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STOCHASTIC HOMOGENIZATION OF NONCONVEX INTEGRALS IN
THE SPACE OF FUNCTIONS OF BOUNDED DEFORMATION

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

ABSTRACT. We study stochastic homogenization by I'-convergence of nonconvex integrals
of the calculus of variations in the space of functions of bounded deformation.
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1. INTRODUCTION

The space of functions of bounded deformation has been introduced by [TS78, MSCT9,
to study variational problems of plasticity theory (see [Tem80), [Tem83]). This space is
made of vectorial L!-functions u whose the symmetric part of the distributional derivative,
ie. Fu := Y(Du+ Du"), is a vectorial Radon measure. For such functions u we have
Bu = Eudx + E*u with Eu := 1(Vu+ Vul) the symmetrized gradient of u, where (Eu, E*u)
is the Lebesgue decomposition of Eu with respect to the Lebesgue measure dz. In the context
of the hyperelastic-plastic theory, at the macroscopic scale, the energy of deformation of a
hyperelastic-plastic material occupying in a reference configuration a bounded open set O is
of the form

L Wnaero (E1) (1.1)

Key words and phrases. Stochastic homogenization, I'-convergence, nonconvex integrand, space of func-
tions of bounded deformation.
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2 OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

where Wihaero is the energy density of the hyperelastic-plastic material at the macroscopic
scale. From the point of view of homogenization, an important problem is to look for an
effective formula for W,...o which takes the heterogeneities of the material at the microscopic
scale into account. To do this, a classical procedure consists of considering periodic or
stochastic energy integrals on regular deformations representing the material at small scales
e >0, ie.

f %% (g,é’u,w> dx (1.2)

where W (2, &, w) is the energy density of the material at the scale €, and to pass to the limit,

in the sense of I'-convergence of De Giorgi, as € tends to 0. So, under suitable assumptions
on W, the problem is to know whether the I'-limit of is of type and to find the
formula of the energy density Wi acro Which will depend on W. In the periodic and convex
case, i.e. when W(g, €) is convex with respect to £, this I'-convergence problem was solved
by Bouchitté in [Bou87, Theorem 3.2] (see also Ansini and Ebobisse [AEOL, Theorem 5.1]).
The object of the present paper is to deal with the stochastic and nonconvex case.

The plan of the paper is as follows. The main result of the paper is stated in Sect. [2| (see
Theorem . In Sect. |3| we give auxiliary results needed to prove Theorem A key
tool in the proof Theorem is the one of subadditive process: this is recalled in §3.1|
The properties of the homogenized density, which is defined as the almost sure limit of a
subadditive process, are established in In §3.3 we recall some properties of the functions
of bounded deformation that we use in the proof of the lower bound and the upper bound.
To establish the upper bound we also need a relaxation theorem in the space of functions of
bounded deformation and the use of the Vitali envelope of a set function: these are recalled
in and respectively. Finally, Theorem [2.1]is proved in Sect. [ Its proof is divided
into two propositions: the lower bound (see Proposition and the upper bound (see
Proposition [4.2)).

2. MAIN RESULT

Let (9, F,P,{7.}.cz~) be a dynamical system, let N € IN*, let O = R" is a bounded open
set, let O(O) be the class of open subsets of O and let BD(O) be the space of functions of
bounded deformation on O, i.e.

BD(0) := {u e L'(O;RY) : Eu = % (Du+ Du") € M(O)} ,

where M(O) is the space of N x N matrix-valued bounded Radon measures on O and
Du is the distributional derivative of uw. For each w € BD(0), Eu = Eudr + E*u with
Eu(z) := $(Vu(z) + Vu(x)") the symmetrized gradient, where (u, E*u) is the Lebesgue
decomposition of Fu with respect to the Lebesgue measure on O that we denote by dz. Let

LD(O) < BD(O) be given by

LD(O) := {u e L'(O;RY) : E*u = O}.
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In this paper we are concerned with stochastic integrals I. : BD(O) x Q — [0, o0], depending
on a parameter £ > 0, defined by

J w (g,é’u(aﬁ),w) dr if u e LD(O)
.t if u € BD(O)\LD(O)

I (u,w) =

Sym

where W : RY x RY*YN x Q — [0, o[ is a Borel measurable stochastic integrandﬂ satisfying
the following conditions:

(C1) W is {7.}.czn~-covariant, i.e.
Wiz + 2§ w) = W(z,§ 7(w))

for x € RV, allfe]Rg,an, all ze Z" and all w e Q;

(Cy) W has 1-growth, i.e. there exist «, 5 > 0 such that for every w € Q, one has
alf| < Wz, & w) < B(L+¢)) (2.1)
for all z € R and all € € ]stggN with RggN denoting the space of N x N symmetric

real matrices;
(C3) W is Lipschitz continuous, i.e. there exists C' > 0 such that for every w € 2, one has

|W(x,§,w) - W(%Cawﬂ < C|€ - C|

for all z € RY and all £ e RVXV:

sym
(C4) W is symmetric quasiconvex, i.e. for every w € €2, one has

W (z,& w) = inf { Wz, &+ E(y),w)dy : ¢ € CL(]0, 1[V; IRN)}
J0,1[N
for all z € RN and all £ € RN,
The object of the paper is to compute the almost sure I-limit of {I.}..¢o as ¢ — 0 with
respect to the strong convergence of L'(O; RY). By the almost sure I'(L!)-limit of {I.}.~¢
as € — 0 we mean a functional Iy, : BD(O) x Q — [0, 0] such that for P-a.e. w € €, one

has:
[-lim: for every u € BD(O), I'(L')-lim,_, I.(u, w) = Thom(u,w) with

222250

F(Ll)—li_mls(u,w) := inf {li_m]a(ua,w) DU, — uin LI(O; ]RN)} ,

e—0 e—0

or equivalently, for every v € BD(O) and every {u.}.~o < LD(O) such that u. — u
in L'(O; RY),

h_mfs<u€7 w) = Ih0m<u7 w);
e—0

!By a Borel measurable stochastic integrand W : RN x RY XN x Q — [0, 0] we mean that W is (B(RY)®

B(RY:N) ® F, B(R))-measurable, where B(RY), B(RYX") and B(R) denote the Borel o-algebra on RY,
RN

and R respectively.
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[-lim: for every u € BD(O), I'(LY)-1lim, ¢ I (1, w) < Ihom(u,w) with
F(Ll)—E%IE(u,w) := inf {E%Ig(us,w) tu. — uin LY(O; ]RN)} ,
or equivalently, for every u € BD(O) there exists {u.}.~o = LD(O) such that u. — u
in L'(O;RY) and
@Is(us,w) < Thom (4, w).

We then write I'(L')-lim, . I. = lom. (For more details on the theory of T-convergence we
refer to [DM93].) The main result of the paper is the following.

Theorem 2.1. Assume that (Cy), (Cq), (C3) and (Cy) hold. Then, T'(L')-lim. o I. = Iom
with Inem : BD(O) x Q — [0, 00] given by
- dE*u s
Lhom(u,w) == | Whom(Eu(z),w)dz + | Wio, | === (2),w | d|E*u|(z),
o) 9) d| E=ul
where Whom, Wity : REEN x Q — [0, 0] are defined by:

kelN* kN

= Whom (&,
W6 ) 1= iy Lo 1E:2)

Whom (&,w) := inf L gz [inf { s W(x, &+ Ev(x),-)dx : v e LDy(]0, k[N)H (w);

where EZ denotes the conditional expectation over I with respect to P, with I being the o-
algebra of invariant sets with respect to (Q, F, P, {1, },ez~). If in addition (Q, F, P, {7, }.czn)
1s ergodic, then Wyom ts deterministic and is given by

Whon(€) := inf, kiNE {inf { . Wy, €+ Evly),-)dy : v e LDy(]0, k[N>H 7

where E denotes the expectation with respect to P.

Periodic homogenization by I'-convergence for nonconvex Hencky plasticity functionals has
been recently studied by Jesenko and Schmidt (see [JS18]). Analogue results of Theorem
in the space of functions of bounded variation were obtained by De Arcangelis and Gargiulo
in the periodic case (see [DAG95]) and by Abddaimi, Licht and Michaille in the stochastic
case (see [AMLIT]).

3. AUXILIARY RESULTS
3.1. A subadditive theorem. Let (2, F,P) be a probability space and let {7,},cz~ be
satisfying the following three properties:
o 7. : Q) — Qis F-mesurable for all z € Z;
® 7,07y = T,4» and 7_, = 7, ! for all 2,2 € ZV;
o P(1.(A)) =P(A) for all Ae F and all z € ZV.

Definition 3.1. Such a {7.},cz~ is said to be a group of P-preserving transformation on
(Q, F,P) and the quadruplet (2, F,P, {7.}.cz~) is called a measurable dynamical system.
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Let T := {Ae F :P(r.(A)AA) = 0 for all z € Z"} be the o-algebra of invariant sets with
respect to (2, F,P, {7} ,ezn).

Definition 3.2. When P(A) € {0,1} for all A € Z, the measurable dynamical system
(Q, F, P, {1,},ezn~) is said to be ergodic.

In what follows, we assume that (2, F,P, {7.}.cz~) is a measurable dynamical system and
we denote the class of bounded Borel subsets of RY by By, (RY).

Definition 3.3. We say that S : B,(RY) — L'(Q, F,P) is a subadditive process if S is
subadditive, i.e.

S(Bu B')<S8(B)+S(B)
for all B, B € B,(RY) such that B n B’ = ¢, and {7.}.cz~-covariant, i.e.
S(B + 2) = S(B)or,
for all B € B,(RY) and all z € Z".
Definition 3.4. We say that {Q.}.-0 = By (RY) is regular if there exist {I.}.~¢ and C > 0

such that every I, is an interva]ﬂ in Z¥, I. = I, whenever ¢’ < ¢ and |I.| < C|Q.]| for all
e > 0.

The following theorem, which is an extension of Akcoglu-Krengel’s subadditive theorem (see
[AKS1, [Kre85]), was proved by Licht and Michaille in [LM02, Theorem 4.1].

Theorem 3.5. Let S : B,(RY) — LY(Q, F,P) be a subadditive process such that:

(S1) ¥(S) :=inf {fg S(ﬁrw)dP(u)) : I is an interval in ZN} > —o0;

(Sg) there exists h € LY(Q, F,P) such that |S(Q)| < h for all Q € By,(RY) such that Q is
conver and Q < [0, 1[V.

Then, there exists Q' € F with P(Q) = 1 such that for every w € €)', one has

1 S@)w) ]
L RGN

E* [S([0, k[™)] (w)

for all {Q:}es0 = By(RY) such that Q. is convex for all e > 0, lim._odiam(Q.) = «© and
{Q:}e=0 is regular, where EZ denotes the conditional expectation over I with respect to P. If
in addition (Q, F, P, {1,},ezn~) is ergodic, then for every w € ', one has

S@)w) 1 v
lig =5 = it R [S(0,4)],

where E[S([0, k[V)] denotes the expectation of S([0, k[™V) with respect to P,

Remark 3.6. For any cube @ in RY, {Q.}.~0 defined by Q. := %Q is regular. Moreover,
every (). is convex and lim. o diam(Q.) = .

2By an interval I in Z~ we mean that I = Hilil[ai, b;[ with a;,b; € Z.
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3.2. Definition and properties of the homogenized density. Let ¢ € ]RS]\;IQN and let
S¢: By(RY) — LY, F,P) be defined by

S¢(B)(w) = inf {L W(a, € + Ev(z),w)da : v e LDO(é)} (3.1)

with W : RY x RYXN x Q — [0, 0 satisfying (Cy) and (Cy), where (Q,F,P,{7.}.ezv)
is a dynamical system. Then, it is easily seen that S¢ is a subadditive process satisfiyng
(S1) and (S2) of Theorem and, according to Remark [3.6] the following proposition is a
straightfoward consequence of Theorem the Lipschitz continuity of W, i.e. (Cs), and
the fact that QY " is dense in RYXY, where QY " denotes the space of N x N symmetric
rational matrices.

Proposition 3.7. Assume that (C1), (Cs) and (C3) hold. Then, there exists Q € F with
P(Q) = 1 such that for every w € 2, one has

i SECD W) L rae o, 1] ()

1 N
0 ‘_ ‘ k IN*
e— sQ € k

for all £ € RYXN and all cube Q in RYN. If in addition (Q, F,P,{1.}.czn) is ergodic, then

sym
'~

for every w € €, one has

1
. _ ¢
g Jnf, e E[SE0. K]
Definition 3.8. According to Proposition 3.7 we define Whom : RY%Y x © — [0, o[ by
S¢ (L
Wiom(,w) = lim M
g
= inf —EZ llnf{ W(x, &+ Ev(x),-)dx : v e LDg(]O, k:[N)}] (w).
keN* kN 10,k[N

When (Q, F, P, {7,}.ezn~) is ergodic, Wien is deterministic, i.e. Wign : ]RS]\;;lN — [0, 00][ is
given by

Whom(§) = kgﬁ\lf* k—NIE [mf{ o W(x,&+ Ev(z),-)dx : v e LDg(]O, k[N)H :

Finally, here are some properties of Wiy, that will be useful in the proof of Proposition .2

Proposition 3.9. Assume that (Cy), (Cz), (C3) and (Cy) hold. Then, Wyom has 1-growth,
15 Lipschitz continuous and symmetric quasiconvex.

Proof of Proposition [3.9] It is easily seen that Wy, has 1-growth and is L1psch1tz con-

tinuous. We only prove that Wi, is symmetric quasiconvex. Let w € Q (where Q is given
by Proposition 3.7)). From Proposition [3.7 (and Definition [3.8) we have

Whom (¢, w) = lim0 W, (¢ w) for all ¢ e RYXN (3.2)

sym
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where Wi, (- w) : RYXN — [0, o] is given by

1 1
Wiom (¢ w) := g inf {J W(zx,( + Ev(x),w)dz : v e LDy (—Y) }
2] Ly &
with Y :=]0, 1[V. Fix £ € RY*N and ¢ € C}(Y;RY). We have to prove that

Sym

Whom (6,0) < fy Whom (€ + £6(y), w)dy. (3.3)

As WE L (6,w) < B(1 + [€]) for all € > 0, according to (3.2) and Lebesgue’s dominated
convergence theorem, to establish (3.3)) it suffices to show that for every £ > 0, one has

Wi (60) < [ W6 + E00). )y (3.4)

Fix € > 0. By using the symmetric quasiconvexity of W and Fubini’s theorem, we have

Wiom(§ w) < @ inf {LY fy Wz, &+ Ev(x) + EP(y), w) dydx : v e LDy (éY) }

_ inf { L ﬁ LY W (2,6 + E6(y) + Ev(x),w) dzdy : v € LDy Gy) } (3.5)

On the other hand, fix any 6 > 0. By Castaing’s selection measurable theorem we can assert
that there exists a measurable map

Y — LDg (1Y)
y =y

such that for a.e. y € Y, one has
1
}IY_‘ f W (z, &+ EP(y) + Evy(z),w)dr < Wi (E+Ed(y),w)+9 (3.6)
5 Y

From ((3.5)) and (3.6 we deduce that
Winl€) < | Wian(€ + E0(y).whdy + 5
Y
and (3.4) follows by letting 6 — 0. B

3.3. Some properties of functions of bounded deformation. Here we recall some
properties of functions of bounded deformation that we use in the proof of Theorem [2.1]
(For more details on the space of bounded deformation, we refer to [ACDMO97, [DPR19] and
the references therein.)

Let O < RY, let M(O) be the space of N x N matrix-valued bounded Radon measures on
O and let BD(O) the space of functions of bounded deformation on O, i.e.

1

BD(0) := {u e L*(O;RY) : Fu 5

(Du+ Du") € M(O)} :
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Du denotes the distributional derivative of u. For each u € BD(O) we have
Eu = Eudx + E?u,

where (Eu = ‘ZE—I“, E*u) is the Lebesgue decomposition of Eu with respect to the Lebesgue
measure on O that we denote by dxr. Moreover, £u is the approximate symmetrized gradient
of u, i.e.

Theorem 3.10. For dz-a.e. zo € O, Eu(x) = 3(Vu(zo) + Vu(zo)”) and

1 ’u_ux°|dm=0

lim

=0 |Qp(z0)| Jg,e0) P
where uy, is the affine function defined by uy,(x) := u(zo) + Vu(zo)(x — o) and Q,(xg) 1=
xo + pQ with Q the unit cell centered at the origin.

and the analogue of Alberti’s rank-one theorem holds, i.e.

Theorem 3.11. Let u € BD(O). Then, for |E*ul-a.e. zg € O there exist a(xy) € RN and
b(zo) € RN with |a(zo)| = |b(xo)| = 1 such that
dEu
Ea "
Theorem [3.11] which will be used in the proof of Proposition has recently been estab-

lished by De Philippis and Rindler in [DPR16]. The following two lemmas will be also useful
in the proof of Proposition [4.1]

Lemma 3.12. Let u € BD(O), let xy € supp(|E*u|) be such that (3.7) holds and let @
be the unit cube centered at the origin whose the sides are either orthogonal or parallel to
a(xg). Then:

= a(zo) © b(wo). (3.7)

| Eul(Qp(0))

g R =
i E0@p(0) vy 5 €01 (3.8)

=0 [Eu|(Qp(0))

Lemma 3.13. Let u € BD(O), let xy € supp(|E°ul|) be such that (3.7) holds and, for each
p >0, let v, € BD(Q) be defined by

N—-1

S N— ) — S u
v,(x) = GRED) ( (2o + pz) Py me) (y)dy> + R,y(y), (3.9)

where R, : RN — RY is a rigid deformatz’orﬂ. Then:

. Eu(Qp(x
(1) Ev,(Q) = ity and

e Eu@e)
})_}()E p(@) })_}0 |Eu|(Qp(Io))

3By a rigid deformation we mean a map R : RN — RV defined by R(z) = Sz + o for all z € R, where
S is a N x N skew-symmetric matrix and o € RV.

= a(zg) © b(xp); (3.10)
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(ii) up to a subsequence, v, — v in L'(Q;R") and Ev, — Ev weakly in M(O) with
v € BD(Q) defined by

v(x) 1= 0({b(xp), x))a(x) + c(a(xo) © b(xo))x + R(y), (3.11)

where v :] — %, %[—> R is bounded and increasing, ¢ > 0 and R : RN — RY is a rigid

deformation. Moreover, for a.e. § €]0,1[, one has
lin(l) Ev,(0Q) = Ev(6Q). (3.12)
p—

For a proof of Lemmas and we refer to [KR19, [DPRI1T].

3.4. A relaxation theorem in the space of functions of bounded deformation. The
following result has been recently established by Kosiba and Rindler (see [KR19, Theorem
1.3] and also [Rinlll, BET00, ARPRIT]).

Theorem 3.14. Let O ¢ RN be a bounded open set, let V : RN — [0, 0] be a continuous
and symmetric quasiconvez integrand having 1-growth, let J : BD(O) — [0, 0] defined by

J(u) = JO V(Eu(z))dz {f ue LD(O)
*© if u € BD(O)\LD(O)

and let J : BD(O) — [0, 0] be the L'-lower semicontinuous envelope of J, i.e.

J(u) := inf { lim J(uy,) : un, — u in L'(O; RN)} :

n—oo

Then, for every u € BD(O), one has
— dE*u
JUZJVEUJU dx—l—fVoo( x)dESux
) = | Vieunas + | v (Fmm@ ) dE@)

with V® : RNXN — [0, 00[ given by V=(€) := lim._ @

Sym

3.5. Integral representation of the Vitali envelope of a set function. What follows
was first developed in [BFM9S, BB0(] (see also [AHMI6, [AHMI7, AHCMIT]). Let O = RN

be a bounded open set and let O(O) be the class of open subsets of O. We begin with the
concept of the Vitali envelope of a set function.

For each 6 > 0 and each A € O(0), denote the class of countable families {Q; = Q,, (%) }ier
(where Q,,(z;) := x; + p;Q) where @ is the unit cell centered at the origin) of disjoint open
cubes of A with x; € A, p; > 0 and diam(Q;) €]0, 0] such that |A\ U, Q;] = 0 by Vs(A).

Definition 3.15. Given S : O(0O) — [0, 0], for each § > 0 we define S : O(0) — [0, ]
by

S%(A) := inf {Z S(Q)) : {Qilicr € vg(A)} : (3.13)

By the Vitali envelope of S we call the set function §* : O(O) — [—o0, 0] defined by
S*(A) :=supS°(A) = lim S(A). (3.14)
>0 6—0
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The interest of Definition comes from the following integral representation result. (For
a proof we refer to [AHCMI17, §A.4].)

Theorem 3.16. Let S : O(O) — [0,0] be a set function satisfying the following two
conditions:

(a) there exists a finite Radon measure v on S which is absolutely continuous with respect
to dx such that S(A) < v(A) for all A e O(0);

(b) S is subadditive, i.e., S(A) < S(B) + S(C) for all A, B,C € O(0) with B,C < A,
BmC’—@ and |[A\B u C| = 0.

Then lim,_q S(Qp ) e LYNQ) and for every A€ O(0), one has

Qs (
: CE)
S0 - g

4. PROOF OF THE HOMOGENIZATION THEOREM

Theorem is a direct consequence of the following two propositions (see Proposition

n and Proposition [4.2|in §4.2)).

4.1. The lower bound. Here we establish that T'(L')-lim. o I. > Thom-

=——e—0

Proposition 4.1 (lower bound). Under the assumption of Theorem for P-a.e. we ),
one has

h_mla(u€>w) = [hom(uaw) (41)

e—0

for all w e BD(O) and all {u€}€>0 < LD(O) such that u. — u in L'(O; RY).

Proof of Proposition The proof of this proposition follows the same method as in
[AMLO7, Theorem 3.1]. Let we Q where Q e Fis given by Proposition 3.7} Let u € BD(O)
and let {u.}.~o = LD(O) be such that u. — u in L'(O; RY). Without loss of generality we
can assume that

lim 7, (ue,w) = lir%ls(ue,w) < o0, and so sup I (u.,w) < 0. (4.2)
e—0 e >0

For each € > 0, we define the (positive) Radon measure u. on O by

pe =W (é,é’u(-),w) dx.

From (4.2) we see that sup..q i(O) < o0, and so there exists a (positive) Radon measure
on O such that (up to a subsequence) pu. — p weakly. By Lebesgue’s decomposition theorem,
we have = p* + p® where p® and p are (positive) Radon measures on O such that p® « dz
and p® L dz. Thus, to prove (4.1) it suffices to show that:

w1 = Whom(Eu(+), w)dx; (4.3)

s dE*u <
it = Wik (2 ()0 ) B, (4.4
d|Esul
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Proof of (4.3]). It suffices to prove that

o PQul0)

P, ()] Mrem( BVl ) (5)

for dz-a.a. xp € O with Q,(x¢) := x¢ + pQ where @ is the unit cell centered at the origin.
As 1(O) < oo without loss of generality we can assume that 1(0Q,(zo)) = 0 for all p > 0,
and so to prove (4.5)) it is sufficient to establish that

lim lim ﬂE(QP(xO))

PTG, gy~ Mhem(EulT) ) (1.6)

Fix any ¢ > 0, any p > 0, any s €]0,1[ and any 6 €]0,1[. Fix any ¢ € IN* and consider

{Qz‘}z‘e{o,-..,q} < Qsp(xo) given by

Q' L Qsdp(IO) 1fl =0
e Qs(Seréép(lfs) (‘TO) ifie {L e ,Q}

For every i € {1,--- , ¢}, consider a Uryshon function ¢; € C*(O) for the pair (O\Qi,@i,l)
such that

q
Vil Lo S ——
IVoil e omny op(1 — s)

and define u’ € ug, + LDo(Qs,(0)) by
Ul 1= Ugy + 0i(Ue — Ugy)

with ug, (z) := u(zg) + Vu(xg)(z — xp). Fix any i € {1,--- ,q}. We then have

, Eue in Qi1
gu; = gu(‘x()) + Soig(u%: - ul"o) + V(:Oi © (us - U:ch) in Qi\@i—l
Eu(xo) in Qép(xO)\Qh

and so
f W(E,Sué,w> de = J W(z,gus,w> dx+f W(iéﬂi,w) dx.
Qsp(z0) € i1 € Qi\Qi—1 €

x
+J W=, Eu(xg),w) dx.
Qsp(10)\Q: <€ )

4By a Uryshon function from O to R for the pair (O\V, K), where K ¢ V < O with K compact and V
open, we mean ¢ € C®(0) such that ¢(z) € [0,1] for all z € O, p(x) =0 for all z € O\V and ¢(x) = 1 for
all z € K.
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Taking the right inequality in (2.1)) into account, we see that:

1 T 1 T

_— Wi—Cu,w)dr < ——— Wi—,Eu.,w)dx
|Qp(20)] Qi1 <5 ) 1Q,(20)] Qsp(x0) (5 )

pe(Qp(0))

|Qp(xo)|
1 x . 6]
W= Eul,w dr < oV (1 —s)N + E(us — Uy, )|dx
B Jono,, ¥ (28%) U Gl Sy, )
16 1 [te — Uy, |

+ dz;
6(1 - S) ‘Qp(x0)| Qi\Qi—1 p
1

x

—_ W(—,Su(a: ),w) dr < c6™(1—s)N,
@p(@0)l Jos,@ona: - V€ ’

where ¢ := B(1 + |Eu(xo)]). Consider SE“@0)(-)(w) defined by (3.1)) with ¢ = Eu(w,). From

the above we deduce that

6N88u(x0) (%de(xo)) (w) _ 1

| 44 <§,5ué,w> dx

|2Qsp(20)| Q@) Joy o
= %““N(l—sw
p

B
_ Elu, —
+|Qp (o) J Z\QZ £

_l’_
5(1 - S |Qp o) Jz\Qz p

and averaging these inequalities, we obtain

850 (1Qsp(10)) (@) _ pe(@p(w0)

5N < +2c0N (1 — s)N
12Qs0(0))| |Qp(0)|
1 B
1 1€ (e — gy )|d
0 |Qp(@0)| Js, @0\ Qusp(0) ’
. Bq 1 lue — uzoldl,'

5(1 — S) |Qp(x0>| Qp(=0) p

Taking Proposition (and Definition and Theorem [3.10] letting ¢ — oo and then
e — 0 and p — 0, we conclude that

N Whom (Eu(wo),w) < lim lim =227 - (Qp(0)) +2e¢6™(1 — 5V,
hom (E0(z0). ) p—0e=0 |Qp(930)| ( )
(4.6 follows by letting s — 1 and § — 1.

Proof of (4.4]). It suffices to prove that

ICAD)

o2 TEu|(Q)(z0)) — Wiom(a(20) © b(w0), w) (4.7)
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for |E*ul-a.a. xo € O such that holds with Q,(z¢) := zo + pQ) where @ is the unit cube
centered at the origin whose the sides are either orthogonal or parallel to b(zy). Fix such
a 9. As u(O) < oo, without loss of generality we can assume that (0Q,(z¢)) = 0 for all
p > 0, and so to prove it is sufficient to establish that

lim lim M
p—0e—0 \Eu! (Qp(iﬁ'o))

For each p > 0 and each ¢ > 0, let v, € BD(Q) be given by (3.9)), let v,. € LD(Q) be defined
by

> Wiom(a(zo) © b(wo), w) (4.8)

N—-1 1

= u(xg+ pr) — — Ue
e®) = Eal(@, ) ( oo =g | (y)dy> )

and set

_ |Eu|(Qp(0))
S
Then, as u. — u in L'(O; RY) and by using Lemma we have:

t,:

lir% |Vp.e = VpllL1(0myvy = 0 for all p > 0; (4.9)

limt, = co. (4.10)
p—0

From Lemma m(ii), up to a subsequence, we have
1
Kp = |v, — UHEI(Q;RN) —0asp—0 (4.11)

with v € BD(Q) given by (3.11)). Fix any ¢ €]0, 1[ such that (3.12)) holds. Fix any p > 0 and
any € > 0. Let u,. € LD(Q) be defined by

Upe 1= 1)U, .. (4.12)
First of all, it is easy to see that
1 f x 1 To + px
_ 1% <—,5u€,w) dr = — %1% (—,Eu ’5,w> dx. (4.13)
|EU|(QP(ZL‘O)> Q(;p(xo) € t,D 0Q € g
On the other hand, fix any ¢ € IN* and consider {Q;}ico,.. g} < 0Q) given by
(1—k,)0Q ifi=0

@i = (1—%“’@) 5Q ifief{l, -, q).
q

For every i € {1,--- ,q}, consider a Uryshon function ¢; € C*(O) for the pair (O\Q;, Q;_;)
such that

q
V@il Lo omy < - (4.14)
o

and define v/ _ € t,05 + LDy (6Q) by
“276 = 1,05 + pi(upe — 1,05)
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where Oy is the affine function defined by

_ BoQ) T((3)7) +‘1’((_%>+>a(xo) + R(y)

@5(1‘) . 5N 9

with ¥ :] — 1, 1[— R given by ¥(r) := v(r) + cr, where v :] — 2, [ R, ¢ > 0 and R (a
rigid deformation) are given by Lemma [3.13(ii). (Note that the trace of v and ©; are equal

on the faces of 6Q) orthogonal to b(zg).) Fix any i € {1,--- ,q}. We then have

Eu, . in Qi1
t .
Eui — 5—;Ev((5Q) + @€ (Uupe —1,05) + Vo, O (upe —1,05) in Q:\Qi—1
t .
5_1vaU(5Q) in 6Q\Q;.
Hence
1 , 1
_J W(xo—l-PZE’gu;E?w) dr < — W(depr,Eupva,w) dx
tp Jsq € ’ tp Joq 3
1 ,
+— W<:E0+p$,5u;7€,w) dx
tp Qi\Qi—1 €
1 t
+— W (xo - px’ %Ev(é@),w) dx. (4.15)
tp Jso\0: 0

Moreover, taking (4.12)) and (4.14]) into account, from the right inequality in (2.1)) we see
that:

1 t
— W <:Co + /)I7 _]PVEU((SQ),CU) dr < A(p,0); (4.16)
to Jso\as e 9
1 To + pT ,
— W JEul yw)de < Aq(p,d)
tp Joaqis ( € 7 >
+é |8(up7€ - tp@(;)’dl‘
tp J@nQis
+@ J [V, — Osldx (4.17)
Kp JQ:i\Qi—1

(k)N
with Aj(p,d) := BS—N + BO(;—N”))\EU((SQ)\. Note that by (4.10) and (4.11]) we have

p

Ai(p,9) — 0as p—0. (4.18)
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Set £, 1= (St—]”va((SQ) e RY XN and consider 8% (-)(w) defined by (B.1) with £ = £, 5. From
(4.13]), (4.15), (4.16) and (4.17) we deduce that

1 SN Séo.s 1
—f %% (E,Eug,w> dr > — (ngp(%)) @) —2A4(p,9)
|Eu|(Qp(x0)> Qsp(z0) € tp ‘EQp(x(])’
_té 1E(upe — t,05)|dx
P YQNQi-1
_ba f v, — Os|dx
P,
Kp JQi\Qi-1
for all i e {1,--- , ¢}, and averaging these inequalities, it follows that

5 854 (1Q,(x0)) (=)

1 J T
_ W(—,Su ,w) de > —2A4(p,9)
|Eul(Qp(20)) Josy@e) V€T tp 12Q,(0)|
1
——ﬁ |E(upe —t,05)|dx
t bl
Tlp JsQ\(1-kp)5Q
_B |v,e — Osldz.
p?
Kp JsQ\(1-k,)0Q
But
B B s
- |Up,€ — Osldz < _va,e - UHLI(Q;]RN) + — v — Os|dz,
Rp JsQ\(1-r,)5Q Kp Kp JsQ\(1-k,)5Q

and so, for every ¢ > 0 and every g € IN*, one has

1 5N Sgp,é l
—J W (E, Eug,w> dr = — (pr(xO)) )
|Eu|(Qp(20)) Jgs, (o) € tp 12Q,(x0)]

1

——é |E(upe —t,05)|dx
qtp Js\(1-x,)5Q

—EHU e —UHLl RN
K Py (Q7 )

P
B
Kp JsQ\(1-k,)5Q

- 2A1<p7 5)

|v — Os|dz.
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Taking Proposition (and Definition and (4.9) into account and recalling that s, =

|v, — UHEl(Q_RN) and &, 5 = 5% Ev(6Q), letting ¢ — o0 and then £ — 0, we obtain

e(@plxo)) oy L :
l1—>0 | Eul|(Q,(x0)) ll—{r(l) |Eul(Q,(x0)) JQp(zo) w (g ; 5ug,w> dx

1 T
> hm—J Wi—,Eu.,w)de
e=0 | Bul(Q,(w0)) Qsp(x0) (5 )
oN
> t_Whom (6NEU(5Q) ) —2A4(p,0) — BK,
o

B
Fip JoQ\(1-r,)0Q
As Whom is Lipschitz continuous (see Proposition [3.9) we have

oN oN
— Whom ((SNEU/)(5Q) > < C|Ev,(0Q) — Ev(0Q)| + t_Whom (5NEU((5Q) )

tp P

|U — @5’d&3 (419)

and noticing that Ev,(6Q) = % we see that

Wi (5ale0) @) ) < € alan) ©b(a0) — gy B
Eu(Qp(x0))  Eu(Qsp(w0))
+C |Eul(Q,(z0)) |EU’(Qp<xo))‘
5N

+EWhom (6NEUP(5Q) >

Eu(Q,(x0)) | Bul(Qsy (o))
< Clatao) ©b(@0) ~ gy |(Qp($o))‘ ! C'l ~ (0, )
5N
+EWhom ((SNEUP((SQ) )

where C' > 0 is the Lipschitz constant. Hence

%Whom (5NEU(5Q) ) > %Whom <5N (20) ® b(xo), > — C|Ev,(0Q) — Ev(6Q)]
=C |alea) ©z0) - éﬁ%ﬁf&%\
1 IBul(Qua)
cls Bul(@p(w0)) | (4.20)

As the trace of v and ©4 are equal on the faces of 6Q) orthogonal to b(xg), from Poincaré’s
inequality we can assert that

f v —Bsldx < C'k,Aq(p,9), (4.21)
SQ\(1—rp)
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where C” > 0 does not depend on p and As(p,d) := S(;Q\(l%p)w ‘Ev — E%(fi@ ’ dz. Note that
by (4.11]) we have
As(p,6) — 0 as p — 0. (4.22)

From (4.19), (4.20) and (4.21)) we deduce that

. H’E(QP('TOD ﬂ t_Pam o). w | — v — Ev

i AL g (Satan) ©8(a) ) ~ C1EG60) - Eu(60)
s oy @) | ] [Bul(Qsp(x0))
C'|a(zo) © blzo) |EU|(Qp(350))‘ C‘l |Eu|<@p<xo>>’

—2A1(p,6) — Br, — BC"Ns(p,9).
Letting p — 0 and taking (3.8)), (3.10)), (3.12)), (4.10), (4.11)), (4.18) and (4.22)) into account,

we conclude that
lim lim —ME(Qp(xO))
p—0e=0 | Bul(Q,(x0))
and (4.8) follows by letting 6 — 1. B

4.2. The upper bound. Here we establish that I'(L')-lim._o I, < Tpom.

Proposition 4.2 (upper bound). Under the assumption of Theorem for P-a.e. w e,
one has

> W2 (a(zo) ©b(zo),w) — C(1 — V),

D(LY-Tim I, (u, w) < Thom (4, w) (4.23)

e—0

for all w e BD(O).

Proof of Proposition 4.2} In what follows, for each ¢ > 0, we consider Z. : BD(O) x
O(0) x Q — [0, 0] defined by
f w <£,5u(m),w> dr if ue LD(O)

A g
o0 if u e BD(O)\LD(O).
(Then I. =Z.(-,0,-) for all ¢ > 0.)

Let w e () where ) € F is given by Proposition . The proof is divided into two steps.

Step 1: establishing the upper bound on LD(O). We prove that (4.23]) holds on LD(O),
i.e. for every u € LD(O), one has

I (u, Aw) := (4.24)

F(Ll)_ﬁélg(u,w) <f Whom (Eu, w)dz.
E— O

For this we proceed into four substeps. Fix u € LD(O).

Substep 1-1: using the Vitali envelope. Consider the set function S, : O(O) — [0, 0]
defined by

Su(A) := Tm inf {Ie(v, Aw)iveu+ LDO(A)}. (4.25)

e—0

For each 6 > 0 and each A € O(0), denote the class of countable families {Q; = Q,, (%) }ier
(where Q,,(z;) := x; + p;Q where @ is the unit cell centered at the origin) of disjoint open
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cubes of A with x; € A, p; > 0 and diam(Q;) €]0,d[ such that |A\ U, @Q;| = 0 by Vs(A),
consider 8¢ : O(0) — [0, 0] given by

= inf {Zs {Qi}ier € v5(A)}

el
and define S : O(0) — [0, 0] by
SH(A) :=supS’(A) = lim S’ (A).
>0 6—0
The set function S¥ is called the Vitali envelope of S, (see §3.5)). We prove that for every
A e O(0), one has
F(Ll)-ﬂzg(u, A w) < SiA). (4.26)

Fix A € O(0) such that S¥(A) < . Fix any 6 > 0. By definition of S3(A), there exists
{Qi}ier € V5(A) such that

S mal@) < 85(4) + 5. (1.27)
el
Fix any € > 0 and define S, : O(O) — [0, 0] by
Su(A) := inf {Ia(v, Aw):veu+ LDO(A)}. (4.28)

(Thus S, = lim, .0 S,..) Given any i € I, by definition of S,.(Q;), there exists v’ €
u + LDg(Q;) such that

. 510,
(05, Qi) < Sua(Qi) + 2'&’. (4.29)
Define u € u + LDy(A) by
5. % in O\A
e = vl in Q;.
From (4.29) we see that
<D Sl + =
i€l
hence lim, .o Z.(u, A, w) < S(A) + ¢ by using ([4.27), and consequently
lim lim 7. (u?, A, w) < S*(A). (4.30)

e—0e—0

On the other hand, we have

|ul — uf 1oy = J |ul —u\dx—ZJ vl — u|d,

iel

and so, as diam(Q;) €]0, [ for all i € I, from Poincaré’s inequality we can assert that

|l — uf i omny < C5ZJ |Evt — Euldw

iel

< 5 (ZJ & |dx+f \5uydx>, (4.31)

el
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where C' > 0 is independent of §, ¢ and i. Taking the left inequality in (2.1)), (4.29) and
(4.27)) into account, from (4.31)) we deduce that

_ 1
lim [lu? = ul s omn) < C6 (E<83<A) +e)+ J |8u|dx>
e— A

which gives

EE [u — ulpromm) =0 (4.32)

because lims_om?(A) = m*(A) < . According to (4.30) and (4.32)), by diagonalization

there exists a mapping ¢ — 6., with 6. — 0 as ¢ — 0, such that:

lli)% ng — u”Ll(O;RN) = O,
i 7. (0. A.w) < S;(4)

with w, := ue, and (#.26)) follows because I'(L')-lim._ Z. (u, A, w) < lim._ Z. (w., A, w).
Substep 1-2: differentiation with respect to dx. We prove that

. S,
D(LY)-1im I (u, w) < f lim Mdm
e—0 0,0 |Qu(2)]
with S, given by (4.25) and Q,(x) := = + pQ where (@ is the unit cell centered at the origin.
Recalling that I. = Z.(-, O, -) for all £ > 0, from (4.26]) we have

F(Ll)-ﬁ%la(u,w) < SH0).

(4.33)

But, it is clear that S, < (5 + |Eu|)dx, i.e. the assumption (a) of Theorem is satisfied,
and it is easily seen that S, is subadditive in the sense of the assumption (b) of Theorem

3.16] Consequently ([4.33) follows from Theorem [3.16]

Substep 1-3: using approximate differentiability. We prove that for dx-a.e. xg € O,

one has
Su(Qp(l‘O)) Suzo (Qp(J:O))

lim ————~ < lim

=0 |Qp(zo)] p=0 |Qp(xo)]
with g, (z) := u(zg) + Vu(zg)(x — x0). Fix any 6 > 0. Fix any € > 0, any s €]0, 1[ and any
p €]0,8[. By definition of S,, -(Qs,(70)) in (4.28) there exists v € uy, + LDo(Qs,(70) such
that

(4.34)

x
f W (—,Sv,w) d < Su,, (Qup(0)) + 81Qup(0)]. (4.35)
Qsp(z0) €
Consider a Uryshon function ¢ € C*(0) for the pair (O\Q,(z0), Q,,(x)) such that
1
©(0: < . 4.
IV Lo 0mm) =) (4.36)

Define w € LD(Q,(x¢)) by
w = U+ Uy, — u).
Then w € u + LDo(Q,(z0)) and

S — { Eu(xg) ?n Qsp(T0)
VO (uzgy —u) + p€u(zo) + (1 — @)€u in Q,(20)\Qsp(xo).
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Taking (4.35)), the right inequality in (2.1)) and (4.36]) into account we see that
S.c(Qfm) _ 1
|Qsp(0)] |Qsp(0)] J@, (2o

1 T
= — Wi—,w,w)dx
|Qsp(x0)| Qsp(z0) <5 )

) W <§,Sw,w> dx

1 x
— W—,w,w)de
|Qsp(20)| JQ, (20)\@up(a0) <5 )
< Suwo,e(Qsp(xO)) Iy
|Qsp (o)
1 1 |t — Uy, | A(p, s)
+8 —dr +
<(1 —8)sM[Qp(wo)l Jo,00) P |Qsp (o)

with A(p,s) = |Q,(20)\Qsp(z0)||Eu(z0)| + SQp(xo)\Qsp(xo) |Eu|dz. Noticing that |Q,(zo)| =
|Qsp(20)| and letting € — 0, we obtain
SuQuan) _ Suaa(Qu)
|Q,0(x0)’ |Qsp(x0)|

L Q) 1 o=l Alp.s)
dx .
v ((1—s> Quo 1) ooy 2 +|Qsp($o)|>

On the other hand, without loss of generality we can assert that

+4

1
lim ——— Eulx)| — |Eulzg)||dz = 0.
50 ’Qp<x0)| 90 (a0) H ( )| | ( O)H

But
A(p, s) 1

Bl < 2(8—N—1) Eu(zo)|

1 1
+—=— Eu(z)| — |Eu(xy)||de,
sV |Qp($0)| Qo (o) “ ( )| | ( O)H

and so

T A(pv 8) L o ulx
i 5 < 2 (SN 1> Eu()]- (4.37)

Letting p — 0 in (4.37) and using Theorem [3.10| and (4.37)) we deduce that
. Su(Qp(x0)) Sy (Qsp(20)) ( 1 )
lim — 22 < lim—2— L 4§+ 2 — — 1| |Eu(z
P01 S T [Qu (o) v 1) fEutol
Susy (Qp(T0)) ( 1 )
= lim —————L+0+2|— —1)|Eu(xo)]
pHO ‘Qp(mo)’ SN ‘ ( 0)’
Letting s — 1 we conclude that

lim Su(Qﬂ(xo)) < lim M
p~0 Q,(T0)]  p=0 |Q,(w0)]

+ 0
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and (4.34) follows by letting § — 0.
Substep 1-4: end of step 1. Combining (4.33) with (4.34) we deduce that

D(LY)-lim I, (u,w) < L lim Ww.

On the other hand, taking (4.24)) and (4.25)) into account, we see that

o S (@p(@)) 7= 87 (2Q,(@)) (W)

m ———" 22 = ]im lim

o0 Q)] a0 [1Q,(2)]

with S€u®) lQp(:v)) (w) given by (3.1) with & = Eu(x). But, by Proposition (and
Definition [3.8]) we have

85 (10,(0)) ()

W] )

for all p > 0, hence

nﬂ@@uwm<mewwmmm
which completes the proof of Step 1.
Step 2: using a relaxation theorem. From Step 1 we have

F(Ll)-ﬁle(u,w) < Jhom (1)
for all uw € BD(O) with Juom : BD(O) — [0, 0] given by
rom (1) = fo Whom(Eu(x),w)dx if we LD(O)
o0 if uw e BD(O)\LD(O).

As T(LY)-lim._¢ I.(-,w) is L'-lower semicontinuous we deduce that

F(Ll)'@[&(ua w) < jhom(u)

for all w € BD(O), where Jhom is the L'- lower semicontinuous envelope of Jyom. But,
by Proposition |3.9| can assert that Wi, is continuous and symmetric quasiconvex and has
1-growth, hence by Theorem (3.14] we have

Jhom (1) = L Whom (Eu(z), w)dx + L Wie (%(z), w) d|Efu|(z)

for all uw e BD(O), and (4.23]) follows. W
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