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Abstract: The paper deals with the problem of output regulation for nonlinear systems under
the assumption of periodic exosystem. We build on the results presented in Astolfi et al. (2015)
showing that asymptotic regulation can be achieved with an infinite dimensional regulator
embedding a linear internal model copying all the harmonics that are multiple of the one
associated to the exosystem. The regulator follows a post-processing structure in which the
(infinite dimensional) internal model is driven by the error and a static stabiliser is considered
for the cascade extended system. The post-processing structure traces the one proposed by
Francis and Wonham into a linear framework. The presented analysis is limited to nonlinear
systems that have unitary relative degree and that are minimum-phase.

1. INTRODUCTION

The problem of asymptotically offsetting the effect of an
exosystem-generated signal on some regulated outputs of
a system, typically known as output regulation problem,
is fundamental in control theory. A landmark in the field
was undoubetly given by the set of papers by Francis and
Wonham (1975, 1976), Francis (1977), Davison (1976), in
which the problem was fully addressed for linear systems
and exosystems. In those papers the necessity of internal
model-based controllers to achieve asymptotic regulation
was for the first time proved and fully characterized also
in terms of robustness to possible parametric uncertainties
affecting the controlled system, leading to the celebrated
internal model principle. The results obtained for linear
systems then pushed research activities in the nonlinear
field with the first pioneering results that came out in
Huang and Rugh (1990), Isidori and Byrnes (1990). In
those papers the center manifold theory was the key tool
to prove the necessity of the internal model whenever the
problem of output regulation must be solved in spite of
(small) parameter uncertainties. Those papers opened a
very rich research period in nonlinear output regulation
in which many attempts have been done to make the
nonlinear framework even more general and constructive.
Milestone contributions within the last 20 years of research
in nonlinear output regulation were certainly the paper
by Serrani et al. (2001), in which the case of uncertain
exosystems was for the first time addressed opening the
field of adaptive output regulation, the paper by Byrnes
and Isidori (2003), in which a “non-equilibrium theory” for
output regulation was laid, the paper by Byrnes and Isidori
(2004) in which a clear link between the design of nonlinear
internal model-based regulator and nonlinear (high-gain)

observers was established, and the work of Marconi et al.
(2007) in which a complete theory of nonlinear output
regulation without the so-called immersion assumptions
was proposed. All the efforts were essentially restricted to
consider single input-single error regulated systems with
a well defined normal form between the control input
and the regulation error and with minimum-phase fea-
tures The noteworthy research attempts in the last 5
years then shifted the attention to deal with more general
classes of multivariable systems without necessarily well
defined relative degree and minimum-phase behaviours,
with the final goal of extending in its full generality the
linear theory. The search of design methods able to cope
with more general nonlinear systems immediately revealed
a substantial difference between the regulator structure
originally proposed in the linear framework by Francis,
Wonham and Davison and the ones that implicitly came
out in the nonlinear framework. In the former, in fact, the
regulator is given by a copy of the exogenous dynamics
(acting as internal model) processing the regulation error
and by a stabiliser designed to stabilise the extended
system given by the regulated system driving the internal
model. The structure that was used in all (to the best of
authors’ knowledge) the nonlinear literature, on the other
hand, has a “swapped” structure with an internal model
acting on the input of the regulated plant and a stabil-
isation unit stabilising the cascade of the internal model
driving the regulated plant. This justified the terminology
of post-processing and pre-processing internal model-based
regulators, used to classify respectively the two previous
structures, proposed in Isidori and Marconi (2012). In
that work, moreover, it was shown that a post-processing
structure is a more natural and general choice to deal with
multivariable (not necessarily square) systems. This fact,



in turn, justified a number of attempts that have been
recently done in nonlinear output regulation to adapt ex-
isting (pre-processing) internal model structures by “shift-
ing” from the input to the error the internal model. This
is, for instance, the case of Isidori and Marconi (2012) and
Astolfi et al. (2013) in which the pre-processing structures
respectively presented in Byrnes and Isidori (2004) and
Marconi et al. (2007) were shifted on the output by thus
obtaining post-processing internal model-based regulators.
Those papers, though, are still limited to the class of non-
linear systems having normal forms and minimum-phase.
A more general class of regulated systems was addressed
in Poulain and Praly (2010) and Astolfi and Praly (2017),
under the assumption that the exosystem is a simple inte-
grator (namely that the desired steady state is an equilib-
rium point). This framework was then extended in Astolfi
et al. (2015) by considering a linear periodic exosystem and
showing how practical regulation can be achieved (under
the assumption of “small” exogenous signals) by means of
a post-processing regulator structure having an internal
model copying the exosystem frequencies and a stabiliser
stabilising the nonlinear system and the internal model via
forwarding. The remarkable (as far as the present work is
concerned) result proved in Astolfi et al. (2015) is that the
steady state error is a periodic signal (with the same period
of the exosystem) and that its harmonic components at
the frequencies that are copied in the internal model are
in fact zero. Practical and not asymptotic regulation is,
however, the only result that can be claimed for general
nonlinear systems due to the fact that the steady state
signals to cope with have in general an infinite number
of harmonics. To the best knowledge of the authors there
are not in literature systematic results for designing post-
processing asymptotic regulators for fairly general classes
of regulated systems and exosystems. In this respect, in
fact, the difficulties showing up are summarised in Bin
et al. (2018) and pertain an intertwining between the
design of the internal model and the design of the stabiliser
that makes very difficult the systematic design and lead to
a “chicken-egg” dilemma, by using the terminology of Bin
and Marconi (2018), in the regulator construction.

This paper is strongly motivated by the results obtained
in Astolfi et al. (2015) and, specifically, by the fact that,
in that “periodic” framework, a post-processing regulator
embedding a finite-dimensional internal model copying the
harmonics of the exosystem generates a steady state error
whose Fourier coefficients associated at that harmonics are
precisely zero. We are thus naturally interested to answer
the question: can we succeed in achieving asymptotic
regulation in the nonlinear case if the internal model
is infinite dimensional and containing all the harmonics
multiple of the basic one associated to the exosystem
period? The answer is affirmative and the goal of the paper
is to present the main technicalities to prove it still in the
case the system has a well defined relative degree and it is
minimum-phase.

Notation R is the set of real numbers, R>0 := (0,∞),
R≥0 := [0,∞), N the set of non-negative integer numbers
and N>0 the set of strictly positive integer numbers. We
denote with | · | the standard Euclidean norm. For x ∈ Rn,
we denote with x> its transpose. For x ∈ Rn, y ∈ Rm,
we compactly denote (x, y) := (x>, y>)>. We define with

P1
T (X) the set of C1 continuous functions R → X which

are T -periodic. Recall, that by standard results on Fourier
theory, if ε ∈ P1

T (R), then ε is equal to its Fourier
series, namely ε(t) = ε0 +

∑∞
k=1 ε

c
k cos(k 2π

T t)+εsk sin(k 2π
T t)

where ε0 = 1
T

∫ T
0
ε(t)dt, εck = 2

T

∫ T
0
e(t) cos

(
k 2π
T t
)
dt,

εsk = 2
T

∫ T
0
e(t) sin

(
k 2π
T t
)
dt. Given an infinite dimensional

vector of the form z = (z0, z1, . . . , zk, . . .) with z0 ∈ R
and zk ∈ R2, we define the associated norm ‖ · ‖2 as
‖z‖22 :=

∑∞
k=0 z

>
k zk, and we define with `2 the set of

vectors z satisfying ‖z‖2 < ∞. The set `2 so defined is
a Banach space. Finally, throughout the paper we will use
the following definitions

S =

(
0 ω
−ω 0

)
, G =

(
0
1

)
, ω =

2π

T
. (1)

2. REVIEW OF LINEAR AND NONLINEAR
OUTPUT REGULATION

2.1 Nonlinear Byrnes-Isidori Solution

Consider single-input single output strongly minimum-
phase systems with unitary relative degree of the form

ż = f(w, z, e)
ė = q(w, z, e) + u

(2)

where (z, e) ∈ Rn × R is the state, u ∈ R is the control
input. The initial conditions of (2) range in a compact set
Z × E ⊂ Rn × R. By following Byrnes and Isidori (2004),
w ∈ Rnw is an exogenous signal which is supposed to be
generated by an exosystem of the form

ẇ = s(w). (3)

The exosystem (3) is assumed to be Poisson stable (see
Byrnes and Isidori (2003)), and in particular, its solutions
live in some compact set W ⊂ Rnw for all time. Next, we
suppose the existence of a differentiable function π : R→
Rn solution of

Lsπ(w) = f(w, π(w), 0) ∀w ∈W .

With the map so defined, it can be verified that the set
A ⊂W×Rn defined as A := {(w, z) ∈W×Rn : z = π(w)}
is invariant for the zero dynamics of system (2). System
(11) is also supposed to minimum phase as stated by the
next assumption.

Assumption 1. The set A is asymptotically and locally
exponentially stable for system (2) with a domain of
attraction of the form W × D where D is an open set of
Rn such that Z ⊂ D.

Previous assumption allows to properly define the friend
ψ, namely the steady-state input which is needed to steer
constantly to zero the output, as

ψ(t) := −q(w(t), π(t), 0), ∀ t ≥ 0. (4)

As a matter of fact, when selecting u = ψ, it can be verified
that z = π(w) and e = 0 is an equilibrium of (2) for any
w ∈ W . As a consequence, in order to build a dynamical
system which is able to generate the function ψ in (4) (the
internal model unit), we review the solution proposed in
Byrnes and Isidori (2004). The starting point is to suppose
the existence of a regression law characterizing the friend
ψ, as stated by the next assumption.



Assumption 2. There exist a number d ∈ N>0 and a locally
Lipschitz function ϕ : Rd 7→ R, so that

ψ(d)(t) = ϕ(ψ(t), ψ(1)(t), . . . , ψ(d−1)(t)), ∀ t ≥ 0. (5)

Then, the proposed dynamical regulator solving the prob-
lem of output regulation is given by

η̇ = Φ(η)− σDκΓe
u = −σe+ Cη

(6)

where η ∈ Rd is the state with initial conditions ranging
in a compact set Ξ ⊂ Rd,

Φ(η) =


η2
...
ηd

ϕs(η)

 , Γ =

γ1...
γd

 , C = (1 0 · · · 0),

(γ1, . . . , γd) are selected so that the polynomial λd +
γ1λ

d−1+. . .+γd−1λ+γd is Hurwitz, Dκ = diag(κ, . . . , κd),
ϕs is a globally Lipschitz function that agrees with ϕ
on the final attractor, and σ, κ ∈ R>0 are high-gain
parameters that, if chosen large enough, ensure asymptotic
output regulation as stated in the following theorem.

Theorem 1. (Byrnes and Isidori (2004)). There exists κ? >
0, and for any κ ≥ κ? there exists σ? > 0, such that for any
σ ≥ σ? the closed-loop trajectories (2), (3), (6) starting in
Z × E ×W × Ξ are bounded for all t ≥ 0 and moreover
limt→∞ e(t) = 0.

The main drawbacks of such approach can be summarized
as follows.

• In practical applications, the function ϕ in (5) can be
very difficult to obtain in closed form.
• The regression law (5) implies smoothness of the

function q, which has to be at least Cd with respect
to his arguments.
• As shown in Bin et al. (2018), this solution is not ro-

bust with respect to C1 perturbations of the nominal
function q since the function ϕ may vary according
to such perturbations. This changes are not easy to
map in ϕs and, in practice, only practical regulation
is obtained, see Astolfi et al. (2017).
• Since the lower bounds g? and σ? depend on the

Lipschitz constants of q, ϕ, g and σ can be very large.
However, high-gain controller may be undesired in
practical applications.

Note that also the alternative solution proposed in Mar-
coni et al. (2007) presents similar drawbacks. The main
limitation in particular is the design of the regulator in
practical applications as it is based on the exact solution
of a PDE. An alternative version, in which such PDE
does not need to be solved, has been proposed in Marconi
and Praly (2008), although only practical regulation is
obtained and similar drawbacks hold.

2.2 The Linear Lesson

As explained in the introduction, the solution proposed in
Byrnes and Isidori (2004) for the class of nonlinear system
(2)-(3) can be considered as a pre-processing design which
differs from classical post-processing solution proposed in
linear output regulation. In order to highlight this fact, we
recall here the main results of Francis and Wonham (1975,

1976); Francis (1977); Davison (1976) by specializing their
results to the class of minimum-phase systems with unitary
relative degree. Although such restriction is not necessary,
it is instrumental in this context to highlight the main
differences between linear and nonlinear output regulation
frameworks. In particular, consider a linear system of the
form

ż = Fz +Ne+ Pw
ė = Lz +He+Qw + u

(7)

with z ∈ Rn, e ∈ R, u ∈ R and for some matrices
F,N, P, L,H,Q of suitable dimension. In such context,
also the signal w is supposed to be linear, which is therefore
generated by a neutrally stable system. In order to simplify
the rest of this section, we restrict here to the case in which
w is a sinusoidal signal determined by only one frequency,
namely it can be though as generated by an autonomous
systems of the form

ẇ = Sw (8)

where w ∈ R2, S is defined in (1) for some ω ∈ R>0.
The more general case in which various frequencies and
constant signals contribute to w can be easily dealt by
superimposition of the effects. By following Francis and
Wonham (1975, 1976); Francis (1977); Davison (1976),
when the matrix F is Hurwitz, the output regulation
problem can be addressed for system (7)-(8) with the
following two step procedure:

P1) Extend the system (7) with the following internal
model in which η ∈ R2 and S,G selected as in (1),

η̇ = Sη +Ge . (9)

P2) Select σ,K so that the matrix

A :=

(
F N 0
L H − σ K
0 G S

)
is Hurwitz and select the regulator

u = −σe+Kη . (10)

In order to show that output regulation can be achieved,
the following two arguments can be used.

A1) Since the matrix A, which characterizes the unforced
(namely w = 0) closed-loop system (7), (9), (10), is
Hurwitz, the forced closed-loop system (7)-(10) has
an asymptotically stable steady-state solution (z̄, ē, η̄)
which is fully characterized the Sylvester equation

ΠS = AΠ +B

where B = (P,Q,GQ). In particular, (z̄, ē, η̄) =
(Πzw,Πew,Πηw), where Π = (Πz,Πe,Πη).

A2) Geometric arguments, briefly reviewed in Byrnes
et al. (2012), can be used to exploit the properties
of the internal model (9) to show that since S,G is a
controllable pair, then ΠηS = SΠη + GΠe implies
necessarily Πe = 0, which implies ē = 0, namely
asymptotic output regulation is achieved.

Opposed to the nonlinear case reviewed in Section 2.1,
such approach is post-processing 1 In particular, it is
readily seen that the design of the regulator (9) is a copy of
the exosystem (8) driven by the regulated output e. This
design is selected independently of the friend (4), namely,
no matter what the right steady-state input q is needed,

1 We refer also to Bin and Marconi (2018) for a more detailed dis-
cussion about differences between pre and post-processing solutions.



the internal model is not changed. This is a substantial
difference between linear and nonlinear output frameworks
which allows to conclude also robustness of the regulator
(9), (10), with respect to parameter uncertainties of the
matrices (F,N, P, L,H,Q), see Chapter 1.3 in Byrnes
et al. (2012) and Bin et al. (2018). The main obstructions
that prevent the extension of this linear paradigm to the
nonlinear framework (2) can be therefore summarized by
the following two questions:

Q1) Can we mimic the two-step procedure P1) - P2) in
the nonlinear framework (2)-(3), in which the design
of the internal model is not affected by the selection
of the stabilizer and does not depend on the friend ψ?

Q2) Can we find alternative arguments to the geometric
analysis in A2) that can be extended to the nonlinear
framework (2)-(3) to conclude that output regulation
is achieved, once boundedness of trajectories is estab-
lished?

3. MAIN RESULT

3.1 Main Idea

In order to try to reply to the second question Q2) of
previous section, we recall the main result established in
Astolfi et al. (2015), which motivates this work.

Lemma 1. (Astolfi et al. (2015)). Consider system

η̇ = Sη +Ge

where S,G are defined in (1), η ∈ R2, e ∈ R, and
suppose it admits a solution η̄ ∈ P1

T (R2), ē ∈ P0
T (R), with

T = 2π/ω. Then, the Fourier coefficients of ē associated
to ω are zero, namely

2

T

∫ T

0

ē(t) cos (ωt) dt =
2

T

∫ T

0

ē(t) sin (ωt) dt = 0.

Lemma 1 establishes that if (η, e) are T -periodic bounded
functions, then necessarily the Fourier coefficients of e
associated to the frequency ω = 2π/T must necessarily
be zero. This fact has a certain number of interesting
consequences/properties that can be highlighted.

The first consequence is that if the spectral content of
e coincides with one single frequency component, then
e must be necessarily zero. In particular, consider again
the linear framework of Section 2.2. In light of (8), and
by definition of S in (1), the signal w is a T -periodic
trajectory containing only frequency contents at ω =
2π/T . As a consequence, in light of stability of the matrix
A and by using linearity, it can be proved that the
forced closed-loop system (7)-(10), admits a unique T -
periodic solution (z̄, ē, η̄) ∈ P1

T (Rn × R × R2) containing
frequency components only at ω. As a consequence, direct
application of Lemma 1 allows to conclude that ē = 0.

An second property of Lemma 1 to be highlighted is that
such results hold as long as ē, η̄ are bounded T -periodic
functions, no matter how they are generated. This means
that such result can be used also in the framework of
nonlinear systems. In other words, Lemma 1, provide an
answer to the question Q2) of Section 2.2 for the specific
case of periodic exogenous systems. In particular, consider
the nonlinear system (2), extended with the internal model
(9), and suppose that we are able to design a controller of

the form u = φ(e, η) able to guarantee the existence of an
attractive and stable T -periodic solution (z̄, ē, η̄) for the
closed-loop system when w is present. As a consequence,
for such periodic solution, we can apply Lemma 1, to
establish that the Fourier coefficient of ē corresponding to
ω is zero. As shown in Astolfi et al. (2015), however, such
result is not enough to conclude that ē = 0, since ē could
contain higher order Fourier coefficients which are caused
by higher order deformations induced by the nonlinear
functions f, q.

Finally, a third property of Lemma 1 is that superposition
of effects can be used in the in which many systems of the
form η̇k = kSηk + Ge with k ranging in {1, . . . , N}, are
considered, for which a unique solution (η̄1, . . . , η̄k, ē) ∈
P1
T (R2×· · ·×R2×R) exists. In this case, it can be shown,

see (Astolfi et al., 2015), that all the Fourier coefficients of
ε corresponding to ω, . . . , Nω, are zero.

3.2 Francis-Wonham Nonlinear Viewpoint

The main idea of this work, is therefore that of building
an internal model unit composed by an infinite number of
oscillator of the form (9), so that we can apply Lemma 1
to any of the Fourier coefficients characterizing the Fourier
developments of a periodic steady-state solution of (2). A
first observation however is that in doing so, the model of
the exosystem (3) generating w is no more needed. As a
matter of fact, in view of previous consideration, we only
need that the steady-state solution of the zero-dynamics
of (2) are periodic, and so is the friend (4). For this, in
the following, all the instances of w are replaced by t to
point out that we only need functions which are periodic.
In particular, the following system is considered

ż = f(t, z, e)
ė = q(t, z, e) + u

(11)

where z ∈ Rn, e ∈ R, u ∈ R. As in Section 2.1, we
suppose that the initial conditions of (11) range in some
given compact sets Z × E ⊂ Rn × R, and the following
assumptions, which replace Assumptions 1 and 2, are
stated.

Assumption 3. The functions f is continuous with respect
to time and locally Lipschitz with respect to (z, e). The
function q is C1 with respect to (t, z, e). The functions f, q
are T -periodic in the argument t, namely f(t + T, z, e) =
f(t, z, e) and q(t+T, z, e) = q(t, z, e) for any t ≥ 0, z ∈ Rn
and e ∈ R.

Assumption 4. The zero-dynamics ż = f(t, z, 0) admits a
unique solution z̄ ∈ P1

T (Rn) which is asymptotically (and
locally exponentially) stable with domain of attraction an
open set A ⊆ Rn containing Z.

Under previous assumptions, by following the two step
procedure for linear systems in Section 2.2, we propose
here a two-step procedure for the nonlinear system (11):

P1) Design the internal model as a bunch of an infinite
number of oscillators, namely

η̇0 = e η0 ∈ R
η̇k = kSηk +Ge ηk ∈ R2 (12)

where k ∈ N>0, η = (η0, η1, . . .) = (ηk)k∈N is the
state with initial condition η(0) ranging in some given
closed set Ξ ⊂ `2, and S,G are defined in (1).



Note that η0 is an integral action needed to remove
constant bias, see Astolfi and Praly (2017).

P2) Select the following regulator

u = −σe+ σ

∞∑
k=0

M>k (ηk −Mke) (13)

where σ > 0 is a parameter to be chosen, and M0 ∈ R,
Mk ∈ R2, with k ∈ N>0, are defined so that

−σM0 = 1,
−σMk = k S +G, k ∈ N>0.

(14)

Similarly to the nonlinear framework in Section 2.1, by
using the compact notation

Φ = blckdiag(0, ωS, 2ωS, . . .),
Γ = (1, G,G, . . .),
M = (M0,M1,M2, . . .),

(15)

the internal model unit (12) and the control law (13) can
be compactly rewritten as

η̇ = Φη + Γe, (16a)

u=−σ(1 +M>M)e+ σM>η, (16b)

where in this case the regulator is linear although of infinite
dimension. It is readily seen that in the control law (16b)
we have two terms: the first, −σe, is the stabilizing law,
while the second, M>(η−Me) is a term obtained by using
the forwarding approach 2 and applied to the specific
cascade system (11), (12). This term is therefore needed
to stabilize the internal model unit (12). Note that with
respect to the standard forwarding procedure, reviewed
for instance in Poulain and Praly (2010), the control law
(13) is here obtained by ignoring the term q(t, z, e) in
the equation (11). By solving (14) we can also explicitly
compute the matrices Mk as follows

M0 = − 1

σ
, Mk =

1

(kω)2 + σ2

(
kω
−σ

)
. (17)

The following lemma state that the term M ∈ `2, namely
the term −σM>Me in the control law (16b) is not
diverging.

Lemma 2. Let M be given by (17). Then, for any σ ≥ 1,
‖M‖2 ≤ 1

σ

√
π
2 .

Proof. The result follows by computing

‖M‖22 =

∞∑
k=0

M>k Mk =
1

σ2
+

∞∑
k=1

1

(kω)2 + σ2

=
1

σ2

∞∑
k=0

1

(kωσ )2 + 1
≤ 1

σ2

∫ ∞
0

1

s2 + 1
ds =

1

σ2

π

2
.

�

Finally, we can state the following theorem, which is the
main result of this work, claiming that the regulator (16)
solves the robust asymptotic output regulation problem
for system (11).

Theorem 2. For any pair of functions f, q satisfying As-
sumptions 3-4 hold. there exist a σ? ≥ 1 such that, for any
σ > σ?, any trajectory of the the closed-loop system (11),
(16), starting inside Z ×E × Ξ, is such that (z(t), e(t)) is
bounded for all t ≥ 0, η(t) ∈ `2 for all t ≥ 0, and moreover
limt→∞ e(t) = 0.

2 See Mazenc and Praly (1996) and Poulain and Praly (2010), Astolfi
and Praly (2017), for a review of forwarding approach.

3.3 Proof of Theorem 2

With the function z̄ defined by Assumption 4 , let consider
the following error coordinate system ζ := z − z̄ whose
dynamics are given by

ζ̇ = F (t, ζ), F (t, ζ) := f(t, z + z̄, 0)− f(t, z̄, 0) . (18)

We have the following result, which can be inherited by
standard converse Lyapunov theorems, see, for instance,
in Marconi et al. (2007).

Lemma 3. There exist an open set A ⊂ Rn, a C1 function
V : R × Rn and class K∞ functions α, α, ᾱ such that the
following holds.

(1) {ζ ∈ Rn : ζ = z − z̄, z ∈ Z} ⊂ A.
(2) The function V satisfies

α(|ζ|) ≤ V (t, ζ) ≤ ᾱ(|ζ|) (19a)

lim
ζ→∂A

α(|ζ|) = +∞ (19b)

∂V (t, ζ)

∂ζ
F (t, ζ) +

∂V (t, ζ)

∂t
≤ −α(|ζ|) (19c)

for all t ∈ R≥0 and z ∈ A.
(3) The functions α, α, ᾱ are quadratic around the origin

and there exists a class K∞ function β, linear around
the origin, such that∣∣∣∣∂V (t, ζ)

∂ζ

∣∣∣∣ ≤ β(|ζ|)

for all t ∈ R≥0 and z ∈ A.

Now, let us introduce the following lemma, instrumental
to the proof of Theorem 2.

Lemma 4. For any ψ ∈ P1
T (R) there exists b̂ > 0, and, for

any σ ≥ 1, there exist η̄ ∈ `2, satisfying ‖η̄‖2 ≤ b̂, such
that the solution to

η̇ = Φη, η(0) = η̄ (20a)

satisfies
ψ(t) = σM>η (20b)

for any t ≥ 0, with Φ,M defined by (15).

Proof. Given any function ψ : [0, T ]→ R, let us introduce
the following compact notation

F0(ψ) :=
1

T

∫ T

0

ψ(t)dt,

Fck(ψ) :=
2

T

∫ T

0

ψ(t) cos

(
2kπ

T
t

)
dt, ∀ k ∈ N>0,

Fsk(ψ) :=
2

T

∫ T

0

ψ(t) sin

(
2kπ

T
t

)
dt, ∀ k ∈ N>0.

Since ψ ∈ P1
T (R), we can express it by a Fourier series. In

particular we have that

ψ(t) = ψ0 +

∞∑
k=1

ψck ck + ψsk sk , (21)

where we compactly denoted ψ0 = F0(ψ), and, for any
k ∈ N>0, ψck = Fck(ψ), ψck = Fsk(ψ), ck := cos(kω t),
sk := sin(kω t), ω = 2π/T . Equation (20b) can be written
by explicating each component as

ψ(t) = σM0η0(t) + σ

∞∑
k=1

M>k ηk(t) .

Note that for k = 0, equation (20a) reads η̇0 = 0, η0(0) =
η̄0, which implies η0(t) = η̄0 for all t ≥ 0. By identifying



the latter with expression (21) and the definition of M0

given in (17), we select η̄0 = −ψ0. For k > 0 we denote
ψk = (ψck, ψ

s
k). The k-th equation of (20a) can be written

as
η̇k = kωSηk , ηk(0) = η̄k .

Its solution is given by

ηk(t) = exp(kωS t)η̄k =

(
ck sk
−sk ck

)(
η̄k,c
η̄k,s

)
,

We have also

M>k ηk(t) =

(
kωη̄k,c − ση̄k,s

(kω)2 + σ2

)
ck +

(
ση̄k,c + kωη̄k,s

(kω)2 + σ2

)
cs .

By identifying all the terms of the series (20) and (21) we
obtain

σ
kωη̄k,c − ση̄k,s

(kω)2 + σ2
= ψck , σ

ση̄k,c + kωη̄k,s
(kω)2 + σ2

= ψsk ,

which can be written in the compact notation

σ

(kω)2 + σ2

(
kω −σ
σ kω

)
η̄k = ψk.

As a consequence we can select

η̄k =
1

σ

(
kω σ
−σ kω

)
ψk,

for any k ∈ N>0. In order to prove that η̄ ∈ `2, we compute

‖η̄‖22 ≤ ψ2
0 +

∞∑
k=1

1

σ2

∣∣∣∣(kω σ
−σ kω

)∣∣∣∣2 |ψk|2
≤ ψ2

0 + 2

∞∑
k=1

((
kω

σ

)2

+ 1

)
|ψk|2.

Since ψ ∈ P1
T (R), dψ

dt is square integrable and there exists
real numbers d1, d2 > 0, independent of σ, such that

∞∑
k=1

|ψk|2 ≤ d1,

∞∑
k=1

k2 |ψk|2 ≤ d2,

and therefore

‖η̄‖22 = (η̄k)2 +

∞∑
k=1

(η̄k)2 ≤ 2

(
1
2ψ

2
0 + d1 +

(ω
σ

)2
d2

)
.

The proof concludes by selecting

b̂ =
√

2
(
1
2ψ

2
0 + d1 + ω2d2

) 1
2

and by noting that this number does not depend on σ. �

With the previous lemma in mind, let ψ be defined as

ψ(t) := −q(t, z̄(t), 0) . (22)

with z̄ given in Assumption 4. Since z̄ ∈ P1
T (Rn), the

function q is C1 and T -periodic in t, we conclude that
ψ ∈ P1

T (R). As a consequence, let ζ ∈ P1
T (`2) be solution

defined in (20) with initial conditions η̄, and consider the
following changes of coordinates

z 7→ ζ := z − z̄, η 7→ ξ := η −Me− η̄, (23)

by which we obtain the following closed-loop system

ζ̇ = F (t, ζ) +N(t, ζ, e)
ė = p(t, ζ, e)− σ e+ σy

ξ̇ = Φξ −Mp(t, ζ, e)− σMy
(24)

where we used the following notation

F (t, ζ) := f(t, ζ + z̄, 0)− f(t, z̄, 0) ,
N(t, ζ, e) := f(t, ζ + z̄, e)− f(t, z + z̄, 0) ,
p(t, ζ, e) := q(t, ζ + z̄, e) + σM>ζ

= q(t, ζ + z̄, e)− q(t, z̄, 0) ,
y := M>ξ

(25)

Note that

N(t, ζ, 0) = 0, p(t, ζ, 0) = 0, ∀ t ∈ [0, T ], ζ ∈ A.
Note that in view of the change of coordinates (23), the
initial conditions of ξ range in some closed set X ⊂ `2

which is independent of σ. This can be proved by noting
recalling that z(0) ∈ Z ⊂ `2, e(0) ∈ E with E ⊂ R some
given compact set, M ∈ `2, ‖M‖2 does not depend on σ,

and ‖η̄‖2 ≤ b̂ with b̂ independent of σ in view of Lemma
4. Now consider the Lyapunov function

U(t, ζ, e, ξ) := V (t, ζ) + e2 + ‖ξ‖22 ,
with V (t, ζ) given by Lemma 3. In view of (19b), there
exists ĉ > 0, independent of σ, such that Z×E×X ⊂ Ωĉ,
with

Ωĉ = {(t, ζ, e, ξ) ∈ R≥0 × Rn × R× `2 : U(t, ζ, e, ξ) ≤ ĉ}.
(26)

Moreover, since the projection of Ωĉ on (ζ, e) is compact,
in light of Assumption 3, there exist Lq, LN > 0 such that

|p(t, ζ, 0)| = |q(t, ζ + z̄, e)− q(t, ζ + z̄, 0)
+q(t, ζ + z̄, 0)− q(t, z̄, 0)|

≤ Lq|e|+ Lq|ζ|
|N(t, ζ, e)| ≤ LN |e|

for all (t, ζ, e) ∈ Ωĉ. The derivative of U is then computed
as

U̇ ≤ −α(|ζ|) +
∂V

∂ζ
N(t, ζ, e) + 2e(p(t, ζ, e)− σe+ σy)

+ 2ξ>(Φξ −Mp(t, ζ, e)− σMy)

≤ −α(|ζ|) +
∂V

∂ζ
N(t, ζ, e) + (2e− 2y)p(t, ζ, e)

− 2σe2 − 2σy2 + 2σey

where we used the definition of y in (25) and the fact that
ξ>Φξ = 0. Note that the latter can be verified component
wise by recalling that ξ>k Sξk = 0. Therefore, we obtain

U̇ ≤ −α(|ζ|) +
1

ν
β2(|ζ|) +

2

ν
|ζ|2

− (σ − 3Lq − L2
qν − L2

Nν)e2 − (σ − Lq − L2
qν)y2

where ν > 0 is a parameter to be chosen large enough.
Since α is quadratic around the origin and β is linear
around the origin, there exists ν > 0 large enough such
that the following inequality holds

να(|ζ|)− 2β2(|ζ|)− 4|ζ|2 ≥ 0

for all ζ ∈ Ωĉ. Now let σ∗ = 3Lq + L2
qν + L2

Nν. As a
consequence, there exists a ρ > 0, independent of σ, such
that

U̇ ≤ −1

2
α(|ζ|)− ρe2 − ρy2 (27)

for any σ > σ∗. Previous inequality implies

U(t) ≤ U(0) ∀ t ∈ [0, τ ] . (28)

This says that the solution (ζ, e, ξ) remains in Ωĉ for all
time. So, from its definition τ is infinite. As the projection
of Ωĉ on (ζ, e) is compact, solutions t 7→ (ζ(t), e(t)) are
bounded for all t ≥ 0. Moreover, in light of (27), (28), we
have that also that t 7→ y(t) is bounded. Boundedness of
y implies, by using its definition in (25) and in light of the
definitions of ξ in (23) and Ωĉ in (26), that η(t) ∈ `2 for
all t ≥ 0. Next, by using (28) along solutions, we obtain

lim
τ→∞

∫ τ

0

(1

2
α(|ζ(t)|) + ρe2(t)

)
dt ≤ U(0) .

On the left hand side each term in the integrand is a
function with non negative values, and, since, according



to (24), the functions t 7→ ė(t) and t 7→ ζ̇(t) are bounded,
the functions t 7→ e(t) and t 7→ ζ(t) are Lipschitz
(and therefore uniformly continuous). Hence by applying
Barbalat’s lemma we get

lim
t→∞

|e(t)| = 0 , lim
t→∞

|ζ(t)| = 0 ,

which concludes the proof. 2

3.4 Discussion of the Main Result

We discuss now the result of Theorem 2. First of all, we
remark that asymptotic regulation is obtained robustly
to any (small) C1 model perturbation 3 of the functions
f, q as long as the resulting closed-loop trajectories of
(11), (16), are bounded and T -periodic. As a matter of
fact, the design of the regulator (16) does not make any
explicit use of the functions f, q, since we only need to
select the parameter σ large enough to achieve asymptotic
regulation. His magnitude, in particular, has to be selected
larger than the Lipschitz constants of q on the compact set
of interest and so that stabilization of the zero-dynamics
is achieved 4 .

A second remark is that obviously the controller (16) is
not implementable. Nevertheless, from a practical point of
view, a finite version of the internal model (12), namely
with k ∈ {1, . . . , N} for some N < ∞, is still very
interesting if the closed-loop trajectories are bounded and
T -periodic, since the result of Lemma 1 holds for these
solutions, as showed in Astolfi et al. (2015). Moreover,
recall that higher frequencies are naturally attenuated by
low-pass behavior of system (11).

Furthermore, it is worth also noticing that asymptotic reg-
ulation could be obtained by means of a finite dimensional
regulator if we are able to identify the spectral content of
friend ψ(t) in (4). In particular, by developing the Fourier
series of ψ as ψ(t) = ψ0 +

∑∞
k=1 ψ

c
k cos(kωt) +ψsk sin(kωt),

suppose that we know the existence of a finite set of
integers I ⊂ N so that ψck = ψsk = 0 for all k ∈ N ⊂ I. In
such case, we may design the regulator (16) with a finite
number of states ηk k ∈ I. Asymptotic regulation can be
then proved by combining the technicalities of Lemma 1,
Theorem 2, and the results presented in Astolfi et al.
(2015).

Finally, we remark the following main differences that with
respect to the methodology proposed by Byrnes and Isidori
(2004) and reviewed in Section 2.1: we do not need the
exact knowledge of the friend ψ in (4) and the regression
law ϕ in Assumption 2; the function q is allowed to be
only C1 with respect to his arguments, while Assumption
2 implies the signals to be Cd; we restrict to the framework
of T -periodic exosignals.

4. CONCLUSIONS

We showed that robust asymptotic output regulation can
be obtained by means of a infinite dimensional internal-
model based regulator which follows the linear paradigm
proposed by Francis, Wonham and Davison in the 70’s,

3 In the sense defined in Astolfi and Praly (2017), Bin et al. (2018).
4 In the same spirit of semi-global stabilization problems of
minimum-phase systems, see Chapter 9.3 in Isidori (1995).

when periodic exosignals are considered. This work can
be viewed as a first step to be developed in the following
directions: a full characterization of its finite-dimensional
version in the case of minimum phase systems by combin-
ing the results developed here with Astolfi et al. (2015);
the use of the proposed approach for more general classes
of nonlinear systems, with a particular focus on the non-
minimum phase case; the use of adaptive or identification
techniques to address the case in which the period T is
unknown.
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