction ap-
proximates the β-normal form by computing an essential part of every evalua-
tion sequence. The precise formulation is a factorization theorem: a sequence of
β steps t→∗

β s can always be re-arranged as a sequence of head steps (→h) fol-
lowed by a sequence of non-head steps (→¬h), that is, t→∗

h u→∗
¬h s. Both head

and leftmost-outermost reductions play a key role in the theory of the λ-calculus
as presented in Barendregt [5] or Krivine [17].

Variants of the λ-calculus abound and are continuously introduced: weak, call-
by-value, call-by-need, classical, with pattern matching, sharing, non-determinism,
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probabilistic choice, quantum features, differentiation, etc. So, normalization and
factorization theorems need to be studied in many variations. Concepts and
techniques to prove these theorems do exist, but they do not have the essential,
intuitive structure of other fundamental properties, such as confluence.

This paper. Here we provide a presentation of factorization and normalization
revisiting a simple technique due to Takahashi [29], making it even simpler and
more widely applicable. We separate the abstract reasoning from the concrete
details of head reduction, and apply the revisited proof method to several case
studies. The presentation is novel and hopefully accessible to anyone familiar
with the λ-calculus, without a background in advanced notions of rewriting the-
ory.

We provide four case studies, all following the same method. Two are revis-
itations of the classic cases of head and leftmost-outermost (shortened to ℓo)
reductions. Two are folklore cases. The first is weak (i.e. out of λ-abstractions)
call-by-value (shortened to CbV) reduction in its non-deterministic presentation.
The second is least-level (shortened to ℓℓ) reduction, a reduction coming from
the linear logic literature—sometimes called by levels—and which is usually pre-
sented using proof nets (see de Carvalho, Pagani and Tortora de Falco [7] or
Pagani and Tranquilli [25]) or calculi related to proof nets (see Terui [31] or
Accattoli [1]), rather than in the ordinary λ-calculus. The ℓo and ℓℓ cases are
full reductions for β, i.e. they have the same normal forms as β. The head and
weak CbV cases are not full, as they may not compute β normal forms.

Takahashi. In [29], Takahashi uses the natural inductive notion of parallel4 β
reduction (which reduces simultaneously a number of β-redexes; it is also the key
concept in Tait and Martin-Löf’s classic proof of confluence of the λ-calculus)
to introduce a simple proof technique for head factorization, from which head
normalization follows. By iterating head factorization, she also obtains leftmost-
outermost normalization, via a simple argument on the structure of terms due
to Mitschke [20].

Her technique has been employed for various λ-calculi because of its simplicity.
Namely, for the λ-calculus with η by Ishii [14], the call-by-value λ-calculus by
Ronchi Della Rocca and Paolini [26,28], the resource λ-calculus by Pagani and
Tranquilli [24], pattern calculi by Kesner, Lombardi and Rı́os [15], the shuffling
calculus by Guerrieri, Paolini and Ronchi Della Rocca [10,9,11], and it has been
formalized with proof assistants by McKinna and Pollack [18] and Crary [8].

Takahashi revisited. Despite its simplicity, Takahashi’s proof [29] of factoriza-
tion relies on substitutivity properties not satisfied by full reductions such as ℓo
and ℓℓ. Our first contribution is a proof that is independent of the substitutivity
properties of the factorizing reductions. It relies on a simpler fact, namely the

4 The terminology at work in the literature on λ-calculus and the rewriting terminol-
ogy often clash: the former calls parallel β reduction what the latter calls multi-step

β reduction—parallel reduction in rewriting is something else.
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substitutivity of an indexed variant
n
⇒β of parallel β reduction ⇒β . The defini-

tion of
n
⇒β simply decorates the definition of ⇒β with a natural number n that

intuitively corresponds to the number of redexes reduced in parallel by a ⇒β

step.
We prove factorization theorems for all our four case studies following this

simpler scheme. We also highlight an interesting point: factorization for the two
full reductions cannot be obtained directly following Takahashi’s method5.

From factorization to essential normalization. The second main contribution of
our paper is the isolation of abstract properties that together with factorization
imply normalization. First of all we abstract head reduction into a generic re-
duction →e, called essential, and non-head reduction →¬h into a non-essential
reduction →¬e. The first additional property for normalization is persistence:
steps of the factoring reduction →e cannot be erased by the factored out →¬e.
The second one is a relaxed form of determinism for →e. We show that in such
essential rewriting systems→e has a normalization theorem. The argument is ab-
stract, that is, independent of the specific nature of terms. This is in contrast to
how Takahashi [29] obtains normalization from factorization: her proof is based
on an induction over the structure of terms, and cannot then be disentangled by
the concrete nature of the rewriting system under study.

Normalizing reductions for β. We apply both our techniques to our case studies
of full reduction: ℓo and ℓℓ, obtaining simple proofs that they are normalizing
reductions for β. Let us point out that ℓo is also—at present—the only known
deterministic reduction to β normal form whose number of steps is a reason-
able cost model, as shown by Accattoli and Dal Lago [2]. Understanding its
normalization is one of the motivations at the inception of this work.

Normalization with respect to different notions of results. As a further feature,
our approach provides for free normalization theorems for reductions that are
not full for the rewrite system in which they live. Typical examples are head
and weak CbV reductions, which do not compute β and CbV normal forms,
respectively. These normalization theorems arise naturally in the theory of the λ-
calculus. For instance, functional programming languages implement only weak
notions of reduction, and head reduction (rather than ℓo) is the key notion for
the λ-definability of computable functions.

We obtain normalization theorems for head and weak CbV reductions. Catch-
ing normalization for non-full reductions sets our work apart from the recent
studies on normalization by Hirokawa, Middeldorp, and Moser [13] and Van
Oostrom and Toyama [23], discussed below among related works.

Factorization, Normalization, Standardization. In the literature of the λ-calculus,
normalization for ℓo reduction is often obtained as a corollary of the standard-

5 It can be obtained indirectly, as a corollary of standardization, proved by Takahashi
[29] using the concrete structure of terms. Thus the proof is not of an abstract nature.
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ization theorem, which roughly states that every reduction sequence can be re-
organized as to reduce redexes according to the left-to-right order (Terese [30] fol-
lowing Klop [16] and Barendregt [5], for instance). Standardization is a complex
and technical result. Takahashi [29], using Mitschke’s argument [20] that iterates
head factorization, obtains a simpler proof technique for ℓo normalization—and
for standardization as well. Our work refines that approach, abstracts from it
and shows that factorization is a general technique for normalization.

Related work. Factorization is studied in the abstract in [19,1]. Melliès axiomatic
approach [19] builds on standardization, and encompasses a wide class of rewrit-
ing systems; in particular, like us, he can deal with non-full reductions. Accattoli
[1] relies crucially on terminating hypotheses, absent instead here.

Hirokawa, Middeldorp, and Moser [13] and Van Oostrom and Toyama [23]
study normalizing strategies via a clean separation between abstract and term
rewriting results. Our approach to normalization is similar to the one used in [13]
to study ℓo evaluation for first-order term rewriting systems. Our essential sys-
tems strictly generalize their conditions: uniform termination replaces determin-
ism (two of the strategies we present here are not deterministic) and—crucially—
persistence strictly generalizes the property in their Lemma 7. Conversely, they
focus on hyper-normalization and on extending the method to systems in which
left-normality is relaxed. We do not deal with these aspects. Van Oostrom and
Toyama’s study [23] of (hyper-)normalization is based on an elegant and pow-
erful method based on the random descent property and an ordered notion of
commutative diagrams. Their method and ours are incomparable: we do not rely
on (and do not assume) the random descent property (for its definition and uses
see van Oostrom [22])—even if most strategies naturally have that property—
and we do focus on factorization (which they explicitly avoid), since we see it as
the crucial tool from which normalization can be obtained.

As already pointed out, a fundamental difference with respect to both works
is that we consider a more general notion of normalization for reductions that
are not full, that is not captured by either of those approaches.

In the literature, normalization is also proved from iterated head factorization
(Takahashi [29] for ℓo, and Terui [31] or Accattoli [1] for ℓℓ on proof nets-like
calculi, or Pagani and Tranquilli [25] for ℓℓ on differential proof nets), or as a
corollary of standardization (Terese [30] following Klop [16] and Barendregt [5]
for ℓo), or using semantic principles such as intersection types (Krivine [17] for
ℓo and de Carvalho, Pagani and Tortora de Falco [7] for ℓℓ on proof nets). Last,
Bonelli et al. develop a sophisticated proof of normalization for a λ-calculus with
powerful pattern matching in [6]. Our technique differs from them all.

Proofs. Most proofs are in the appendix. This paper is an extended version of [3].

2 Factorization and Normalization, Abstractly

In this section, we study factorization and normalization abstractly, that is, in-
dependently of the specific structure of the objects to be rewritten.
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Fig. 1. Diagrams: a) factorization, b) weak postponement, c) merge, d) split.

A rewriting system (aka abstract reduction system, see Terese [30, Ch. 1]) S
is a pair (S,→) consisting of a set S and a binary relation →⊆ S × S called
reduction, whose pairs are written t → s and called →-steps. A →-sequence
from t is a sequence t → s → . . . of →-steps; t →k s denotes a sequence of k
→-steps from t to s. As usual, →∗ (resp. →=) denotes the transitive-reflexive
(resp. reflexive) closure of →. Given two reductions →1 and →2 we use →1 ·→2

for their composition, defined as t→1 ·→2 s if t→1 u→2 s for some u.
In this section we focus on a given sub-reduction →e of →, called essential,

for which we study factorization and normalization with respect to →. It comes
with a second sub-reduction →¬e, called inessential, such that →e ∪ →¬e=→.
Despite the notation, →e and →¬e are not required to be disjoint. In general,
we write (S, {→a,→b}) for the rewriting system (S,→) where → = →a ∪ →b.

2.1 Factorization.

A rewriting system (S, {→e,→¬e}) satisfies →e-factorization (also called post-
ponement of →¬e after →e) if t →∗ s implies that there exists u such that
t→∗

e
u→∗

¬e s. Compactly, we write →∗⊆→∗
e
·→∗

¬e. In diagrams, see Fig. 1.a.

Proving factorization. Factorization is a non-trivial rewriting property, because
it is global, that is, quantified over all reduction sequences from a term. To
be able to prove factorization, we would like to reduce it to local properties,
i.e. properties quantified only over one-step reductions from a term. At first
sight it may seem that a local diagram such as the one in Fig. 1.b would give
factorization by a simple induction. Such a diagram however does not allow to
infer factorization without further hypotheses—counterexamples can be found
in Barendregt [5].

The following abstract property is a special case for which a local condition
implies factorization. It was first observed by Hindley [12].

Lemma 1 (Hindley, local postponement). Let (S, {→e,→¬e}) be a rewrit-
ing system. If →¬e ·→e⊆→∗

e
·→=

¬e then →∗⊆→∗
e
·→∗

¬e.

Proof. The assumption →¬e ·→e⊆→∗
e
·→=

¬e implies (#) →¬e ·→∗
e
⊆→∗

e
·→=

¬e

(indeed, it is immediate to prove that →¬e ·→k
e
⊆→∗

e
·→=

¬e by induction on k).
We then prove that →k ⊆→∗

e
· →∗

¬e, by induction on k. The case k = 0 is
trivial. Assume → · →k−1. By i.h., → · →∗

e
· →∗

¬e. If the first step is →e, the
claim is proved. Otherwise, by (#), from (→¬e ·→∗

e
)·→∗

¬e we obtain (→∗
e
·→=

¬e

)·→∗
¬e.
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Hindley’s local condition is a strong hypothesis for factorization that in gen-
eral does not hold in λ-calculi—not even in the simple case of head reduction.
However, the property can be applied in combination with another standard tech-
nique: switching to macro steps that compress→∗

e
or →∗

¬e into just one step, at
the price of some light overhead. This idea is the essence of both Tait–Martin-
Löf’s and Takahashi’s techniques, based on parallel steps. The role of parallel
steps in Takahashi [29] is here captured abstractly by the notion of macro-step
system.

Definition 2 (Macro-step system). A rewriting system S = (S, {→e,→¬e})
is a macro-step system if there are two reductions ⇒ and ⇒¬e (called macro-
steps and inessential macro-steps, respectively) such that

– Macro: →¬e ⊆ ⇒¬e ⊆ →
∗
¬e.

– Merge: if t⇒¬e ·→e u then t⇒ u. That is, the diagram in Fig. 1.c holds.
– Split: if t⇒ u then t→∗

e
·⇒¬e u. That is, the diagram in Fig. 1.d holds.

Note that ⇒ just plays the role of a “bridge” between the hypothesis of the
merge condition and the conclusion of the split condition—it shall play a crucial
role in the concrete proofs in the next sections. In this paper, concrete instances
of ⇒ and ⇒¬e shall be parallel β reduction and some of its variants.

Proposition 3 (Factorization). Every macro-step system (S, {→e,→¬e}) sat-
isfies →e-factorization.

Proof. By Merge and Split, ⇒¬e ·→e⊆⇒⊆→∗
e
·⇒¬e⊆→∗

e
·⇒=

¬e. By Hindley’s
lemma (Lemma 1) applied to→e and⇒¬e (rather than→e and→¬e), we obtain
(→e ∪ ⇒¬e)

∗ ⊆→∗
e
· ⇒∗

¬e. Since →¬e⊆⇒¬e, we have (→e ∪ →¬e)
∗ ⊆ (→e

∪ ⇒¬e)
∗ ⊆→∗

e
·⇒∗

¬e. As ⇒¬e⊆→∗
¬e, we have →∗

e
·⇒∗

¬e⊆→
∗
e
·→∗

¬e. Therefore,
→∗= (→e ∪ →¬e)

∗ ⊆→∗
e
·→∗

¬e.

2.2 Normalization for full reductions

The interest of factorization comes from the fact that the essential reduction
→e on which factorization pivots has some good properties. Here we pinpoint
the abstract properties which make factorization a privileged method to prove
normalization; we collect them into the definition of essential system (Def. 5).

Normal forms and normalization. Let us recall what normalization is about. In
general, a term may or may not reduce to a normal form. And if it does, not all
reduction sequences necessarily lead to normal form. A term is weakly or strongly
normalizing, depending on if it may or must reduce to normal form. If a term t
is strongly normalizing, any choice of steps will eventually lead to a normal form.
However, if t is weakly normalizing, how do we compute a normal form? This
is the problem tackled by normalization: by repeatedly performing only specific
steps, a normal form will be computed, provided that t can reduce to any.

Recall the statement of the ℓo normalization theorem: if t →∗
β u with u β-

normal, then t ℓo-reduces to u. Observe a subtlety: such a formulation relies on
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the determinism of ℓo reduction. We give a more general formulation of normal-
izing reduction, valid also for non-deterministic reductions.

Formally, given a rewriting system (S,→), a term t ∈ S is:

– →-normal (or in→-normal form) if t 6→, i.e. there are no s such that t→ s;

– weakly →-normalizing if there exists a sequence t→∗ s with s →-normal;

– strongly →-normalizing if there are no infinite→-sequences from t, or equiv-
alently, if all maximal →-sequences from t are finite.

We call reduction for → any →e⊆→. It is full if →e and → have the same
normal forms.6

Definition 4 (Normalizing reduction). A full reduction →e for → is nor-
malizing (for →) if, for every term t, t is strongly →e-normalizing whenever it
is weakly →-normalizing.

Note that, since the normalizing reduction →e is full, if t is strongly →e-
normalizing then every maximal →e-sequence from t ends in a →-normal form.

Definition 5 (Essential system). A rewriting system (S, {→e,→¬e}) is es-
sential if the following conditions hold:

1. Persistence: if t→e s and t→¬e u, then u→e r for some r.

2. Uniform termination: if t is weakly→e-normalizing, then it is strongly→e-normalizing.

3. Terminal factorization: if t→∗ u and u is →e-normal, then t→∗
e
·→∗

¬e u.

It is moreover full if →e is a full reduction for →.

Comments on the definition:

– Persistence: it means that essential steps are out of reach for inessential
steps, that cannot erase them. The only way of getting rid of essential steps
is by reducing them, and so in that sense they are essential to normalization.

– From determinism to uniform termination: as we already said, in general→e

is not deterministic. For normalization, then, it is not enough that there is a
sequence t→∗

e
u with u→-normal (as in the statement of ℓo-normalization).

We need to be sure that there are no infinite →e-sequences from t. This is
exactly what is ensured by the uniform termination property. Note that if
→e is deterministic (or has the diamond or random descent properties) then
it is uniformly terminating.

– Terminal factorization: there are two subtleties. First, we need only a weak
form of factorization, namely factorization is only required for →-sequences

6 In rewriting theory, a full reduction for → is called a reduction strategy for →. We
prefer not to use the term strategy because it has different meaning in the λ-calculus,
where it is a deterministic, not necessarily full, reduction for →.
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ending in a →e-normal form7. Second, the reader may expect terminal fac-
torization to be required with respect to →-normal rather than →e-normal
forms. The two notions coincide if→e is full, and for the time being we only
discuss full essential systems. We discuss the more general case in Sect. 2.3.

Example 6. In the λ-calculus with β reduction, head reduction →h and its as-
sociated →¬h reduction (defined in Sect. 4) form an essential system. Similarly,
leftmost-outermost →ℓo reduction and its associated →¬ℓo reduction (Sect. 7)
form a full essential system. Two more examples are in Sect. 6 and Sect. 8.

Theorem 7 (Essential full normalization). Let (S, {→e,→¬e}) be a full
essential system. Then →e is a normalizing reduction for →.

Proof. Let t be a weakly →-normalizing term, i.e. t →∗ u for some term u in
→-normal form (and so in →e-normal form, since →e⊆→).

1. Terminal factorization implies t →∗
e
s →∗

¬e u for some s, since u is →e-
normal.

2. Let us show that s is →e-normal: if not, then s →e r for some r, and a
straightforward induction on the length of s →∗

¬e u iterating persistence
gives that u →e p for some p, against the hypothesis that u is →e-normal.
Absurd.

3. By the previous point, t is weakly →e-normalizing. By uniform termination,
t is strongly →e-normalizing.

2.3 A more general notion of normalizing reduction.

Essential systems actually encompass also important notions of normalization
for reductions that are not full, such as head normalization. These cases arise
naturally in the λ-calculus literature, where partial notions of result such as head
normal forms or values are of common use. Normalization for non-full reductions
is instead not so common in the rewriting literature outside the λ-calculus. This
is why, to guide the reader, we presented first the natural case of full reductions.

Let us first discuss head reduction: →h is deterministic and not full with
respect to →β, as its normal forms may not be →β-normal forms. The well-
known property of interest is head normalization (Cor. 11.4.8 in Barendregt’s
book [5]):

If t→∗
β s and s is head normal8 then →h terminates on t.

7 The difference between factorization and its terminal case is relevant for normaliza-
tion: van Oostrom and Toyama [23, footnote 8] give an example of normalizing full
reduction for a rewriting system in which factorization fails but terminal factoriza-
tion holds.

8 “t has a head normal form” is the usual formulation for “t →∗
β s for some s that is

head normal”. We prefer the latter to avoid the ambiguity of the former about the
reduction leading from t to one of its head normal forms (→∗

β or →∗
h?).
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The statement has two subtleties. First, t may →β-reduce to a term in →h-
normal form in many different ways, possibly without using →h, so that the
hypotheses may not imply that →h terminates. Second, the conclusion is “→h

terminates on t” and not t →∗
h s, because in general the maximal →h-sequence

from t may end in a term u 6= s. For instance, let I = λy.y: then I(x(II)) →β

I(xI) →β xI is a →β-sequence to head normal form, and yet the maximal →h-
sequence I(x(II))→h x(II) ends in a different term.

Now, let us abstract from head normalization, taking into account that in gen-
eral the essential reduction →e—unlike head reduction—may not be determinis-
tic, and so we ask for strong →e-normalization rather than for →e-termination.

Theorem 8 (Essential normalization). Let (S, {→e,→¬e}) be an essential
system. If t→∗ u and u is →e-normal, then t is strongly →e-normalizing.

Proof. Exactly as for Theorem 7, fullness is not used in that proof.

In the next section we shall apply Theorem 8 to head reduction and obtain
the head normalization theorem we started with. Another example of a normal-
ization theorem for a non-full reduction is in Sect. 6. Note that the full variant of
the theorem (Theorem 7) is in fact an instance of the general one (Theorem 8).

3 The λ-Calculus

This short section recalls basic definitions and properties of the λ-calculus and
introduces the indexed variant of parallel β.

The set Λ of terms of the λ-calculus is given by the following grammar:

Terms t, s, u, r ::= x | λx.t | ts

We use the usual notions of free and bound variables, t{x�s} for the meta-level
capture-avoiding substitution of s for the free occurrences of x in t, and |t|x for
the number of free occurrences of x in t. The definition of β reduction →β is:

β reduction

(λx.t)s →β t{x�s}
t→β t′

ts→β t′s

t→β t′

λx.t →β λx.t′
t→β t′

st→β st′

Let us recall two basic substitutivity properties of β reduction.

1. Left substitutivity of →β: if t→β t′ then t{x�s} →β t′{x�s}.

2. Right substitutivity of →β : if s→β s′ then t{x�s} →∗
β t{x�s′}. It is possible

to spell out the number of →β-steps, which is exactly the number of free

occurrences of x in t, that is, t{x�s} →
|t|x
β t{x�s′}.
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Parallel β reduction. Parallel β-reduction ⇒β is defined by:

Parallel β reduction

x⇒β x
t⇒β t′

λx.t⇒β λx.t′
t⇒β t′ s⇒β s′

ts⇒β t′s′
t⇒β t′ s⇒β s′

(λx.t)s ⇒β t′{x�s′}

Tait–Martin-Löf’s proof of the confluence of →β relies on the diamond property
of ⇒β

9, in turn based on the following property (see Takahashi [29, p. 1])

Substitutivity of ⇒β : if t⇒β t′ and s⇒β s′ then t{x�s} ⇒β t′{x�s′}.

While the diamond property of ⇒β does not play a role for factorization, one of
the contributions of this work is a new proof technique for factorization relying
on the substitutivity property of an indexed refinement of ⇒β.

Indexed parallel β reduction. The new indexed version
n
⇒β of parallel β reduction

⇒β is equipped with a natural number n which is, roughly, the number of redexes
reduced in parallel by a ⇒β ; more precisely, n is the length of a particular way

of sequentializing the redexes reduced by ⇒β . The definition of
n
⇒β is as follows

(note that erasing the index one obtains exactly ⇒β , so that ⇒β =
⋃

n∈N

n
⇒β):

Indexed parallel β reduction

x
0
⇒β x

t
n
⇒β t′

λx.t
n
⇒β λx.t′

t
n
⇒β t′ s

m
⇒β s′

ts
n+m
⇒β t′s′

t
n
⇒β t′ s

m
⇒β s′

(λx.t)s
n+|t′|x·m+1
⇒β t′{x�s′}

The intuition behind the last clause is: (λx.t)s reduces to t′{x�s′} by

1. first reducing (λx.t)s to t{x�s} (1 step);

2. then reducing in t{x�s} the n steps corresponding to the sequence t
n
⇒β t′,

obtaining t′{x�s};
3. then reducing s to s′ for every occurrence of x in t′ replaced by s, that is, m

steps |t′|x times, obtaining t′{x�s′}.

Points 2 and 3 hold because of the substitutivity properties of β reduction.

It is easily seen that
0
⇒β is the identity relation on terms. Moreover, →β =

1
⇒β , and

n
⇒β ⊆ →n

β , as expected. The substitutivity of
n
⇒β is proved by simply

indexing the proof of substitutivity of ⇒β .

Lemma 9 (Substitutivity of
n
⇒β). If t

n
⇒β t′ and s

m
⇒β s′, then t{x�s}

k
⇒β

t′{x�s′} where k = n+ |t′|x ·m.

Proof. By induction on the derivation of t
n
⇒β t′. Consider its last rule. Cases:

– Variable: two sub-cases

9 Namely, if s1 β⇐ t ⇒β s2 then there exists u such that s1 ⇒β u β⇐ s2.
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• t = x: then t = x
0
⇒β x = t′ then t{x�s} = x{x�s} = s

m
⇒β s′ =

x{x�s′} = t′{x�s′} that satisfies the statement because n+ |t′|x ·m =
0 + 1 ·m = m.

• t = y: then t = y
0
⇒β y = t′ and t{x�s} = y{x�s} = y

0
⇒β y =

y{x�s′} = t′{x�s′} that satisfies the statement because n+ |t′|x ·m =
0 + 0 ·m = 0.

– Abstraction, i.e. t = λy.u
n
⇒β λy.u′ = t′ because u

n
⇒β u′; we can suppose

without loss of generality that y 6= x and y is not free in s (and hence in s′),
so |u′|x = |t′|x and t{x�s} = λy.(u{x�s}) and t′{x�s′} = λy.(u′{x�s′}).

By i.h., u{x�s}
n+|u′|x·m
⇒β u′{x�s′}, thus

u{x�s}
n+|u′|x·m
⇒β u′{x�s′}

t{x�s} = λy.u{x�s}
n+|t′|x·m
⇒β λy.u′{x�s′} = t′{x�s′}

.

– Application, i.e. t = ur
n
⇒β u′r′ = t′ with u

nu⇒β u′, r
nr⇒β r′ and n = nu+nr.

By i.h., u{x�s}
nu+|u′|x·m
⇒β u′{x�s′} and r{x�s}

nr+|r′|x·m
⇒β r′{x�s′}. Then

u{x�s}
nu+|u′|x·m
⇒β u′{x�s′} r{x�s}

nr+|r′|x·m
⇒β r′{x�s′}

t{x�s} = u{x�s}r{x�s}
k
⇒β u′{x�s′}r′{x�s′} = t′{x�s′}

where k = nu + |u
′|x·m+nr + |r

′|x·m = n+(|u′|x + |r
′|x) ·m = n+ |t′|x·m.

– β-step, i.e. t = (λy.u)r
n
⇒β u′{y�r′} = t′ with u

nu⇒β u′, r
nr⇒β r′ and

n = nu + |u′|y · nr + 1. We can assume without loss of generality that y 6= x
and y is not free in s (and so in s′), hence |t′|x = |u′{y�r′}|x = |u′|x +
|u′|y · |r′|x and |u′{x�s′}|y = |u′|y and t{x�s} = (λy.u{x�s})(r{x�s}) and
t′{x�s′} = u′{x�s′}{y�r′{x�s′}}.

By i.h., u{x�s}
nu+|u′|x·m
⇒β u′{x�s′} and r{x�s}

nr+|r′|x·m
⇒β r′{x�s′}. Then

u{x�s}
nu+|u′|x·m
⇒β u′{x�s′} r{x�s}

nr+|r′|x·m
⇒β r′{x�s′}

t{x�s} = (λy.u{x�s})(r{x�s})
k
⇒β u′{x�s′}{y�r′{x�s′}} = t′{x�s′}

where k = nu + |u′|x ·m+ |u′|y · (nr + |r
′|x ·m) + 1 = nu + |u′|y · nr + 1 +

|u′|x ·m+ |u′|y · |r′|x ·m = n+ |t′|x ·m.

4 Head Reduction, Essentially

We here revisit Takahashi’s study [29] of head reduction. We apply the abstract
schema for essential reductions developed in Sect. 2, which is the same schema
used by Takahashi, but we provide a simpler proof technique for one of the re-
quired properties (split). First of all, head reduction→h (our essential reduction



12 B. Accattoli et al.

here) and its associated inessential reduction →¬h are defined by:

Head reduction

(λx.t)s→h t{x�s}
t→h s t 6= λx.t′

tu→h su

t→h s

λx.t→h λx.s

¬Head reduction

t→β t′

(λx.t)s →¬h (λx.t′)s

t→β t′

st→¬h st′
t→¬h t′

λx.t→¬h λx.t′
t→¬h t′

ts→¬h t′s
.

Note that→β =→h ∪ →¬h but→h and→¬h are not disjoint: I(II)→h II and
I(II)→¬h II with I = λz.z. Indeed, I(II) contains two distinct redexes, one is
I(II) and is fired by →h, the other one is II and is fired by →¬h; coincidentally,
the two reductions lead to the same term.

As for Takahashi, a parallel ¬head step t ⇒¬h s is a parallel step t ⇒β s
such that t→∗

¬h s. We give explicitly the inference rules for ⇒¬h:

Parallel ¬head reduction

x⇒¬h x
t⇒β t′ s⇒β s′

(λx.t)s ⇒¬h (λx.t′)s′
t⇒¬h t′

λx.t⇒¬h λx.t′
t⇒¬h t′ s⇒β s′

ts⇒¬h t′s′

Easy inductions show that →¬h⊆⇒¬h⊆→∗
¬h. It is immediate that→h-normal

terms are head normal forms in the sense of Barendregt [5, Def. 2.2.11]. We do
not describe the shape of head normal forms. Our proofs never use it, unlike
Takahashi’s ones. This fact stresses the abstract nature of our proof method.

Head factorization. We show that→h induces a macro-step system, with respect
to →¬h, ⇒β , and ⇒¬h, to obtain →h-factorization by Proposition 3.

Therefore, we need to prove merge and split. Merge is easily verified by
induction on t ⇒¬h s. The interesting part is the proof of the split property,
that in the concrete case of head reduction becomes: if t⇒β s then t→∗

h ·⇒¬h s.
This is obtained as a consequence of the following easy indexed split property
based on the indexed variant of parallel β. The original argument of Takahashi
[29] is more involved, we discuss it after the new proof.

Proposition 10 (Head macro-step system).

1. Merge: if t⇒¬h ·→h u then t⇒β u.

2. Indexed split: if t
n
⇒β s then t⇒¬h s, or n > 0 and t→h ·

n−1
⇒ β s.

3. Split: if t⇒β s then t→∗
h ·⇒¬h s.

That is, (Λ, {→h,→¬h}) is a macro-step system with respect to ⇒β and ⇒¬h.

Proof. 1. Easy induction on t⇒¬h s. Details are in the Appendix, p. 23.
2. By induction on t

n
⇒β s. We freely use the fact that if t

n
⇒β s then t ⇒β s.

Cases:
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– Variable: t = x
0
⇒β x = s. Then t = x⇒¬h x = s.

– Abstraction: t = λx.t′
n
⇒β λx.s′ = s with t′

n
⇒β s′. It follows from

the i.h.
– Application: t = rp

n
⇒β r′p′ = s with r

n1⇒β r′, p
n2⇒β p′ and n = n1 + n2.

There are only two subcases:
• either rp⇒¬h r′p′, and then the claim holds;
• or rp 6⇒¬h r′p′, and then neither r ⇒¬h r′ nor r is an abstraction
(otherwise rp⇒¬h r′p′). By i.h. applied to r

n1⇒β r′, n1 > 0 and there

exists r′′ such that r →h r′′
n1−1
⇒ β r′. Thus, t = rp→h r′′p and

r′′
n1−1
⇒β r′ p

n2⇒β p′

r′′p
n1−1+n2⇒β r′p′ = s

.

– β-step: t = (λx.u)r
n
⇒β u′{x�r′} = s with u

n1⇒β u′, r
n2⇒β r′′ and

n = n1 + |u′|x · n2 + 1 > 0. We have t = (λx.u)r →h u{x�r} and by

substitutivity of
n
⇒β (Lemma 9) u{x�r}

n1+|u′|x·n2

⇒β u′{x�r′} = s.
3. If t ⇒β s then t

n
⇒β s for some n. We prove the statement by induction n.

By indexed split (Point 2), there are only two cases:
– t⇒¬h s. This is an instance of the statement (since →∗

h is reflexive).

– n > 0 and there exists r such that t →h r
n−1
⇒ β s. By i.h. applied to

r
n−1
⇒ β s, there is u such that r →∗

h u⇒¬h s, and so t→∗
h u⇒¬h s.

Theorem 11 (Head factorization). If t→∗
β u then t→∗

h ·→
∗
¬h u.

Head normalization. We show that (Λ, {→h,→¬h}) is an essential system (Def. 5);
thus the essential normalization theorem (Theorem 8) provides normalization.
We already proved factorization (Theorem 11, hence terminal factorization). We
verify persistence and determinism (which implies uniform termination) of →h.

Proposition 12 (Head essential system). Proof p. 24

1. Persistence: if t→h s and t→¬h u then u→h r for some r.
2. Determinism: if t→h s1 and t→h s2 then s1 = s2.

Then, (Λ, {→h,→¬h}) is an essential system.

Theorem 13 (Head normalization). If t→∗
β s and s is a →h-normal form,

then →h terminates on t.

4.1 Comparison with Takahashi’s proof of the split property.

Our technique differs from Takahashi’s in that it is built on simpler properties:
it exploits directly the substitutivity of ⇒β, which is instead not used by Taka-
hashi. Takahashi’s original argument [29] for the split property (if t ⇒β s then
t →∗

h · ⇒¬h, what she calls the main lemma) is by induction on the (concrete)
definition of ⇒β and relies on two substitutivity properties of →h and ⇒¬h.
Looking at them as the reductions →e and →¬e of an essential system, these
properties are:
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– Left substitutivity of →e: if u→e q then u{x�r} →e q{x�r};
– Left substitutivity of ⇒¬e: if u⇒¬e q then u{x�r} ⇒¬e q{x�r}.

From them, left substitutivity of the composed reduction→∗
e
·⇒¬e easily follows.

That is, Takahashi’s proof of the split property is by induction on t ⇒ s using
left substitutivity of →∗

e
· ⇒¬e for the inductive case.

We exploit the substitutivity of
n
⇒ instead of left substitutivity of →e and

⇒¬e. It holds for a larger number of essential systems because
n
⇒ is simply a dec-

oration of⇒, which is substitutive by design. There are important systems where
Takahashi’s hypotheses do not hold. One such case is ℓo reduction (Sect. 7)—the
normalizing reduction of the λ-calculus—we discuss the failure of left substitu-
tivity for ℓo on p. 18; another notable case is ℓℓ reduction (Sect. 8); both are full
reductions for β.

Let us point out where the idea behind our approach stems from. In a sense,
Takahashi’s proof works by chance: the split hypothesis is about a parallel step
⇒β but then the key fact used in the proof, left substitutivity of →∗

h · ⇒¬h,
does no longer stay in the borders of the parallel step, since the prefix →∗

h is an
arbitrary long sequence that may reduce created steps. Our proof scheme instead
only focuses on the (expected) substitutivity of

n
⇒, independently of creations.

5 The Call-by-Value λ-Calculus

In this short section, we introduce Plotkin’s call-by-value λ-calculus [27], where β
reduction fires only when the argument is a value. In the next section we define
weak reduction and prove factorization and normalization theorems using the
essential technique, exactly as done in the previous section for head reduction.

The set Λ of terms is the same as in Sect. 3. Values, call-by-value (CbV) β-

reduction →βv
, and CbV indexed parallel reduction

n
⇒βv

are defined as follows:

Values v ::= x | λx.t

βv reduction

v value
(λx.t)v →βv

t{x�v}

t→βv
t′

λx.t →βv
λx.t′

t→βv
t′

ts→βv
t′s

t→βv
t′

st→βv
st′

Indexed parallel βv reduction

x
0
⇒βv

x

t
n
⇒βv

t′

λx.t
n
⇒βv

λx.t′

t
n
⇒βv

t′ s
m
⇒βv

s′

ts
n+m
⇒βv

t′s′

t
n
⇒βv

t′ v
m
⇒βv

v′

(λx.t)v
n+|t′|x·m+1

⇒βv
t′{x�v′}

The only difference with the usual parallel β (defined in Sect. 3) is the re-
quirement that the argument is a value in the last rule. As before, the non-
indexed parallel reduction ⇒βv

is simply obtained by erasing the index, so that

⇒βv
=

⋃

n∈N

n
⇒βv

. Similarly, it is easily seen that
0
⇒βv

is the identity relation

on terms, →βv
=

1
⇒βv

and
n
⇒βv

⊆→n
βv
. Substitutivity of

n
⇒βv

is proved exactly

as for
n
⇒β (Lemma 9).
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Lemma 14 (Substitutivity of
n
⇒βv

). Proof p. 25If t
n
⇒βv

t′ and v
m
⇒βv

v′, then t{x�v}
k
⇒βv

t′{x�v′} where k = n+ |t′|x ·m.

6 Weak Call-by-Value Reduction, Essentially

The essential step we study for the CbV λ-calculus is weak CbV reduction →w,
which does not evaluate function bodies (the scope of λ-abstractions). Weak
CbV reduction has practical importance, because it is the base of the ML/CAML
family of functional programming languages. We choose it also because it admits
the natural and more general non-deterministic presentation that follows, even
if most of the literature rather presents it in a deterministic way.

Weak CbV reduction

(λx.t)v →w t{x�v}
t→w t′

ts→w t′s

t→w t′

st→w st′

Note that in the case of an application there is no fixed order in the→w-reduction
of the left and right subterms. Such a non-determinism is harmless as →w sat-
isfies a diamond-like property implying confluence, see Prop. 17.2 below. It is
well-known that the diamond property implies uniform termination, because it
implies that all maximal sequences from a term have the same length. Such a fur-
ther property is known as random descent, a special form of uniform termination
already considered by Newman [21] in 1942, see also van Oostrom [22].

The inessential reduction →¬w and its parallel version ⇒¬w are defined by:

¬Weak reduction

t→βv
s

λx.t→¬w λx.s

t→¬w t′

ts→¬w t′s

t→¬w t′

st→¬w st′

Parallel ¬weak reduction

x⇒¬w x
t⇒βv

t′

λx.t⇒¬w λx.t′
t⇒¬w t′ s⇒¬w s′

ts⇒¬w t′s′

It is immediate to check that →βv
=→w ∪ →¬w and →¬w⊆⇒¬w⊆→∗

¬w.

Weak CbV factorization. We show that (Λ, {→w,→¬w}) is a macro-step system,
with ⇒βv

,⇒¬w as macro-steps. Merge and split are proved exactly as in Sect. 4.

Proposition 15 (Weak CbV macro-step system). Proof p. 26

1. Merge: if t⇒¬w · →w u then t⇒βv
u.

2. Indexed split: if t
n
⇒βv

s then t⇒¬w s, or n > 0 and t→w ·
n−1
⇒ βv

s.
3. Split: if t⇒βv

s then t→∗
w ·⇒¬w s.

That is, (Λ, {→w,→¬w}) is a macro-step system with respect to ⇒βv
and ⇒¬w.

Theorem 16 (Weak CbV factorization). If t→∗
βv

s then t→∗
w ·→

∗
¬w s.
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Plotkin’s left reduction. The same argument at work in this section adapts easily
to factorization with respect to leftmost weak reduction (used by Plotkin [27]),
or to rightmost weak reduction, the two natural deterministic variants of →w.

Weak CbV normalization. To obtain a normalization theorem for →w via the
essential normalization theorem (Theorem 8), we need persistence and uniform
termination. The latter follows from the well-known diamond property of →w.

Proposition 17 (Weak CbV essential system).Proof p. 27

1. Persistence: if t→w s and t→¬w u then u→w r for some r.

2. Diamond: if s w← ·→w u with s 6= u then s→w ·w← u.

Then, (Λ, {→w,→¬w}) is an essential system.

Theorem 18 (Weak CbV normalization). If t→∗
βv

s and s is a→w-normal
form, then t is strongly →w-normalizing.

CbV is often considered with respect to closed terms only. In such a case the
→w-normal forms are exactly the (closed) values. Then weak CbV normalization
(Theorem 18) implies the following, analogous to Corollary 1 in Plotkin [27] (the
result is there obtained from standardization).

Corollary 19. Let t be a closed term. If t →∗
βv

v for some value v, then every
maximal →w-sequence from t is finite and ends in a value.

7 Leftmost-Outermost Reduction, Essentially

Here we apply our technique to leftmost-outermost (shortened to ℓo) reduction
→ℓo, the first example of full reduction for →β . The technical development is
slightly different from the ones in the previous sections, as factorization relies on
persistence. The same shall happen for the full ℓℓ reduction of the next section.
It seems to be a feature of full reductions for →β .

ℓo and ¬ℓo reductions. The definition of ℓo reduction relies on two mutually
recursive predicates defining normal and neutral terms (neutral = normal and
not an abstraction):

Normal and neutral terms

x is neutral
t is neutral t is normal

ts is neutral
t is neutral
t is normal

t is normal
λx.t is normal

Dually, a term is not neutral if it is an abstraction or it is not normal. It is
standard that these predicates correctly capture β normal forms and neutrality.

The reductions of the ℓo macro-step system are:
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ℓo reduction

(λx.t)s →ℓo t{x�s}
t→ℓo s t 6= λx.t′

tu→ℓo su

t→ℓo s

λx.t→ℓo λx.s
u is neutral t→ℓo s

ut→ℓo us

¬ℓo reduction

t→β t′

(λx.t)s→¬ℓo (λx.t′)s

t is not neutral s→β s′

ts→¬ℓo ts
′

t→¬ℓo t
′

ts→¬ℓo t
′s

t→¬ℓo t′

st→¬ℓo st′
t→¬ℓo t′

λx.t→¬ℓo λx.t′

Parallel ¬ℓo reduction

x⇒¬ℓo x
t is not neutral t⇒¬ℓo t′ s⇒β s′

ts⇒¬ℓo t′s′

t⇒β t′ s⇒β s′′

(λx.t)s ⇒¬ℓo (λx.t
′)s′

t⇒¬ℓo t
′

λx.t⇒¬ℓo λx.t
′

t neutral s⇒¬ℓo s′

ts⇒¬ℓo ts
′

As usual, easy inductions show that →β =→ℓo ∪ →¬ℓo and →¬ℓo⊆⇒¬ℓo⊆→∗
¬ℓo.

Factorization depends on persistence, which is why for ℓo reduction most
essential properties are proved before factorization. The proofs are easy induc-
tions.

Proposition 20 (ℓo essential properties). Proof p. 28

1. Fullness: if t→β s then there exists u such that t→ℓo u.
2. Determinism: if t→ℓo s1 and t→ℓo s2 then s1 = s2.
3. Persistence: if t→ℓo s1 and t→¬ℓo s2 then s2 →ℓo u for some u.

Proposition 21 (ℓo macro-step system). Proof p. 30

1. Merge: if t⇒¬ℓo · →ℓo u then t⇒β u.

2. Indexed split: if t
n
⇒β s then t⇒¬ℓo s, or n > 0 and t→ℓo ·

n−1
⇒ β s.

3. Split: if t⇒β s then t→∗
ℓo ·⇒¬ℓo s.

That is, (Λ, {→ℓo,→¬ℓo}) is a macro-step system with respect to ⇒β and ⇒¬ℓo.

Proof. We only show the merge property, and only the case that requires persistence—
the rest of the proof is in the Appendix. The proof of the merge property is by
induction on t⇒¬ℓo s. Consider the rule

r not neutral r ⇒¬ℓo r′ p⇒β p′

t = rp⇒¬ℓo r
′p′ = s

.

Since r is not neutral, it is an abstraction or it is not normal. If r is an abstraction
this case continues as the easy case of ⇒¬ℓo for β-redexes (see the Appendix).
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Otherwise, r is not normal, i.e. r →β q. By fullness r →ℓo q′ for some q′, and
by persistence (Prop. 20.3) r′ →ℓo r′′ for some r′′. The hypothesis becomes
t = rp⇒¬ℓo r′p′ →ℓo r′′p′ = u with r ⇒¬ℓo r

′ →ℓo r
′′. By i.h., r ⇒β r′′. Then,

r ⇒β r′′ p⇒β p′

t = rp⇒β r′′p′ = u
.

ℓo split. As pointed out in Sect. 4.1, Takahashi’s proof [29] of the split property
relies on left substitutivity of head reduction, that is, if t→h s then t{x�u} →h

s{x�u} for all terms u. Such a property does not hold for ℓo reduction. For
instance, t = x(Iy) →ℓo xy = t′ but t{x�λz.zz} = (λz.zz)(Iy) 6→ℓo (λz.zz)y =
t′{x�λz.zz}. Therefore her proof technique for factorization cannot prove the
factorization theorem for ℓo reduction (see also footnote 5, page 3).

From Proposition 21 it follows the factorization theorem for ℓo reduction,
that together with Proposition 20 proves that (Λ, {→ℓo,→¬ℓo}) is an essential
system, giving normalization of →ℓo for →β .

Theorem 22.

1. ℓo factorization: if t→∗
β u then t→∗

ℓo · →
∗
¬ℓo u.

2. ℓo normalization: →ℓo is a normalizing reduction for →β.

8 Least-Level Reduction, Essentially

In this section we study another normalizing full reduction for→β , namely least-
level (shortened to ℓℓ) reduction →ℓℓ, which is non-deterministic. The intuition
is that ℓℓ reduction fires a β-redex of minimal level, where the level of a β-redex
is the number of arguments containing it.

The definition of →ℓℓ relies on an indexed variant →β:k of →β, where k ∈ N

is the level of the fired β-redex (do not mix it up with the index of
n
⇒β). We

also define a parallel version ⇒β:n (with n ∈ N ∪ {∞}) of →β:k, obtained as a
decoration of ⇒β , where n is the minimal level of the β-redexes fired by a ⇒β

step (⇒β:∞ does not reduce any β-redex). From now on, N∪ {∞} is considered
with its usual order and arithmetic, that is, ∞+ 1 =∞.

β reduction of level k

(λx.t)s →β:0 t{x�s}
t→β:k t′

λx.t→β:k λx.t′
t→β:k t′

ts→β:k t′s

t→β:k t′

st→β:k+1 st
′

Parallel β reduction of least level n

t⇒β:k t′ s⇒β:h s′

(λx.t)s⇒β:0 t′{x�s′}

t⇒β:k t′

λx.t⇒β:k λx.t′
t⇒β:k t′ s⇒β:h s′

ts⇒β:min{k,h+1} t′s′
x⇒β:∞ x
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Note that t→β s if and only if t→β:k s for some k ∈ N.

The least (reduction) level ℓℓ(t) ∈ N ∪ {∞} of a term t is defined as follows:

ℓℓ(x) =∞ ℓℓ(λx.t) = ℓℓ(t) ℓℓ(ts) =

{

0 if t = λx.u

min{ℓℓ(t), ℓℓ(s)+1} otherwise.

The definitions of ℓℓ, ¬ℓℓ, and parallel ¬ℓℓ reductions are:

ℓℓ reduction t→ℓℓ s if t→β:k s with ℓℓ(t) = k ∈ N;
¬ℓℓ reduction t→¬ℓℓ s if t→β:k s with ℓℓ(t) < k ∈ N;

Parallel ¬ℓℓ reduction t⇒¬ℓℓ s if t⇒β:k s with k=∞ or k>ℓℓ(t).

As usual, easy inductions show that →β=→ℓℓ ∪ →¬ℓℓ and →¬ℓℓ⊆⇒¬ℓℓ⊆→∗
¬ℓℓ.

Proposition 23 (Least level properties). Proof p. 32Let t be a term.

1. Computational meaning of ℓℓ: ℓℓ(t) = inf{k ∈ N | t→β:k u for some term u}.
2. Monotonicity: if t→β s then ℓℓ(s) ≥ ℓℓ(t).

3. Invariance by →¬ℓℓ: if t→¬ℓℓ s then ℓℓ(s) = ℓℓ(t).

Point 1 captures the meaning of the least level, and gives fullness of →ℓℓ. In
particular, ℓℓ(t) =∞ if and only if t is →β-normal, since inf ∅ =∞. Monotonic-
ity states that β steps cannot decrease the least level. Invariance by →¬ℓℓ says
that →¬ℓℓ cannot change the least level. Essentially, this is persistence.

Proposition 24 (ℓℓ essential properties). Proof p. 33

1. Fullness: if t→β s then t→ℓℓ u for some u.

2. Persistence: if t→ℓℓ s1 and t→¬ℓℓ s2 then s2 →ℓℓ u for some u.

3. Diamond: if s ℓℓ← · →ℓℓ u with s 6= u then s→ℓℓ · ℓℓ← u.

As for ℓo, merge needs persistence, or, more precisely, invariance by →¬ℓℓ.

Proposition 25 (ℓℓ macro-step system). Proof p. 35

1. Merge: if t⇒¬ℓℓ s→ℓℓ u, then t⇒β u.

2. Indexed split: if t
n
⇒β s then t⇒¬ℓℓ s, or n > 0 and t→ℓℓ ·

n−1
⇒β s.

3. Split: if t⇒β s then t→∗
ℓℓ · ⇒¬ℓℓ s.

That is, (Λ, {→ℓℓ,→¬ℓℓ}) is a macro-step system with respect to ⇒β and ⇒¬ℓℓ.

Theorem 26.

1. ℓℓ factorization: if t→∗
β u then t→∗

ℓℓ · →
∗
¬ℓℓ u.

2. ℓℓ normalization: →ℓℓ is a normalizing reduction for →β.
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ℓℓ split and ℓo vs. ℓℓ. As for ℓo reduction, left substitutivity does not hold
for →ℓℓ. Consider t = x(Iy) →ℓℓ xy = t′ where the step has level 1, and
t{x�λz.zz} = (λz.zz)(Iy) 6→ℓℓ (λz.zz)y = t′{x�λz.zz} since now there also
is a step (λz.zz)(Iy)→ℓℓ (Iy)(Iy) at level 0.

Moreover, ℓℓ and ℓo reductions are incomparable. First, note that→ℓℓ 6⊆→ℓo:
t = (λx.II)y →ℓℓ (λx.I)y = s, because t →β:0 (λx.I)y and ℓℓ(t) = 0, but
t 6→ℓo s, indeed t →ℓo II. This fact also shows that →ℓℓ is not left–outer in the
sense of van Oostrom and Toyama [23]. Second,→ℓo 6⊆→ℓℓ: t = x(x(II))(II) →ℓo

x(xI)(II) = s but t 6→ℓℓ s, indeed t→¬ℓℓ s because t→β:2 s and ℓℓ(t) = 1, and
t→ℓℓ x(x(II))I 6= s.

9 Conclusions

We provide simple proof techniques for factorization and normalization theorems
in the λ-calculus, simplifying Takahashi’s parallel method [29], extending its
scope and making it more abstract at the same time.

About the use of parallel reduction, Takahashi claims: “once the idea is stated
properly, the essential part of the proof is almost over, because the inductive verifi-
cation of the statement is easy, even mechanical” [29, p. 122]. Our work reinforces
this point of view, as our case studies smoothly follow the abstract schema.

Range of application. We apply our method for factorization and normalization
to two notions of reductions that compute full normal forms:

– the classic example of ℓo reduction, covered also by the recent techniques by
Hirokawa, Middeldorp and Moser [13] and van Oostrom and Toyama [23];

– ℓℓ reduction, which is out of the scope of [13,23] because it is neither deter-
ministic (as required by [13]), nor left–outer in the sense of [23] (as pointed
out here in Sect. 8).

Our approach naturally covers also reductions that do not compute full nor-
mal forms, such as head and weak CbV reductions. These results are out of reach
for van Oostrom and Toyama’s technique [23], as they clarify in their conclusions.

Because of the minimality of our assumptions, we believe that our method
applies to a large variety of other cases and variants of the λ-calculus. A
key feature of our approach is that it derives normalization from factorization.
However, it is worth noting that factorization is not a necessary condition for
normalization.10

10 For instance, in the weak λ-calculus—where weak β-reduction →wβ does not re-
duce under abstractions—our technique does not apply because weak head reduction
→wh (i.e. head reduction that does not reduce under abstractions) satisfies a weak
head normalization theorem (if t →∗

wβ s with s →wh-normal then →wh terminates
on t) but does not factorize: indeed, given the →wβ-sequence (λx.λy.x)(II) →¬wh

(λx.λy.x)I →wh λy.I , there is no term t such that (λx.λy.x)(II)→∗
wh t →∗

¬wh λy.I .
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15. Kesner, D., Lombardi, C., Ŕıos, A.: A standardisation proof for algebraic pattern
calculi. In: 5th International Workshop on Higher-Order Rewriting, HOR 2010.
EPTCS, vol. 49, pp. 58–72 (2010), https://doi.org/10.4204/EPTCS.49.5

https://doi.org/10.4230/LIPIcs.RTA.2012.6
https://doi.org/10.2168/LMCS-12(1:4)2016
http://arxiv.org/abs/1908.11289
https://doi.org/10.1016/j.tcs.2017.01.025
https://doi.org/10.1016/j.tcs.2010.12.017
https://doi.org/10.4230/OASIcs.WPTE.2015.3
https://doi.org/10.4230/LIPIcs.TLCA.2015.211
https://doi.org/10.23638/LMCS-13(4:29)2017
https://doi.org/10.4230/LIPIcs.RTA.2015.209
https://doi.org/10.1016/j.tcs.2018.06.003
https://doi.org/10.4204/EPTCS.49.5


22 B. Accattoli et al.

16. Klop, J.W.: Combinatory Reduction Systems. Phd thesis, Utrecht University
(1980)

17. Krivine, J.: Lambda-calculus, types and models. Ellis Horwood series in computers
and their applications, Masson (1993)

18. McKinna, J., Pollack, R.: Some lambda calculus and type theory formalized. J. Au-
tom. Reasoning 23(3-4), 373–409 (1999), https://doi.org/10.1007/BFb0026981

19. Melliès, P.A.: A factorisation theorem in rewriting theory. In: Category Theory and
Computer Science, 7th International Conference, CTCS ’97. Lecture Notes in Com-
puter Science, vol. 1290, pp. 49–68 (1997), https://doi.org/10.1007/BFb0026981

20. Mitschke, G.: The standardization theorem for λ-calculus. Mathematical Logic
Quarterly 25(1-2), 29–31 (1979), https://doi.org/10.1002/malq.19790250104

21. Newman, M.: On theories with a combinatorial definition of “Equivalence”. Annals
of Mathematics 43(2), 223–243 (1942)

22. van Oostrom, V.: Random descent. In: Term Rewriting and Applications, 18th
International Conference, RTA 2007. Lecture Notes in Computer Science, vol. 4533,
pp. 314–328 (2007), https://doi.org/10.1007/978-3-540-73449-9_24

23. van Oostrom, V., Toyama, Y.: Normalisation by random descent. In:
1st International Conference on Formal Structures for Computation
and Deduction, FSCD 2016. LIPIcs, vol. 52, pp. 32:1–32:18 (2016),
https://doi.org/10.4230/LIPIcs.FSCD.2016.32

24. Pagani, M., Tranquilli, P.: Parallel reduction in resource lambda-calculus.
In: Programming Languages and Systems, 7th Asian Symposium, APLAS
2009. Lecture Notes in Computer Science, vol. 5904, pp. 226–242 (2009),
https://doi.org/10.1007/978-3-642-10672-9_17

25. Pagani, M., Tranquilli, P.: The conservation theorem for differential nets.
Mathematical Structures in Computer Science 27(6), 939–992 (2017),
https://doi.org/10.1017/S0960129515000456

26. Paolini, L., Ronchi Della Rocca, S.: Parametric parameter passing
lambda-calculus. Information and Computation 189(1), 87–106 (2004),
https://doi.org/10.1016/j.ic.2003.08.003

27. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-
calculus. Theor. Comput. Sci. 1(2), 125–159 (1975),
https://doi.org/10.1016/0304-3975(75)90017-1

28. Ronchi Della Rocca, S., Paolini, L.: The Parametric Lambda Calculus - A Meta-
model for Computation. Texts in Theoretical Computer Science. An EATCS Series,
Springer (2004), https://doi.org/10.1007/978-3-662-10394-4

29. Takahashi, M.: Parallel reductions in λ-calculus. Inf. Comput. 118(1), 120–127
(1995), https://doi.org/10.1006/inco.1995.1057

30. Terese: Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press (2003)

31. Terui, K.: Light affine lambda calculus and polynomial time
strong normalization. Arch. Math. Log. 46(3-4), 253–280 (2007),
https://doi.org/10.1007/s00153-007-0042-6

https://doi.org/10.1007/BFb0026981
https://doi.org/10.1007/BFb0026981
https://doi.org/10.1002/malq.19790250104
https://doi.org/10.1007/978-3-540-73449-9_24
https://doi.org/10.4230/LIPIcs.FSCD.2016.32
https://doi.org/10.1007/978-3-642-10672-9_17
https://doi.org/10.1017/S0960129515000456
https://doi.org/10.1016/j.ic.2003.08.003
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1007/978-3-662-10394-4
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1007/s00153-007-0042-6


Factorization and Normalization, Essentially 23

A Technical appendix: omitted proofs and lemmas

The enumeration of propositions, theorems, lemmas already stated in the body
of the article is unchanged.

A.1 Omitted proofs of Sect. 4 (head)

Proposition 10 (Head macro-step system). See p. 12

1. Merge: if t⇒¬h · →h u then t⇒β u.

2. Indexed split: if t
n
⇒β s then t⇒¬h s, or n > 0 and t→h ·

n−1
⇒ β s.

3. Split: if t⇒β s then t→∗
h · ⇒¬h s.

that is, (Λ, {→h,→¬h}) is a macro-step system with respect to ⇒β ,⇒¬h.

Proof. Points 2-3 are already proved on p. 12. We prove Point 1 by induction
on the definition of t⇒¬h s. Cases:

– Variable: t = x⇒¬h x = s. Then, there is no u such that s→h u.
– Abstraction: t = λx.t′ ⇒¬h λx.s′ = s because t′ ⇒¬h s′. According to the

definition of s→h u, necessarily u = λx.u′ with s′ →h u′. By i.h. applied to
t′, we have t′ ⇒β u′ and hence:

t′ ⇒β u′

t = λx.t′ ⇒β λx.u′ = u
.

– Application:

r ⇒¬h r′ p⇒β p′

t = rp⇒¬h r′p′ = s
(1)

Sub-cases:
1. s = r′p′ →h r′′p′ = u with r′ →h r′′; by i.h. applied to r ⇒¬h r′ →h r′′,

we have r ⇒β r′′, and so (as ⇒¬h⊆⇒β)

r ⇒β r′′ p⇒β p′

t = rp⇒β r′′p′ = u
;

2. s = (λx.q′)p′ →h q′{x�p′} = u, which means that r′ = λx.q′ in (1).
According to the definition of r ⇒¬h r′, necessarily r = λx.q with q ⇒¬h

q′. Thus, (as ⇒¬h⊆⇒β)

q ⇒β q′ p⇒β p′

t = (λx.q)p⇒β q′{x�p′} = u
.

– β-redex :

r⇒β r′ p⇒β p′

t = (λx.r)p ⇒¬h (λx.r′)p′ = s

According to the definition of s→h u, we have u = r′{x�p′}. Hence,

r ⇒β r′ p⇒β p′

t = (λx.r)p ⇒β r′{x�p′} = u
.
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Proposition 12 (Head essential system).See p. 13

1. Persistence: if t→h s and t→¬h u then u→h r for some r.

2. Determinism: if t→h s1 and t→h s2 then s1 = s2.

Then, (Λ, {→w,→¬w}) is an essential system.

Proof.

1. Persistence: By induction on t→h s. Cases:

– Root step, i.e. t = (λx.p)q →h p{x�q} = s. Sub-cases:

• →¬h in the left sub-term: t = (λx.p)q →¬h (λx.p′)q = u because
p→β p′ or p→¬h p′. In both cases u = (λx.p′)q →h p′{x�q} =: r.
• →¬h in the right sub-term: t = (λx.p)q →¬h (λx.p)q′ = u because
q →β q′. Then u = (λx.p)q′ →h p{x�q′} =: r.

– Application: i.e. t = pq →h p′q = s with p →h p′ and p not an abstrac-
tion. Sub-cases:

• →¬h in the left sub-term: t = pq →¬h p′′q = u because p →¬h p′′.
By i.h., p′′ →h r′ for some r′. Then u = p′′q →h r′q =: r.
• →¬h in the right sub-term: t = pq →¬h pq′ = u because q →β q′.
Then u = pq′ →h p′q′ =: r.

– Abstraction: i.e. t = λx.p →h p′ = s. Then t = λx.p →¬h λx.p′′ = u
for some p′′ with p →¬h p′′. By i.h., p′′ →h r′ for some r′. Then u =
λx.p′′ →h λx.r′.

2. Determinism: By induction on a derivation with conclusion t →h s1. Con-
sider its last rule. Cases:

– Abstraction, i.e. t = λx.t′ →h λx.s′1 = s1 because t′ →h s′1. According to
the definition of→h, the only possibility for the last rule of a derivation
for t→h s2 is

t′ →h s′2
t = λx.t′ →h λx.s′2 = s2

.

By i.h. applied to t′, we have s′1 = s′2 and hence s1 = λx.s′1 = λx.s′2 = s2.

– Application, i.e. t = t′t′′ →h s′1t
′′ = s1 because t′ →h s′1 and t′ 6= λx.r.

According to the definition of →h, the the last rule of a derivation for
t→h s2 can be only

t′ →h s′2
t = t′t′′ →h s′2t

′′ = s2
.

By i.h. applied to t′, we have s′1 = s′2 and hence s1 = s′1t
′′ = s′2t

′′ = s2.

– β-rule, i.e. t = (λx.t′)t′′ →h t′{x�t′′} = s1. According to the definition
of →h, the only possibility for the last rule of a derivation for t→h s2 is

t = (λx.t′)t′′ →h t′{x�t′′} = s2 and hence s1 = t′{x�t′′} = s2.



Factorization and Normalization, Essentially 25

A.2 Omitted proofs of Sect. 5 (CbV λ-calculus)

Lemma 14 (Substitutivity of
n
⇒βv

). See p. 15If t
n
⇒βv

t′ and v
m
⇒βv

v′ then t{x�v}
k
⇒βv

t′{x�v′} where k = n+ |t′|x ·m.

Proof. By induction on t
n
⇒β t′. It follows the exact same pattern of the proof

of substitutivity of
n
⇒β . Cases:

– Variable: two sub-cases
• t = x: then t = x

0
⇒βv

x = t′ then t{x�v} = x{x�v} = v
m
⇒βv

v′ =
x{x�v′} = t′{x�v′} that satisfies the statement because n+ |t′|x ·m =
0 + 1 ·m = m.

• t = y: then t = y
0
⇒βv

y = t′ then t{x�v} = y{x�v} = y
0
⇒βv

y =
y{x�v′} = t′{x�v′} that satisfies the statement because n+ |t′|x ·m =
n+ 0 ·m = n.

– Abstraction, i.e. t = λy.u
n
⇒βv

λy.u′ = t′ because u
n
⇒βv

u′; we can sup-
pose without loss of generality that y 6= x, hence |u′|x = |t′|x and t{x�v} =

λy.(u{x�v}) and t′{x�v′} = λy.(u′{x�v′}). By i.h., u{x�v}
n+|u′|x·m
⇒βv

u′{x�v′},
thus

u{x�v}
n+|u′|x·m
⇒βv

u′{x�v′}

t{x�v} = λy.u{x�v}
n+|t′|x·m
⇒βv

λy.u′{x�v′} = t′{x�v′}

.

– Application, i.e.

u
nu⇒βv

u′ r
nr⇒βv

r′

t = ur
nu+nr⇒βv

u′r′ = t′

with n = nu+nr. By i.h., u{x�v}
nu+|u′|x·m
⇒βv

u′{x�v′} and r{x�v}
nr+|r′|x·m
⇒βv

r′{x�v′}. Then

u{x�v}
nu+|u′|x·m
⇒βv

u′{x�v′} r{x�v}
nr+|r′|x·m
⇒βv

r′{x�v′}

t{x�v} = u{x�v}r{x�v}
k
⇒βv

u′{x�v′}r′{x�v′} = t′{x�v′}

with k = nu + |u′|x ·m+ nr + |r′|x ·m, which proves the statement because

k = nu + |u′|x ·m+ nr + |r
′|x ·m = n+ (|u′|x + |r′|x) ·m = n+ |t′|x ·m.

– βv-step, i.e. (w and w′ are values)

u
nu⇒βv

u′ w
nw⇒βv

w′

t = (λy.u)w
nu+|u′|y·nw+1
⇒βv

u′{y�w′} = t′

with n = nu + |u′|y · nw + 1. We can assume without loss of generality
that y 6= x, hence, |t′|x = |u′{y�w′}|x = |u′|x + |u′|y · |w′|x and t{x�v} =
(λy.u{x�v})(w{x�v}) and t′{x�v′} = u′{x�v′}{y�w′{x�v′}}.
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By i.h., u{x�v}
nu+|u′|x·m
⇒βv

u′{x�v′} and w{x�v}
nw+|w′|x·m
⇒βv

w′{x�v′}.
Then

u{x�v}
nu+|u′|x·m
⇒βv

u′{x�v′} w{x�v}
nw+|w′|x·m
⇒βv

w′{x�v′}

t{x�v} = (λy.u{x�v})(w{x�v})
k
⇒βv

u′{x�v′}{y�w′{x�v′}} = t′{x�v′}

where k = nu+|u′|x ·m+|u′|y ·(nw+|w′|x ·m)+1 = nu+|u′|x ·m+|u′|y ·(nw+
|w′|x ·m)+1 = nu+ |u′|y ·nw+1+ |u′|x ·m+ |u′|y · |w′|x ·m = n+ |t′|x ·m.

A.3 Omitted proofs of Sect. 6 (weak CbV)

Proposition 15 (Weak CbV macro-step system).See p. 15

1. Merge: if t⇒¬w · →w u then t⇒βv
u.

2. Indexed split: if t
n
⇒βv

s then t⇒¬w s, or n > 0 and t→w ·
n−1
⇒ βv

s.
3. Split: if t⇒βv

s then t→∗
w · ⇒¬w s.

That is, (Λ, {→w,→¬w}) is a macro-step system with respect to ⇒βv
and ⇒¬w.

Proof.

1. Merge: by induction on t ⇒¬w s. Note that the cases in which s = x or
s = λx.s′ are not possible. Hence s = r′p′ and t⇒¬w s is derived as follows

r ⇒¬w r′ p⇒¬w p′

t = rp⇒¬w r′p′ = s

(a) If r′ →w r′′ then s = r′′p′. The i.h. gives r ⇒βv
r′′, and t ⇒βv

s is
derived as follows (remember that ⇒¬w⊆⇒βv

):

r ⇒βv
r′′ p⇒βv

p′

t = rp⇒βv
r′′p′ = s

(b) If p′ →w p′′ it is analogous to the previous case.
(c) If s →w u by a top βv step then r′ = λx.q′. Now, by definition of ⇒¬w

the step r ⇒¬w r′ necessarily has the form r = λx.q ⇒¬w λx.q′ = r′

for some q such that q ⇒βv
q′. Then the hypothesis is t = (λx.q)p ⇒¬w

(λx.q′)p′ →w q′{x�p′} = u and t⇒βv
s is derived as follows (remember

that ⇒¬w⊆⇒βv
):

q ⇒βv
q′ p⇒βv

p′

t = (λx.q)p⇒βv
q′{x�p′} = s

2. Indexed split : by induction on the definition of t
n
⇒βv

s. We freely use the

fact that if t
n
⇒βv

s then t⇒βv
s. Cases:

– Variable: t = x
0
⇒βv

x = s. Then, t = x⇒¬w x = s.
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– Abstraction: t = λx.t′
n
⇒βv

λx.s′ = s because t′
n
⇒βv

s′. Then,

t′ ⇒βv
s′

t = λx.t′ ⇒¬w λx.s′ = s
.

– Application:

r
n1⇒βv

r′ p
n2⇒βv

p′

t = rp
n1+n2⇒βv

r′p′ = s

with n = n1 + n2. There are only two cases:
• either rp⇒¬w r′p′, and then the claim holds.
• or rp 6⇒¬w r′p′, and then r 6⇒¬w r′ or p 6⇒¬w p′ (otherwise rp⇒¬w

r′p′). Suppose r 6⇒¬w r′ (the other case is analogous). By i.h. applied

to r
n1⇒βv

r′, n1 > 0 and there is r′′ such that r→w r′′
n1−1
⇒ βv

r′. So,
t = rp→w r′′p and

r′′
n1−1
⇒βv

r′ p
n2⇒βv

p′

r′′p
n1−1+n2⇒βv

r′p′ = s
.

– βv step:

p
n1⇒βv

p′ r is a value r
n2⇒βv

r′

t = (λx.p)r
n1+|p′|x·n2+1
⇒βv

p′{x�r′} = s

with n = n1 + |p′|x · n2 + 1 > 0. We have t = (λx.p)r →w p{x�r} := u

and substitutivity of
n
⇒βv

(Lemma 14) gives u = p{x�r}
n1+|p′|x·n2

⇒βv

p′{x�r′} = s.
3. Split : exactly as in the head case (Prop. 10.3), using the Indexed Split prop-

erty for weak CbV (Point 2 above).

Proposition 17 (Weak CbV essential system). See p. 16

1. Persistence: if t→w s and t→¬w u then u→w r for some r.
2. Diamond: if s w← t→w u with s 6= u then s→w r w← u for some r.

Then, (Λ, {→w,→¬w}) is an essential system.

Proof.

1. Persistence: By induciton on the definition of t→¬w s. Cases:
– Abstraction: t = λx.p →¬w λx.p′ because p →βv

p′. This case is impos-
sible because t is →w normal, against the hypothesis that t→w u.

– Application left : t = pq →¬w p¬wq = s because p →¬w p¬w. According
to the definition of →w, there are the following sub-cases:
(a) t = pq →w pwq = u with p →w pw; by i.h. applied to p, we have

p¬w →w r′ for some term r′, and so

p¬w →w r′

s = p¬wq →w r′q =: r
;
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(b) t = pq →w pq′ = u with q →w q′; hence

q →w q′

s = p¬wq →w p¬wq
′ = ‘ : r

;

(c) t = (λx.p′)q →w p′{x�q} = u where p = λx.p′ and q is a value.
According to the definition of t→¬w s,

p→βv
p¬w

λx.p′ →¬w λx.p′¬w

t = (λx.p′)q →¬w (λx.p′¬w)q = s

where p¬w = λx.p′¬w ; therefore

s = (λx.p′¬w)q →w p′¬w{x�q} =: r .

– Application right : analogous to the previous point.
2. Diamond : The idea of the proof is that, when (λx.t)v →w t{x�v}, the βv-

redexes in v (which is a value) can be duplicated in t{x�v} but they are
under an abstraction and →w does not reduce under abstractions.
Formally, the proof is by induction on t. Note that t is not a value, because
values are→w-normal, since →w does not reduce under abstractions. There-
fore, t = t0t1. The case where t0 = λx.t′ and t1 is a value is impossible,
because t0 and t1 would be →w-normal and so from s w← t→w u it would
follow s = t′{x�t1} = u, which contradicts the hypothesis. The remaining
cases for t = t0t1 are:
– s = t0s1 w← t = t0t1 →w u0t1 = u with t0 →w u0, and t1 →w s1. Then,

s→w u0s1 w← u.
– s = s0t1 w← t = t0t1 →w u0t1 = u with s0 w← t0 →w u0. By i.h., there

is r0 such that s0 →w r0 w← u0. Thus, s→w r0t1 w← u.
– s = t0s1 w← t = t0t1 →w t0u0 = u with s1 w← t1 →w u1. Analogous to

the previous case.

A.4 Omitted proofs of Sect. 7 (leftmost-outermost)

Proposition 20 (ℓo essential properties).See p. 17

1. Fullness: if t→β s then there exists u such that t→ℓo u.
2. Determinism: if t→ℓo s1 and t→ℓo s2, then s1 = s2.
3. Persistence: if t→ℓo s1 and t→¬ℓo s2, then s2 →ℓo u for some u.

Proof.

1. Fullness : by induction on t. Cases:
– Variable, i.e. t = x: then t 6→β s, and so the statement trivially holds.
– Abstraction, i.e. t = λx.t′ →β λx.s′ = s. It follows by the i.h.
– Application, i.e. t = rp. Three sub-cases:
• r is an abstraction, i.e. r = λx.q: then t = (λx.q)p →ℓo q{x�q}.



Factorization and Normalization, Essentially 29

• r is not an abstraction but it is not normal, i.e. r →β r′ for some r′:
then by i.h. r →ℓo q for some q and so t = rp→ℓo qp.
• r is neutral, i.e. t is not normal implies p not normal. Then by i.h.
p→ℓo p′ for some p′, and so t = rp→ℓo rp′.

2. Determinism: By induction on a derivation with conclusion t →ℓo s1. Con-
sider its last rule. Cases:
– Abstraction, i.e. t = λx.t′ →ℓo λx.s′1 = s1 because t′ →ℓo s′1. According

to the definition of →ℓo, the last rule of a derivation for t→ℓo s2 can be
only

t′ →ℓo s′2
t = λx.t′ →ℓo λx.s′2 = s2

.

By i.h. applied to t′, we have s′1 = s′2 and hence s1 = λx.s′1 = λx.s′2 = s2.
– Application left, i.e. t = t′t′′ →ℓo s′1t

′′ = s1 because t′ →ℓo s′1 and
t′ 6= λx.r. According to the definition of→ℓo, the last rule of a derivation
for t→ℓo s2 can only be (since t is neither an abstraction nor neutral)

t′ →ℓo s′2
t = t′t′′ →ℓo s′2t

′′ = s2
.

By i.h. applied to t′, we have s′1 = s′2 and hence s1 = s′1t
′′ = s′2t

′′ = s2.
– Application right, i.e. t = t′t′′ →ℓo t′s′′1 = s1 because t′′ →ℓo s′′1 and t′ is

neutral. According to the definition of →ℓo, the last rule of a derivation
for t→ℓo s2 can only be (since t is normal and not an abstraction)

t′′ →ℓo s′′2
t = t′t′′ →ℓo t′s′′2 = s2

.

By i.h. applied to t′, we have s′1 = s′2 and hence s1 = t′s′′1 = t′s′′2 = s2.
– β-rule, i.e. t = (λx.t′)t′′ →ℓo t′{x�t′′} = s1. According to the definition

of →ℓo, the only possibility for the last rule of a derivation for t→ℓo s2
is

t = (λx.t′)t′′ →ℓo t′{x�t′′} = s2 and hence s1 = t′{x�t′′} = s2.

3. Persistence: by induction on t→ℓo s1. Cases:
– Root : t = (λx.r)p →ℓo r{x�p} = s1. Three sub-cases:
• t = (λx.r)p →¬ℓo (λx.r′)p = s2 because r →β r′. Then s2 =
(λx.r′)p→ℓo r′{x�p} =: u.
• t = (λx.r)p →¬ℓo (λx.r′)p = s2 because r →¬ℓo r′. Exactly as the
previous one.
• t = (λx.r)p →¬ℓo (λx.r)p′ = s2 because p →β p′. Then s2 =
(λx.r)p′ →ℓo r{x�p}′ =: u.

– Abstraction: t = λx.r →ℓo λx.r′ = s1. Then t = λx.r →¬ℓo λx.r′′ = s2
and the statement follows from the i.h. and closure of →ℓo.

– Left of an application: t = rp →ℓo r1p = s1 with r →ℓo r1 and r not an
abstraction. Two sub-cases:
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• t = rp →¬ℓo r2p = s2 because r →¬ℓo r2. Then by i.h. there exists
q such that r2 →ℓo q. Note that →¬ℓo cannot create a root abstrac-
tion (because it never reduces the root redex) so that if r is not an
abstraction then r2 is not an abstraction and s2 = r2p→ℓo qp =: u.
• t = rp→¬ℓo rp

′ = s2 by one of the two rules for able to derive it. In
both cases p →β p′. Then s2 = rp′ →ℓo r1p

′ =: u and s1 = r1p →β

r1p
′ = u.

– Right of an application: t = rp→ℓo rp1 = s1 with p→ℓo p1 and r neutral.
Then necessarily t = rp →ℓo rp2 = s2 with p →¬ℓo p2. The statement
then follows by the i.h.

Proposition 21 (ℓo macro-step system).See p. 17

1. Merge: if t⇒¬ℓo · →ℓo u then t⇒β u.

2. Indexed split: if t
n
⇒β s then t⇒¬ℓo s, or n > 0 and t→ℓo ·

n−1
⇒ β s.

3. Split: if t⇒β s then t→∗
ℓo · ⇒¬ℓo s.

That is, (Λ, {→ℓo,→¬ℓo}) is a macro-step system with respect to ⇒β and ⇒¬ℓo.

Proof.

1. Merge: by induction on t⇒¬ℓo s. Cases:
– Rule

r⇒β r′ p⇒β p′′

t = (λx.r)p ⇒¬ℓo (λx.r′)p′ = s

Then (λx.r)p ⇒¬ℓo (λx.r′)p′ →ℓo r′{x�p′} = u. We simply have:

r⇒β r′ p⇒β p′′

t = (λx.r)p ⇒β r′{x�p′} = u

– Rule
r not neutral r ⇒¬ℓo r

′ p⇒β p′

t = rp⇒¬ℓo r′p′ = s

Since r is not neutral, it is an abstraction or it is not normal. If r is
an abstraction this case continues goes as the first case. Otherwise, r is
not normal, and by persistence (Prop. 20.3) r′ is not normal. Fullness
(Prop. 20.1) of →ℓo gives r′ →ℓo r′′ for a certain r′′. The hypothesis
becomes t = rp⇒¬ℓo r

′p′ →ℓo r
′′p′ = u. By i.h., r ⇒β r′′. Then,

r⇒β r′′ p⇒β p′

t = rp⇒β r′′p′ = u

– Rule
r ⇒¬ℓo r′

t = λx.r ⇒¬ℓo λx.r
′ = s

Then λx.r ⇒¬ℓo λx.r′ →ℓo λx.r′′ = u with r′ →ℓo r′′. By i.h., r ⇒β r′′

and
r ⇒β r′

t = λx.r ⇒β λx.r′′ = u
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– Rule
r neutral p⇒¬ℓo p′

t = rp⇒¬ℓo rp
′ = s

Then the hypothesis is rp⇒¬ℓo rp′ →ℓo rp
′′ = u with p′ →ℓo p′′. By i.h.,

p⇒β p′′, and since ⇒β is reflexive,

r ⇒β r p⇒β p′′

t = rp⇒β rp′′ = u

2. Indexed split : By induction on the definition of t
n
⇒β s. We use freely the

fact that if t
n
⇒β s then t⇒β s. Cases:

– Variable: t = x
0
⇒β x = s. Then t = x⇒¬ℓo x = s.

– Abstraction: t = λx.t′
n
⇒β λx.s′ = s because t′

n
⇒β s′. It follows from

the i.h..
– Application:

r
n1⇒β r′ p

n2⇒β p′

t = rp
n1+n2⇒β r′p′ = s

with n = n1 + n2. There are only two cases:
• either rp⇒¬ℓo r

′p′, and then the claim holds;
• or rp 6⇒¬ℓo r

′p′, then the following conditions hold (otherwise rp⇒¬ℓo

r′p′):
(a) r is not an abstraction;
(b) if r is neutral then p 6⇒¬ℓo p

′;
(c) if r is not neutral then r 6⇒¬ℓo r′;

So, if r is neutral, then by i.h. applied to p
n2⇒β p′, n2 > 0 and there

is p′′ such that p→ℓo p′′
n2−1
⇒ β r′; thus, t = rp→ℓo rp′′ and

r
n1⇒β r′ p′′

n2−1
⇒β p′

rp′′
n1+n2−1
⇒β r′p′ = s

.

Otherwise r is not neutral and hence, by i.h. applied to r
n1⇒β r′,

n1 > 0 and there exists r′′ such that r →ℓo r′′
n1−1
⇒ β r′; thus, t =

rp→ℓo r′′p and

r′′
n1−1
⇒β r′ p

n2⇒β p′

r′′p
n1−1+n2⇒β r′p′ = s

.

– β step:

u
n1⇒β u′ r

n2⇒β r′′

t = (λx.u)r
n1+|s|x·n2+1
⇒β u′{x�r′} = s

With n = n1 + |s|x · n2 + 1 > 0. We have t = (λx.u)r →ℓo u{x�r} and

by substitutivity of
n
⇒β (Lemma 9) u{x�r}

n1+|s|x·n2

⇒β u′{x�r′} = s.
3. Split : exactly as in the head case (Prop. 10.3), using the Indexed Split prop-

erty for ℓo (Point 2 above).
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A.5 Omitted proofs and lemmas of Sect. 8 (least-level)

Proposition 23 (Least level properties).See p. 19

1. Computational meaning of ℓℓ: ℓℓ(t) = inf{k ∈ N | t→β:k u for some term u}.
2. Monotonicity: if t→β s then ℓℓ(s) ≥ ℓℓ(t).
3. Invariance by →¬ℓℓ: if t→¬ℓℓ s then ℓℓ(s) = ℓℓ(t).

Proof.

1. By induction on t. For any term r, we set infr = inf{k ∈ N | r →β:k

u for some term u}. Cases:

– Variable, i.e. t is a variable. Then, ℓℓ(t) =∞ and t is →β-normal.
– Abstraction, i.e. t = λx.s. Then, ℓℓ(t) = ℓℓ(s) and, by i.h., ℓℓ(s) = infs;

now,

s→β:k u

t = λx.s→β:k λx.u

and there is no other rule for →β:n whose conclusion is of the form
λx.s→β:n p; therefore, ℓℓ(t) = ℓℓ(s) = infs = inft.

– Application, i.e. t = t′t′′. There are two sub-cases:
• t′ = λx.s′, then ℓℓ(t) = 0 and

t = (λx.s′)t′′ →β:0 s′{x�t′′}

thus inft = 0 = ℓℓ(t).
• t′ is not an abstraction, then ℓℓ(t) = min{ℓℓ(t′), ℓℓ(t′′) + 1}. By i.h.,
ℓℓ(t′) = inft′ and ℓℓ(t′′) = inft′′ ; now,

t′ →β:k s′

t = t′t′′ →β:k s′t′′
and

t′′ →β:k s′′

t = t′t′′ →β:k+1 t′s′′

and there is no other rule for →β:n whose conclusion is of the form
t′t′′ →β:n p (as t′ is not an abstraction); hence, ℓℓ(t) = min{inft′ , inft′′ +1} =
inft.

2. Monotonicity: by induction on the definition of t→β s. Cases:
– Abstraction, i.e. t = λx.t′ →β λx.s′ = s because t′ →β s′. Then, ℓℓ(t) =

ℓℓ(t′) ≤ ℓℓ(s′) = ℓℓ(s) by i.h.
– Application left, i.e. t = t′t′′ →β s′t′′ = s because t′ →β s′. By i.h.,

ℓℓ(t′) ≤ ℓℓ(s′). Hence, ℓℓ(t) = min{ℓℓ(t′), ℓℓ(t′′)+1} ≤ min{ℓℓ(s′), ℓℓ(t′′)+
1} = ℓℓ(s).

– Application right, i.e. t = t′t′′ →β t′s′′ = s because t′′ →β s′′. Analogous
to the previous case.

– β-redex, i.e. t = (λx.t′)t′′ →β t′{x�t′′} = s. Then, ℓℓ(t) = 0 ≤ ℓℓ(s).
3. Invariance by →¬ℓℓ: By hypothesis, t→β:n s for some n > ℓℓ(t). We proceed

by induction on the definition of t→β:n s. Cases:
– Abstraction: t = λx.t′ →β:n λx.s′ = s because t′ →β:n s′. As n > ℓℓ(t) =

ℓℓ(t′), then ℓℓ(s) = ℓℓ(s′) = ℓℓ(t′) = ℓℓ(t) by i.h.
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– Application left, i.e. t = t′t′′ →β:n s′t′′ = s because t′ →β:n s′. According
to the definition of ℓℓ(t), there are the following sub-cases:
(a) ℓℓ(t) = ℓℓ(t′) ≤ ℓℓ(t′′)+1 and t′ is not an abstraction; by i.h. applied

to t′ (since ℓℓ(t′) = ℓℓ(t) < n), we have ℓℓ(s′) = ℓℓ(t′), and so
ℓℓ(s) = min{ℓℓ(s′), ℓℓ(t′′) + 1} = min{ℓℓ(t′), ℓℓ(t′′) + 1} = ℓℓ(t).

(b) ℓℓ(t) = ℓℓ(t′′) + 1 ≤ ℓℓ(t′) and t′ is not an abstraction; by Prop. 23.2
(since→β:n⊆→β), ℓℓ(t

′) ≤ ℓℓ(s′) and therefore ℓℓ(s) = min{ℓℓ(s′), ℓℓ(t′′)+
1} = ℓℓ(t′′) + 1 = min{ℓℓ(t′), ℓℓ(t′′) + 1} = ℓℓ(t).

(c) ℓℓ(t) = 0 and t′ = λx.u′. According to the definition of t →β:n s,
since n > 0, we have

u′ →β:n s′

λx.u′ →β:n λx.s′

t = (λx.u′)t′′ →β:n (λx.s′)t′′ = s

or
t′′ →β:n−1 s

′′

t = (λx.u′)t′′ →β:n (λx.u′)s′′ = s

therefore ℓℓ(s) = 0 = ℓℓ(t).
– Application right, i.e. t = t′t′′ →β:n t′s′′ = s because t′′ →β:n−1 s′′.

Analogous to the previous case.
– β-step, i.e. t = (λx.t′)t′′ →β:0 t′{x�t′′} = s where 0 = n > ℓℓ(t) = 0,

which is impossible.

Lemma 27. Let t→ℓℓ s with ℓℓ(t) > 0. If t is not an abstraction, then s is not
an abstraction.

Proof. By hypothesis, t = t′t′′ and t′ is not an abstraction (otherwise ℓℓ(t) = 0).
Therefore, according to the definition of →ℓℓ, there are only two possibilities:

1. either t = t′t′′ →β:k s′t′′ = s because t′ →β:k s′ and k = ℓℓ(t);
2. or t = t′t′′ →β:k t′s′′ = s because t′′ →β:k−1 s′′ and k = ℓℓ(t).

In both cases, s is not an abstraction.

Lemma 28 (Substitutivity by level). If t→β:k s then t{x�u} →β:k s{x�u}.

Proof. By induction on the definition of t→β:k s. Cases:

– Abstraction: t = λy.t′ →β:k λy.s′ = s with t′ →β:k s′. We can suppose with-
out loss of generality that y /∈ fv(u) ∪ {x}. By i.h., t′{x�u} →β:k s′{x�u}
and hence t{x�u} = λy.t′{x�u} →β:k λy.s′{x�u} = s{x�u}.

– Application left : t = t′t′′ →β:k s′t′′ = s with t′ →β:k s′. By i.h., t′{x�u} →β:k

s′{x�u} and hence t{x�u} = t′{x�u}t′′{x�u} →β:k s′{x�u}t′′{x�u} =
s{x�u}.

– Application right : t = t′t′′ →β:k t′s′′ = s with k > 0 and t′′ →β:k s′′.
Analogous to the previous case.

– β-redex : t = (λy.t′)t′′ →β:0 t′{y�t′′} = s. We can suppose without loss of
generality that y /∈ fv(u)∪{x}. Then, t{x�u} = (λy.t′{x�u})t′′{x�u} →β:0

t′{x�u}{y�t′′{x�u}} = t′{y�t′′}{x�u} = s{x�u}.

Proposition 24 (ℓℓ essential properties). See p. 19
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1. Fullness: if t→β s then t→ℓℓ u for some u.
2. Persistence: if t→ℓℓ s1 and t→¬ℓℓ s2 then s2 →ℓℓ u for some u.
3. Diamond: if s ℓℓ← · →ℓℓ u with s 6= u then s→ℓℓ · ℓℓ← u.

Proof.

1. Fullness : Since t is not →β-normal, then ∞ 6= ℓℓ(t) = min{k ∈ N | t →β:k

r for some r} by Prop. 23.1. Therefore, t→ℓℓ u for some u.
2. Persistence: Since t is not →β-normal, ∞ 6= ℓℓ(t) = min{k ∈ N | t →β:k

r for some r} by Prop. 23.1. By least level invariance (Prop. 23.3), ℓℓ(t) =
ℓℓ(s2) and hence, according to Prop. 23.1 again, we have ∞ 6= ℓℓ(s2) =
min{k ∈ N | s2 →β:k u for some u}. Therefore, there exists u such that
s2 →ℓℓ u.

3. Diamond : The idea of the proof is that, when (λx.t)s →ℓℓ t{x�s}, the β-
redexes in s can be duplicated in t{x�s} but they are not at least level and
→ℓℓ does not reduce outside the least level.
Formally, according to the definition of→ℓℓ, we have to prove that s β:k← t→β:k

u with k = ℓℓ(t), then s →β:m r β:n← u for some r, where m = ℓℓ(s) and
n = ℓℓ(u). To get the right i.h., we prove also that ℓℓ(s) = k = ℓℓ(u) (and
so s→β:k r β:k← u).
Clearly, t is not a variable, otherwise it would be →β-normal.
If t = λx.t′, then s = λx.s′ and u = λx.u′ with s′ β:k← t′ →β:k u′ and s′ 6= u′

and ℓℓ(t) = ℓℓ(t′). By i.h., s′ →β:m r β:n← u′ for some term r, with ℓℓ(s) =
ℓℓ(s′) = k = ℓℓ(u′) = ℓℓ(u), hence s = λx.s′ →β:k λx.r β:k← λx.u′ = u.
Finally, consider t = t0t1. The case where t0 = λx.t2 and s = t2{x�t1} β:k← t→β:k

(λx.t2)u1 = u with t1 →β:k−1 u1 is impossible, because k = ℓℓ(t) = 0. The
remaining cases for t = t0t1 are:
– s = t0s1 β:k← t = t0t1 →β:k u0t1 = u with t0 →β:k u0 and t1 →β:k s1

and ℓℓ(t0) = ℓℓ(t) = ℓℓ(t1) + 1 = k > 0. Then, t0 is not an abstrac-
tion (otherwise ℓℓ(t) = 0) and, by Lemma 27, u0 is not an abstrac-
tion. By Prop. 23.2, ℓℓ(s1) ≥ ℓℓ(t1) and ℓℓ(u0) ≥ ℓℓ(t0). Hence, ℓℓ(s) =
min{ℓℓ(t0), ℓℓ(s1) + 1} = ℓℓ(t0) = ℓℓ(t1) + 1 = min{ℓℓ(u0), ℓℓ(t1) + 1} =
ℓℓ(u) and so s→β:k u0s1 β:k← u.

– s = s0t1 β:k← t = t0t1 →β:k u0t1 = u with s0 β:k← t0 →β:k u0 and
s0 6= u0 and k = ℓℓ(t) = ℓℓ(t0) ≤ ℓℓ(t1)+ 1. By i.h., there is r0 such that
s0 →β:k r0 β:k← u0 where ℓℓ(s0) = k = ℓℓ(u0). Thus, s→β:k r0t1 β:k← u.
If s0 or u0 is an abstraction, then ℓℓ(s) = 0 or ℓℓ(u) = 0 and hence (by
Prop. 23.2) 0 = ℓℓ(s) ≥ ℓℓ(t) or 0 = ℓℓ(s) ≥ ℓℓ(t), so in both cases
k = ℓℓ(t) = 0 = ℓℓ(s) = ℓℓ(u). Otherwise, ℓℓ(s) = min{ℓℓ(s0), ℓℓ(t1) +
1} = k = min{ℓℓ(u0), ℓℓ(t1) + 1} = ℓℓ(u).

– s = t0s1 β:k← t = t0t1 →β:k t0u0 = u with s1 β:k−1← t1 →β:k−1 u1 and
k = ℓℓ(t) = ℓℓ(t1) + 1. Analogous to the previous case.

– s = t2{x�t1} β:k← t = (λx.t2)t1 →β:k (λx.s2)t1 = u where t0 =
λx.t2 and t2 →β:k s2 and k = ℓℓ(t2) = ℓℓ(t) = 0 = ℓℓ(u). Thus,
t2 →β:0 s2 and t→β:0 t2{x�t1}. By substitutivity by level (Lemma 28),
t2{x�t1} →β:0 s2{x�t1} and so ℓℓ(t2{x�t1}) = 0 by Prop. 23.1. There-
fore t2{x�t1} →β:0 s2{x�t1} β:0← u.
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Lemma 29 (Merge by level). If t⇒β:n s→β:m u with n > m, then t⇒β u.

Proof. By induction on the definition of t⇒β:n s. Cases:

– Variable: t = x⇒β:∞ x = s. Then, there is no u such that s→β:m u for any
m ∈ N.

– Abstraction: t = λx.t′ ⇒β:n λx.s′ = s because t′ ⇒β:n s′. According to the
definition of s →β:m u, by necessity u = λx.u′ with s′ →β:m u′. By i.h.,
t′ ⇒ u′, thus

t′ ⇒ u′

t = λx.t′ ⇒ λx.u′ = u
.

– Application:

t0 ⇒β:n0
s0 t1 ⇒β:n1

s1
t = t0t1 ⇒β:n s0s1 = s

where n = min{n0, n1 + 1}. According to the definition of s →β:m u, there
are the following sub-cases:
1. s = s0s1 →β:m u0s1 = u with s0 →β:m u0; since m < n ≤ n0, by

i.h. applied to t0 ⇒β:n0
s0 →β:m u0, we have t0 ⇒β u0, and so (as

⇒β:n1
⊆⇒β)

t0 ⇒β u0 t1 ⇒β s1
t = t0t1 ⇒β u0s1 = u

;

2. s = s0s1 →β:m u0s1 = u with s1 →β:m−1 u1; since m− 1 < n− 1 ≤ n1,
by i.h. applied to t1 ⇒β:n1

s1 →β:m−1 u1, we have t1 ⇒ u1, and so (as
⇒β:n0

⊆⇒)

t0 ⇒ s0 t1 ⇒ u1

t = t0t1 ⇒ s0u1 = u
;

3. s = (λx.s′0)s1 →β:0 s0{x�s1} = u with s0 = λx.s′0 and m = 0; as n > 0
then, according to the definition of t⇒β:n s,

t0 ⇒β:n0
s0

λx.t0 ⇒β:n0
λx.s0 t1 ⇒β:n1

s1

t = (λx.t0)t1 ⇒β:n (λx.s0)s1 = s

where n = min{n0, n1 + 1}; therefore (as ⇒β:k⊆⇒)

t0 ⇒ s0 t1 ⇒ s1
t = (λx.t0)t1 ⇒ s0{x�s1} = u

.

Proposition 25 (ℓℓ macro-step system). See p. 19

1. Merge: if t⇒¬ℓℓ s→ℓℓ u, then t⇒β u.

2. Indexed split: if t
n
⇒β s then t⇒¬ℓℓ s, or n > 0 and t→ℓℓ ·

n−1
⇒β s.
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3. Split: if t⇒β s then t→∗
ℓℓ · ⇒¬ℓℓ s.

That is, (Λ, {→ℓℓ,→¬ℓℓ}) is a macro-step system with respect to ⇒β and ⇒¬ℓℓ.

Proof.

1. Merge: As t ⇒¬ℓℓ s →ℓℓ u, then t ⇒β:n s →β:m u for some n ∈ N ∪ {∞}
and m ∈ N such that n > ℓℓ(t) and m = ℓℓ(s). Since ⇒¬ℓℓ⊆→∗

¬ℓℓ and →¬ℓℓ

cannot change the least level (Prop. 23.3), ℓℓ(t) = ℓℓ(s) and so n > m. By
Merge by Level (Lemma 29), t⇒β u.

2. Indexed split : By induction on the definition of t
n
⇒β s. We freely use the

fact that if t
n
⇒β s then t⇒β s. Cases:

– Variable: t = x
0
⇒β x = s. Then, t = x⇒¬ℓℓ x = s since x⇒β:∞ x.

– Abstraction: t = λx.t′
n
⇒β λx.s′ = s because t′

n
⇒β s′. It follows by the

i.h..
– Application:

r
n1⇒β r′ p

n2⇒β p′

t = rp
n1+n2⇒β r′p′ = s

(2)

with n = n1 + n2. There are only two cases:
• either rp⇒¬ℓℓ r

′p′, and then the claim holds;
• or rp 6⇒¬ℓℓ r′p′ and hence any derivation with conclusion rp ⇒β:d

r′p′ is such that d = ℓℓ(rp) ∈ N. Let us rewrite the derivation (2)

replacing
n
⇒β with ⇒β:k: we have11

r ⇒β:dr
r′ p⇒β:dp

p′

t = rp⇒β:d r′p′ = s

where d = min{dr, dp + 1}. Thus, there are two sub-cases:
(a) d = dr ≤ dp + 1 and then d = ℓℓ(rp) ≤ ℓℓ(r) ≤ dr = d (the first

inequality holds by definition of ℓℓ(rp)), hence ℓℓ(r) = dr; we

apply the i.h. to r
n1⇒β r′ and we have that r ⇒¬ℓℓ r

′, or n1 > 0

and r →ℓℓ u1

n1−1
⇒ β r′; but r ⇒¬ℓℓ r′ is impossible because

otherwise rp ⇒¬ℓℓ r′p′ (as dr ≤ dp + 1of s); therefore, n1 > 0

and r →ℓℓ u1

n1−1
⇒ β r′, and so n > 0 and t = rp→ℓℓ u1p

n1−1+n2⇒β

r′p′ = s.
(b) d = dp + 1 ≤ dr and then d = ℓℓ(rp) ≤ ℓℓ(p) + 1 ≤ dp + 1 = d,

hence ℓℓ(p) = dp; we conclude analogously to thee previous sub-
case.

– β step:

u
n1⇒β u′ r

n2⇒β r′

t = (λx.u)r
n1+|u′|x·n2+1
⇒β u′{x�r′} = s

11 This is possible because the inference rules for
n
⇒β and ⇒β:k are the same except

for the way they manage their own indexes n and k.



Factorization and Normalization, Essentially 37

With n = n1 + |u
′|x · n2 + 1 > 0. We have t = (λx.u)r →ℓℓ u{x�r} and

by substitutivity of
n
⇒β (Lemma 9) u{x�r}

n1+|u′|x·n2

⇒β u′{x�r′} = s.
3. Split : Exactly as in the head case (Prop. 10.3), using the Indexed Split

property for ℓℓ (Point 2 above).
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