
HAL Id: hal-02411524
https://hal.science/hal-02411524

Submitted on 29 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronizing Automata over Nested Words
Dmitry Chistikov, Pavel Martyugin, Mahsa Shirmohammadi

To cite this version:
Dmitry Chistikov, Pavel Martyugin, Mahsa Shirmohammadi. Synchronizing Automata over
Nested Words. Journal of Automata Languages and Combinatorics, 2019, 24 (2-4), pp.219–251.
�10.25596/jalc-2019-219�. �hal-02411524�

https://hal.science/hal-02411524
https://hal.archives-ouvertes.fr

Submission to the Journal of Automata, Languages and Combinatorics
Submitted on May 11, 2019

SYNCHRONIZING AUTOMATA OVER NESTED WORDS

Dmitry Chistikov(A,B) Pavel Martyugin(C) Mahsa Shirmohammadi(D,E)

(A)Centre for Discrete Mathematics and its Applications (DIMAP) &
Department of Computer Science, University of Warwick, United Kingdom

d.chistikov@warwick.ac.uk
(C)Institute of Mathematics and Computer Science, Ural Federal University,

Ekaterinburg, Russia
martuginp@gmail.com

(D)CNRS, IRIF, Université de Paris, France
mahsa.shirmohammadi@irif.fr

ABSTRACT
We extend the concept of a synchronizing word from deterministic finite-state automata
(DFA) to nested word automata (NWA): A well-matched nested word is called syn-
chronizing if it resets the control state of any configuration, i.e., takes the NWA from
all control states to a single control state.

We show that although the shortest synchronizing word for an NWA, if it exists,
can be (at most) exponential in the size of the NWA, the existence of such a word
can still be decided in polynomial time. As our main contribution, we show that
deciding the existence of a short synchronizing word (of at most given length) becomes
PSPACE-complete (as opposed to NP-complete for DFA). The upper bound makes a
connection to pebble games and Strahler numbers, and the lower bound goes via small-
cost synchronizing words for DFA, an intermediate problem that we also show PSPACE-
complete. We also characterize the complexity of a number of related problems, using
the observation that the intersection nonemptiness problem for NWA is EXP-complete.

Keywords: synchronizing words, nested words, visibly pushdown automata, Strahler
number, decision problems, formal language theory

1. Introduction

The concept of a synchronizing word for finite-state machines has been studied in
automata theory for more than half a century [37, 33]. Given a deterministic finite

The conference version of this paper appeared in the proceedings of FoSSaCS 2016 [7]. The
present paper contains full proofs.
(B)Most of this work was done while DC was affiliated with the Max Planck Institute for Software
Systems (MPI-SWS), Kaiserslautern and Saarbrücken, Germany.
(E)Most of this work was done while MS was affiliated with the Department of Computer Science,
University of Oxford, United Kingdom.

2 D. Chistikov, P. Martyugin, M. Shirmohammadi

automaton (DFA) D over an input alphabet Σ, a word w is called synchronizing for D
if, no matter which state q ∈ Q the automaton D starts from, the word w brings it
to some specific state q̄ that only depends on w but not on q. Put differently, a
synchronizing word resets the state of an automaton. If the state of D is initially
unknown to an observer, then feeding D with the input w effectively restarts D,
making it possible for the observer to rely on the knowledge of the current state
henceforth.

In this paper we extend the concept of a synchronizing word to so-called nested
words. This is a model that extends usual words by imparting a parenthetical struc-
ture to them: some letters in a word are declared calls and returns, which are then
matched to each other in a uniquely determined “nesting” (non-crossing) way. On the
language acceptor level, this hybrid structure (linear sequence of letters with matched
pairs) corresponds to a pushdown automaton where every letter in the input word
is coupled with the information on whether the automaton should push, pop, or not
touch the pushdown (the stack). Such machines were first studied by Mehlhorn [28]
under the name of input-driven pushdown automata in 1980 and have recently received
a lot of attention under the name of visibly pushdown automata. The latter term, as
well as the model of nested words and nested word automata (in NWA the matching
relation remains a separate entity, while in input-driven pushdown automata it is
encoded in the input alphabet), is due to Alur and Madhusudan [3].

The tree-like structure created by matched pairs of letters occurs naturally in many
domains; for instance, nested words mimic traces of programs with procedures (which
have pairs of calls and returns), as well as documents in eXtensible Markup Language
(XML documents, ubiquitous today, have pairs of opening and closing tags). This
makes the nested words model very appealing; at the same time, nested words and
NWA enjoy many nice properties of usual words and finite-state machines: for exam-
ple, constructions of automata for operations over languages, and many decidability
properties naturally carry over to nested words—a fact widely used in software verifi-
cation (see, e.g., [12] and references therein). This suggests that the classic concept of
a synchronizing word may have an interesting and meaningful extension in the realm
of nested words.

Our motivation for the study of synchronizing words for NWA is threefold. First,
in the view of the interest in the Černý conjecture (see [37] and discussion below)
in automata theory and combinatorics, a natural research direction is a study of
the length of synchronizing words for models of computation close to DFA. Our work
opens this direction for the NWA model, providing a definition of synchronizing words
and showing an exponential worst-case upper bound. Second, researchers in formal
methods have been extending the existing algorithmic and combinatorial tools from
finite-state automata to nested word automata (see, e.g., [2, 5, 12, 19, 1]), and our
study of synchronizing nested words is a contribution to this effort. Finally, we fill the
gap in the literature on the complexity of decision problems for infinite-state systems
such as pushdown automata, register automata, Markov decision processes, Petri nets,
etc. Decidability and complexity questions for many variants of these models have
been studied extensively, including the work on NWA [3, 5, 2, 26] and problems on
synchronizing words [22, 24, 39, 4, 11]. So it has been somewhat surprising to us that

Synchronizing automata over nested words 3

the concept of synchronizing words for nested word automata has not been explored
previously.

Our contribution and discussion

Nested word automata are essentially an expressive subclass of pushdown automata
and, as such, define infinite-state transition systems (although the number of control
states is only finite, the number of configurations—incorporating the state of the
pushdown store—is infinite). Finding the right definition for a synchronizing nested
word becomes for this reason a question of relevance: in the presence of infinitely
many configurations not all of them may even have equal-length paths to a single
designated one (this phenomenon also arises, for instance, in weighted automata [10]).
In fact, any nested word w, given as input to an NWA, changes the stack height in
a way that does not depend on the initial control state (and can only depend on
the initial configuration if w has unmatched returns). We thus choose to define
synchronizing words as those that reset the control state of the automaton and leave
the pushdown store (the stack) unchanged (Definition 2; cf. location-synchronization
in [10]). Consider, for instance, an XML processor [23] that does not keep a heap
storage and invokes and terminates its internal procedures in lockstep with opening
and closing tags in the input; our definition of a synchronizing word corresponds to
an XML document that resets the local variables.

Building on this definition, we show that shortest synchronizing words for NWA
can be exponential in the size of the automaton (Example 4), in contrast to the case
of DFA: every DFA with n states, if it has a synchronizing word, also has one of
length polynomial in n. The best known worst-case upper bound on the length of the
shortest synchronizing word is (1/6− 125/511104) · n3 +O(n2), due to Szykuła [35],
and the previous record was (n3−n)/6 due to Pin [31]; Černý proved in the 1960s [36]
a worst-case lower bound of (n − 1)2 and conjectured that this is also a valid upper
bound, but as of now there is a gap between his quadratic lower bound and the cubic
upper bounds of Szykuła and Pin (see [37] for a survey). In the case of nested words,
the fact that shortest synchronizing words can be exponentially long comes from the
repeated doubling phenomenon, typical for pushdown automata.

Although the length of a synchronizing word can be exponential, it turns out that
the existence of such a word—the shortest of which, in fact, cannot be longer than
exponential—can be decided in polynomial time (Theorem 6), akin to the DFA case.
However, generalizing the definition in standard ways (synchronizing from a subset
instead of all states, or to a subset of states instead of singletons) raises the complexity
to exponential time (Theorem 15); for DFA, the complexity is polynomial space [32,
33]. The lower bounds are by reduction from the intersection nonemptiness problem,
which is known to be complete for polynomial space in the case of DFA [21] and which
we observe to be complete for exponential time over nested words (Lemma 14).

Our main technical contribution is characterizing the complexity of deciding exis-
tence of short synchronizing words, where the bound on the length is given as part
of the input (written in binary). In the DFA case, this problem is NP-complete as
shown by Eppstein [13], and for NWA it becomes PSPACE-complete (Theorem 7).

4 D. Chistikov, P. Martyugin, M. Shirmohammadi

For the upper bound (Section 4.1) we first encode unranked trees (which represent
nested words) with ranked trees. This reduces the search for a short synchronizing
nested word to the search for a tree that satisfies a number of local properties. These
properties, in turn, can be captured as acceptance by a certain tree automaton of ex-
ponential size. We show that guessing an accepting computation for such a machine—
which amounts to guessing an exponentially large tree—can be done in polynomial
space. To do this, we rely on the concept of (black) pebbling games, developed in
the theory of computational complexity for the study of deterministic space-bounded
computation (see, e.g., [34, Chapter 10]). We simulate optimal strategies for trees in
such games [25], whose efficiency is determined by Strahler numbers [17]. Previous use
of this technique in formal language theory and verification is primarily associated
with derivations of context-free grammars, see, e.g., [15, 16] and [17] for a survey.
In this body of work, closest to ours are apparently arguments due to Chytil and
Monien [8]. Our key procedure—which can decide bounded nonemptiness of succinct
tree automata—may be of use in other domains as well.

Finally, for the matching polynomial-space lower bound (Section 4.2) we construct
a two-step reduction from the problem of existence of carefully synchronizing words
for partial DFA, whose hardness is known [27]. We define an intermediate problem of
small-cost synchronization for DFA, where every letter in the alphabet comes with a
cost and the task is to decide existence of a synchronizing word whose total cost does
not exceed the budget. We show that this natural problem is complete for polynomial
space (this strengthens previous results from [18, 10], where costs could be state-
dependent). After this, we basically simulate cost-equipped DFA with NWA, relying
on the above-mentioned repeated doubling phenomenon. We find it noteworthy that
this “counting” feature of nested words (more precisely, the existence of O(logn)-state
NWA that only accept words of length n or larger) alone is a ground for hardness.

Some of our techniques naturally extend to (going via) tree automata over ranked
trees.

2. Finite-state automata and nested word automata

Words and finite-state automata. A word w over a finite alphabet Σ is a se-
quence a1 · · · an of letters, whose length is |w| = n. We denote by Σ∗ the set of
all finite words over the finite alphabet Σ.

A deterministic finite-state automaton (DFA) is a tuple D = (Σ, Q,∆) where Σ
is a finite alphabet, Q is a finite set of states, and ∆ : Q × Σ → Q is the transition
function. The function ∆ is totally defined. It extends to finite words in a natural
way: ∆(q, wa) = ∆(∆(q, w), a) for all words w ∈ Σ∗ and letters a ∈ Σ; and it extends
to sets of states by ∆(S,w) =

⋃
q∈S ∆(q, w) where S ⊆ Q. A finite-state automaton

with a partially defined transition function (PFA) is a tuple P = (Σ, Q, δ) where the
transition function δ : Q×Σ ⇀ Q might not be defined for some states q and letters a.

Nested words and nested word automata. A nested word of length k over a finite
alphabet Σ is a pair u = (x, ν), where x ∈ Σk and ν is a matching relation of
length k: a subset ν ⊆ {−∞, 1, . . . , k} × {1, . . . , k,+∞} such that, first, if ν(i, j)

Synchronizing automata over nested words 5

holds, then i < j; second, for 1 ≤ i ≤ k the set µ(i) def= {j | ν(i, j) or ν(j, i)}
contains at most one element; third, whenever ν(i, j) and ν(i′, j′), it cannot be the
case that i < i′ ≤ j < j′. We assume that ν(−∞,+∞) never holds.

If ν(i, j), the position i in the word u is said to be a call, and the position j a
return. All positions from {1, . . . , k} that are neither calls nor returns are internal.
A call (a return) i is matched if ν matches it to an element of {1, . . . , k}, i.e., if we
have µ(i) ∩ {1, . . . , k} 6= ∅, and unmatched otherwise. We shall call a nested word
well-matched if it has no unmatched calls and no unmatched returns.

Define a nested word automaton (an NWA) over the input alphabet Σ as a struc-
ture A = (Σ, Q,Γ, δ, q0, γ0), where:
• Σ is a finite alphabet,
• Q is a finite non-empty set of control states,
• Γ is a finite non-empty set of stack symbols,
• δ = (δcall, δint, δret), where

∗ δint : Q× Σ→ Q is an internal transition function,
∗ δcall : Q× Σ→ Q× Γ is a call transition function,
∗ δret : Γ×Q× Σ→ Q is a return transition function,

• q0 ∈ Q is the initial control state, and
• γ0 ∈ Γ is the initial stack symbol.

A configuration of A is a pair (q, s) ∈ Q×Γ∗. We write (q, s) u−→ (q′, s′) for a nested
word u if the following conditions hold. First suppose u = (x, ν) has length 1, then:
• if 1 is an internal position in the word u, then δint(q, x) = q′ and s′ = s;
• if 1 is a call, then δcall(q, x) = (q′, γ) and s′ = sγ for some γ ∈ Γ;
• if 1 is a return, then:

∗ either δret(γ, q, x) = q′ and s = s′γ,
∗ or δret(γ0, q, x) = q′ and s = s′ = ε.

(The last item means that, if the stack is empty, s = ε, the NWA can take a return
transition using the “default” initial stack symbol, γ0.) Now take as −→ the reflexive
transitive closure of the union of u−→ over all nested words u of length 1; these input
words on top of the arrow are concatenated accordingly.

Alternatively, nested words can be seen as words over an extended alphabet. Let 〈Σ
and Σ〉 be disjoint copies of Σ that contain letters of the form 〈a and a〉, respectively,
for every a ∈ Σ. Then any nested word over Σ is associated with a word over the
nested alphabet 〈Σ ∪ Σ ∪ Σ〉. Conversely, every word w over this nested alphabet is
unambiguously associated with a matching relation νw of length |w| where positions
with elements of 〈Σ, Σ, and Σ〉 are calls, internal positions, and returns, respectively;
the word w can thus be identified with a nested word (π(w), νw) where π projects
letters back to Σ. The automaton A can then be viewed as an ε-free pushdown
automaton over the nested alphabet 〈Σ ∪ Σ ∪ Σ〉 in which the direction of stack
operations (i.e., whether the automaton pushes, pops, or does not touch the stack) is
determined by whether the current position belongs to 〈Σ, Σ, or Σ〉. Such automata
are known under the names input-driven pushdown automata and visibly pushdown

6 D. Chistikov, P. Martyugin, M. Shirmohammadi

pyes pnopsink

call(yes)

ret(yes)
ret(Γ)

call(no)
ret(no)

call(no)
ret(Γ)

Figure 1: NWA W that accepts the set of all well-matched words. (The set of final
states is {pyes}.) Since, on all letters, call and return transitions behave the same
way, call transitions δcall(q, a) = (q′, γ) are shown as q call(γ)−−−−→ q′, and return transi-
tions δret(γ, q, a) = q′ as q ret(γ)−−−→ q′. All transitions not shown are self-loops.

automata. A path (run, computation) of A over an input word u = a1 . . . ak, where
each ai ∈ 〈Σ∪Σ∪Σ〉, is a sequence (p0, s0) . . . (pk, sk) of configurations such that for
all 0 < i ≤ k we have (pi−1, si−1) ai−→ (pi, si).

Example 1. Let Σ be a finite alphabet. We define an NWA W over this alphabet
as follows. It has three states pyes, pno and psink. The state pyes is the only initial
state, and the state psink is absorbing. There are two stack symbols Γ = {yes, no}; see
Figure 1. The transitions in W are such that, for all a ∈ Σ:
• all internal transitions are self-loops: δint(p, a) = p where p ∈ {pyes, pno, psink},
• the call transition in pyes and pno always lead to pno:

δcall(pyes, a) = (pno, yes) and δcall(pno, a) = (pno, no),

• the return transitions in pyes go to psink: δret(Γ, pyes, a) = psink. However, the
return transitions in pno depends on the stack symbol:

δret(no, pno, a) = pno and δret(yes, pno, a) = pyes;

• all transitions in psink are self-loops.
Observe that the NWAW satisfies (pyes, ε)

u−→ (pyes, ε) for every well-matched word u;
moreover, all runs that start from the state pyes and end in the same state are over
well-matched nested words too.

In decision problems that we study in this paper, the size of an automaton is taken
to be proportional to |Σ| · |Q| · |Γ|.

3. Synchronizing words

A word w is synchronizing for a DFA D if there exists some state q̄ ∈ Q such
that ∆(Q,w) = {q̄}. The synchronizing word problem for DFA asks, given a DFA D,
whether there exists some synchronizing word for D. The synchronizing problem
for DFA is in NL by a simple technique which we call pairwise synchronization.
Given D = (Σ, Q,∆) with n states, there is a synchronizing word for D iff for every
pair of states q, q′ ∈ Q there is a word v such that ∆(q, v) = ∆(q′, v) (see [37, 33]

Synchronizing automata over nested words 7

for more details). This condition is easily checked in NL (reachability in the product
automaton); the proof of correctness is an exercise for the reader.

Synchronizing words for PFA are called carefully synchronizing words [27]. Such a
word for a PFA P = (Σ, Q, δ) uses only defined transitions in δ; this means that the
word w = a1a2 · · · an is synchronizing for P if
• δ(q, a1) is defined for all states q ∈ Q,
• δ(q, ai+1) is defined for all states q ∈ δ(Q, a1a2 · · · ai) and all 1 ≤ i < n, and
• δ(Q,w) is a singleton.

The carefully synchronizing word problem asks, given a PFA P, whether there exists
some carefully synchronizing word for P. This problem is known to be PSPACE-
complete [27]. The membership in PSPACE is by reachability in the subset construc-
tion, so every PFA with a synchronizing word has one with length at most exponential
in the size of the PFA.

3.1. Synchronizing nested words

Informally, we call a well-matched nested word u synchronizing for an NWA A if it
takes A from all control states to some single control state. Note that the result of
feeding any well-matched word to an NWA does not depend on the stack contents;
furthermore, if (q1, s1) u−→ (q2, s2) and u is well-matched, then s1 = s2. This lets us
extend the definition of −→ to sets of states: we write (Q1, s)

u−→ (Q2, s) if, first,
the word u is well-matched, second, for all q1 ∈ Q1 there exists a q2 ∈ Q2 such
that (q1, s)

u−→ (q2, s), and, third, for every state q2 ∈ Q2 there exists a q1 ∈ Q1 such
that (q1, s)

u−→ (q2, s). If Qi = {qi}, we write (qi, s) instead of ({qi}, s).

Definition 2. Let A = (Σ, Q,Γ, δ, q0, γ0) be an NWA. A well-matched nested word u
is synchronizing for A if there exists a control state q̄ ∈ Q such that the rela-
tion (Q, ε) u−→ (q̄, ε) holds.

By the observation above, u is synchronizing if and only if there exists a q̄ ∈ Q
such that for all q ∈ Q and for all s ∈ Γ∗ the relation (q, s) u−→ (q̄, s) holds.

Remark 3. Definition 2 crucially relies on the nested structure of the input word,
in that this structure determines the stack behaviour of the NWA. Extending this
definition to the general case of pushdown automata (PDA) would face the difficulties
outlined in the introduction; to the best of our knowledge, no such extension has been
proposed to date. The term “synchronization” in the context of PDA is known to be
used when referring to the agreement between the transitions taken by the automaton
and an external structure [6]: in NWA, for example, input symbols and stack actions
are synchronized (in this sense).

Example 4. Given n ≥ 1, we construct an NWA An with O(logn) control states
and O(1) stack symbols such that the shortest synchronizing word for An has length
exactly n.

8 D. Chistikov, P. Martyugin, M. Shirmohammadi

qx

qy

w ⇒

in

out

qz

qx

qy

w

call(x)

ret(x)

call(y)

ret(y)

Figure 2: Doubling transformation

Bn−2

NWA An

in

outq

w

sync

#
£#

#,£

£

#,£

Figure 3: NWA An based on Bn−2

Our construction is inductive. We first construct a family of incomplete NWA Bn

with stack symbols {x, y} and two designated states qx and qy. In Bn, the shortest
run from qx to qy is driven by some well-matched nested word w of length n, and
along this run the state qy is not visited. These NWA will be incomplete in the sense
that their transition functions will only be partial; redirecting all missing transitions
to the initial state in would make these NWA complete.

For each n, given Bn, we construct NWA B2n+4 and B2n+5 where the length of
the shortest run between two new states in and out is exactly 2n + 4 and 2n + 5,
respectively. The construction of B2n+4 is depicted in Figure 2. Here the shortest run
from in to out is over call(x)·w ·ret(x)·call(y)·w ·ret(y)—see Remark 5 below for details
on our call and return notation—and has length 2n + 4; splitting the state qz into
two states, with an internal transition pointing from one to the other, gives us B2n+5.
We call this transformation doubling. For all n ≥ 4 the NWA Bn can be constructed
by several doubling transformations starting from one of the automata B0,B1,B2,B3
(which are simply DFA with 1, 2, 3, and 4 states, respectively, each comprising a
chain of states with transitions linking them). The size of Bn is O(logn).

For all n ≥ 2, from the NWA Bn−2 we construct an NWA An where the shortest
synchronizing word has length exactly n. Figure 3 shows the sketch of the construc-
tion: there are two new letters # and £ and a new absorbing state sync. From all
states q of Bn−2, the letter # resets the NWA to in whereas £-transitions are all self-
loops except in the state out where out £−→ sync. All missing transitions are directed
to the state in (note that even in the case of DFA, existence of synchronizing words
in the presence of partial transition functions is PSPACE-complete [27]; it is thus
essential that our NWA be complete). Observe that the shortest synchronizing word
has length exactly n; it is # · w · £ where w is the shortest word that takes Bn−2
from in to out.

Remark 5. Our Example 4 seems to use a “non-uniform” set of call, return, and
internal symbols, but this is easily remedied by making some of the symbols indistin-
guishable. That is, for all call positions in the input words, we write the corresponding
letter simply as call, and, similarly, for all return positions it is ret. In figures as well
as in the text, the NWA will typically have input alphabet Σ, and for all call and re-
turn positions these NWA will make no distinction between different symbols from Σ
being read. Finally, the letter in parentheses will usually refer to the stack symbol
being pushed or popped.

Synchronizing automata over nested words 9

Our following Theorem 6 extends a characterization of synchronizing words from
DFA: an NWA A has a synchronizing word if and only if for every pair of states p, q
there exists a well-matched word u that synchronizes this pair, i.e., there exists some q̄
such that ({p, q}, ε) u−→ (q̄, ε).

Theorem 6. If an NWA A has a synchronizing word, then it has one of length at
most exponential in the size of A. Moreover, the existence of a synchronizing word
can be decided in time polynomial in the size of A.

Proof. Suppose an NWA A has a synchronizing word. Then for every pair p, q ∈ Q,
where Q is the set of states of A, there exists a well-matched word that is accepted
by the product automaton A(p) × A(q) × W, where by A(p) and A(q) we denote
disjoint copies of A with initial states p and q respectively, and W is the NWA
defined in Example 1 that only accepts well-matched words. As usual, a word is said
to be accepted by an automaton if it brings it to some accepting state (where the set
of such states is defined in advance). In this product automaton, accepting are all
states of the form (r, r, q̄) where r ∈ Q is arbitrary and q̄ is accepting in W. Every
synchronizing word is obviously accepted by the product automaton; moreover, since
this automaton has polynomial size, translating it to a context-free grammar shows
that the automaton accepts at least one word, say wp,q, of at most exponential size
(in the size of A).

Now observe that the task of synchronizing runs of A that start in different
states q1, . . . , qn ∈ Q can be performed pairwise: place n tokens on states of A,
pick any pair of them, say on p and q, and to feed the machine with wp,q. Now this
pair of tokens is glued together; all tokens move some new locations, but their number
is now n−1. Repeating the procedure another n−2 times then gives a synchronizing
word for A.

It only remains to note that the argument above also gives a sufficient (not just
necessary) condition for the existence of synchronizing words: indeed, if all product
automata A(p)×A(q)×W have nonempty languages, then a synchronizing word can
be constructed as described above, otherwise no such word can exist. Since emptiness
for NWA (and for pushdown automata in general) is decidable in polynomial time,
the theorem follows. 2

4. Short synchronizing nested words

In this section we prove our main result, characterizing the complexity of deciding
the existence of synchronizing nested words with length less than a given bound. The
corresponding decision problem for DFA is NP-complete [13]: Given a DFA D and
an integer ` ≥ 1 written in unary, decide if A has a synchronizing word u of length at
most `. Note that deciding if the shortest synchronizing word has length exactly `, a
related but different problem, is DP-complete [29].

Since any DFA with a synchronizing word has one of length cubic in its size, it
does not matter for DFA if the given bound ` is written in binary or in unary. In
contrast, as our Example 4 shows, NWA may need an exponentially long word for

10 D. Chistikov, P. Martyugin, M. Shirmohammadi

synchronization. For this reason, we focus on the existence of synchronizing nested
words with length less than `, where ` is written in binary. In the alternative version,
i.e., if ` is written in unary, the problem is NP-complete: the upper bound is a
guess-and-check argument, and hardness already holds for DFA.

Theorem 7. The following problem, the Short Synchronizing Nested Word problem,
is PSPACE-complete: Given an NWA A and an integer ` ≥ 1 written in binary,
decide if A has a synchronizing word u of length at most `.

4.1. Membership in PSPACE

In this subsection, we show that the Short Synchronizing Nested Word problem is in
PSPACE. In fact, we can also adjust our arguments (see subsubsection 4.1.2) so
that they give a PSPACE upper bound for another problem: Given a NWA A, two
subsets of its control states I, F ⊆ Q, and an integer ` ≥ 1 written in binary, decide if
there exists a well-matched word of length at most ` that takes all states in I into F .

The plan of the proof is as follows. We encode well-matched nested words using
binary trees (subsubsection 4.1.1), so that runs of NWA correspond to computations
of tree automata and synchronizing words to tuples of such computations (subsub-
section 4.1.2). Thus the task of guessing a short synchronizing word is reduced to
the task of guessing an accepting computation of a tree automaton on an unknown
binary tree of potentially exponential size (Lemma 9); this is the same as guessing an
exponentially large binary tree subject to local conditions. We prove that it is possi-
ble to solve this bounded nonemptiness problem in polynomial space, even if the tree
automaton in question has exponentially many states and is only given in symbolic
form (subsubsection 4.1.4); our solution relies on the concepts of pebble games and
Strahler numbers (subsubsection 4.1.3).

4.1.1. Binary tree representation of nested words

In this subsubsection we describe a representation of nested words with binary trees
used in the sequel.

Nested words as binary trees

We denote the binary tree representation of a nested word u by bin(u). The binary
tree bin(u) has nodes of several different types. We do not attempt to minimize the
number of these types; different representations are, of course, also possible.

Type Degree Notes
call-return binary 2 Associated with matched pair 〈xi, xj〉
auxiliary binary 2 Corresponds to positions i < j

call-return unary 1 Associated with matched pair 〈xi, xj〉
call-return leaf 0 Associated with matched pair 〈xi, xj〉, j = i+ 1
internal leaf 0 Associated with internal letter xi

Synchronizing automata over nested words 11

We denote the set of types by Types; each type comes with a fixed degree, which is
simply the number of children of a node. Note that auxiliary binary nodes are not
associated with any letters in the nested word, although they do correspond to pairs
of positions in it.

Consider what happens if we execute the left-to-right depth-first traversal on the
tree bin(u) and spell the letters associated with the nodes in the natural way. Specif-
ically, at any call-return node v associated with a matched pair 〈xi, xj〉, i < j,
spell “〈xi” when entering and “xj〉” when leaving the subtree rooted at v; at any
internal leaf associated with i, spell “xi”. The traversal of the entire tree bin(u) spells
the word u, and every subtree spells some well-matched factor.

Claim 1. For any nested word u of length ` its binary tree representation bin(u) has
at most 2`− 1 nodes. Moreover, if bin(u) = bin(u′), then u = u′.

More details on the binary tree representation of nested words are given in Sub-
subsection 4.1.5.

Trees as terms over a ranked alphabet

We now switch the perspective a little and look at binary tree representations as
terms. Indeed, pick the ranked alphabet

F ⊆ Types× (〈Σ× Σ〉 ∪ Σ ∪ {ε}) (1)

as follows. All elements of F have rank 0, 1, or 2, according to their first (that
is, Types-) component; the rank is simply the admissible number of children (i.e.,
the degree). The second component stores the associated letter or pair of letters, if
any; the value ε corresponds to the undefined association mapping. Since the Types-
component already determines whether the second component should carry a pair of
call and return letters, a single letter, or ε, we only take valid combinations into F .

As this term representation is essentially the same as the binary representation
defined above, we shall denote it by the same symbol bin(u); that is, bin(u) is a term
over F for any non-empty well-matched word u. In what follows, we will mostly refer
to bin(u) as a tree but treat it as a term.

4.1.2. From nested word automata to tree automata

From runs of NWA to runs of tree automata

Recall the definition of a nondeterministic tree automaton over a ranked alphabet F
(see, e.g., [9]): such an automaton is a tuple T = (F ,Q,Qf ,∆) where Q is a finite
set of states, Qf ⊆ Q is a set of final states, and ∆ is a set of transition rules. These
rules have the form f(q1, . . . , qr) 7→ q where q, q1, . . . , qr ∈ Q and r ≥ 0 is the rank of
the symbol f ∈ F ; nondeterminism of T means that ∆ can contain several rules with
identical left-hand sides.

The semantics of tree automata is defined in the following manner. For any tree t
over the ranked alphabet F , we assign to any node v of t a state q ∈ Q inductively,

12 D. Chistikov, P. Martyugin, M. Shirmohammadi

phrasing it as “the subtree tv rooted at v evaluates to the state q” (as the automaton
is nondeterministic, the same subtree may evaluate to several different states). The
inductive assertion is that if f is the label of v, the subtree tv evaluates to q, and its
principal subtrees evaluate to q1, . . . , qr, then the transition f(q1, . . . , qr) 7→ q appears
in ∆. The entire tree t is accepted if the root of t evaluates to some final state q̄ ∈ Qf .

Lemma 8. For any NWA A with states Q and for all pairs p̄, q̄ ∈ Q, there exists
a tree automaton T (p̄, q̄) over the ranked alphabet F as in Equation (1) that has the
following property: T (p̄, q̄) accepts a tree bin(u) if and only if the NWA A has a run
on u that starts in state p̄ and ends in state q̄. Moreover, T (p̄, q̄) can be constructed
from A in time polynomial in the size of A.

Proof. To construct the tree automaton T (p̄, q̄) = (F ,Q,Qf ,∆) we use the following
idea. States of T (p̄, q̄) will be summaries, Q = Q2, and subtrees will be evaluated
to summaries (p, q) so that the following condition holds. Take any subtree tv of the
input tree t; as discussed in subsubsection 4.1.1, the left-to-right DFS traversal of this
subtree spells a word which is a well-matched factor u′ of u. The automaton T (p̄, q̄)
will pick the states p, q in such a way that the NWA A will start and finish travers-
ing u′ in the states p and q respectively. (Naturally, nondeterministic guessing will
be required for T to pick these pairs of states correctly.)

We now make the details of the construction more precise. Define a labeling of t
with respect to A as a function of the form λ : V (t)→ Q2 where V (t) denotes the set
of nodes of t (or, equivalently, the set of ranked symbols in the term representation
of t). The labeling λ is consistent with the NWA A if the following conditions are
satisfied for all nodes v of t (we assume λ(v) = (p, q) and λ(vs) = (ps, qs) for s = 1, 2).
(I) If v is a call-return binary node associated with a matched pair 〈xi, xj〉 and v1

and v2 are its left and right children, then there exists some γ ∈ Γ such that
δcall(p, xi) = (p1, γ), q1 = p2, and δret(γ, q2, xj) = q.

(II) If v is an auxiliary binary node and v1 and v2 are its left and right children, then
p = p1, q1 = p2, and q2 = q.

(III) If v is a call-return unary node associated with a matched pair 〈xi, xj〉 and v1
is its only child, then there exists a γ ∈ Γ such that δcall(p, xi) = (p1, γ) and
δret(γ, q1, xj) = q.

(IV) If v is a call-return leaf associated with a matched pair 〈xi, xj〉, j = i+ 1, then
there exists a γ ∈ Γ and an r ∈ Q where δcall(p, xi) = (r, γ) and δret(γ, r, xj) = q.

(V) If v is an internal leaf associated with internal letter xi, then δint(p, xi) = q.
Suppose λ(root(t)) = (p̄, q̄) where root(t) is the root of t. Start the NWA A in the
state p0 and run the left-to-right DFS traversal of t; whenever the traversal spells a
letter, give it to A as input. Now λ is consistent with A if and only if for every non-
root node v with λ(v) = (p, q) the NWA begins the computation on the corresponding
well-matched factor in state p and leaves it in state q. Therefore A has a computation
on u that starts in state p̄ and terminates in state q̄ if and only if there exists a
consistent labeling λ of t such that λ(root(t)) = (p̄, q̄).

It remains to define the transitions of T (p̄, q̄) in such a way that T (p̄, q̄) guesses a

Synchronizing automata over nested words 13

consistent labeling of bin(u). At a high level, the existence of an appropriate set ∆
follows from our definition of a consistent labeling. Indeed, a formal definition of
these transitions follows the list in the definition of consistency above. For example,
in line with item I, for every a, b ∈ Σ, if f denotes the call-return binary pair 〈a, b〉,
then ∆ contains all transitions of the form f((p1, q1), (p2, q2)) 7→ (p, q) for which there
exists a γ ∈ Γ such that δcall(p, a) = (p1, γ), q1 = p2, and δret(γ, q2, b) = q. Similarly,
in line with item IV, for every a, b ∈ Σ, if f denotes the call-return leaf 〈a, b〉, then ∆
contains all transitions of the form f() 7→ (p, q) for which there exists a γ ∈ Γ and
an r ∈ Q such that δcall(p, a) = (r, γ) and δret(γ, r, b) = q. Other cases are considered
analogously. This completes the proof. 2

Synchronizing words and implicitly presented tree automata

We can now return to the synchronizing word problem. Suppose A is an NWA with
states Q; now a well-matched nested word u is a synchronizing word for A if and only
if there is a state q̄ ∈ Q such that for all i the tree bin(u) is accepted by the automa-
ton T (qi, q̄); here we assume Q = {q1, . . . , qn}. The following statement rephrases
this condition in terms of products of tree automata (the definition is standard; see,
e.g., [9, Section 1.3]).

Lemma 9. Let A be an NWA with states Q = {q1, . . . , qn}. Take an arbitrary ` ∈ N.
For q̄ ∈ Q, consider the product automaton Aq̄ = T (q1, q̄)× . . .×T (qn, q̄)×N` where
N` is a tree automaton that only depends on ` and Σ and accepts the set of trees of
the form bin(u) where the nested word u has length at most `. The NWA A has a
synchronizing word of length at most ` iff there exists q̄ ∈ Q such that Aq̄ accepts at
least one tree over F .

Note that the set of states of Aq̄, which we denote by Q, is, in general, exponential
in the size of A. Note, however, that (i) each state has a representation—as a tuple
of n states of T (qi, q̄) and a state of N`—polynomial in the size of A and ` and,
moreover, that (ii) the following problems can be decided in PSPACE (and, in fact,
in P, although we do not need to rely on this):
(a) given a state q ∈ Q, decide if q is a final state of Aq̄;
(b) given a symbol f ∈ F of rank r and states q, q1, . . . , qr ∈ Q, decide if

f(q1, . . . , qr) 7→ q is a transition in Aq̄.
We emphasize that the complexity bounds in these properties are given with respect
to the size of A and `, i.e., assuming that A and ` (and not Aq̄!) are given as input.
We will use these properties (i) and (ii) in subsubsection 4.1.4; for brevity, we shall
simply say that Aq̄ is implicitly presented in polynomial space.

Claim 2. The automaton Aq̄ from Lemma 9 is implicitly presented in polynomial
space and does not accept any tree with more than 2`− 1 nodes.

The second part of the claim follows from Claim 1 in subsubsection 4.1.1.

14 D. Chistikov, P. Martyugin, M. Shirmohammadi

4.1.3. Pebble games and Strahler numbers

In this subsubsection we recall a classic idea that we use in the proof of Lemma 10.
An instance of the (black) pebble game (see, e.g., [34, Chapter 10]) is defined on a

directed acyclic graph, G. The game is one-player; the player sees the graph G and
has access to a supply of pebbles. The game starts with no pebbles on (vertices of)
the graph. A strategy in the game is a sequence of moves of the following kinds:
(a) if all immediate predecessors of a vertex v have pebbles on them, put a pebble

on (or move one of these pebbles to) v;
(b) remove a pebble from a vertex v.
Note that for any source v of G, the pre-condition for the move of the first kind is
always satisfied. The strategy is successful if during its execution every sink of G
carries a pebble at least once; the strategy is said to use k pebbles if the largest
number of pebbles on G during its execution is k. The (black) pebbling number of G,
denoted peb(G), is the smallest k for which there exists a successful strategy for G
using k pebbles.

The black pebbling number captures space complexity of deterministic computa-
tions [30, 20]. Intuitively, think of G as a circuit, where sources are circuit inputs and
sinks are circuit outputs; nodes with nonzero fan-in are gates that compute functions
of their immediate predecessors. A strategy corresponds to computing the value of
the circuit using auxiliary memory: pebbling a vertex (i.e., putting a pebble on it)
corresponds to computing the value of the gate and storing it in memory; removing
a pebble from the vertex corresponds to removing it from the memory. The peb-
bling number is thus (an abstraction of) the minimal amount of memory required to
compute the value of the circuit.

Consider the case where the graph is a tree, G = t, with all edges directed towards
the root; this corresponds to formulas, say arithmetic expressions [14]. For trees,
the pebbling number can be computed inductively [25]: if t is a single-vertex tree,
then peb(G) = 1; suppose t has principal subtrees t1, . . . , td (recall that principal
subtrees are subtrees rooted at children of the root of a given tree) and

peb(t1) ≥ peb(t2) ≥ . . . ≥ peb(td),

then peb(t) = max(peb(ti)+ i−1) over 1 ≤ i ≤ d. For binary trees (where all vertices
have fan-in at most two, d ≤ 2) the pebbling number (under different names) has been
studied independently and rediscovered multiple times (although, to the best of our
knowledge, no connection with the literature on pebbling games has ever been pointed
out), see [14, 17]. The value peb(t) − 1 is usually called the Strahler number of the
tree t and is also known, e.g., as the Horton–Strahler number and as tree dimension;
this is the largest h such that t has a complete binary tree of height h as a minor.

In the sequel, we choose to talk about Strahler numbers but use the connection to
pebble games. The key observation, following from the above-mentioned characteri-
zation or from the recurrence in the previous paragraph, is that the Strahler number
of an m-node tree does not exceed dlog2(m+ 1)e− 1 (this bound is tight). This value
corresponds to the pebbling strategy that, before pebbling any vertex v of indegree 2,

Synchronizing automata over nested words 15

first (i) recurses into the subtree with the larger Strahler number; (ii) places (in-
ductively) a pebble on its root and removes all other pebbles from this subtree; and
then (iii) recurses into the other subtree. We will use this strategy in the following
subsubsection.

4.1.4. Bounded nonemptiness for implicitly presented tree automata

Here we combine the ideas from subsubsections 4.1.2 and 4.1.3 to prove the upper
bound in Theorem 7.

To do so, we first prove Lemma 10 showing PSPACE membership for bounded
nonemptiness problem in implicitly presented tree automata. This problem asks,
given a tree automaton that is implicitly presented in polynomial space and a num-
ber m written in binary, whether the automaton accepts some tree with at most m
nodes. It is crucial that m constitute part of the input, because for explicitly pre-
sented tree automata the (non-)emptiness problem is P-complete, and an implicitly
presented automaton can be exponentially big (this would give us an EXP upper
bound, which is, in fact, tight by Lemma 14 below if no m is given). The PSPACE
membership is thanks to the upper boundm on the size of the tree, which significantly
shrinks the search space.

To prove Lemma 10, we design a decision procedure using the pebbling strategy
for trees that we discussed in subsubsection 4.1.3.

Lemma 10. For a tree automaton implicitly presented in polynomial space and a
number m written in binary, one can decide in PSPACE if the automaton accepts
at least one tree with m or fewer nodes.

Proof. Denote the tree automaton implicitly presented in polynomial space by Aq̄,
as above. We describe a procedure that guesses (with checks done on the fly) an
accepting computation of Aq̄. Since the number m is given in binary, we cannot
afford to write down the entire accepted tree, as it could take up exponential space.

However, suppose that such a tree t exists and has m′ ≤ m nodes; we assume
without loss of generality that m = m′. Consider some pebbling strategy for t, as
defined in subsubsection 4.1.3. Our procedure will guess moves of this strategy on the
fly and simulate them; it will also guess the tree t in lockstep (simultaneously with
the strategy). More precisely, we maintain the following invariant. Take any time
step and any vertex v and denote by tv the subtree of t rooted at v. If the pebbling
strategy prescribes that v should have a pebble, then our procedure keeps in memory
a pair (q, k) where q ∈ Q is a state of Aq̄ that tv evaluates to, and k is the total
number of nodes in tv. Note that any such pair (q, k) takes up space polynomial in
the size of the input: states of Aq̄ have such representations by the assumptions of
the lemma, and k never needs to grow higher than m.

We now describe how the moves of the strategy are simulated by our procedure.
Suppose the strategy prescribes placing a pebble on a vertex v; by the rules of the
pebble game, this means that all immediate predecessors v1, . . . , vd (if any) currently
have pebbles on them. By our invariant, we already keep in memory corresponding
pairs (q1, k1), . . . , (qd, kd). Our procedure now guesses the node v, i.e., its label f ∈ F

16 D. Chistikov, P. Martyugin, M. Shirmohammadi

in t. Then the procedure guesses a new state, q ∈ Q, verifies in polynomial space
that f(q1, . . . , qd) 7→ q is a transition in Aq̄, and that k = k1 + . . .+ kd + 1 does not
exceed m. If any check is failed, the procedure declares the current nondeterministic
branch rejecting; if all the checks are passed, the procedure stores the pair (q, k).
Naturally, whenever a strategy prescribes removing a pebble from a vertex, the pro-
cedure simply erases the corresponding pebble from the memory (in fact, since t is a
tree, we can assume that every pair (q, k) is removed immediately after its use). At
some point, the procedure guesses that the strategy can terminate; this means that
the root of the tree t carries a pebble. The procedure picks some pair (q, k) from the
memory and verifies in polynomial space that the state q is indeed final in Aq̄. This
signifies acceptance of tv.

It remains to argue that the procedure only uses polynomial space. The tree t
has m nodes, so, by the upper bound on Strahler numbers, the optimal strategy
needs peb(t) ≤ blog2(m+ 1)c pebbles, which is polynomial in the size of the input. If
some guessed step requires more, the strategy cannot be optimal, and the procedure
declares the branch rejecting. 2

The idea of the proof of Lemma 10 can be distilled in a different form: We can show
that the bounded emptiness problem (are all trees up to a certain size rejected?) is
in PSPACE for succinct tree automata. These are tree automata where the set of
states, Q, can be exponentially large, but does not need to be written out explicitly,
and the set of transitions and the set of final states are represented with Boolean
circuits (or, alternatively, with logical formulas over an appropriate theory). The
proof follows that of Lemma 10.

We can now prove the upper bound of Theorem 7 by following lemma.

Lemma 11. The Short Synchronizing Nested Word problem can be decided in
PSPACE.

Proof. Combine Lemma 9 and 10 with the fact that the automaton Aq̄ from the
former is implicitly presented in polynomial space. Indeed, suppose an NWA A with
states Q and an integer ` are given. By Lemma 9, a synchronizing word for A of length
at most ` exists if and only if there exists a state q̄ ∈ Q such that the tree automaton Aq̄

accepts some tree over the ranked alphabet F ; recall that this is the alphabet defined
by Equation (1) in subsubsection 4.1.1. First note that the state q̄ can be guessed
in polynomial space. Then recall from Claim 2 in subsubsection 4.1.2 that Aq̄ only
accepts trees with at most 2`−1 nodes; thus deciding its emptiness reduces to deciding
its bounded emptiness. Again by Claim 2, Aq̄ is implicitly presented in polynomial
space, and thus we can apply Lemma 10 with m = 2`− 1. 2

4.1.5. Binary tree representation of nested words

Here we give more details on the binary tree representation of nested words, which
was briefly discussed in Subsubection 4.1.1.

Synchronizing automata over nested words 17

Nested words as trees of unbounded degree.

Given a non-empty well-matched nested word u = (x, ν) of length ` over an al-
phabet Σ, we define the (essentially standard) tree representation of u as follows.
Recall that the matching relation satisfies ν ⊆ {1, . . . , `}2, as u is well-matched, and
that ν(i, j) implies i < j. Moreover, whenever ν(i, j) and ν(i′, j′), it cannot be the
case that i < i′ ≤ j < j′; this means that the segments [i, j], [i′, j′] ⊆ [1, `] are either
disjoint or contained in one another. Therefore, this property also holds for the binary
relation

ν ∪ {(i, i) | there is no j such that ν(i, j) or ν(j, i)} ∪ {(0, `+ 1)}. (2)

In other words, the set defined by (2) forms the node set of an ordered rooted tree:
• a node (i′, j′) is a (non-strict) descendant of (i, j) if and only if [i′, j′] ⊆ [i, j];
• if nodes v1 = (i1, j1) and v2 = (i2, j2) are siblings, then either i1 ≤ j1 < i2 ≤ j2,

in which case v1 is to the left of (comes before) v2, or i2 ≤ j2 < i1 ≤ j1, and
then v2 is to the left of (comes before) v1.

The root of the tree is the pair (0, `+ 1).
Now take any non-root node v = (i, j) of this tree. If i < j, then the ith position

in u is a call and the jth position a return, and we associate v with the matched
pair of letters 〈xi, xj〉 where x = x1 . . . x`; we write µ(v) = 〈xi, xj〉. Otherwise i = j
and the ith position in u is internal; in this case we associate v with the letter xi and
write µ(v) = xi. We perform this for all non-root nodes v; the obtained ordered rooted
tree is denoted by tree(u), the simple tree representation of the nested word u = (x, ν).
Let V be the set of all nodes of tree(u); by convention, in the sequel we treat the values
of the partial association mapping µ : V ⇀ 〈Σ× Σ〉 ∪ Σ as part of the tree itself.

We would like to remark that our simple tree representation is very similar to the
mapping that transforms so-called “hedge words” into trees [3, subsection 7.1]. In
our case, however, positions of x matched by ν do not have to carry identical letters
from Σ; moreover, we add a special node as the root of the tree. Note that, in general,
nodes of tree(u) can have unbounded degree (number of children).

Nested words as binary trees.

The final step in our construction is “binarization” of the trees. Based on tree(u), we
construct a new binary tree as follows. For every node v in tree(u) that has more than
two children, say v1, . . . , vk with k ≥ 3, replace the star formed by v and v1, . . . , vk by
any ordered binary tree with root v and leaves v1, . . . , vk (preserving the left-to-right
DFS traversal order) where all non-leaf nodes have exactly 2 children (the number of
new “auxiliary” nodes will be k−2, not including v). We do not insist on picking any
particular shape of the k-leaf tree, because we do not need to rely on uniqueness of
representation. Similarly, if the root of tree(u) has more than one child, we perform
an analogous transformation to make the root a unary node. After this we remove
the root (recall that it was added artificially in the first place).

The newly obtained tree is binary; we denote it by bin(u) and call it the tree
representation of u. (We will not really need the simple tree representation tree(u)

18 D. Chistikov, P. Martyugin, M. Shirmohammadi

PFA P

q
b

��HHa

q′
b

a

⇒

DFA D

q
b

q′
b

a

pq pq′

#

sync
dq dq′

`qb

a

#

Figure 4: The sketch of the reduction from careful synchronization to small-cost syn-
chronization. All transitions not shown in D are self-loops.

defined above.) While the construction of bin(u) is not sophisticated, nodes of bin(u)
come in many different types; a summary is given in the table in subsubsection 4.1.1.

4.2. PSPACE-hardness

The matching lower bound for the Short Synchronizing Nested Word problem is es-
tablished by a reduction from the small-cost synchronizing word problem, which we
introduce and prove PSPACE-complete below.

For a deterministic finite automaton (DFA) D = (Σ, Q,∆) over Σ, consider a
function cost : Σ → Z>0 that assigns (strictly) positive costs to letters a ∈ Σ. This
function extends to finite words in a natural way: cost(w · a) = cost(w) + cost(a)
where w ∈ Σ∗, and cost(ε) = 0. The small-cost synchronizing word problem asks,
given a DFA equipped with a cost function and a budget ∈ Z>0 both written in binary,
whether the DFA has a synchronizing word w with cost(w) ≤ budget.

Theorem 12. The small-cost synchronizing word problem is PSPACE-complete.

Proof. Since all letters in the given DFA have strictly positive costs, the length of
all synchronizing words w with cost(w) ≤ budget is less than budget. This property
is essential for a direct guess-and-check algorithm that checks the existence of such
words.This algorithm keeps track of the set Si of current states (starting from S0 = Q)
and the accumulated cost Ci (starting with C0 = 0). After guessing a new letter ai, it
updates the current set of states to Si+1 = ∆(Si, ai) as well as updates the accumu-
lated cost to Ci+1 = Ci + cost(ai). Since the accumulated costs is strictly increasing
with each guess, the algorithm needs at most exponentially many steps. This shows
that the membership of the small-cost synchronizing word problem is in PSPACE.

The PSPACE-hardness is by a reduction from the carefully synchronizing word
problem. Given a PFA P = (Σ, Q, δ), we construct a DFA D equipped with a func-
tion cost and a budget such that P has a synchronizing word if and only if D has a
synchronizing word w with cost(w) ≤ budget.

The sketch of the reduction is depicted in Figure 4. The cost associated to all a ∈ Σ
is cost(a) = 1. A new letter # is introduced with cost(#) = 22|Q|; and for all q ∈ Q,
a new letter dq is added with cost(dq) = 2|Q|+ 1. Setting budget = 22.|Q|+ 2|Q|+1 + 1

Synchronizing automata over nested words 19

restricts D to input # at most once while synchronizing; moreover, if # is read then
only one letter among {dq | q ∈ Q} can be chosen.

Let ∆ be the transition function of D where ∆(q, a) = δ(q, a) if δ(q, a) is defined
for q ∈ Q and a ∈ Σ. For all q ∈ Q, a new state pq is added where all transitions
are self-loops except #-transition: ∆(pq,#) = q. Similarly, for all q ∈ Q and a ∈ Σ,
if δ(q, a) is not defined, we then add a new state `qa where all transitions are self-
loops except #-transition: ∆(`qa,#) = q; we also define ∆(q, a) = `qa. Hence, to
synchronize the states pq and `qa the letter # must be read at least once. It remains
to define for all q ∈ Q: ∆(q,#) = q, ∆(q, dq) = sync, where sync is a new state with
all transitions being self-loops, and, for all q 6= q′, ∆(q, dq′) = q. The automaton D
can only be synchronized in sync, and since sync is reached only by letters dq (q ∈ Q),
the automaton D must input dq at least for one q ∈ Q.

To prove the correctness of the reduction, first observe that if P has a synchronizing
word, then there exist another synchronizing word v with |v| ≤ 2|Q| and some state q
such that δ(Q, v) = {q}. As a result, the word # · v · dq is synchronizing for D and we
have that cost(# · v · dq) = 22·|Q| + cost(v) + 2|Q| + 1. Since the cost of each letter a
is 1, we have that cost(v) = |v| ≤ 2|Q|; and thus cost(# · v · dq) ≤ budget.

Now, assume thatD has some synchronizing word with cost at most budget; let w be
one of the shortest such words. By construction, w must have exactly one occurrence
of # and one occurrence of dq for some state q ∈ Q. Since w is one of the shortest
synchronizing words, it follows that w = w1 ·# ·w2 · dq where w1, w2 ∈ Σ∗. We prove
that w2 = a1a2 · · · an is a valid synchronizing word for P by three observations:
• The set of reached states after inputting # is exactly Q ∪ {sync}.
• For all 1 ≤ i ≤ n and all states q ∈ ∆(Q, a1a2 · · · ai), the successor state

is never `qaj ; otherwise since w2 has no occurrence of #, we would get an
immediate contradiction with the fact that w is a synchronizing word for D.
Thus, the automaton D only fires “defined” transitions of P while reading w2.

• Since ∆(q1, dq) 6= ∆(q2, dq) for all letters dq and pairs of states q1 6= q2, we
conclude that ∆(Q,w2) = δ(Q,w2) is a singleton.

The PSPACE-hardness result follows. 2

Theorem 12 strengthens PSPACE-hardness results for similar models [18, 10]:
the key difference is that in our setting the cost function can only depend on input
letters and not on individual transitions. Particularly, in [10], the cost function ranges
over all integers (in contrast to our setting that it ranges only over strictly positive
integers); and the PSPACE-hardness result in their model heavily benefits from the
freedom of choosing negative weights.

Reduction to Short Synchronizing Nested Word problem

We prove the following by reduction from the small-cost synchronizing word problem.

Lemma 13. The Short Synchronizing Nested Word problem is PSPACE-hard.

Proof. The proof is a reduction from the small-cost synchronizing word problem:
given a DFA D = (Σ, Q,∆) over Σ, cost : Σ → Z>0, and budget ∈ Z>0, we find an

20 D. Chistikov, P. Martyugin, M. Shirmohammadi

NWA A

punish(1)
in

out

punish(2)
in

out

pay(2, b)

in out

err
pay(2, a)

inout

err

pay(1, b)

in out

err

pay(1, a)

in out

err1 2

t2,bt2,a

t1,a

t1,b

a

b

a
b

call(£)

call(£)

call(£) call(£)

ret(£)

ret(£)

ret(£) ret(£)

ret(/) ret(/)

p1 p2
call(/) call(/)

ret(£)
ret(£)

ret(£)

ret(£)

frc1

#

call(x)
ret(Γ)

frc2

#

call(x)
ret(Γ)

DFA D

1 2
a, b

b

a

⇓

Figure 5: An example of the reduction to the Short Synchronizing Nested Word prob-
lem. For q ∈ {1, 2}, all #-transitions from q and from all states of gadget pay(q, a),
gadget pay(q, b), and gadget punish(q) lead to pq. All a, b-transitions in all states are
self-loops, except in states 1, 2. The NWA A has a synchronizing nested word of length
at most 4 · budget + |wpunish|+ 1 if and only if D has a synchronizing word with cost at
most budget.

NWA A and a length ` such that D has a synchronizing word w with cost(w) ≤ budget
if and only if A has a synchronizing nested word of length at most `.

The intuition behind the reduction is as follows. We encode the cost of each letter a
in D with the length of a particular well-matched nested word a ·wa in A; as a result,
runs in D are in a sense simulated by runs in A. The nested word a ·wa is associated
with a special gadget that we insert as a part of A; we denote this gadget pay(q, a)
(there is a separate copy for each q ∈ Q). The intention is that the length of a

Synchronizing automata over nested words 21

Table 1: Summary of the transition function δ of the NWA A with Γ = {x, y,£,/}
constructed from the DFA D = (Σ, Q,∆) over Σ. The table specifies the destination
of all transitions: e.g., when A is at q ∈ Q and reads call, it pushes x and stays at q.

State \ Input Σ # call (pushing γ) ret

q ∈ Q tq,a pq
γ = x self-loop

self-loop

For all q ∈ Q and a ∈ Σ:

tq,a self-loop pq
γ = £ self-loop

in of pay(q, a)

pq self-loop pq
γ = / self-loop

in of punish(q)

frcq self-loop pq
γ = x self-loop

self-loop

s ∈ pay(q, a) self-loop pq
See gadget pay in Figure 6 (left) where:
• missing transitions go to state err of the same pay(q, a)
• from out, the transition on ret(£) goes to ∆(q, a)
• from err, the transition on ret(£) goes to pq

s ∈ punish(q) self-loop pq
See gadget punish in Figure 6 (right) where:
• missing transitions go to state in of the same punish(q)
• from out, the transition on ret(/) goes to q

nested word read by A corresponds to the cost of some word read by D. Obviously,
there will be runs of A of a form deviating from the form a1 · wa1 · · · ak · wak

; we
call such deviations cheating. We will ensure that, along runs of interest, cheating is
impossible: deviating transitions will lead to another set of gadgets, denoted punish(q),
for all q ∈ Q. When a run of A is punished, it is forced to read a very long nested
word wpunish, which results in exceeding the length `. On the technical level, this
“forcing” means that all shorter continuations make no progress to the synchronization
objective.

We now show how to construct the NWA A following this intuition; an example is
shown in Figure 5. The set QA of states in A is

Q ∪
⋃

q∈Q

{frcq} ∪
⋃

q∈Q,a∈Σ
(pay(q, a) ∪ {tq,a}) ∪

⋃
q∈Q

(punish(q) ∪ {pq})

where Q denotes, as above, the set of states of the DFA D, and we abuse the notation
by letting pay(q, a) and punish(q) refer to the sets of states of the corresponding
gadgets. The set of stack symbols ofA is Γ = {x, y,£,/}; the input letters are Σ∪{#}
where # 6∈ Σ (as in Remark on page 8, all letters at call and return positions are
written simply as call and ret). Table 1 describes the transition function of A.

It remains to define the gadgets pay(q, a) and punish(q). We base the construction
of pay(q, a) and punish(q) on the family of NWA Bn from Example 4; see Figure 6.
Each gadget has two designated local states in and out, and the shortest run from
in to out is over the nested word that we denote by va (where wa = call · va · ret) in

22 D. Chistikov, P. Martyugin, M. Shirmohammadi

gadget pay(q, a) and by vpunish (where wpunish = call · vpunish · ret) in punish(q). We pick
the parameter k = |va| in Bk in such a way that |a ·wa| = |a · call ·va · ret| = 4 · cost(a);
note that k = 4 · cost(a) − 3 ≥ 1, since cost(a) ≥ 1. (The choice for m in Bm

is discussed below.) Since the NWA Bn in Example 4 have only partially defined
transition functions, we complete them by directing all missing transitions (shown as
“errors” in Figure 6) to in in punish and to new local states err in pay. Note that
this includes missing transitions on call (they all push x to the stack) and missing
transitions on ret (at every control state, there is a popping transition for each γ ∈ Γ).
In contrast, on input # all transitions from pay(q, a) and punish(q) go to the state pq.

By construction, every synchronizing word is forced to have at least one occurrence
of #, otherwise the runs starting from states frcq (q ∈ Q) cannot be synchronized with
other runs. Therefore, every synchronizing word must contain the subword wpunish at
least once. Since any “unfaithful” simulation involves reading another occurrence
of wpunish, we choose to have ` < 2 · |wpunish| to avoid the possibility of this second
occurrence. Since the gadgets pay(q, a) are constructed so that |a · wa| = 4 · cost(a),
every run of D over a word with cost less than budget can be faithfully simulated with
a run in A with length at most 4 · budget. Taking into account one occurrence of #
and the subword wpunish (which will actually occur at the beginning of the shortest
synchronizing word), it is natural to pick ` = 1 + |wpunish| + 4 · budget. We will
require one more constraint: if we have 4 · budget + 1 < |wpunish|, then this will imply
that ` < 2 · |wpunish| and will ensure that the property discussed above holds. The
choice of m + 2 = |wpunish| = 4 · budget + 2 and ` = 8 · budget + 3 satisfies these
constraints and completes the description of the reduction.

To prove the correctness of the reduction, observe that if D has a synchronizing
word v = a1a2 · · · an with cost(v) ≤ budget, then

· wpunish · a1 · wa1 · a2 · wa2 · · · an · wan

is a synchronizing word for A of length

|# · wpunish|+ 4 · (cost(a1) + cost(a2) + · · ·+ cost(an)) ≤ 1 + |wpunish|+ 4 · budget.

For the converse direction, assume that A has some synchronizing word with length
at most `. We prove that D has a synchronizing word with cost at most budget.

We begin with the following observation. In our construction of A, all states have
index q ∈ Q, and the destination of transitions departing from these states may
depend on q in either of the following two ways. First, many (and in fact most of
the) transitions lead to further states that have index q, and this is in fact the only
dependence on q in these transitions: if two states only differ by the index q′, q′′

with q′ 6= q′′, and the same letter is given as input, then the transitions lead to two
states that also differ by the index q̄′ 6= q̄′′ only. (For example, all transitions from
states frcq, q ∈ Q, and from states q ∈ Q themselves are of this kind.) Second, there
are return transitions that depart from the out states in pay(q, a) gadgets, and for
these transitions (exclusively) the destination really depends on q (through ∆). We
will use this observation in the argument below.

Synchronizing automata over nested words 23

NWA Bk pay(q, a)

in
call(£)

out
ret(£)

err
ret(£)

error

error

error

NWA Bm punish(q)

in
call(/)

out
ret(/)

error

error

error

Figure 6: Gadgets pay(q, a) (on the left) and punish (on the right) where Bk,Bm are
described in Example 4 with k = 4 · cost(a)− 3 and m = |wpunish| − 2

Now let w be one of the shortest synchronizing words of A. Consider the |Q| runs
of A starting in configurations {(frcq, ε) | q ∈ Q}; we will follow these runs, ignoring
all other computations. Using the observation above, one can see by induction on
the length of the input word that the configurations reached by these runs on the
same input can only differ by the index q of the control state. Notice that since the
initial configurations have identical stack content (ε), and the stack alphabet has no
symbol that depends on q ∈ Q, we will see that the stack content stays the same
across the |Q| runs at all times (even though it may evolve); so we will always find
these runs in configurations that only differ by the index q ∈ Q.

Since the runs are synchronized by the word w, this word necessarily contains the
letter # and, at some future point, the word wpunish. By the arguments above, when
these runs reach states from Q for the first time, the stack content will be the same
for all of them (it may or may not be ε).

From this point onward, the following properties will hold:
(a) the remainder of the input cannot contain the word wpunish (because ` is less

than 2 |wpunish|, and the prefix of w already contains an occurrence of wpunish);
and

(b) the |Q| runs we are following will never enter states {pq | q ∈ S}, for any |S| ≥ 2,
because, in order to synchronize any set of configurations with these control
states, a word of length at least wpunish will be required.

Using the observation above, we can conclude from property (b) that no run will
(re-)enter pq for any q ∈ Q. (Indeed, if such a run existed, then all the |Q| runs would
be in states pq, q ∈ S, for |S| ≤ 1, that is, in the same control state. This means
that A has a synchronizing word shorter than w—a contradiction.)

Let v = b1b2 · · · bm be the suffix of w read from the point in time that our |Q|
runs reach Q for the first time. At this point the runs are in |Q| configurations (q, s)
where q ∈ Q and where s ∈ Γ∗ does not depend on q. Denote S0 = Q × {s}
and Si = δ(Si−1, bi) for all 1 ≤ i ≤ m. It now follows from the observation above
that, for all 1 ≤ i ≤ m, Si∩ (Q×Γ∗) 6= ∅ if and only if Si ⊆ Q×{si} for some si ∈ Γ∗
(by induction on i).

Consider the nested word c1c2 · · · cj obtained from v = b1 · · · bm by removing all
letters bi except those for which Si−1 ⊆ Q × {si−1}. Since the runs we are follow-
ing never re-enter states pq for any q ∈ Q, such runs must enter pay-gadgets when
departing from configurations in Si−1, reading a letter a ∈ Σ and then call from the
input; we will have ci′ = a. Since a is now fixed, all the gadgets pay(q, a) have the

24 D. Chistikov, P. Martyugin, M. Shirmohammadi

same construction: the only way out that involves no occurrence of # in the input
is going through the states out of the gadgets (popping £ from the stack); after this,
the runs move to Q× Γ∗ again. Therefore, for all 1 ≤ i ≤ j we have

Qi = ∆(Q, c1 · · · ci),

where Qi×{s} is the ith element in the sequence S1, S2, . . . that is included in Q×Γ∗.
So the word c1c2 · · · cj is a valid input word for the DFA D.

It remains to prove that this word is synchronizing for D with cost(c1 · · · cj) ≤
budget. This word must be a synchronizing word: otherwise there are two distinct
states q, q′ ∈ Q that are reached by the prefix of w up to and including cj . All runs
starting from these two states q and q′ on the suffix of w after cj—since they do not
visit Q×Γ∗ again—must stay in separate pay gadgets and cannot be synchronized, a
contradiction.

To complete the proof, we show that cost(c1c2 · · · cj) ≤ budget. Recall that three
factors #, wpunish, and v of w are non-overlapping, so |v| ≤ 4 · budget. By above
arguments, word v = b1 · · · bm is a correct simulation of c1 · · · cj in D, thus each ci is
followed by wci

where |ci · wci
| = 4 · cost(ci). We thus have cost(c1 · · · cj) ≤ budget.

2

5. Synchronizing nested words for subsets of states

In this section, we prove that the existence of a well-matched nested word that syn-
chronizes a given set of states to another set of states in an NWA is EXP-complete.
The corresponding decision problems for DFA are PSPACE-complete [32, 33], where
hardness is by a reduction from the DFA intersection nonemptiness problem (see [38]
for a refined complexity analysis).

In the NWA case, the proofs are an easy adaptation of these arguments and are
based on the following observation, which can be proved by a translation from tree
automata [9] or by a direct extension of Kozen’s proof [21]. (For completeness, we
provide the proof.) When we talk about words accepted by A, we implicitly assume
that A comes equipped with a subset Qf ⊆ Q of final (accepting) states; accepted are
words u for which there exists a path (q0, ε)

u−→ (q̄, s) with q̄ ∈ Qf .

Lemma 14 (cf. [9, Theorem 1.7.5]). The following Intersection Nonemptiness
problem for NWA is EXP-complete: Given NWA A1, . . . ,Am, decide if there exists
a well-matched word accepted by all Ai.

Proof. Membership in EXP is immediate: using the standard product construction
for NWA, we obtain an exponential-size NWA that accepts only those (well-matched)
words that are accepted by all of A1, . . . ,Am. We then run a polynomial-time empti-
ness check for this NWA.

The proof of EXP-hardness relies on the equality APSPACE = EXP, where
APSPACE denotes the class of problems solvable by alternating Turing machines
that use polynomial space. We first show how to argue PSPACE-hardness, recalling
the proof by Kozen [21], and then strengthen this to APSPACE-hardness.

Synchronizing automata over nested words 25

First consider some deterministic polynomial-space Turing machine M and an
input tape x for M. We assume that the input tape of M is also its working tape.
Denote |x| = n; this length will not change during any computation ofM. We show
how to construct polynomially many DFA whose language intersection is non-empty
if and only if M accepts x. These DFA have input alphabet δ × {1, . . . , n}, where
δ is the set of transitions of M. Words accepted by all these DFA will correspond
to accepting computations ofM. The component i ∈ {1, . . . , n} of the input letters
corresponds to the position of the head ofM on the tape.

For each i ∈ {1, . . . , n}, define a DFA Ai that remembers the letter currently
written in the ith cell of the input tape. Initially, it is simply the ith letter of x,
but it can be rewritten later. When Ai reads a pair (t, i) where t ∈ δ, it checks
whether the transition t is compatible with the letter currently written in the ith cell
of the tape, and then it may update this letter if t requires this. When Ai reads a
pair (t, j) ∈ ×{1, . . . , n} with j 6= i, it does not change its state.

In addition to A1, . . . ,An, we also define a DFA A0 that does the following book-
keeping: it remembers the current control state of M, checks its compatibility with
transitions, and updates it accordingly. The same automaton can check whether the
positions i ∈ {1, . . . , n} of the head are compatible with the movements prescribed by
the transitions, and also whetherM reaches an accepting state at the end. As a result,
these n+ 1 DFA have non-empty language intersection if and only ifM accepts x.

To extend this to APSPACE-hardness, we consider an alternating Turing ma-
chineM. An accepting computation ofM is no longer just a sequence of transitions:
it is a (binary) tree, where the edges are transitions, and the branching can be non-
deterministic and universal. This tree can be naturally represented as a nested word,
and instead of DFA, we will construct NWA. We are only interested in nested words
with the property that, in every pair of matched positions in the word, both contain
the same transition t ∈ δ and i ∈ {1, . . . , n}. (There is a small NWA that checks this
condition.) Moreover, all positions in such a nested word must be calls or returns
(i.e., no internal positions).

Each NWA Ai will, as previously, keep track of the letter written in the ith cell
of the input tape. However, the input to Ai is now a nested word (a purported
computation tree ofM), so the behaviour of Ai is a bit more involved. The changes
compared to the DFA case are as follows.
• When reading a transition (t, i) ∈ δ×{1, . . . , n} in a call position, the NWA Ai

will (in addition to the book-keeping described above) push the current content
of the ith cell (before a possible update) to the stack.

• When reading a transition (t, i) ∈ δ × {1, . . . , n} in a return position, the
NWA Ai will pop the stack and undo the update, “rewriting” the content of the
ith cell with the letter it previously pushed.

This way, when NWA read call letters, they move from root to leaves in the compu-
tation tree of M (similarly to the DFA case), and when they read return positions,
they move from leaves to root (‘back in time’), undoing the changes.

The NWA A0 will now also keep track of whether subtrees of the computation
tree are accepting or not. Suppose A0 remembers that the current control state

26 D. Chistikov, P. Martyugin, M. Shirmohammadi

of M is q. If this state has nondeterministic or universal branching, then A0 also
needs to remember which of the (at most two) branches it has explored, and whether
the corresponding subtrees are accepting. After it has explored all the subtrees of
the current node, A0 will know whether the subtree rooted at the current node is
accepting or rejecting (according to the logical and/or of the values from the smaller
subtrees). It will then expect to read a return letter and propagate this information
further up the computation tree (in the direction from leaves to root). Naturally, the
entire tree needs to be accepting in order for A0 to accept the given nested word.

At the end, we have n + 1 NWA, which accept a common well-matched nested
word if and only ifM accepts x. This completes the proof.

2

We prove the following theorem.

Theorem 15. The following decision problems, with an NWA A part of the input,
are EXP-complete:
• Synchronizing a Subset: Given a subset I ⊆ Q, decide if there exists a well-

matched nested word u such that (I, ε) u−→ (q̄, ε) for some state q̄ ∈ Q.
• Synchronizing to a Subset: Given a subset F ⊆ Q, decide if there exists a well-

matched nested word u such that (Q, ε) u−→ (F ′, ε) for some subset F ′ ⊆ F .
• Synchronizing a Subset to Another Subset: Given subsets I ⊆ Q and F ⊆ Q,

decide if there exists a well-matched nested word u such that (I, ε) u−→ (F ′, ε)
for some subset F ′ ⊆ F .

Proof. Let A = (Σ, Q,Γ, δ, q0, Q
f , γ0) be an NWA. Notice that the first two problems

are special cases of the last one. It therefore suffices to prove lower bounds for the
former and a matching upper bound of the latter.

EXP-hardness

We present reductions from the Intersection Nonemptiness problem for NWA: given
NWA A1, . . . ,Am, decide if there exists a well-matched nested word accepted by
all Ai.

Suppose NWA A1, . . . ,Am are given, and let W be the NWA (over the same
alphabet as A1, . . . ,Am) defined in Example 1, and with pyes as the only final state.
This automaton accepts all well-matched nested words, and all runs that start and end
in pyes are over well-matched nested words too. Everywhere below, when establishing
reductions from the Intersection Nonemptiness problem for NWA, we assume without
loss of generality that Am =W.

Synchronizing a Subset. Let A1, . . . ,Am be m NWA over the same alphabet Σ. We
construct an NWA Ā and a set I such that there exists a well-matched nested word
accepted by all Ai if and only if exists some well-matched nested word u and some
state q̄ in Ā where (I, ε) u−→ (q̄, ε).

The construction is as follows (see Figure 7). Let q1, · · · , qm be the initial states and
Qf

1, · · · , Qf
m the accepting sets for m NWA. Let Ā be the NWA that has one copy of

Synchronizing automata over nested words 27

A1 :
q1

p1 f1

· · · · · · · · ·

Am :
qm

pmfm

sync

sink# #

#

Figure 7: The sketch of the reduction from the Intersection Nonemptiness problem to
the Synchronizing a Subset problem in NWA.

each NWA Ai (1 ≤ i ≤ m) and new absorbing states sync and sink. For a new internal
letter #, let #-transitions in all accepting states q ∈ Qf

1∪· · ·∪Qf
m of all Ai go to sync,

whereas all #-transitions in all non-accepting states q 6∈ Qf
1 ∪ · · · ∪ Qf

m go to sink.
From the subset I = {q1, · · · , qm, sync}, a synchronizing word cannot escape sync,
because sync is an absorbing state. Let u be one of the shortest synchronizing words
from I. We now show that u always ends with #.

First, observe that the only way for the runs starting in the initial states q1, · · · , qm

to be synchronized in sync is to have the symbol # appear at the right time in the
input, when these runs are simultaneously in some accepting states in all copies.
Second, due to the fact that Am =W, we know that all runs of Am from qm to Qf

m

are over well-matched nested words. Thus, there exists a well-matched nested word v
such that u = v · #. One can verify that v is an accepting word for all Ai. The
EXP-hardness follows.

Synchronizing to a Subset. Let A1, . . . ,Am be m NWA over the same alphabet Σ.
We construct Ā and set F such that there exists a well-matched nested word accepted
by all Ai if and only if there exists some well-matched nested word u and some state q̄
in Ā where (Q, ε) u−→ (F ′, ε) for some subset F ′ ⊆ F .

The construction is as follows (see Figure 8). Let q1, · · · , qm be the initial states
and Qf

1, · · · , Qf
m be the accepting sets for m NWA. Let Ā be the NWA that has one

copy of each NWA Ai (1 ≤ i ≤ m) and two new states frc and sync. For a new internal
letter #, let #-transitions in all states of Ai go to qi. The state sync is absorbing,
whereas the state frc has self-loops for all letters except #. The #-transition in frc
leads to sync. Let F = Qf

1∪· · ·∪Qf
m∪{sync}. No word can let the NWA Ā escape sync,

because sync is an absorbing state. Let u be the shortest synchronizing word to the
set F , thus u must have at least one occurrence of #; otherwise state frc cannot be
synchronized to F . Let u = w ·# · v be such that v has no #. As soon as the last #
of u is read, each NWA Ai is reset to its initial state qi. To be synchronized in F ,
each NWA Ai from qi must reach the final state Qf

i, by reading the word v from the
input. Recall that Am = W. If w is not well-matched, then v must complete some
pending calls from w—but that movesW to psink, a contradiction with the fact that u
synchronizes Ā to F . Thus, the word v are both well-matched (notice that it has
no pending calls, because otherwise the run of Am on v would terminate in pno). It

28 D. Chistikov, P. Martyugin, M. Shirmohammadi

A1 :
q1

p1 f1

· · · · · · · · ·

Am :
qm

pmfm sync

frc

##
#

#

Figure 8: The sketch of the reduction from the Intersection Nonemptiness problem
to the Synchronizing to a Subset problem in NWA. All transitions not shown in sync
and frc are self-loops.

remains to observe that each Ai has an accepting run over the well-matched nested
word v to its final states. The EXP-hardness follows.

Membership in EXP

Synchronizing a Subset. We reduce this problem to the synchronizing a subset to
another subset problem, which we discuss below. Let A = (Σ, Q,Γ, δ, q0, Q

f , γ0) be
an NWA with n states, and let I ⊆ Q. To decide whether there exists a well-matched
nested word u and some state q̄ ∈ Q such that (I, ε) u−→ (q̄, ε), we make |Q| queries,
for each q ∈ Q, to the synchronizing the subset I to the singleton {q}.

Synchronizing a Subset to Another Subset. Given A with set Q of states, I ⊆ Q
and F ⊆ Q, we reduce this problem to the emptiness problem of a product NWA,
possibly exponential in the size of A. The reduction is simple: for each state q ∈ I,
we introduce an NWA Aq which is a copy of A where the initial state is q and the
final states are F . Consider the product automaton Ā of all NWA Aq with q ∈ I; an
accepting word in Ā synchronizes the set I to F in the original NWA A. The size of
this product is |Q||I| which is exponential, and the emptiness problem for the product
automata can be solved in time polynomial in |Q||I|. The EXP upper bound follows.

2

Acknowledgements

The authors are grateful to Michael Wehar for comments.

References

[1] R. Alur, Nested words and visibly pushdown languages. Web page. Accessed on 28
February 2019.
https://www.cis.upenn.edu/~alur/nw.html

[2] R. Alur, V. Kumar, P. Madhusudan, M. Viswanathan, Congruences for visibly
pushdown languages. In: L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi,
M. Yung (eds.), Automata, Languages and Programming, 32nd International Collo-
quium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings. Lecture Notes
in Computer Science 3580, Springer, 2005, 1102–1114.

https://www.cis.upenn.edu/~alur/nw.html

Synchronizing automata over nested words 29

[3] R. Alur, P. Madhusudan, Adding nesting structure to words. Journal of the ACM
56 (2009) 3.

[4] P. Babari, K. Quaas, M. Shirmohammadi, Synchronizing data words for regis-
ter automata. In: P. Faliszewski, A. Muscholl, R. Niedermeier (eds.), MFCS .
LIPIcs 58, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, 15:1–15:15.

[5] V. Bárány, C. Löding, O. Serre, Regularity problems for visibly pushdown lan-
guages. In: B. Durand, W. Thomas (eds.), STACS . Lecture Notes in Computer
Science 3884, Springer, 2006, 420–431.

[6] D. Caucal, Synchronization of pushdown automata. In: O. H. Ibarra, Z. Dang
(eds.), Developments in Language Theory, 10th International Conference, DLT 2006,
Santa Barbara, CA, USA, June 26-29, 2006, Proceedings. Lecture Notes in Computer
Science 4036, Springer, 2006, 120–132.

[7] D. Chistikov, P. Martyugin, M. Shirmohammadi, Synchronizing automata over
nested words. In: B. Jacobs, C. Löding (eds.), Foundations of Software Science and
Computation Structures - 19th International Conference, FOSSACS 2016, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings. Lecture Notes in Computer
Science 9634, Springer, 2016, 252–268.

[8] M. Chytil, B. Monien, Caterpillars and context-free languages. In: C. Choffrut,
T. Lengauer (eds.), STACS 90, 7th Annual Symposium on Theoretical Aspects of
Computer Science, Rouen, France, February 22-24, 1990, Proceedings. Lecture Notes
in Computer Science 415, Springer, 1990, 70–81.

[9] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,
S. Tison, M. Tommasi, Tree Automata Techniques and Applications. Available at:
http://www.grappa.univ-lille3.fr/tata, 2007. Release October, 12th 2007.

[10] L. Doyen, L. Juhl, K. G. Larsen, N. Markey, M. Shirmohammadi, Synchronizing
words for weighted and timed automata. In: V. Raman, S. P. Suresh (eds.), 34th
International Conference on Foundation of Software Technology and Theoretical Com-
puter Science, FSTTCS 2014, December 15-17, 2014, New Delhi, India. LIPIcs 29,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014, 121–132.

[11] L. Doyen, T. Massart, M. Shirmohammadi, The complexity of synchronizing
Markov decision processes. J. Comput. Syst. Sci. 100 (2019), 96–129.

[12] E. Driscoll, A. V. Thakur, T. W. Reps, OpenNWA: A nested-word automaton
library. In: P. Madhusudan, S. A. Seshia (eds.), Computer Aided Verification - 24th
International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings.
Lecture Notes in Computer Science 7358, Springer, 2012, 665–671.

[13] D. Eppstein, Reset sequences for monotonic automata. SIAM J. Comput. 19 (1990)
3, 500–510.

[14] A. P. Ershov, On programming of arithmetic operations. Commun. ACM 1 (1958)
8, 3–9.

[15] J. Esparza, P. Ganty, S. Kiefer, M. Luttenberger, Parikh’s theorem: A simple
and direct automaton construction. Inf. Process. Lett. 111 (2011) 12, 614–619.

[16] J. Esparza, P. Ganty, R. Majumdar, Parameterized verification of asynchronous
shared-memory systems. J. ACM 63 (2016) 1, 10:1–10:48.

http://www.grappa.univ-lille3.fr/tata

30 D. Chistikov, P. Martyugin, M. Shirmohammadi

[17] J. Esparza, M. Luttenberger, M. Schlund, A brief history of Strahler numbers. In:
A. Dediu, C. Martín-Vide, J. L. Sierra-Rodríguez, B. Truthe (eds.), Language
and Automata Theory and Applications - 8th International Conference, LATA 2014,
Madrid, Spain, March 10-14, 2014. Proceedings. Lecture Notes in Computer Science
8370, Springer, 2014, 1–13.

[18] F. M. Fominykh, P. V. Martyugin, M. V. Volkov, P(l)aying for synchronization.
Int. J. Found. Comput. Sci. 24 (2013) 6, 765–780.

[19] M. Heizmann, C. Schilling, D. Tischner, Minimization of visibly pushdown au-
tomata using partial Max-SAT. In: A. Legay, T. Margaria (eds.), Tools and Algo-
rithms for the Construction and Analysis of Systems - 23rd International Conference,
TACAS 2017, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I .
Lecture Notes in Computer Science 10205, 2017, 461–478.

[20] J. E. Hopcroft, W. J. Paul, L. G. Valiant, On time versus space. J. ACM 24
(1977) 2, 332–337.

[21] D. Kozen, Lower bounds for natural proof systems. In: 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977 . IEEE Computer Society, 1977, 254–266.

[22] J. Kretínský, K. G. Larsen, S. Laursen, J. Srba, Polynomial time decidability of
weighted synchronization under partial observability. In: L. Aceto, D. de Frutos-
Escrig (eds.), 26th International Conference on Concurrency Theory, CONCUR 2015,
Madrid, Spain, September 1.4, 2015 . LIPIcs 42, Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2015, 142–154.

[23] V. Kumar, P. Madhusudan, M. Viswanathan, Visibly pushdown automata for
streaming XML. In: C. L. Williamson, M. E. Zurko, P. F. Patel-Schneider,
P. J. Shenoy (eds.), Proceedings of the 16th International Conference on World Wide
Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007 . ACM, 2007, 1053–1062.

[24] K. G. Larsen, S. Laursen, J. Srba, Synchronizing strategies under partial observ-
ability. In: P. Baldan, D. Gorla (eds.), CONCUR 2014 - Concurrency Theory - 25th
International Conference, CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceed-
ings. Lecture Notes in Computer Science 8704, Springer, 2014, 188–202.

[25] T. Lengauer, R. E. Tarjan, The space complexity of pebble games on trees. Inf.
Process. Lett. 10 (1980) 4/5, 184–188.

[26] C. Löding, P. Madhusudan, O. Serre, Visibly pushdown games. In: K. Lodaya,
M. Mahajan (eds.), FSTTCS 2004: Foundations of Software Technology and The-
oretical Computer Science, 24th International Conference, Chennai, India, December
16-18, 2004, Proceedings. Lecture Notes in Computer Science 3328, Springer, 2004,
408–420.

[27] P. Martyugin, Computational complexity of certain problems related to carefully
synchronizing words for partial automata and directing words for nondeterministic
automata. Theory Comput. Syst. 54 (2014) 2, 293–304.

[28] K. Mehlhorn, Pebbling moutain ranges and its application of dcfl-recognition. In:
J. W. de Bakker, J. van Leeuwen (eds.), Automata, Languages and Programming,
7th Colloquium, Noordweijkerhout, The Netherlands, July 14-18, 1980, Proceedings.
Lecture Notes in Computer Science 85, Springer, 1980, 422–435.

Synchronizing automata over nested words 31

[29] J. Olschewski, M. Ummels, The complexity of finding reset words in finite automata.
In: P. Hlinený, A. Kucera (eds.), Mathematical Foundations of Computer Science
2010, 35th International Symposium, MFCS 2010, Brno, Czech Republic, August 23-27,
2010. Proceedings. Lecture Notes in Computer Science 6281, Springer, 2010, 568–579.

[30] M. S. Paterson, C. E. Hewitt, Comparative schematology. In: Record of the Project
MAC conference on concurrent systems and parallel computation. ACM, 1970, 119–127.
MIT AI Memo AIM-201, http://hdl.handle.net/1721.1/5851.

[31] J.-E. Pin, On two combinatorial problems arising from automata theory. North-
Holland Mathematics Studies 75 (1983), 535–548.

[32] I. K. Rystsov, Polynomial complete problems in automata theory. Inf. Process. Lett.
16 (1983) 3, 147–151.

[33] S. Sandberg, Homing and synchronizing sequences. In: M. Broy, B. Jonsson, J. Ka-
toen, M. Leucker, A. Pretschner (eds.), Model-Based Testing of Reactive Systems,
Advanced Lectures [The volume is the outcome of a research seminar that was held in
Schloss Dagstuhl in January 2004]. Lecture Notes in Computer Science 3472, Springer,
2004, 5–33.

[34] J. E. Savage, Models of computation - exploring the power of computing. Addison-
Wesley, 1998.

[35] M. Szykula, Improving the upper bound on the length of the shortest reset word. In:
R. Niedermeier, B. Vallée (eds.), 35th Symposium on Theoretical Aspects of Com-
puter Science, STACS 2018, February 28 to March 3, 2018, Caen, France. LIPIcs 96,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, 56:1–56:13.

[36] J. Černý, A. Pirická, B. Rosenauerová, On directable automata. Kybernetika 07
(1971) 4, (289)–298.

[37] M. V. Volkov, Synchronizing automata and the cerny conjecture. In: C. Martín-
Vide, F. Otto, H. Fernau (eds.), Language and Automata Theory and Applications,
Second International Conference, LATA 2008, Tarragona, Spain, March 13-19, 2008.
Revised Papers. Lecture Notes in Computer Science 5196, Springer, 2008, 11–27.

[38] M. Wehar, Hardness results for intersection non-emptiness. In: J. Esparza,
P. Fraigniaud, T. Husfeldt, E. Koutsoupias (eds.), Automata, Languages, and
Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark,
July 8-11, 2014, Proceedings, Part II . Lecture Notes in Computer Science 8573,
Springer, 2014, 354–362.

[39] C. Wu, I. Demongodin, A. Giua, Computation of synchronizing sequences for a
class of 1-place-unbounded synchronized petri nets. In: 5th International Conference
on Control, Decision and Information Technologies, CoDIT 2018, Thessaloniki, Greece,
April 10-13, 2018 . IEEE, 2018, 51–57.

	1 Introduction
	2 Finite-state automata and nested word automata
	3 Synchronizing words
	3.1 Synchronizing nested words

	4 Short synchronizing nested words
	4.1 Membership in PSPACE
	4.1.1 Binary tree representation of nested words
	4.1.2 From nested word automata to tree automata
	4.1.3 Pebble games and Strahler numbers
	4.1.4 Bounded nonemptiness for implicitly presented tree automata
	4.1.5 Binary tree representation of nested words

	4.2 PSPACE-hardness

	5 Synchronizing nested words for subsets of states
	References

