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ARTICLE

Establishment and characterization of new tumor
xenografts and cancer cell lines from EBV-positive
nasopharyngeal carcinoma
Weitao Lin 1, Yim Ling Yip 1, Lin Jia 1, Wen Deng2, Hong Zheng 3,4, Wei Dai3,

Josephine Mun Yee Ko 3, Kwok Wai Lo 5, Grace Tin Yun Chung5, Kevin Y. Yip 6, Sau-Dan Lee6,

Johnny Sheung-Him Kwan5, Jun Zhang1, Tengfei Liu1, Jimmy Yu-Wai Chan7, Dora Lai-Wan Kwong3,

Victor Ho-Fun Lee3, John Malcolm Nicholls8, Pierre Busson 9, Xuefeng Liu 10,11,12, Alan Kwok Shing Chiang13,

Kwai Fung Hui13, Hin Kwok14, Siu Tim Cheung 15, Yuk Chun Cheung1, Chi Keung Chan1, Bin Li1,16,

Annie Lai-Man Cheung1, Pok Man Hau5, Yuan Zhou5, Chi Man Tsang1,5, Jaap Middeldorp 17,

Honglin Chen 18, Maria Li Lung3 & Sai Wah Tsao1

The lack of representative nasopharyngeal carcinoma (NPC) models has seriously hampered

research on EBV carcinogenesis and preclinical studies in NPC. Here we report the successful

growth of five NPC patient-derived xenografts (PDXs) from fifty-eight attempts of trans-

plantation of NPC specimens into NOD/SCID mice. The take rates for primary and recurrent

NPC are 4.9% and 17.6%, respectively. Successful establishment of a new EBV-positive NPC

cell line, NPC43, is achieved directly from patient NPC tissues by including Rho-associated

coiled-coil containing kinases inhibitor (Y-27632) in culture medium. Spontaneous lytic

reactivation of EBV can be observed in NPC43 upon withdrawal of Y-27632. Whole-exome

sequencing (WES) reveals a close similarity in mutational profiles of these NPC PDXs with

their corresponding patient NPC. Whole-genome sequencing (WGS) further delineates the

genomic landscape and sequences of EBV genomes in these newly established NPC models,

which supports their potential use in future studies of NPC.

DOI: 10.1038/s41467-018-06889-5 OPEN

1 School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. 2 School of Nursing, Li Ka Shing Faculty of
Medicine, The University of Hong Kong, Hong Kong, China. 3 Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong,
Hong Kong, China. 4 Center for Biomedical Informatics Research, Stanford University, Stanford 94305 CA, USA. 5Department of Anatomical and Cellular
Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China. 6Department of Computer Science
and Engineering, The Chinese University of Hong Kong, Hong Kong, China. 7 Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong
Kong, Hong Kong, China. 8 Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. 9 Gustave Roussy,
Paris-Saclay University, CNRS, UMR8126, Villejuif F-94805, France. 10 Center for Cell Reprogramming, Department of Pathology, Georgetown University
Medical Center, Washington 20057 DC, USA. 11 Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University,
Changsha 410011 Hunan, China. 12 Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 510095 Guangdong, China.
13 Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. 14 Center for
Genomic Sciences, The University of Hong Kong, Hong Kong, China. 15 Department of Surgery and Li Ka Shing Institute of Health Sciences, Faculty of
Medicine, The Chinese University of Hong Kong, Hong Kong, China. 16 College of Life Science and Technology, Jinan University, Guangzhou 510632
Guangdong, China. 17 VU University Medical Center, Department of Pathology, Cancer Center Amsterdam, de Boelelaan 1117, 1081 HV Amsterdam, The
Netherlands. 18 Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. These authors contributed
equally: Weitao Lin, Yim Ling Yip, Lin Jia. Correspondence and requests for materials should be addressed to M.L.L. (email: mlilung@hku.hk)
or to S.W.T. (email: gswtsao@hku.hk)

NATURE COMMUNICATIONS |          (2018) 9:4663 | DOI: 10.1038/s41467-018-06889-5 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-4385-9897
http://orcid.org/0000-0003-4385-9897
http://orcid.org/0000-0003-4385-9897
http://orcid.org/0000-0003-4385-9897
http://orcid.org/0000-0003-4385-9897
http://orcid.org/0000-0003-1574-8022
http://orcid.org/0000-0003-1574-8022
http://orcid.org/0000-0003-1574-8022
http://orcid.org/0000-0003-1574-8022
http://orcid.org/0000-0003-1574-8022
http://orcid.org/0000-0002-5501-5029
http://orcid.org/0000-0002-5501-5029
http://orcid.org/0000-0002-5501-5029
http://orcid.org/0000-0002-5501-5029
http://orcid.org/0000-0002-5501-5029
http://orcid.org/0000-0002-8884-8211
http://orcid.org/0000-0002-8884-8211
http://orcid.org/0000-0002-8884-8211
http://orcid.org/0000-0002-8884-8211
http://orcid.org/0000-0002-8884-8211
http://orcid.org/0000-0002-7997-331X
http://orcid.org/0000-0002-7997-331X
http://orcid.org/0000-0002-7997-331X
http://orcid.org/0000-0002-7997-331X
http://orcid.org/0000-0002-7997-331X
http://orcid.org/0000-0002-3488-6124
http://orcid.org/0000-0002-3488-6124
http://orcid.org/0000-0002-3488-6124
http://orcid.org/0000-0002-3488-6124
http://orcid.org/0000-0002-3488-6124
http://orcid.org/0000-0001-5516-9944
http://orcid.org/0000-0001-5516-9944
http://orcid.org/0000-0001-5516-9944
http://orcid.org/0000-0001-5516-9944
http://orcid.org/0000-0001-5516-9944
http://orcid.org/0000-0003-1027-3400
http://orcid.org/0000-0003-1027-3400
http://orcid.org/0000-0003-1027-3400
http://orcid.org/0000-0003-1027-3400
http://orcid.org/0000-0003-1027-3400
http://orcid.org/0000-0002-9922-9627
http://orcid.org/0000-0002-9922-9627
http://orcid.org/0000-0002-9922-9627
http://orcid.org/0000-0002-9922-9627
http://orcid.org/0000-0002-9922-9627
http://orcid.org/0000-0003-2147-315X
http://orcid.org/0000-0003-2147-315X
http://orcid.org/0000-0003-2147-315X
http://orcid.org/0000-0003-2147-315X
http://orcid.org/0000-0003-2147-315X
http://orcid.org/0000-0002-0765-4125
http://orcid.org/0000-0002-0765-4125
http://orcid.org/0000-0002-0765-4125
http://orcid.org/0000-0002-0765-4125
http://orcid.org/0000-0002-0765-4125
http://orcid.org/0000-0001-5108-8338
http://orcid.org/0000-0001-5108-8338
http://orcid.org/0000-0001-5108-8338
http://orcid.org/0000-0001-5108-8338
http://orcid.org/0000-0001-5108-8338
mailto:mlilung@hku.hk
mailto:gswtsao@hku.hk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Nasopharyngeal carcinoma (NPC) is rare worldwide but
common in southern China, including Hong Kong. The
endemic NPC among southern Chinese is typically non-

keratinizing carcinoma which is almost 100% associated with
Epstein–Barr virus (EBV) infection1.

Patient-derived xenografts (PDXs), given their close resem-
blance with patient tumors, serve as important models in pre-
clinical evaluation for novel therapeutic drugs. For unclear
reasons, it has been difficult to establish NPC PDXs in vivo.
Currently, there are four NPC PDXs available for research,
including X2117, C15, C17 and C18. However, all of them have
been passaged in nude mice for over 25 years and may deviate
from their original NPC tumors in patients2,3. In vitro, C666-1 is
the only EBV-positive (EBV+ve) NPC cell line which has been
used extensively in investigations. C666-1 was established from
an NPC xenograft (X666) which had been propagated for a long
period of time4. Most if not all the other previously reported NPC
cell lines have lost their EBV episomes and became EBV-negative
(EBV–ve) upon in vitro propagation5,6. Furthermore, many of
these reported NPC cell lines have been shown with genetic
contamination of HeLa cells7,8. Hence, their applications in NPC
studies are limited. The scarcity of in vivo and in vitro NPC
models represents major challenges for NPC and EBV research.

In this study, we report the successful establishment and
comprehensive characterization of four new NPC PDXs (all EBV
+ve) and three NPC cell lines (one EBV+ve; two EBV–ve). These
newly established EBV+ NPC PDXs and cell lines significantly
recapitulate the mutation profiles of their original NPC tumors,
and harbor common genetic alterations reported in NPC, which
supports their potential applications in the investigations of NPC
pathogenesis. The newly established NPC PDXs can be propa-
gated subcutaneously in NOD/SCID (non-obese diabetic/severe
combined immunodeficiency) mice. Lytic EBV reactivation may
be an intrinsic barrier to the successful establishment of EBV+ve
NPC PDXs and cell lines. Inclusion of Y-27632, an inhibitor of
Rho-associated coiled-coil containing kinases (ROCK), facilitated
the establishment of a new EBV+ve NPC cell line, NPC43.
NPC43 cells exhibited tumorigenicity in immunodeficient mice,
and could be induced to undergo EBV lytic reactivation with
production of infectious virions.

The establishment and characterization of new NPC PDXs and
cell lines will provide valuable experimental tools for NPC and
EBV research. Our experience in the establishment of these PDXs
and cell lines will also facilitate future attempts to generate rele-
vant and representative NPC models for investigations.

Results
Establishment of PDXs in immunodeficient mice. In this study,
attempts to establish NPC PDXs were initiated using 58 NPC
patient samples, including 41 primary biopsies and 17 naso-
pharyngectomized recurrent tumors. Subrenal implantation of
NPC specimens was performed in NOD/SCID mice, and exam-
ined for growth after 4 to 6 months. Five NPC xenografts
exhibited signs of growth, including Xeno23, 32, 43, 47 and 76
(Fig. 1a). Four of these xenografts (Xeno23, 32, 47 and 76)
exhibited subcutaneous growth in NOD/SCID mice, and could be
transplanted and propagated accordingly (Fig. 1b). Multiple
transfers of NPC xenografts to new mice were usually required
before robust growth of the transplanted xenografts
could be observed. In the case of Xeno23, stable growth
of transplanted PDX was only observed after the seventh transfer
in mice (Supplementary Fig. 1a). Unfortunately, very limited
growth of Xeno43 was observed after transfer to new mice,
which was eventually lost after the fifth transfer (Supplementary
Fig. 1b).

The detailed clinical information of NPC samples with
successful establishment of PDXs is shown in Table 1. Xeno32
and 76 were derived from NPC primary biopsies, while Xeno23,
43 and 47 were from surgically resected recurrent NPC. Notably,
all recurrent NPC cases, including cases 23, 43 and 47, are free
from regional lymph node and distant metastases, indicating they
are developed from a primary NPC. A higher take rate was
observed from surgically resected recurrent NPC tissues (3/17
cases; 17.6%) compared to primary biopsies (2/41 cases; 4.9%).
Despite the failure in maintaining Xeno43, we established a new
EBV+ve NPC cell line, NPC43, in vitro directly from patient
NPC tissue. The details of establishment and characterization of
NPC43 will be described in the later section of this report.

The origins of all the newly established NPC PDXs from
patients were confirmed by short tandem repeat (STR) profile
analysis. Besides, their STR profiles were distinct from the
currently available NPC PDXs which have been passaged for a
long time (Supplementary Table 1).

The epithelial origin and presence of EBV infection in these
newly established PDXs were confirmed by immunohistochem-
ical staining using pan-keratin antibodies (AE1 and AE3) and
EBER (EBV-encoded RNA) in situ hybridization (ISH), respec-
tively (Fig. 1c). All the established PDXs, including Xeno43,
showed positive keratin and EBER expression. The epithelial
nature of the four established NPC PDXs was further confirmed
by the presence of desmosomes by transmission electron
microscopy examination (Fig. 1d).

Lytic EBV reactivation in PDXs. For unclear reasons, the overall
success rate of establishment of transplantable and maintainable
NPC PDXs in this study was low (4/58 cases; 6.9%), compared to
that from other head and neck cancers9. We examined some
clinical properties of NPC which might affect the establishment,
including clinical status and outcome of patients (Table 1 and
Supplementary Table 2). However, no significant correlation
between success rate and these clinical factors was observed. We
further examined the tumor contents in tissues and the plasma
EBV copy number in patients in the available cases and still found
no clear correlation with the success rate of PDX establishment
(Supplementary Table 3).

We next performed RNA-ISH by RNAscope® analysis platform
to examine the messenger RNA (mRNA) expressions of key EBV
lytic genes in the newly established PDXs (Fig. 2a). Expression of
BZLF1, BRLF1, BMRF1 and BLLF1 was indicated by clusters of
hybridization signals in the newly established PDXs. However,
hybridization signals of lytic transcripts were not observed in
long-term passaged C15, or NPC specimens (NPC1 and NPC2)
from patients. Higher expression of lytic EBV genes in the newly
established PDXs (Xeno23, 32, 47 and 76) was also revealed by
real-time PCR when compared with that in long-term passaged
PDXs (C15, C17, X666 and X2117) (Fig. 2b). Furthermore, lytic
EBV genes also exhibited higher expression in the earlier passages
of PDXs (Xeno32, 47 and 76) as compared to that in their
respective later passages (Supplementary Fig. 2). Apparently,
there is a selection for latently EBV-infected NPC populations
during their propagation in mice. These observations support our
hypothesis that lytic reactivation of EBV in NPC tumors
transplanted to immunodeficient mice may lead to low success
rate of PDX establishment.

Establishment of a new EBV+ve NPC cell line. We also
attempted to establish NPC cell lines from patient NPC speci-
mens. No success in cell line establishment was achieved from the
initial 13 attempts using RPMI-1640 medium supplemented with
10% fetal bovine serum (FBS). Epithelial outgrowths were
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observed in 4 cases, but none of them could be expanded as
continuous culture. We postulated that lytic EBV reactivation
might be a barrier for successful establishment of cell line. ROCK
inhibitor Y-27632 has been reported with suppressive functions
in the differentiation of squamous epithelial cells and promotes
the establishment of continuous cell lines from multiple types of

human tumors10. Recent evidence also demonstrated its effects in
suppressing tetradecanoyl phorbol acetate (TPA)-induced EBV
lytic replication11. We then examined whether Y-27632 could
facilitate NPC cell line establishment. We observed a comparable
rate of epithelial outgrowth from NPC explants in Y-27632-
containing culture medium (11 out of 33 cases); however, 3 of

Xeno23 (T7)

Day 0Day 0Day 0Day 0Day 0

Xeno32 (T2) Xeno43 (T0) Xeno47 (T1) Xeno76 (T0)

Day 138 Day 91 Day 122 Day 126 Day 176

a

Xeno23 Xeno32 Xeno47 Xeno76b
Day 118 Day 111 Day 55 Day 107

Xeno23 Xeno32 Xeno43 Xeno47 Xeno76c

H&E

EBER

Cytokeratin
AE1/AE3

Xeno23 Xeno32 Xeno47 Xeno76d

Fig. 1 Establishment of NPC PDXs in immunodeficient mice. a Upper panels: Establishment of NPC PDXs (Xeno23, 32, 43, 47 and 76) was achieved by
implantation of patient NPC tissues (white arrows) under kidney capsules in NOD/SCID mice. Lower panels: Growth of PDXs observed in the same mice at
138, 91, 122, 126 and 176 days respectively after implantation. b The growth of NPC PDXs (Xeno23, 32, 47 and 76) was observed in NOD/SCID mice at 118,
111, 55 and 107 days after subcutaneous implantation. c H&E, immunohistochemical staining of cytokeratin AE1/AE3 and EBER ISH were performed in
consecutive sections of all five NPC PDXs. The results of H&E staining confirmed that the PDXs were undifferentiated NPC. The epithelial nature of these
PDXs and the presence of EBV were confirmed by the expression of keratin and EBER, respectively. Scale bar, 100 μm. d The presence of desmosomes and
different abundance of tonofilaments in four PDXs (Xeno23, 32, 47 and 76) as revealed by transmission electron microscopy, confirming the epithelial
origin of the tumor cells. Scale bars: 1 μm (yellow); 200 nm (blue)
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these cases (NPC38, 43 and 53) could be expanded and propa-
gated. Real-time PCR confirmed the presence of EBV in NPC43
but not in NPC38 (0 copy of EBV in PD 71) and 53 (0 copy of
EBV in PD 33).

The detailed clinical information of patients 38, 43 and 53 is
included in Table 1. All three NPC cell lines were established
from nasopharyngectomized recurrent NPC tissues. Patient
specimen of NPC38 shows histological features of squamous cell
carcinoma, and no EBV infection by EBER staining (Supplemen-
tary Fig. 3a). Hence, NPC38 may represent an independent
primary squamous cell carcinoma induced by radiotherapy at the
recurrent site of NPC. The patient specimens of NPC43 and
NPC53 were EBER-positive (Fig. 3a and Supplementary Fig. 3b).
Intriguingly, low average EBV copy number (0.001098 ± 0.000225
EBV copy per cell) was detected in the first passage of NPC53.
Given the EBER positivity in patient NPC specimen as well as the
presence of EBV in NPC53 cell line at early passage, NPC53 cell
line probably represents an NPC cell line which lost its EBV
episomes during establishment in culture. Notably, a long period
of time (>500 days) was required for NPC53 to reach confluency
before the first subculture (Supplementary Fig. 3c). During this
long period of culturing time, EBV–ve NPC53 cells may outgrow
EBV+ve NPC53 cells and become the dominant cell type in
culture. STR profiles of NPC38, 43 and 53 compared with their
corresponding patients’ blood DNA confirmed their origins
(Supplementary Table 1).

The procedures and experiences for establishment of the new
EBV+ve NPC43 cell line are described in detail here. Epithelial
outgrowths from multiple NPC43 explants were observed within
1 week in the primary culture (Fig. 3b). Only in the presence of Y-
27632 (4 μΜ), the outgrowths continued to expand, and could be
subcultured after 54 days (Fig. 3c). The splitting ratio of NPC43

was kept low at 1:2 for early passages. After 22 population
doublings (PDs), a higher split ratio (1:4) was used. The NPC43
cells have been subcultured over 100 times, achieving total PDs of
over 200 without any signs of senescence (Fig. 3c). The mean PD
time of NPC43 was estimated to be 8, 4 and 2.5 days at PD 22, 90
and 200, respectively, by the growth curve. An independent
proliferation assay based on thymidine incorporation also
confirmed an increased proliferation rate of NPC43 at later
passages (Supplementary Fig. 4).

NPC43 cells at different passages (PD 2, 17 and 108)
were authenticated by comparing the STR profiles with the
profile of patient blood DNA (Supplementary Table 1). The
epithelial origin of NPC43 cells was confirmed by the expression
of cytokeratin (Fig. 3d). EBV genomes in NPC43 were identified
by fluorescent ISH (FISH) analysis using EBV-specific DNA
probes (Fig. 3e). EBV latent and lytic gene expression in NPC43
at PD 132, including EBNA1, EBER1/2, LMP1, BZLF1 and BRLF1,
was examined by real-time PCR (Fig. 3f). Tumorigenicity of
NPC43 was demonstrated in NOD/SCID mice 3 months after
subcutaneous injection of 107 cells (Fig. 3g). Histological
examination of the tumor developed from NPC43 cells confirmed
its undifferentiated features with the presence of EBV by
hematoxylin and eosin (H&E) and EBER staining (Fig. 3g).

Spectral karyotyping of NPC43 revealed a near-diploid
karyotype with extensive chromosomal abnormalities, including
loss of chromosomes 3, 8, 13, 14, 16, 21, 22, Y and gain of
chromosome 19 (Fig. 3h). Chromosome losses of 3p, 13q, 14q
and 16q have been reported and shown with functional
significance in NPC carcinogenesis in earlier studies12–15.

Most if not all the reported NPC cell lines except C666-14 and
C1716 eventually lost their EBV episomes during in vitro
culture5,6. We next examined whether NPC43 could retain EBV

Table 1 Clinical data of donor patients

Clinical status

Case
no.

Sex Age Histological
diagnosisa

T N M Overall
staging

Sample typeb Tumor
recurrence

Tumor
metastasis

History of
chemotherapyc

History of
RT
treatment

23d M 65 Non-keratinizing
carcinoma

2 0 0 II Nasopharyngectomized
tissue

Yes No No 2D-RT (66
Gy in 33
fractions)

32 F 72 Undifferentiated
carcinoma

3 2 0 III Primary biopsy No No ChemoRT then
adjuvant
chemotherapy

IMRT (70
Gy in 33
fractions)

38d F 63 Moderately
differentiated
squamous cell
carcinoma

2 0 0 II Nasopharyngectomized
tissue

Yes No No 2D-RT (66
Gy in 33
fractions)

43d M 64 Poorly differentiated
carcinoma

3 0 0 III Nasopharyngectomized
tissue

Yes Yes ChemoRT then
adjuvant
chemotherapy

2D-RT (66
Gy in 33
fractions)

47d F 52 Undifferentiated
carcinoma

3 0 0 III Nasopharyngectomized
tissue

Yes No ChemoRT alone IMRT (70
Gy in 35
fractions)

53d M 39 Undifferentiated
carcinoma

4 1 0 IVA Nasopharyngectomized
tissue

Yes No ChemoRT alone IMRT (70
Gy in 35
fractions)

76 F 57 Undifferentiated
carcinoma

1 0 0 I Primary biopsy Yes No No IMRT (66
Gy in 33
fractions)

aHistopathological properties of the NPC from which PDXs and cell lines were successfully established (from the original report from pathologists in Queen Mary Hospital)
bPatients with newly diagnosed NPC received either curative RT or ChemoRT with or without adjuvant chemotherapy at the time of diagnosis. When NPC recurred, patients received nasopharyngectomy.
Therefore, primary biopsy was obtained before any treatment, while nasopharyngectomized tissue was recurrent tumor and collected after treatment
cPatients who had ChemoRT received cisplatin 100mgm−2 every 3 weeks for 3 cycles. For those who received adjuvant chemotherapy after ChemoRT, they received cisplatin 80mgm−2 and 5-FU
1000mgm−2 every 4 weeks for 3 more cycles
dPatients who did not survive by 30 June 2018
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episomes during its propagation. Average EBV copy number of
NPC43 was examined at different passages by real-time PCR. A
gradual decrease of average EBV copy number of NPC43 was
observed during propagation at early passages (from 100 copies at
PD 5 to 34 copies at PD 22). It became relatively stable after PD
26, with 15–20 copies per cell, and eventually stabilized as ~10
copies per cell after PD 100 (Fig. 4a). FISH analysis also
confirmed the dynamic profile of EBV copy numbers in NPC43
cells at early and late subcultures (Supplementary Fig. 5).

ROCK inhibitor suppressed lytic reactivation of EBV in
NPC43. To determine the involvement of ROCK inhibitor (Y-
27632) in the suppression of lytic EBV reactivation in NPC43,
EBV copy number in NPC43 at early passage (PD 10) culturing in
different concentrations of Y-27632 was examined (Fig. 4b).
Upon removal of Y-27632, average EBV copy number increased
to 417 ± 9 per cell, which was around 4 times in NPC43 cells
cultured with 4 μM Y-27632. Decreased average EBV copy
numbers were also observed in NPC43 treated with higher
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Fig. 2 Expression of lytic EBV genes in NPC PDXs. a The expression of BZLF1, BRLF1, BMRF1 and BLLF1 transcripts was determined by RNAscope® in situ
hybridization. Positive signals are shown as brown dots. Clusters of hybridization signals over NPC cells were interpreted as cells undergoing active lytic
EBV infection. Abundant expression of lytic EBV genes was found in all newly established PDXs, but not in C15 or human NPC specimens (NPC1 and
NPC2). Scale bar, 100 μm. b Expression of EBV lytic genes in four long-term passaged and four newly established NPC PDXs (Xeno23, 32, 47 and 76)
quantified by real-time PCR. The newly established PDXs exhibited higher levels of lytic gene expression. Data are shown as mean ± SD from three
independent experiments
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concentrations (10 and 20 μM) of Y-27632. We hypothesized that
the higher EBV copy number detected in Y-27632-free medium
was contributed by lytic EBV reactivation in a subpopulation of
NPC43 cells. We next examined the expression of lytic EBV
proteins (Rta, Zta, BALF5, EA-D and Gp350/220) by western
blotting in NPC43 cells cultured in the presence or absence of Y-
27632 (Fig. 4c). Expression levels of lytic EBV proteins in NPC43
cells diminished with increasing concentrations of Y-27632 and
were completely suppressed by Y-27632 at 20 μM. The percen-
tages of NPC43 cells expressing EBV lytic proteins with the
treatment of different concentrations of Y-27632 were also
examined by immunofluorescence (IF) staining (Fig. 4d).

Expression of Zta protein was detected in 9.56% of NPC43 cells
upon withdrawal of Y-27632. The percentage of Zta-expressing
NPC43 cells decreased in a dose-dependent manner with
increasing concentrations of Y-27632 (2.1%, 0.6% and 0% at 4, 10
and 20 μM of Y-27632, respectively). Similar expression trends of
two other lytic EBV proteins (EA-D and BALF2) were also
observed. Hence, our results confirmed that Y-27632 effectively
suppressed lytic EBV reactivation in culturing NPC43 cells at
early passages. NPC43 at late passage (PD 280) showed less
sensitivity to the EBV lytic induction by removal of Y-27632
(Supplementary Fig. 6), indicating that NPC43 at its later passage
became less dependent on Y-27632. These results also support
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our hypothesis that lytic EBV reactivation in NPC cells interferes
with the establishment of EBV+ve NPC cells in vitro.

Lytic reactivation of NPC43 produces infectious EBV virions.
We next examined whether NPC43 cells would show respon-
siveness to EBV lytic induction by TPA treatment. The expression
of lytic EBV proteins, including Rta, Zta and EA-D, could be
detected in NPC43 (PD 102) after treatment with TPA for 48 h
(Fig. 5a). To evaluate the proportion of cells that were responsive
to TPA-mediated EBV lytic induction, IF staining using anti-
bodies against Zta, EA-D and BALF2 was performed. The results
indicated that a small percentage (1 to 2%) of NPC43 cells at PD
68 could be induced to undergo EBV lytic reactivation upon TPA
treatment (Supplementary Fig. 7). We also examined whether
infectious virions could be produced by NPC43 cells upon EBV
lytic induction using the procedures illustrated in Fig. 5b. Briefly,
the supernatant from NPC43 cells induced to EBV lytic replica-
tion was harvested for co-culture with EBV–ve Akata cells and
human primary B cells. As shown in Fig. 5c, infection of NPC43-
EBV in Akata cells could be verified by EBV DNA FISH. Besides,
expressions of EBV latent and lytic genes were characterized in
NPC43-EBV-infected Akata cells. The supernatant collected from
lytic-induced HONE1-EBV cells was used as the positive control
to infect EBV–ve Akata cells. Since the EBV virions produced by
HONE1-EBV cells were green fluorescent protein (GFP)-tagged,
the infected Akata cells became GFP-positive, which suggested
the feasibility of this method. Comparable levels of lytic and latent
EBV gene expression were detected in Akata cells infected by
supernatants harvested from NPC43 and control HONE1-EBV
cells induced to undergo lytic EBV infection (Fig. 5d). Further-
more, the supernatant harvested from NPC43 was also used to
infect human primary B cells. Although at low rate, B transfor-
mation by NPC43-EBV infection could be detected, which further
demonstrated the capacity of infectious virion production of
NPC43 cells upon lytic induction (Fig. 5e). The EBV copy
number in transformed B cells was determined by real-time PCR
as 7.22 × 104 copies per ng DNA. By single-cell sorting, several
EBV+ve Akata clones were generated. As illustrated in Supple-
mentary Fig. 8, two representative EBV+ve Akata clones both
showed decreased EBV copy number after single-cell sorting,
suggesting NPC43-EBV infection in Akata cells might not confer
growth advantage in vitro.

Genetic landscapes of newly established NPC tumor lines.
Mutational profiles of PDXs (Xeno23, 32, 47) and cell line

(NPC43) was compared with their corresponding patient tumor
DNA by whole-exome sequencing (WES) analysis.

A total of 269 non-silent somatic mutations, including
missense, stopgain, splicing, insertions and deletions (INDELs),
in 261 genes were identified in four pairs of patient NPC and their
derived PDXs/cell line (Fig. 6a). The overlap of mutations
between NPC PDXs/cell line and their corresponding patient
NPC tumors was 82% in Xeno23, 81% in Xeno32, 64% in
Xeno47, and 94% in NPC43 cell line (Fig. 6b).

Four cancer-relevant genes, NRAS, TP53, EP300 and SMG1,
showed recurrent mutations in these PDXs/cell line by WES data
analysis. Recurrent somatic hotspot mutations of NRAS were
identified (Gln61Lys in Xeno23; Gln61Arg in Xeno32), leading to
the activated forms of NRAS. These missense mutations have
been reported in multiple types of human malignancies, including
melanoma, colorectal, lung and thyroid tumors17,18. Sanger
sequencing verified the NRAS mutations (Supplementary Fig. 9).
WES also revealed somatic mutations of TP53 in Xeno32 and
NPC43 (Gly245Asp in Xeno32; Trp53* in NPC43), which were
further verified by Sanger sequencing (Supplementary Fig. 10).
Recurrent mutations of TP53 in NPC have been previously
reported19,20. EP300 mutations were recurrently found in Xeno32
and NPC43. As one of the chromatin modifiers, inactivating
mutations in EP300 have been implicated in many human cancer
types21. SMG1 gene was mutated in both Xeno23 and 47. Sanger
sequencing in Xeno23 verified the mutation (Supplementary
Fig. 11). According to a recent report, SMG1 can suppress CDK2
and, thereby, regulate tumor growth through cell cycle regulatory
pathways of p53 and cdc25A22.

Whole-genome sequencing (WGS) analysis was performed in
the established NPC PDXs and cell lines to further examine
somatic mutations, including single-nucleotide variants (SNVs),
INDELs, structural variants (SVs) and copy number variants
(CNVs) (Supplementary Data 1–3). The Circos plots show the
genomic features of each EBV+ve PDX and cell line (Fig. 7a;
Supplementary Figs. 12–16).

As illustrated in Fig. 7b and Supplementary Data 3, copy
number analysis revealed consistent chromosomal deletion in the
regions of chromosomes 3p, 14q and 16q in all the EBV+ve NPC
PDXs and NPC43 cell line. In addition, frequent loss of
chromosomes 5q and 9p and gain of chromosome 1q were
detected in 4 out of 5 cases. Multiple amplicons including 9p24,
11q13, 12p12-ter, 15q11-14 and 16p13 were also detected in these
lines. Hence, the chromosomal aberration profiles of the newly
established NPC PDXs and NPC43 cell line were consistent with
those reported in patient NPC12,20. As illustrated in Fig. 8a, the
common somatic alterations targeting the cell cycle regulation in

Fig. 3 Establishment and characterization of NPC43 cell line. a Histological examination of NPC tissue from patient 43. Although a low tumor content
identified, H&E and EBER ISH staining showed the presence of undifferentiated and EBV+ve cancer cells in the tissue. Scale bars, 100 μm. b The phase-
contrast micrograph shows the outgrowth of epithelial cells from the explanted NPC tissues from patient 43 at Day 7. Scale bars, 200 μm. c Growth curve
of NPC43 cell line. The growth of NPC43 cells from the NPC explants was slow in the beginning and took about 50 days to become confluent for the first
two passages (1:2 splitting ratio). After PD 22, the NPC43 cells could be passaged at a 1:4 splitting ratio. The mean doubling time of NPC43 cells was about
8, 4 and 2.5 days at PD 22, 90 and 200, respectively. d NPC43 cells were stained for the expression of cytokeratin AE1/AE3 (green). The nuclei were
revealed by Hoechst stain (blue). The epithelial nature of NPC43 was confirmed by the positive staining of pan-cytokeratin in cells using specific
antibodies. Scale bar, 20 μm. e Images of EBV FISH revealing the presence of EBV in NPC43 as punctate red dots. Scale bar, 20 μm. f Expression of EBV
genes was detected in NPC43 by real-time PCR. C666-1 was used as positive control. Data are shown as mean ± SD from three independent experiments.
g Left panel: Representative image of NPC43 tumors subcutaneously grown in NOD/SCID mouse. Tumors were harvested for histological examination
96 days after injection of NPC43 cells. Middle panel: H&E staining shows the presence of undifferentiated tumor cells. Right panel: EBER ISH confirmed that
these tumor cells were EBV+ve. Scale bars, 100 μm. h A representative spectral karyotype of a metaphase spread prepared from NPC43 (PD 24). The
karyotype of NPC43 exhibits complex chromosomal abnormalities. Karyotype description: 38,X,-Y,i(1)(q10),-3,-3, der(4)t(4;8)(q21;q?), der(5)t(5;11)
(q35;?)t(11;12)(?;?),i(5)(p10),i(6)(q10),der(7)t(7;20)(q11;?)t(3;20)(q13;?),der(7)t(3;7)(?;q11),-8,del(9)(p11),del(11)(q11), del(11)(p11),der(12)t(3;12)(?;q13),
-13,-14,der(14)t(7;14)(q?;q21),-16,der(17)t(16;17)(q10;q11)t(12;16)(?;?),+19,der(20)t(12;20)(q?;q11)t(3;12)(?;q13),-21,der(21)t(12;21)(p11,p11),-22, der(1;22)
(?;p11) [cp12]

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06889-5 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:4663 | DOI: 10.1038/s41467-018-06889-5 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


NPC are the homozygous deletion of 9p21.3 including the
CDKN2A/CDKN2B loci in three PDXs (Xeno23, 47 and 76) and
amplification of CCND1 on 11q13 in NPC43 cell line. Over-
expression of cyclin D1 has been shown in our previous study to
support stable EBV infection in nasopharyngeal epithelial cells23.
In addition, a unique 9p24 amplicon harboring the JAK2, CD274
(PDL1) and PDCD1LG2 (PDL2) genes was found in Xeno23, and
homozygous deletions of TGFBR2 on 3p24 were found in Xeno47
and NPC43. Their involvement in NPC pathogenesis remains to
be further elucidated.

A total of 508 SVs were detected in the EBV+ve PDXs and cell
line (Supplementary Data 2). The highest frequency of intra- and
inter-chromosomal rearrangements was detected in
NPC43 (Fig. 7a). Abundant SNVs and CNVs were detected in
NPC43 cells suggesting genomic instability in this newly
established NPC cell line. CYLD is a critical negative regulator
of nuclear factor (NF)-κB pathways frequently mutated in
NPC19,20. As shown in Fig. 8a, mutations of CYLD were
commonly detected in EBV+ve NPC PDXs and cell line.
Recurrent SVs of CYLD, including deletion, tandem duplication,
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and inversion, were detected and verified in three of the newly
established NPC PDXs/cell (Xeno23, 47 and NPC43) (Fig. 8a;
Supplementary Fig. 17). Besides, a homozygous nonsense
mutation (Ser371*) of CYLD was found and verified in Xeno76.
In addition to CYLD, inactivation of other negative regulators of
NF-κB pathways, including TRAF3 and BIRC2 (Fig. 8a; Supple-
mentary Fig. 18), were observed in NPC43 and Xeno32 by
homozygous frameshift mutation and translocation, respectively.
These findings implicate that somatic alterations targeting NF-κB
signaling pathway are common in these NPC PDXs and cell line,
which confirms with the frequent somatic mutations of these
negative regulators of NF-κB signaling pathways detected in
clinical NPC tumors20. Intriguingly, as an EBV–ve cell line,
NPC53 harbors somatic mutations in CYLD and TRAF3 as EBV
+ve PDXs and cell lines, which is totally distinct from the genetic
mutation landscape of NPC38. As discussed earlier, NPC53 may
represent an originally EBV-infected NPC cell line which
subsequently lost its EBV episomes upon propagation in culture.
The exclusive mutation profiles of EBV+ve and EBV–ve PDXs
and cell lines may indicate the difference in their driving forces in
carcinogenesis as well as susceptibility and maintenance of EBV
infection.

Besides NF-κB pathway, we also identified missense mutation
of NRAS in Xeno23, 32 and C666-1 as well as a homozygous
missense mutation of PTEN in Xeno47 (Fig. 8a; Supplementary
Fig. 19), which further suggests an aberrantly activated
phosphoinositide-3-kinase (PI3K)/AKT signaling pathway in
EBV+ve NPC PDXs and cell lines. These mutations have been
reported in an earlier NPC genomic study24.

The transcriptome profiles of the newly established NPC PDXs
and cell lines were also examined to explore whether differential
gene expressions could be detected in EBV–ve and EBV+ve
cohorts. A detailed summary of sequencing data and mapping is
included in Supplementary Table 4. By quantification and
comparison of gene expression levels, 1974 differentially
expressed genes were identified between EBV–ve and EBV+ve
cohorts (Supplementary Fig. 20). By gene set enrichment analysis
(GSEA), a significant enrichment in NF-κB and PI3K pathways
was revealed with gene upregulation in EBV+ve cohorts, which is
consistent with the genetic alterations in the regulators of NF-κB
and PI3K pathways identified by WGS (Fig. 8b; Supplementary
Fig. 21a). A panel of NF-κB targets exhibited increased expression
pattern in EBV+ve cohort compared to the EBV–ve counterpart
(Supplementary Fig. 22). Intriguingly, although NPC53 was
identified with genetic mutations in CYLD and TRAF3, which is a
genetic signature for EBV+ve NPC, the transcriptome profile of
NPC53 revealed an inactivated NF-κB signaling and clustered
with HK1 and NPC38. Given the reported NF-κB activating
functions mediated by LMP1 (latent membrane protein 1) and

EBERs, it is postulated that loss of EBV episomes and its encoded
RNAs and protein in NPC53 cells might lead to the decreased
activity of NF-κB pathway25–27. Besides NF-κB and PI3K,
upregulated gene expression in epithelial-mesenchymal transi-
tion, Notch and Wnt signaling pathways in EBV+ve cohorts was
also revealed by GSEA (Supplementary Fig. 21b–d), indicating
enhanced gene expression in these pathways might play
functional roles in NPC carcinogenesis.

In summary, the newly established NPC PDXs and cell lines
harbor common mutations present in the original patient tumors,
and share similar signaling properties to NPC in patients, which
supports their potentials for use in NPC research and preclinical
drug evaluation.

Phylogenetic study of EBV sequences in NPC PDXs/cell lines.
The sequencing reads of WGS mapped to mouse genome (mm10)
and human genome (hg19) were removed and then aligned to the
reference EBV genome (NC_007605). The mapped reads were
used for de novo assembly of EBV genome sequences. Detailed
summaries of sequencing data mapping and assembly are inclu-
ded in Supplementary Tables 5 and 6. The phylogenetic trees of
EBV whole-genome and genes were constructed accordingly. As
shown in Fig. 9, AG876, a type II EBV strain, clearly segregated
from the other type I EBV strains, which is consistent with pre-
vious studies28. The whole-genome sequences of EBV in the
newly established NPC PDXs (Xeno23, 32, 47 and 76) and cell
line (NPC43) clustered with the Asian EBV strains, especially
those sequences from Chinese NPC (M81, C666-1,
HKNPC1-9 and GD2). The sequences of latent EBV genes,
including LMP1 and EBNA1, were subjected to phylogenetic
analysis. The LMP1 and EBNA1 sequences from NPC EBV also
clustered as a distinct category (Supplementary Fig. 23). It
remains to be determined whether the clustering of NPC EBV
strains may reflect an uneven geographical distribution of EBV
strains or whether EBV retained in NPC may possess distinct
biological property contributing to NPC pathogenesis.

Discussion
Limited availability of representative NPC PDXs and cell lines has
hampered both basic and translational research of NPC. The
establishment and detailed characterization of new NPC PDXs,
which recapitulate the mutational profiles as the original NPC in
patients, will serve as useful preclinical NPC models for drug
evaluation and facilitate the development of precision medicine
for NPC treatment.

A distinct difference observed between the well-established
NPC PDXs, which have been passaged for more than 25 years,
and the newly established ones is the expression profile of EBV

Fig. 4 Spontaneous lytic EBV reactivation in NPC43 during cell line establishment. a Changes of average EBV copy number in NPC43 cells during
establishment and propagation determined by real-time PCR. Estimated EBV copy number per cell at PD 5 was about 100. Gradual decrease of EBV copy
number was observed in NPC43 during propagation from PD 5 to 26. EBV copy number became relatively stable from PD 26 to 190 (around 10–20 per
cell). Data are shown as mean ± SD from three independent experiments. b NPC43 at PD 10 was treated with different concentrations of Y-27632 and the
EBV copy number per cell was estimated by real-time PCR. In the absence of Y-27632, the EBV copy number per cell increased to 417 which may be due to
induction of lytic reactivation of EBV in infected NPC43 cells. The copy number was around 100 at the concentrations of 4 and 10 μM. When the
concentration of Y-27632 was increased to 20 μM, the copy number was around 10–20 per cell; *p < 0.05 in a two-tailed t-test. Data are shown as mean ±
SD from three independent experiments. c Expression of EBV lytic proteins in NPC43 (PD 22) cultured under different concentrations of Y-27632.
Expression levels of lytic proteins (Rta, Zta, BALF5, EA-D and Gp350/220) was negatively correlated with the concentration of Y-27632. Expression of β-
actin was the loading control. HONE1-EBV treated with SAHA was included in this western blotting as a positive control for induction of lytic EBV
reactivation. d IF staining results revealing the expression of lytic EBV proteins. The expression of Zta, EA-D and BALF2 was examined in NPC43 cells at
early passages cultured in different concentrations of Y-27632 (top panel). HONE1-EBV treated with TPA and NaBu was included in the IF staining as a
positive control of lytic EBV reactivation (middle panel). Quantification of percentage of positive-stained cells was performed by cell number counting. Data
are shown as mean ± SD from 10 different microscopic views with over 2000 cells included; *p < 0.05 in a two-tailed Z-test. Scale bar, 100 μm
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genes. Lytic EBV genes could be readily detected in the newly
established PDXs compared to the long-term passaged ones. The
long-term passage of NPC xenografts appears to select for latent
EBV-infected NPC populations. Our study suggested that lytic
EBV reactivation in NPC xenografts transplanted to immuno-
deficient mice may be an underlying reason interfering with the
successful establishment of NPC PDXs. Presumably the intact
tumor microenvironment in NPC plays an undefined but
important role to support EBV latency, which is the predominant
mode of EBV infection in NPC. The expression of latent EBV
genes in NPC in patients may further contribute to NPC cell
growth in patients through immune evasion and suppression of
apoptosis14. Various cellular components and cytokines present
in the NPC microenvironment may support latent EBV infec-
tion29. The transfer of NPC tissues to immune-suppressed mice
devoid of human stroma may trigger lytic EBV reactivation.
Hence, the inflammatory NPC stroma may represent an effective
target for NPC treatment by disrupting the latency of EBV
infection in NPC cells into lytic infection, which triggers tumor
cell death and host immune response. In this study, we observed

that a long period was required for the NPC xenografts trans-
planted underneath the kidney capsule before being established as
transplantable PDXs. This may reflect an adaptation of EBV-
infected NPC cells in the xenografts to growth conditions in
immunodeficient animals, and a selection of cells with less
dependency on the NPC stroma. While latent EBV infection in
NPC is the predominant mode, a low level of lytic EBV expres-
sion is nonetheless observed in small fractions of NPC cells in
patient tumors30. The significance of expression of lytic genes in
NPC is unclear but has been postulated to be involved in immune
evasion31. An intricate balance of latent and lytic EBV gene
expression may be involved in the maintenance of EBV in NPC
cells and the survival of NPC cells.

The successful establishment of the EBV+ve NPC43 cell line
from patient specimen by including ROCK inhibitor (Y-27632) in
culture supports the hypothesis that suppression of lytic reacti-
vation of EBV in NPC cells is crucial for EBV+ve cell line
establishment, at least in culture condition. Recently, we have also
established another EBV+ve cell line from C17 NPC xenograft
using a similar approach16. C666-1 established from NPC
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xenograft (X666) has been used extensively in investigations4.
The C666-1, however, is defective in undergoing productive lytic
EBV infection upon treatment with TPA and NaBu, or ectopic
overexpression of BZLF1 gene. The underlying reasons are
unclear but may involve epigenetic regulation and mutation of
genes involved in lytic reactivation of EBV in C666-1 cells32.
Establishment of new and representative EBV+ve NPC cell lines
is eminently required for NPC and EBV studies. The capacity of

NPC43 to undergo lytic reactivation of EBV and produce infec-
tious EBV virions further makes it particularly useful for inves-
tigations of regulation of lytic and latent EBV infection in NPC.
The detailed mechanisms of how Y-27632 suppresses EBV lytic
reactivation in NPC43 require further investigations. Suppression
of differentiation by Y-27632 may be essential for the establish-
ment of EBV latency in NPC cells11. The hypothesis regarding the
requirement of undifferentiated status in epithelial cells to
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establish EBV latency is also supported by the universal presence
of EBV infection in the undifferentiated type of NPC prevalent in
endemic areas including southern China, but absence in squa-
mous carcinoma of head and neck cancer outside the naso-
pharynx in the same locality. Expression of latent EBV genes,
notably LMP1 and BART-microRNAs, has been postulated to
support the growth of EBV-infected NPC cells33. Hence, mod-
ulating the differentiation and cell signaling properties in EBV-
infected NPC to disrupt EBV latency may be of therapeutic
potentials for NPC treatment34. In addition to the establishment
of EBV+ve NPC cell line, NPC43, we have also established two
EBV–ve NPC cell lines, NPC53 and NPC38, as the new cell line
resources for NPC and EBV research. Both NPC38 and 53 will
serve as useful EBV–ve NPC cell models in basic and preclinical
studies in NPC.

Significant similarities of mutation profiles were revealed
between PDX/cell line and patient NPC by WES data analysis.
However, unique mutations were also identified in either PDX/
cell line or patient tissue, which might be contributed by intra-
tumor heterogeneity. Besides, the continuous selective pressure
during PDX and cell line establishment could also be deposed for
the dominant growth of some specific subpopulation of NPC
cells. Distinct mutation profiles between EBV+ve and EBV–ve
NPC characterized by WGS may provide hints to further study
the requirements for stable EBV latent infection in epithelial cells,
as well as its contribution to NPC carcinogenesis. Transcriptome
analysis between EBV+ve and EBV–ve PDXs/cells suggest dif-
ferential gene expression patterns in multiple signaling pathways.
It remains to be determined whether the variation of these
aberrant pathways is due to EBV infection, or a critical factor
contributing to the latency and persistence of EBV in epithelial
cells. Notably, the inactivated NF-κB signaling in NPC53 cells by
transcriptome characterization suggests the important roles of
EBV infection and its encoded genes in driving NF-κB signaling,
and indicates that mutations in TRAF3 and CYLD could be
essential but not sufficient for the induction of potent NF-κB
signals in NPC cells.

In summary, the full characterization of new NPC PDXs and
cell lines will provide valuable resources for NPC and EBV
research. The experience and knowledge gained from this study
will also contribute to the future success in the establishment of
more representative NPC models, which are important for
understanding the properties of NPC and the roles of EBV in
NPC pathogenesis.

Methods
NPC specimens. NPC biopsies and nasopharyngectomized tissues used in this
study were from patients admitted to Queen Mary Hospital, the University of
Hong Kong, Hong Kong. The collection and use of these NPC specimens for this
experimental study were approved by the Institutional Review Board of the Uni-
versity of Hong Kong, and the patients’ consents were obtained. Tissues collected
from patients were immediately immersed in M199 medium (Sigma-Aldrich) to
maximize the viability of cells. Generally, the sample was washed and processed
into 1 mm3 pieces in biosafety cabinet for surgical implantation in mice for PDX

establishment and/or explantation to primary culture for cell line establishment.
Extra sample if available was fixed and subjected to histological examination.

Surgical implantation to establish PDXs. All animal care and experimental
procedures were approved by the Committee on the Use of Live Animals in
Teaching and Research, the University of Hong Kong. For implantation to subrenal
capsule sites of NOD/SCID mice, the following surgical procedures were per-
formed. A small skin incision was made along the dorsal midline of an anesthetized
mouse. The kidney was then slipped out of the body cavity. A 2-mm incision was
made in the kidney capsule. The open edge of the renal capsule was lifted and 2–3
pieces of NPC tissues (1 mm3) were carefully inserted into the subcapsular space.
The kidney was gently inserted back into the body cavity. The body wall and skin
were closed by sutures. For subcutaneous implantation, a skin incision was
introduced dorsally at the franks of the mice to insert the explanted xenograft.

Establishment of cell lines from NPC. Small pieces of tumors (<1 mm3 in size)
were explanted onto culture flasks with 2 ml of RPMI-1640 medium (Sigma-
Aldrich) containing 10% FBS (Gibco), 100 Uml−1 penicillin, 100 μg ml−1 strep-
tomycin and 4 μM Y-27632 (Enzo Life Sciences). The explant culture was main-
tained at 37 °C with 5% CO2 in humidified air. After 3 days, 1 ml medium was
added to the culture to avoid drying up of tumor tissues. Outgrowth of fibroblasts
from explants was carefully removed using fire-polished ends of glass pipettes
under an inverted microscope (Olympus). This process was carried out routinely
(once or twice a week), depending on the growth rate of fibroblasts. Epithelial
outgrowth migrating out from the explanted tumor tissues were scraped free of
fibroblasts at the growth edge, and allowed to grow to near confluence in the
culture flask before subculture. The epithelial cells were gently trypsinized to dis-
sociate cells from the culture flask. For the first subculture, the dissociated cells
were re-seeded onto the original culture flasks. Subculture was performed again to
a new culture flask when the culture became confluent. Proliferation of cells was
determined by direct cell counting and by 3H-thymidine incorporation35.

A detailed description on the establishment of NPC43 has been included in the
Results section. The presence of Y-27632 is essential for the expansion of epithelial
outgrowths and continuous growth of cells from the NPC explant. Abrupt
withdrawal of Y-27632 in NPC43 at early passages induced massive cell death. To
examine effect of different concentrations of Y-27632 on the EBV gene expression
of NPC43 cells at early passages, a stepwise strategy was used to decrease the
concentration of Y-27632 in the culture medium. Briefly, NPC43 at PD 10 was
maintained in medium containing 4 μM Y-27632 in the first week after subculture.
Then, in the second week, the concentration of Y-27632 was reduced to 2 μM, and
further to 1 μM in the third week. At the fourth week, the cells were eventually
maintained in the medium without Y-27632 and harvested for the following
experiments before they reached confluency. For the treatment of NPC43 cells with
higher Y-27632 concentrations (10 μM and 20 μM), generally, the cells were
maintained at the respective concentrations for 4 weeks. Establishment of cells
using higher Y-27632 concentrations was not preferred as the fibroblasts would
also have a higher chance to be immortalized, which may dominate the culture.
The tumorigenicity of NPC43 cells was confirmed by subcutaneous injection in
NOD/SCID mice. Around 10 million cells in 100 μl medium were mixed with an
equal volume of Matrigel (BD Biosciences) and injected subcutaneously into the
flanks of NOD/SCID mouse.

Cell culture. EBV–ve Akata, Namalwa, C666-1, HONE1-EBV and HK1 cells were
maintained in RPMI-1640 medium supplemented with 10% FBS, 100 Uml−1

penicillin and 100 μg ml−1 streptomycin. C17 was maintained in the culture
medium as above with additional supplemented Y-27632 at 4 μM. NP69 was
maintained in Keratinocyte-SFM supplemented with human recombinant epi-
dermal growth factor 1-53 and bovine pituitary extract (ThermoFisher Scientific).
Briefly, Namalwa is a human lymphoblastoid cell line with 2 EBV genome copies
integrated into the host genome36. EBV–ve Akata and Namalwa cell lines were
kindly provided by Professor Kenzo Takada (Hokkaido University, Japan). The
HONE1-EBV, C17 and NP69 cells were established in our laboratory16,37,38. C666-
1 and HK1 cell lines were kindly provided by Professor Dolly Huang (Chinese

Fig. 6 Somatic mutations in PDXs/cell line and their corresponding NPC tumors. aMutation profiles of Xeno23, 32, 47 and NPC43 and their corresponding
patient tumors. Somatic mutations, including stopgain (red box), splicing (orange box), frameshift INDEL (yellow box), missense (green box) and non-
frameshift INDEL (blue box), were identified by WES analysis and plotted. For each mutation plot, the left column represents mutations in patient tumor,
while the right column represents those identified in each newly established PDX or cell line. The mutated gene names are labeled at the left side of each
mutation plot. The shared mutations between PDX/cell line and its corresponding patient tumor are labeled in red, while the uniquely mutated gene names
in either PDX/cell line or its corresponding patient tumor are labeled in black. b Bar chart illustrating the percentage of gene mutations identified in each
NPC case. Gray bars indicate the shared somatic gene mutations between PDX/cell line and its corresponding patient tumor; dark gray bars reveal the
unique gene mutation(s) identified in NPC patient tumor; black bars indicate the unique gene mutations found only in the newly established PDX/cell line.
The numbers with brackets labeled in each bar represent the number of mutations identified for each case. The overlap of mutations between NPC PDXs/
cell line and their corresponding patient NPC tumors was 82% in Xeno23, 81% in Xeno32, 64% in Xeno47, and 94% in NPC43 cell line
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Fig. 7 Genetic landscape of newly established NPC tumor lines. a Circos plot showing genomic aberrations in NPC43 by WGS. Illustrations in order from
inner to outer rings: (1) structural variants (orange, inter-chromosomal rearrangement; blue, intra-chromosomal rearrangement), (2) copy number
alterations (green, copy number loss; red, copy number gain; range: −2 to +4), (3) non-synonymous single-nucleotide variants or small indels (purple,
missense; black, splicing; orange, nonsense; red, frameshift; green, inframe indel; brown, others) with allele frequency indicated by the size of each dot (0,
20, 40, 60, 80, 100% or more), (4) density of SNVs/small indels (0, 20, 40, 60, 80, 100, 120, 140, 160 per Mbps or more), (5) chromosome scale at 1
Mbps (shades of gray, cytobands; red, centromere). High-resolution plot is illustrated in Supplementary Fig. 14. b Whole-genome profiles of chromosome
copy number alterations in NPC PDXs/cell line. Overall normalized coverage across genome is shown on vertical axis
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University of Hong Kong)4,39. The cells were maintained at 37 °C with 5% CO2 in
humidified air.

DNA extraction. DNA from PDXs and cell lines was extracted using DNeasy®

Blood&Tissue Kit (Qiagen) in accordance with the protocol recommended by the
manufacturer. The purity and concentration of the extracted DNA were deter-
mined by NanoDrop2000 (ThermoFisher Scientific).

Quantification of EBV copy number. PCR amplification was carried out on MyiQ2
Two Color Real-Time PCR machine (BioRad). The primers and probes for EBNA1
and β-globin were designed using the Universal Probe Library System (Roche Applied
Science) (Supplementary Table 7). In each PCR reaction, the reaction mixture
includes 5 μl DNA (10 ng μl−1), 0.4 μl forward primer (10 μM), 0.4 μl reverse primer
(10 μM), 10 μl LightCycler probe master mix, 4.05 μl PCR-graded water and 0.15 μl
specific Universal Library probe. The reaction was initiated by pre-incubation at 95 °C
for 10min. Forty cycles of amplification were carried out by DNA denaturation at 95 °
C for 10 s, annealing and elongation at 60 °C for 30 s. PCR was performed on serial
dilutions of Namalwa DNA (harboring two EBV per genome) to generate two
individual calibration curves for EBNA1 and β-globin40,41. The average EBV copy
number per cell was calculated according to the standard calibration curves prepared
from Namalwa DNA.

RNA extraction and quantification of EBV gene expression. Extraction of total
RNA and reverse transcription to cDNA were performed using TRIzol® reagent
(Invitrogen) and SuperScript® First-Strand Synthesis System for RT-PCR (Invi-
trogen), respectively, according to the manufacturer’s protocols42. Expression levels
of EBV transcripts were examined by real-time PCR. The primers and probes for
different genes were designed using Universal Probe Library System as listed in
Supplementary Table 7. The expression levels of EBV genes were normalized to
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GAPDH and the relative expression levels of genes of interest were determined by
the 2-ΔΔCt method.

EBV FISH. Harvested cells were treated with 2 ml 0.8% sodium citrate for 15 min at
37 °C, 20 µl 1:3 acetic acid/methanol (fixative solution) for 5 min at 37 °C and
centrifuged at 115 × g for 5 min at room temperature (RT). After removing
supernatant, 5 ml fixative solution was added, followed by centrifugation at 115 × g
for 5 min, supernatant removal and addition of 5 ml fixative solution. This washing
step was repeated 3 times, before spreading the cells onto the slide, which was air-
dried. The slide was then aged at RT for 5–7 days before FISH. The aged slide was
treated with 0.1 mg ml−1 RNase A (DNase inactivated) for 1 h at 37 °C, 2× SSC
(0.30 M sodium chloride, 0.03M sodium citrate) for 10 min at RT, 0.015 µg ml−1

proteinase K for 15 min at 37 °C, fixed with 3% paraformaldehyde for 10 min at
RT, and washed with 2× SSC for 10 min at RT. The slide was dehydrated with 70%,
85% and 95% ethanol for 2 min each at RT and air-dried with nitrogen gas. The
biotin-labeled probe targeting EBV BamHI-W repeats (kindly provided by Pro-
fessor Bill Sugden, University of Wisconsin-Madison, USA) dissolved in hybridi-
zation solution (Cytocell) was denatured for 5 min at 80 °C, and incubated for 30
min at 37 °C. The slide was placed into denaturing solution (70% formamide
dissolved in 20× SSC) for 4 min at 80 °C, dehydrated with 70%, 85% and 95%
ethanol for 2 min each at RT and air-dried. Then, the probed was added onto the
slide and covered with a coverslip, which was then sealed with rubber cement. The
slide was incubated overnight at 37 °C in a humidified chamber, washed with 50%
formamide for 5 min twice at 45 °C and 2× SSC for 5 min twice at 45 °C.
Streptavidin-labeled Cy3 (Sigma-Aldrich) was added onto the slide, which was then
incubated at RT for 40 min, washed with 2× SSC for 5 min twice at 45 °C, dehy-
drated with 70%, 85% and 95% ethanol for 2 min each at RT, and air-dried with
nitrogen gas. DAPI (4′,6-diamidino-2-phenylindole) was added onto the slide for
DNA staining. The slide was covered with a coverslip. Fluorescence images were
captured under a Leica fluorescence microscope by a computer equipped with
SPOT software (Leica).

Spectral karyotyping analysis. Cells were treated with 0.03 µgml−1 colcemid
(Sigma-Aldrich) for 6 h before harvest. The cell spreading, slide preparation and
treatments were performed as the same as described above for FISH. The 24-color
SKYPaint probe (Applied Spectral Imaging) was denatured for 7min at 80 °C and
incubated for 30min at 37 °C. After slide incubation with SKY probe, the slide washing
and staining were carried out in accordance with the protocols provided by the man-
ufacturer. Spectral karyotyping images were acquired using the SkyVision Imaging
System equipped with a Zeiss Axioplan 2 fluorescence microscope. Karyotyping was
performed using SKY View 2.0 software (Applied Spectral Imaging)43.

Histological characterization. Tumor samples from patients and mice were fixed
in 10% neutral buffered formalin. Paraffin blocks were prepared and serial 5-μm-
thick sections were cut from paraffin-embedded tumors. Consecutive sections of
PDXs were used in the H&E staining, EBER ISH and immunohistochemical
analysis of cytokeratin AE1/AE3. EBER ISH staining was performed using EBV
probe in situ hybridization kit (Novocastra) according to the manufacturer’s
instructions44. For immunohistochemical staining against cytokeratin AE1/AE3,
the paraffin sections were de-paraffinized and rehydrated for subsequent staining.
Following antigen retrieval, endogenous biotin activity was blocked by normal
bovine serum and the sections were incubated with primary antibody (1:50; Dako,
#M3515) in a moist chamber. Horseradish peroxidase-conjugated secondary
antibody (Dako, #K4001) was applied to the sections, followed by incubation of
DAB (3,3’-diamino-benzidine; Dako) substrate for color development. The slides
were then dehydrated and mounted with Permount mounting medium (Fisher
Scientific). The mRNA expression of EBV lytic genes in PDXs was detected by an
RNAscope® 2.0 assay (Advanced Cell Diagnostics) with specific probes (BZLF1,
BRLF1, BMRF1 and BLLF1) according to the manufacturer’s instructions45. C15
NPC xenograft and two EBV+ve NPC patient samples, NPC1 and NPC2, were also
included in the panel for analysis and comparison. EBER staining was performed
using RNAscope® specific probe of EBER in the two clinical specimens, and con-
firmed they are EBV+ve (Supplementary Fig. 24).

Induction of lytic EBV replication. Lytic EBV replication was induced in NPC43
and HONE1-EBV cells by different approaches. For early passages of NPC43, lytic
EBV reactivation was induced by stepwise removal of Y-27632 as described in the
previous section or removal of Y-27632 for 48 h. Induction of lytic EBV reacti-
vation in NPC43 could also be achieved by TPA treatment (40 ng ml−1). In
HONE1-EBV, EBV lytic reactivation was induced by the combined treatment with
TPA and NaBu, or treatment with suberoylanilide hydroxamic acid (SAHA) alone,
which were effective in induction of lytic infection of EBV34. Cells were harvested
for western blot analysis, IF staining and real-time PCR after respective treatments.

Detection of infectious EBV from NPC43 upon lytic induction. Upon lytic
reactivation of EBV in NPC43 cells by TPA treatment for 48 h, cells were rinsed
twice with phosphate-buffered saline (PBS) and replenished with fresh medium.
Fresh medium was used to culture the TPA-treated cells for 72 h to collect
infectious viral particles in the supernatants. The harvested supernatant was

centrifuged at 115 × g for 5 min and then filtered through a cellulose acetate filter
(0.45 μm) (Sartorius) to remove cell debris. Then, the supernatant was centrifuged
at 37,500 × g for 4 h at 4 °C to concentrate the viral particles. The supernatant was
discarded, and the pellet was resuspended with fresh RPMI-1640 medium in 1/20
of its original volume. The medium containing viral particles was then used to
infect EBV–ve Akata cells. The infected Akata cells were harvested and subjected to
DNA extraction for EBV copy and RNA extraction to determine EBV gene
expression by real-time PCR, and EBV DNA FISH for determination of EBV+ve
cells.

Primary B-cell transformation. Peripheral blood mononuclear cells were resus-
pended in 3.6 ml pre-warmed culture medium, followed by the addition of
cyclosporine A (Sigma-Aldrich) to a final concentration of 0.5 mg ml−1. Then, 400
µl of 100× concentrated EBV from NPC43 was added into cell suspension. Aliquots
of cell suspension were prepared into 4 wells in 24-well plate. Proliferating foci of
transformed B cells could be observed 2–3 weeks after infection. Quantification of
EBV DNA in transformed B cells was determined by PCR of EBV DNA poly-
merase gene for EBV viral genome copies46. The primers and probe for EBV DNA
polymerase gene were: (forward) 5’-CTTTGGCGCGGATCCTC-3’; (reverse) 5’-
AGTCCTTCTTGGCTAGTCTGTTGAC-3’; (FAM-labeled probe) 5’-
CTTTGGCGCGGATCCTC-3’ (Applied Biosystems). The PCR conditions were:
50 °C 2 min; 95 °C 10min; 95 °C 15 s and 60 °C 60 s for 40 cycles.

Western blots. Cells were rinsed twice in PBS and lysed in ice-cold RIPA lysis buffer
containing 50mM Tris-HCl (pH 8.0), 150mM NaCl, 1% Nonidet P40, 0.5% deoxy-
cholic acid, 0.1% sodium dodecyl sulfate (SDS), protease and phosphatase inhibitors (1
mM phenylmethylsulfonyl fluoride (PMSF), 4 μg leupeptin, 4 μg apoptinin, 1 nM
sodium fluoride and 1 nM sodium orthovanadate). Equal amounts of proteins from
each sample were separated by SDS–polyacrylamide gel electrophoresis and the sepa-
rated proteins were transferred to polyvinylidene fluoride membrane (Millipore). The
chemiluminescence signal was captured using myECL Imager (ThermoFisher Scien-
tific). β-Actin (1:2000; Santa Cruz, #sc-1616) was used as the loading control. The rabbit
polyclonal BALF5 (1:1000) antibody was kindly provided by Professor Tatsuya Tsurumi
(Aichi Cancer Center Research Institute, Japan). The antibodies against EA-D (1:500)
and Gp350/220 (1:500) were obtained from Professor Jaap Middeldorp (Department of
Pathology, Vrije Universiteit University Medical Center, Netherlands). Antibodies
against Zta (1:1000, #11-007) and Rta (1:1000, #11-008) were purchased from Argene.
Images of uncropped blots are shown in Supplementary Fig. 25.

IF staining. Cells were rinsed twice with PBS and treated with ice-cold pre-
extraction buffer (pH 6.8) containing 10 mM HEPES, 100 mM NaCl, 300 mM
sucrose, 1 mM magnesium chloride, 1 mM EGTA, 1 mM dithiothreitol, 1 mM
PMSF, 10 μg ml−1 aprotinin and 0.5% Triton X-100 for 2 min. The cells were then
fixed with ice-cold pure methanol for 30 min and then incubated with blocking
buffer (10% FBS and 0.2% Triton X in PBS) for 30 min. Primary antibodies against
cytokeratin AE1/AE3 (1:100; Dako, #M3515), Zta (1:1000; Argene, #11-007), EA-D
(1:500, a gift from Professor Jaap Middeldorp) and BALF2 (1:500) (a kind gift from
Professor Tatsuya Tsurumi, Aichi Cancer Center Research Institute, Japan) were
used. Alexa Fluor-conjugated secondary antibodies (1:500) were from Molecular
Probes (#A11059 for cytokeratin AE1/AE3, Zta and EA-D and #A21206 for
BALF2). The percentage of positive cells was quantified by calculating 10 micro-
scopic views with over 2000 cells included.

Transmission electron microscopy. Routine transmission electron microscopy
protocols were used to process PDXs harvested from mice. Briefly, fresh tissues
were fixed in primary fixative containing 2% paraformaldehyde and 2.5% glutar-
aldehyde. Then tissues were post-fixed in 1% osmium tetroxide, followed by
dehydration and embedding. Ultra-thin sections were prepared and stained with
uranyl acetate, followed by staining with lead citrate. Philips CM100 transmission
electron microscope was used to obtain images.

WES. For WES, 250 ng genomic DNA of xenograft samples, human tumors and
blood samples were fragmented by an ultrasonicator (Covaris). These fragments
were amplified using NEBNext UltraTM DNA library Prep Kit (NEB). The con-
centration of the libraries was quantified by a bioanalyzer (Agilent Technologies).
The amplified fragments were hybridized to a TruSeq capture kit (Illumina) or
SeqCap EZ kit (Roche) for enrichment; non-hybridized fragments were then
washed away. The magnitude of the enrichment was estimated using real-time
PCR. Paired-end, 100 bp (TruSeq) or 150 bp (SeqCap EZ) read-length sequencing
was performed on the HiSeq 2000 sequencer according to the manufacturer’s
instructions (Illumina). Sequencing reads from xenograft samples were first
mapped to two mouse reference genomes (mm10 downloaded from UCSC and
NOD/ShiLtJ genome downloaded from Mouse Genomes Project, Sanger Institute)
with Burrows–Wheeler Aligner (BWA) (0.7.17)47. About 23–39% of reads can be
mapped to mouse genomes with mapping quality more than 15 in the xenograft
samples. These reads were excluded from analysis to eliminate mouse sequence
contamination. Then sequencing reads were aligned to the human genome (hg19).
Picards were applied to sort output bam files and mark duplicates. GATK (3.8)48

was applied for paired local realignment around INDELs, base quality recalibration,
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variants discovery and quality control according to GATK Best Practices
recommendations49,50. Somatic single-nucleotide polymorphisms and INDELs
were called using MuTect (1.1.7)51 and VarScan (2.3.7)52, respectively. Somatic
mutations were further filtered, if they are present in public databases (1000G and
ESP6500) or in-house controls (>1000) with minor allele frequency more than 1%.
To avoid the discrepancy caused by two capture kits, only the mutations with at
least 15 reads for coverage in both TruSeq and SeqCap EZ kits were included in the
analysis. All non-silent somatic mutations were then manually checked in Inte-
grative Genomics Viewer (IGV, version 2.3, Broad Institute) to further remove
variants of poor quality or mouse contamination.

WGS. For WGS, 1 μg of genomic DNA extracted from NPC cell lines, PDXs and
matched normal samples were subjected to the Illumina Whole Genome Sequencing
Service in Macrogen (Seoul, Korea). Standard Illumina protocols and Illumina paired-
end adapters were used for library preparation from the fragmented genomic DNA.
Sequencing libraries were constructed with 500 bp insert length. WGS was performed
using the Illumina HiSeq 2000 platform with a standard 100 bp paired-end read53.
Mean target coverage of 40× and 60× was achieved for the normal and tumor samples,
respectively. The raw sequence reads were processed and aligned to the hg19 human
reference genome using Isaac aligner (01.15.02.08)54. Identification of somatic SNVs
and SVs was conducted by Strelka (1.0.14)51 and Manta (0.20.2)55, respectively. We
predicted somatic copy number aberration (CNA) and allelic imbalance in cancer
genome using Patchwork-R (2.4)56. The identified somatic CNAs and SVs of each NPC
were visualized by CIRCOS (0.69-4)57.

RNA sequencing. Total RNA was extracted from NPC cell lines and xenografts
using TRIzol® reagent (Invitrogen). RNA sequencing libraries were prepared by
KAPA stranded mRNA-seq kit (Roche). Next-generation sequencing (100 bp, paired-
end) using the Illumina HiSeq 1500 sequencing system was performed at Centre for
Genomic Sciences, University of Hong Kong. Total sequencing reads were filtered for
adapter sequence, low-quality sequence and ribosomal RNA sequence, and the reads
were subjected to downstream data analysis. Briefly, the reads were mapped and
aligned to human reference genome (hg38, Gencode) by STAR (2.5.2)58. Gene
expression levels were quantified by RSEM (1.2.31)59, and the differentially expressed
genes between EBV–ve and EBV+ve samples were identified by EBSeq (1.10.0) with
the criteria as false discovery rate (FDR) q-value below 0.0560. The expression levels of
protein-coding genes were further subjected to GSEA version 3.0 to characterize the
differences in transcriptome profiles of EBV+ve cohort in specific pathways as
compared to the EBV–ve counterpart61–63. Heatmap was drawn by pheatmap R
package (1.0.10; http://cran.r-project.org/web/packages/pheatmap/).

Phylogenetic analysis of EBV genome sequences. The non-human and non-
mouse reads from WGS were aligned to the reference EBV genome (NC_007605)
using BWA software47. The generated BAM files were subjected to SAMtools
software (1.3)64 for pile-up files and assessment of coverage of reads. The last 30
bases of the output reads were trimmed from the 3’ ends of the aligned reads by the
FastTrimmer of FASTX-Toolkit (0.0.13.2), while the first 70 bases from the 5’ end
were retained. After calculating the average coverage of reads, high-quality reads
were assembled using the Velvet (1.2.07)65. The settings were optimized using the
expected average k-mer coverage of 200 to 600, k-mer lengths of 35 and the
minimum k-mer coverage of 20 to 70. The location and orientation of generated
contigs by Velvet were examined by pairwise alignment to reference EBV genome
(NC_007605). PCR primers were designed at the breakpoints between contigs.
Sanger sequencing was performed to join the contigs. Multiple sequence alignment
of all generated EBV genomes as well as publicly available ones were performed
using MAFFT version 766. The aligned sequences were visualized and edited using
Jalview software (2.9.0b2)67. Poorly aligned regions were trimmed before con-
struction of the phylogenetic tree. Phylogenetic analysis was performed using
Molecular Evolutionary Genetics Analysis version 7 (MEGA7) by neighbor-joining
algorithm68. In this study, multiple sequence alignments of EBV whole genomes or
individual genes (including LMP1 and EBNA1) were conducted in all sequenced
EBV genomes for phylogenetic analysis.

Statistical analysis. All results were expressed as mean ± SD. Statistical analysis of
imaging data quantification was performed using two-tailed Z-test, while other
experimental data were statistically analyzed using two-tailed Student’s t-test, and
differences were considered significant at p < 0.05.

Data availability
The WES and RNA sequencing data that support the findings of this study have
been deposited in Sequence Read Archive (SRA) with accession numbers as
SRP158745 and SRP158866, respectively. The WGS data have been deposited in
European Nucleotide Archive (ENA) with accession number as PRJEB24495.
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