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INTRODUCTION

Networks of dynamical systems and synchronization are omnipresent in our daily lives. Power networks [START_REF] Dörfler | Synchronization in complex oscillator networks and smart grids[END_REF]), flow networks [START_REF] Bürger | Dynamic coupling design for nonlinear output agreement and time-varying flow control[END_REF]), robot or vehicle fleets [START_REF] Olfati-Saber | Flocking for multi-agent dynamic systems: Algorithms and theory[END_REF]), sensor networks [START_REF] Sivrikaya | Time synchronization in sensor networks: a survey[END_REF]), and social networks [START_REF] Mirtabatabaei | Opinion dynamics in heterogeneous networks: Convergence conjectures and theorems[END_REF]) are some of the most popular examples that can be framed in this same context.

From the seminal works on consensus [START_REF] Moreau | Stability of continuous-time distributed consensus algorithms[END_REF]) and synchronization of identical linear systems [START_REF] Scardovi | Synchronization in networks of identical linear systems[END_REF]), in the last decade researchers have considered many aspects of networks control such as heterogeneous networks [START_REF] Wieland | An internal model principle is necessary and sufficient for linear output synchronization[END_REF]), switching networks [START_REF] Lu | Exponential synchronization of linearly coupled neural networks with impulsive disturbances[END_REF]), and high-order systems [START_REF] Seo | Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach[END_REF]). In more recent years the activity has focused on the more challenging problem of nonlinear networks. Different approaches such as passivity [START_REF] Arcak | Passivity as a design tool for group coordination[END_REF]), dissipativity [START_REF] Stan | Analysis of interconnected oscillators by dissipativity theory[END_REF]) and high gain [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF]) have been considered and the literature on the subject is now vast. Indeed, most of the results of the linear framework have been extended succesfully to the nonlinear context [START_REF] Abdessameud | Synchronization of nonlinear systems with communication delays and intermittent information exchange[END_REF], [START_REF] Isidori | Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory[END_REF]).

These different approaches have in common the possibility to rewrite the synchronization has a stabilization problem of a certain set. For instance, the synchronization error with respect to the origin in [START_REF] Scardovi | Synchronization in networks of identical linear systems[END_REF], or passivity with respect to a desired target set in [START_REF] Arcak | Passivity as a design tool for group coordination[END_REF]. While the stability of the aforementioned set and the impact of noise [START_REF] Wells | Control of stochastic and induced switching in biophysical networks[END_REF]), perturbations [START_REF] He | Accurate clock synchronization in wireless sensor net-works with bounded noise[END_REF]), and hybrid phenomena
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(such as switching topology [START_REF] Casadei | About disconnected topologies and synchronization of homogeneous nonlinear agents over switching networks[END_REF] and open networks [START_REF] Hendrickx | Open multi-agent systems: Gossiping with random arrivals and departures[END_REF]) have been considered, novel approaches to the control design that allow mitigating the effect of these perturbations over the networks have still to be explored. Some authors have adapted classical H ∞ techniques to the case of networks of identical linear systems [START_REF] Huang | Robust h∞ synchronization of chaotic lur'e systems[END_REF]Feng (2008), Dal Col et al. (2018)). In the context of heterogeneous networks, [START_REF] Khong | A unifying framework for robust synchronization of heterogeneous networks via integral quadratic constraints[END_REF] studied the problem of synchronization by means of integral quadratic constraint (IQC). However, these techniques are often hard to extend to the nonlinear framework.

Recent works concerning the design of observers have suggested that the use of nonlinear functions such as saturations and deadzones might help in reducing the effect of perturbations affecting the measurements. Both in the context of linear [START_REF] Alessandri | Stubborn state observers for linear time-invariant systems[END_REF], [START_REF] Cocetti | On dead-zone observers for linear plants[END_REF]) and nonlinear systems [START_REF] Astolfi | Stubborn iss redesign for nonlinear high-gain observers[END_REF]; [START_REF] Cocetti | High-gain dead-zone observers for linear and nonlinear plants[END_REF]), the improvements obtained are significant. Inspired by these results and their applicability to the nonlinear framework, in this paper we investigate the use of saturations in networks with the aim of reducing the effect of impulsive perturbations acting over the systems communication lines. The perturbations may represent external/exogenous attacks to the network, commutations in the topology or the emergence of new nodes. First, we prove that the nominal behavior of the networks, namely the synchronization, is not compromised. Then, with the aid of simulation results, we show that the saturations helps in reducing the propagation of impulsive perturbations over the network. The paper is organized as follows.

In Section 2, we briefly review some basic results in the literature of synchronization. In Section 3, we formulate the problem at stake. In Section 4, the main result of the paper is stated. Finally, in Section 5, simulation results show the effectiveness of the proposed approach.

Notation R is the set of real numbers. On R n , we define

1 n = [1, • • • , 1] . On R n , we define the row-vector basis b 1 = [1, 0, • • • , 0], b i = [0, • • • , 0, 1, 0, • • • , 0] with all zeros except 1 in the i-th position, b n = [0, • • • , 0, 1], so that I n = col(b 1 , . . . , b n ). Let (x, y) := [x ,
y ] for any column vectors x and y. Given a symmetric matrix P ∈ R n×n , let us denote by λ m (P ) and λ M (P ) the minimum and maximum eigenvalues of P , respectively. Given y ∈ R and σ ∈ R ≥0 , we define sat σ (y) := max{-σ, min{σ, y}} and dz σ (y) := y -sat σ (y).

Graph theory In a general framework, a communication graph is described by a triplet G = {V, E, A} in which V is a set of n nodes V = {v 1 , v 2 , . . . , v n }, E ⊂ V × V is a set of edges e jk that models the interconnection between nodes with the flow of information from node j to node k weighted by the (k, j)-th entry a kj ≥ 0 of the adjacency matrix A ∈ R N ×N . We denote by L ∈ R n×n the Laplacian matrix of the graph, defined as

kj = -a kj for k = j, kj = n i=1 a ki for k = j .
For a time-invariant graph, the following result holds, see [START_REF] Godsil | Algebraic graph theory[END_REF]. Lemma 1. A time-invariant graph, is connected if and only if L has only one trivial eigenvalue λ 1 (L) = 0 and all other eigenvalues λ 2 (L), . . . , λ n (L) have positive real parts.

PRELIMINARIES

Consider a network of n identical agents described by ẋj = Ax j + u j y j = Cx j + Dw j (1) for j = 1, . . . , n, where x j ∈ R d , is the state, y j ∈ is the output, w j ∈ R is an impulsive disturbance acting over the output through the gain D ∈ R, (A, C) is a detectable pair matrices, and u j ∈ R d is the diffusive coupling control input to be defined.

Agents (1) are connected according to a directed graph G = {V, E, A}, fulfilling the following assumption. Assumption 1. The graph G contains at least a spanning tree and its Laplacian L is diagonalizable. As a consequence (see [START_REF] Godsil | Algebraic graph theory[END_REF]), there exists µ > 0 such that, for all i = 2, . . . , n the following holds:

Reλ i (L) ≥ µ .
In the unperturbed case, i.e. when w j = 0 for all j = 1, . . . , n, it is well known (see, e.g., [START_REF] Scardovi | Synchronization in networks of identical linear systems[END_REF] and references therein) that by assigning the input of all the agents j = 1, . . . , n as

u j = -K n i=1 ji y i , (2) 
where ki denotes the (k, i) entry of the Laplacian matrix L, synchronization, namely asymptotic convergence to zero of x i -x k for all i, k ∈ {1, . . . , n}, is ensured for suitable selections of K (a possible one is described in Theorem 1 below).

To characterize the collective behavior, and as a guideline for selecting K, it is customary to write in compact form the network interconnection of (1) via ( 2)

as ẋ = [(I n ⊗ A) -(L ⊗ KC)] x
(3) where x := (x 1 , . . . , x n ). Following the same approach by [START_REF] Fax | Information flow and cooperative control of vehicle formations[END_REF], [START_REF] Seo | Output feedback consensus for high-order linear systems having uniform ranks under switching topology[END_REF], [START_REF] Isidori | Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory[END_REF], the compact form (3) can be conveniently manipulated by introducing the transformation T ∈ R n×n defined as

T := 1 0 1×(n-1) 1 n-1 I n-1 , T -1 = 1 0 1×(n-1) -1 n-1 I n-1 , (4) which (from Assumption 1) satisfies L = T -1 LT = 0 L 12 0 (n-1)×1 L 22 , (5) 
where eig{L 22 } = {λ 2 , . . . , λ n }.

Consider then the change of variables x = (T -1 ⊗ I d )x, with T as in (4). From the structure of T , one immediately realizes that x = (x 1 , x 2 -x 1 , . . . , x n -x 1 ) and the system in the new coordinates reads ẋ

= (T -1 ⊗ I d ) [(I n ⊗ A) -(L ⊗ KC)] (T ⊗ I d )x = (I n ⊗ A) -( L ⊗ KC) x .
Moreover, introducing e k = x k -x 1 , for k = 2, 3, . . . , n, and e := (e 2 , e 3 , . . . , e n ) , yielding x = col(x 1 , e), it is readily seen that the system above exhibits a triangular structure of the form ẋ1

= Ax 1 -(L 12 ⊗ KC)e (6a) ė = (I n-1 ⊗ A) -(L 22 ⊗ KC) e. (6b) 
With this triangular structure, it is well known that assessing global exponential stability of e (namely exponential convergence to zero of the error coordinates) guarantees asymptotic synchronization of the agents to the perturbed trajectory of x 1 (which may be bounded or unbounded).

Theorem 1. Under Assumption 1, the following dual algebraic Riccati equation admits a solution P = P T > 0 P A + AP -2µP C CP + aI = 0 for any a > 0 and µ given in Assumption 1. Moreover, selecting K = P C in (2) ensures that the e-dynamics in (6b) are globally exponentially stable.

Proof. The proof follows from the construction in (Isidori et al., 2014, App. A). In particular, consider the invertible complex matrix M ∈ C n×n such that M L 22 M -1 = diag(λ 2 , . . . , λ n ). Then, define the quadratic function V (e) := e (M * M ⊗ P -1 )e = e (H R ⊗ P -1 )e, (7) where M * is the conjugate transpose of M and H R = Re(M * M ) is Hermitian and positive definite by construction. From the property of the Kronecker product, we get α 2 e 2 ≤ V (e) ≤ ᾱ2 e 2 , (8) with the positive scalars α 2 := λ m (H R )λ M (P ) -1 > 0 and ᾱ2 := λ M (H R )λ m (P ) -1 > 0. Moreover, from the calculations in [START_REF] Isidori | Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory[END_REF](Isidori et al., , page 2689)), there exists α > 0, possibly depending on P , such that, for all i = 2, . . . , n, P -1 (A -λ i KC) + (A -λ i KC) * P -1 < -αI .

Then, according to (Isidori et al., 2014, eqn. (36)), we get

V = 2e (H R ⊗ P -1 ) ((I n-1 ⊗ A) -(L 22 ⊗ KC))e ≤ -αe (H R ⊗ I d )e , (9) 
which concludes the proof.

PROBLEM FORMULATION

In this paper we are interested in studying the case in which impulsive perturbations act on the communication among agents (1), namely w j = 0 for some j. As mentioned in the introduction, w j can arise from hybrid phenomena (such as a switching topology) or glitches in the communication among agents. By changing coordinates according to (4), the network of ( 1), ( 2 

T -1 L = N 12 N 22 ,
and w := (w 1 , . . . , w n ). The forthcoming results follows from Theorem 1 for the perturbed system (10).

Corollary 1. Consider the perturbed e-dynamics in (10b).

If K is selected according to Theorem 1, there exist c, γ > 0 such that the following bound holds

∇V (e), ė ≤ -c e 2 + γ w 2 (11) 
for all e ∈ R (n-1)×d ,

x 1 ∈ R d , w ∈ R n .
Proof. Following the steps of the proof of Theorem 1, we obtain, along (10b), V = 2e (H R ⊗ P -1 ) Then,(11) follows from the Young inequality, with simple computations.

((I n-1 ⊗ A) -(L 22 ⊗ KC))e + (N 22 ⊗ KD)w ≤ -αe (H R ⊗ I d )e + e H R P -1 N 22 K w.
Corollary 1 guarantees that a bounded exogenous perturbation w always produces a bounded synchronization error e, namely practical synchronization is guaranteed. If now we are interested in mitigating the effect of w over the network, one could think of designing K to both guarantee synchronization and attenutation of perturbations (for instance, exploiting H ∞ methods as in [START_REF] Khong | A unifying framework for robust synchronization of heterogeneous networks via integral quadratic constraints[END_REF] or Dal [START_REF] Dal Col | H ∞ control design for synchronization of identical linear multi-agent systems[END_REF]). However, it is worth pointing out that both α and γ in (11) are functions of the degree of freedom K and structural limitations arise when a control input is restricted within the class of linear regulator, see [START_REF] Seron | Fundamental limitations in filtering and control[END_REF].

In this paper we propose a redesign technique that maintains the design of K proposed in Theorem 1 and adds a dynamic saturation effect over the diffusive coupling (2). First we show that the proposed technique still guarantees synchronization of the unperturbed network. Then, simulation results show that the impact of the disturbance w over the network is significantly reduced.

MAIN RESULT

In dynamic saturation redesign we introduce a saturation in the communication among agents. In particular, we replace the linear selection in (2) by

u j = -K sat √ σj n i=1 ji y i (12)
where the saturation level σ j ∈ R obeys the following dynamic depending on design parameters θ, r ∈ R

σj = -θσ j + r n i=1 ji y i 2 . ( 13 
)
Note that the σ j dynamics in (13) can further expressed as σj = -θσ j + r ((b j Ly)

2 = -θσ j + r ((b j L ⊗ C)x) 2 = -θσ j + (b j L ⊗ C)xr((b j L ⊗ C)x) = -θσ j + (b j L ⊗ C)xrx (L b j ⊗ C ))
. As a consequence, the network (1) interconnected via ( 12) and ( 13) can be written in the following compact form ẋ = (

I n ⊗ A)x -(I n ⊗ K) sat √ σ ((L ⊗ C)x) σ = Θσ + (L ⊗ C)xRx (L ⊗ C ) ( 14 
)
with Θ := diag{-θ, . . . , -θ}, R := diag{r, . . . , r}, and sat √ σ (•) defined as

sat √ σ ((L ⊗ C)x) :=      sat √ σ1 ((b 1 L ⊗ C)x) sat √ σ2 ((b 2 L ⊗ C)x) . . . sat √ σn ((b n L ⊗ C)x)      .
Theorem 2. Consider the network of n agents ( 14), under Assumption 1 with K designed according to Theorem 1. Then, for any θ there exists r > 0 such that for any r > r the set X = {(x 1 , x 2 , . . . , x n ) :

x 1 = x 2 = • • • = x N } (15) is globally exponentially stable.
Proof. We start by suitably rewriting the x-dynamics in (14

) as ẋ = (I n ⊗ A)x -(I n ⊗ K)(L ⊗ C)x + (I n ⊗ K)(L ⊗ C)x -(I n ⊗ K)sat √ σ ((L ⊗ C)x) = [(I n ⊗ A) -(L ⊗ KC)] x + (I n ⊗ K)dz √ σ ((L ⊗ C)x) , where dz √ σ (•) is defined as dz √ σ ((L ⊗ C)x) =      dz √ σ1 ((b 1 L ⊗ C)x) dz √ σ2 ((b 2 L ⊗ C)x) . . . dz √ σn ((b n L ⊗ C)x)     
.

We now apply the change of coordinates

x = (T -1 ⊗ I d )x with T as in (4) to obtain ẋ = [(I n ⊗ A) -( L ⊗ KC)]x +(T -1 ⊗ K)dz √ σ ((LT ⊗ C)x) σ = Θσ + (LT ⊗ C)xRx (T L ⊗ C ) (16)
Again, just as in ( 6), we want to exploit the structure of x in order to express in a more suitable form the dynamics (16). To this end, recall that we have e = (e 2 , e 3 , . . . , e n ) ,

x = (x 1 , e). ( 17 
)
By definition of L and the structure of T in (4), we have

LT = 0 | M =     0 M 1 0 M 2 . . . . . . 0 M n     , (18) 
where M ∈ R n× (n-1) . By using the structure in ( 18), we also obtain (LT ⊗ C)x = (M ⊗ C)e. As a consequence, in order to simplify the forthcoming computations, let us introduce the following notation

ζ := (LT ⊗ C)x = (M ⊗ C)e, ζ i := b i (LT ⊗ C)x = (M i ⊗ C)e ∀ i = 1, . . . , n. (19) 
First of all, note that we can take advantage of ( 18) and ( 19), to get

dz √ σ ((LT ⊗ C)x) = dz √ σ (ζ) =    dz √ σ1 (ζ 1 ) . . . dz √ σn (ζ n )    . ( 20 
)
As a consequence, by using (6b), ( 17), ( 19) and ( 20), dynamics ( 16)

reads ẋ1 = Ax 1 -(L 12 ⊗ KC)e + K dz √ σ1 (ζ 1 ) (21a) ėi = (A -b i L 22 KC)e i + K[dz √ σi (ζ i ) -dz √ σ1 (ζ 1 )] = Ae i + K[sat √ σi (ζ i ) -sat √ σ1 (ζ 1 )], i = 2, . . . , n, (21b) σi 
= -θσ i + rζ 2 i , i = 1, . . . , n, (21c) Moreover 
, according to (4), (17) (19), we have the following identities b

1 (T -1 ⊗ K)dz √ σ (ζ) = K dz √ σ1 (ζ 1 ), b i (T -1 ⊗ K)dz √ σ (ζ) = K[dz √ σi (ζ i ) -dz √ σ1 (ζ 1 )
], for all i = 2, . . . , n. Then the e-dynamics (21b) can be written in compact form, by also using (20), as ė = ((

I n-1 ⊗ A) -(L 22 ⊗ KC))e + K e dz √ σ (ζ) = (I n-1 ⊗ A)e + K e sat √ σ (ζ) (22) 
where

K e := col(b 2 , . . . , b n )(T -1 ⊗ K).
As a consequence, similarly to the proof of Theorem 1, we consider a Lyapunov function for the e, σ dynamics which is independent of x 1 . In particular, consider the Lyapunov function

W (e, σ) = V (e) + n i=1 r -2 σ i + max{ζ 2 i -σ i , 0} (23) 
with V defined as in (7). From ( 7) and ( 8) we have that there exist w > w > 0 satisfying w( e 2 + σ ) ≤ W (e, σ) ≤ w( e 2 + σ ). Now let I ⊂ {1, . . . , n} be the subset of indexes i for which σ i ≥ ζ 2 i and J = {1, . . . , n} \ I be the set of indexes j for which σ j < ζ 2 j . Then we have

σ i ≥ ζ 2 i ⇒ dz √ σi (ζ i ) = 0, ∀ i ∈ I σ j < ζ 2 j ⇒ dz √ σj (ζ j ) = 0, ∀ j ∈ J . (24) 
Now, we compute the time derivative of W defined in (23). We obtain, using the definitions in ( 19),

Ẇ = V + i∈I r -2 σi + j∈J (r -2 -1) σj + j∈J 2ζ j (M j ⊗ C) ė
and therefore, using (21c), ( 22) and also (9),

Ẇ ≤ -αe (H R ⊗ I d )e + 2e (H R ⊗ P -1 )K e dz √ σ (ζ) + r -2 i∈I -θσ i + rζ 2 i + (r -2 -1) j∈J -θσ j + rζ 2 j + j∈J 2ζ j (M j ⊗ CA)e (25) 
+ j∈J 2ζ j (M j ⊗ C)K e sat √ σ (ζ).
Let us now introduce the following positive scalars α and κ, independent of r, to simplify notation:

α(H R ⊗ I d ) ≥ α I > 0, κ := max j∈{1,...,n} { (H R ⊗ P -1 )K e 2 , (M j ⊗ CA) 2 , (M j ⊗ C)K e 2 (M ⊗ C) 2 },
and exploit the following bounds, resulting from the properties in (24) and definition ( 19):

dz √ σ (ζ) 2 ≤ j∈J ζ 2 j , sat √ σ (ζ) ≤ ζ ≤ (M ⊗ C) e . ( 26 
)
Then we may refine the upper bound (25) for Ẇ (for reading convenience we preserve the position of each term in ( 25)), where we impose r > 1 (so that 1 -r -2 > 0) and apply standard Young inequalities1 in lines 1, 3 and 4, and use the properties of sets I, J in (24

): Ẇ ≤ -α e 2 + ν e 2 + κ ν j∈J ζ 2 j -r -2 θ i∈I σ i + n r ζ 2 -1- 1 r 2 j∈J r 2 -θ σ j + r 2 ζ 2 j + j∈J ν e 2 + κ ν ζ 2 j (27) + j∈J ν e 2 + κ ν ζ 2 j .
Finally, combining the different terms in (27) and using again the second bound in (26), we obtain

Ẇ ≤ -e 2 α -ν - n r (M ⊗ C) 2 - j∈J 2ν - r -r -1 2 - κ ν -2 κ ν j∈J ζ 2 j -r -2 θ i∈I σ i -1 - 1 r 2 r 2 -θ j∈J σ j . ( 28 
)
Since κ is indepedent of r and ν, for any θ > 0 we can first select r ≥ r * ≥ ν -1 and ν small enough so that

α -ν -nν (M ⊗ C) 2 - j∈J 2ν > 0,
and finally fix r ≥ r * > 0 large enough so that r

-r -1 2 - κ ν -2 κ ν > 0, 1 - 1 r 2 r 2 -θ > 0.
By recalling that I ∪J = {1, . . . , n}, from (28) there exists a small enough ε > 0 satisfying Ẇ ≤ -ε( e 2 + σ ).

The last inequality, combined with the definition of W and (e, σ), completes the proof. The effect of a perturbation over the output of an agent has a variable impact depending on what output is affected. With the dynamic saturation design, this impact is highly reduced independently of the affected node.

In the subfigure 1b, norm u j of of each input without redesign (upper plot) and with saturation redesign (lower plot). Every time an impulsive perturbation occurs, the classic design provides and input about twice as large than the saturation redesign.

SIMULATION RESULTS

We consider a network of n = 6 linear oscillators, whose dynamics are ẋj1 = x j2 + u j1 , ẋj2 = -x j1 + u j2 y j = x j1 + w j (29) for j = 1, . . . , 6, exchanging their output information y j with their neighbors with control inputs u j = (u j1 , u j2 ) defined according to (2) and K chosen according to Theorem 1. An impulsive perturbation δ j acting over the communication is considered. In particular, we consider the case where the perturbation δ j acts on only one agent at a time. The same network is then considered with input designed according to (12)-( 13), with θ = 1 and r = 10. The network considered in this example is described by the Laplacian matrix

L =        -2 1 1 0 0 0 1 -4 1 0 1 1 0 1 -2 0 1 0 0 0 1 -2 1 0 0 1 0 0 -1 0 1 1 0 0 0 -2        . ( 30 
)
Simulation results are shown in Figure 1, both for the linear design (upper plot) and the redesign proposed in Section 4 (lower plot): after reaching synchronization, the output of one of the oscillators is perturbed at t = 15 s. Then, each oscillator's output is perturbed with an interval of 5 s. First, in Figure 1a we can observe that the redesign improves the performances of the network importantly. While the nominal linear design fails to return rapidly to synchronization, the redesign helps to make the network more robust. Second, in Figure 1b we can clearly observe that the norm of the inputs u j without redesign and with saturation redesign is significantly different: thanks to the dynamic saturations not only the impact of the impulsive perturbations is highly reduced, but also the control effort is reduced to less than one half. This fact is a direct consequence of the evolution of the saturation levels σ j in Figure 2.

CONCLUSIONS

In this paper, a preliminary analysis of the use of dynamic saturations to reduce the effect of impulsive perturbations in networks has been developed. In the context of linear systems, we have shown that it is possible to redesign the classical linear diffusive coupling by adding a dynamic saturation, without compromising the synchronization property. Then, with the aid of simulations, we have verified that the dynamic saturations reduce the impact of impulsive perturbations over the communication among agents. In the near future, we would like to consider the possibility of decentralizing design of the dynamic saturations, namely each agent may have its own design parameters. More importantly, we aim to quantifying analytically the gain in terms of performances that we obtain with respect to the standard linear design. Another remarkable aspect of this approach is its applicability to the nonlinear framework. With respect to this, the research activity has already started and the first promising results are under investigation.
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 2 Fig. 2. The evolution of the local saturation values σ j .

The Young inequality is the well-knonw upper bound

2ab ≤ νa 2 + b 2 /ν, holding for any a, b ∈ R and any ν > 0.