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Introduction: ChemCam is a Laser-Induced 
Breakdown Spectroscopy (LIBS) instrument on-board 
the NASA Mars Science Laboratory (MSL) rover that 
has been exploring Gale Crater, Mars for the past six 
years [1, 2]. Its spectrometric capability can be used 
to retrieve reflectance signals from martian surfaces 
of interest in the 400-840nm region which can show 
spectral features of iron-bearing oxides, pyroxenes, 
and calcium sulfates [3, 4]. Similary, the rover’s 
Mastcam CCD cameras (1600×1200 pixel) use an 8-
position filter wheel of broadband near-infrared cutoff 
filter for RGB Bayer imaging and twelve narrow band 
geology filters distributed between the two cameras, 
spanning the 445-1013 nm wavelength range [5, 6].  

Analogs of the Rocknest (RN) windblown deposit 
(sol 84) and Cumberland (CB) mudstone drill fines 
(sol 281) have been generated in the laboratory based 
on the mineralogical information retrieved by MSL. 
Here, we report initial results of the near-infrared 
analysis of these analogs compared to the MSL meas-
urements made of the targets on Mars.  

Analog samples: The mineralogical understand-
ing of martian rocks and regoliths have dramatically 
improved thanks to the use of X-ray diffraction by the 
Curiosity rover [7]. A new generation of Mars simu-
lants is being generated based on MSL’s mineralogi-
cal analyses to provide further understanding of these 
materials in the laboratory.  

The mineralogy of the Rocknest (RN) windblown 
deposit’s mineralogy (26wt.% plagioclase, 20wt.% 
pyroxene, 13wt.% olivine, 2wt.% magnetite, 1wt.% 
hematite [8, 9]) was used to generate the Mars Global 
Simulant-1 (MGS-1) analog [10]. The remaining 
35wt.% amorphous component was simulated by 
23wt.% of basaltic glass and 5wt.% of hydrated silica, 
4wt.% of Mg-sulfates and 1.7wt.% ferrihydrite. The 
simulant grain size is <1mm and its spectral properties 
have been favorably compared to rover and orbiter’s 
observations of Mars soils [10].  

Similarly, the mineralogy of the Cumberland (CB) 
drilled sample by MSL [11] (which is broadly similar 
to Rocknest, but contains less abundant olivine and 
~20 wt% smectite clays) was used to generate a simu-
lant of this mudstone composition by the SAM team, 
which is described in Fig. 1 to compare with the SAM 

instrument measurements [12, 13]. Since the CB ana-
log sample is a powder (grain size <150µm), we chose 
to compare its spectral properties with those of the 
tailings produced by the MSL drill when it acquired 
the sample. 

 

 
Figure 1: Mineralogy of the CB analog and sample [11, 12]. Addi-
tional Augite substituted for Pigeonite; additional Anhydrite substi-
tuted for Bassanite; Quartz omitted – trace amounts exist in other 

minerals. 

Method: Infrared reflectance spectra were meas-
ured using the spectro-gonio-radiometer available at 
the IPAG in Grenoble [14]. Bidirectional reflectance 
spectra were measured with a photometric accuracy 
below 1% in the 0.5–3.0 µm range with a sampling 
interval of 10 nm.  

Results: Fig. 2 presents the infrared spectra ob-
tained for the two samples compared to the Mastcam 
observations of Rocknest scoop 4 and of the Cumber-
land drill hole tailings [6]. Both measurements follow 
the same trends.  
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The CB analog exhibits greater reflectance 
>600nm than the RN analog, which is in agreement 
with the Mastcam spectra. The CB analog also dis-
plays a less prominent ferric absorption near 535nm 
than the RN analog, likely resulting from the use of 
palagonite to represent its amorphous component. The 
ChemCam passive spectra of the martian targets (Fig. 
3, [3]) also show CB to have a weaker ferric absorp-
tion, but a lower relative reflectance at >600 nm. 
Such variations in overall albedo likely result from a 
combination of dust cover, surface texture, and pho-
tometric effects.  

 
Figure 2: Near-infrared reflectance spectra of the RN and CB ana-

logs compared to the Mastcam observations [5]. 

 
Figure 3: Passive ChemCam reflectance spectra of the Rocknest 
windblown deposit and the Cumberland tailings MSL targets [3]. 

The greater band depth at 1.9 µm in the CB ana-
log is peculiar, since RN and CB are supposed to have 
similar amounts of H2O based on SAM measurements 
(~2 wt.% [15]). Note that the water content of the CB 
analog was not monitored for practical reasons. While 
we took care to keep the samples under dehydrated 
conditions, this may indicate that some mineral phases 
present in the CB analog sample (e.g., smectite, 
palagonite) are more hydrated than their martian 
counterparts. This could also be related to variations 
in grain size of the hydrated phases in the mixtures. 

The bands around 1.4 and 1.9 microns in the CB 
spectrum are mainly due to the presence of the ferroan 
saponite griffithite used in the mixture (Fig. 4). Also, 

the metal-OH bands associated to smectites around 
2.3 µm are not obvious. This is a reminder that clay 
minerals within complex mixtures may not be easy to 
detect from orbit, even at the ~20wt.% level and 
without dust cover. 

 
Figure 4: IR spectra of minerals from laboratory data-

bases [16, 17].  
Conclusion and future work: The Cumberland 

and Rocknest analogs are spectrally distinct, CB be-
ing brighter and showing stronger OH/H2O absorption 
signatures. Still, these two analogs do not appear to 
reproduce entirely the differences observed in passive 
observations of the actual (Martian) Rocknest and CB 
samples. The analog samples will also be analyzed 
with active LIBS and the results will be combined in 
future work. 
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