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Abstract: We investigate output regulation for linear networked control systems using the
emulation approach. We consider a regulator solving the problem for linear systems in the
absence of the network, by following the Francis-Wonham framework. Next, the network is
taken into consideration, in particular the induced time-varying inter-transmission intervals and
scheduling constraints, and we model the overall system dynamics as a hybrid system. We show
that only practical regulation can be achieved in general since the steady-state control input
steering the output to zero cannot be generated in the networked context (in general). Explicit
upper bounds on the output asymptotic gain and on the maximum allowable transmission
interval guaranteeing boundedness of the closed-loop trajectories are provided, which are shown
to be related.

1. INTRODUCTION

By output regulation, we refer to the problem in which we
aim to control a given output of a plant to asymptotically
track a prescribed trajectory and/or to asymptotically
reject undesired disturbances, while keeping all the trajec-
tories of the system bounded. In such framework, we sup-
pose to know the model generating the disturbances and
references, denoted in the following as exosignals. For lin-
ear systems, an elegant solution was proposed by Francis,
Wonham, see Francis and Wonham (1976) with the clear
delineation of the internal model principle. The objective
of this work is to investigate whether output regulation
can be achieved in the context of linear networked control
systems (NCS), namely when the regulator and the linear
plant communicate over a multi-purpose network, which
may be shared with other tasks. The challenge is that
the communication channel induces undesired phenomena,
such as uncertain transmission intervals, scheduling, net-
work delays and packet loss, which may destroy the desired
regulation properties, if ignored.

To this date, works on NCS mainly focused on mod-
elling, stabilization and observer design (see, e.g., Cloost-
erman et al. (2010), Heemels et al. (2010), Nešić and
Teel (2004) Carnevale et al. (2007), Postoyan and Nešić
(2012)), while only few works have considered the out-

1 This project work has been partially prepared when the first
author was at Université de Lorraine, CNRS, CRAN, Nancy, France,
and was partially founded by the “Région Grand-Est” of France.

put regulation problem in the networked context. Some
solutions have been proposed to address this problem
for discrete-time linear systems and sampled-data linear
systems (see, e.g. Sureshbabu and Rugh (1997), Lawrence
and Medina (2001), Fujioka and Hara (2006), Garćıa-
Sandoval et al. (2007), Antunes et al. (2014)). These
works do not take into account the inter-sampling behavior
when the plant has continuous-time dynamics, and are
not suited to analyze some network phenomena, such as
time-varying sampling, scheduling and packet loss. Other
researchers studied the related, though different, problem
of output tracking for nonlinear NCSs (see, e.g., Postoyan
et al. (2014), van de Wouw et al. (2010), Gao and Chen
(2008)). The problem of output regulation for minimum
phase single-input single-output nonlinear systems when
only the measurement is sampled has been addressed in
Astolfi et al. (2018), while in Liu and Huang (2017),
it is shown that practical output regulation in presence
of event-triggered policies can be achieved for the same
class of systems. Nevertheless, output regulation of NCS
remains a largely open problem, as results adapted to
network effects, such as uncertain time-varying sampling,
scheduling, network delays, quantization, are missing to
the best of our knowledge.

A typical approach for controller design for NCS is using
emulation, where the design of the regulator is performed
by assuming that the network is absent. As next step,
network phenomena are taken into account in the closed-
loop model and their effects on the stability and perfor-



mance of the overall system are analyzed. In this work,
we follow this approach to address the output regulation
of linear NCS, as we believe that a full understanding of
such framework is missing in the literature. The analysis
follows the ideas of emulation approach for NCS presented
in Nešić and Teel (2004); Carnevale et al. (2007) for point
stabilization, by means of the hybrid formalism of Goebel
et al. (2012). Note that, the input-to-state stability (ISS)
properties of the unperturbed closed-loop systems, see,
e.g., Cloosterman et al. (2010) or Heemels et al. (2010)
allow to conclude only boundedness of the closed-loop
trajectories in presence of exosignals. Therefore, a thinner
analysis is needed to conclude whether asymptotic output
regulation can be achieved.

The main contributions of the current paper are as follows.
First a hybrid model for the closed-loop regulated system
including the effects of time-varying sampling and schedul-
ing is constructed, although we believe that it is possible
to include transmission delays in the analysis by suitably
combining the presented results with those in Heemels
et al. (2010). Secondly, an explicit bound for the maxi-
mum allowable transmission interval (MATI) guaranteeing
boundedness of the trajectories of the closed-loop system,
in presence of the exosignals, is derived. Next, a perfor-
mance analysis is provided. We show that, with such archi-
tecture, asymptotic output regulation cannot be achieved
in general, since the emulated version of the control is not
able to generate the right steady-state input able to steer
the output error constantly to zero 2 . In other words, the
internal model property of the regulator is destroyed. The
characteristics of the plant, exosignals and the network are
related to the ultimate bound of the regulated errors. This
bound can be used for both analysis and network design
and represents the main novelty of this work. Finally, we
highlight two particular situations in which asymptotic
output regulation is still preserved, namely the case of
constant exosignals and the case in which the plant input
is directly connected to the controller (in other words, only
the plant output is transmitted over the network, like in
Astolfi et al. (2018)). This finding is consistent also with
the work in Postoyan et al. (2014) on the tracking control
of NCS, and suggests that different architectures need to
be used if asymptotic output regulation is sought.

The paper is organized as follows. The problem is formally
stated in Section 2. The main results are given in Section 3
and a numerical example is provided in Section 4. Section 5
contains the conclusions. The proofs of the main results are
given in the Appendix.

Notation Let R := (−∞,∞), R≥0 := [0,∞), N :=
{1, 2, . . .}, N0 := {0} ∪ N. The notation |x| stands for
the standard Euclidean norm of x ∈ Rn, and ‖x‖A :=
infa∈A |x−a| denotes the distance from x to a set A ⊆ Rn.
Given x ∈ Rn and y ∈ Rm, we denote (x, y) = (xT , yT )T .
We consider hybrid systems of the form Goebel et al.
(2012) ẋ = F (x), x ∈ C, x+ = G(x), x ∈ D, where
x ∈ Rnx is the state, C is the flow set, F is the flow
map, D is the jump set and G is the jump map. We
refer to Goebel et al. (2012) for the definitions of solutions
to the hybrid system, maximal solutions and pre-compact

2 This is derived from the regulator equations, see Francis and
Wonham (1976).

solutions. We say that a compact set A ⊂ Rnx is uniformly
globally exponentially stable (UGES) for the hybrid system
if all maximal solutions are complete and there exist
M,λ > 0 such that, for any x(0, 0) ∈ Rnx , ‖x(t, j)‖A ≤
M exp(−λ(t+ j))‖x(0, 0)‖A for all (t, j) ∈ domx.

2. PROBLEM FORMULATION

2.1 Preliminaries on linear output regulation

We recall in this section the basic ingredients of linear
output regulation in continuous-time, see Francis and
Wonham (1976) or (Byrnes et al., 2012, Section 1.3) for
more details. Consider a system of the form

ẋ = Ax+Bu+ Pw
y = Cx+Qw,

(1)

where x ∈ Rnx is the state, u ∈ Rnu is the control input
and y ∈ Rny is the measured output that we aim to
regulate to zero, with nx, nu, ny ∈ N and nu ≥ ny. The
exogenous variable w ∈ R2nω+1, nω ∈ N0, is assumed to
be generated by an exosystem of the form

ẇ = Sw, S = blckdiag(S0, S1, ..., Snω ) (2)

where S0 = 0, Si =

(
0 ωi
−ωi 0

)
, ω1 < . . . < ωnω ∈ R.

Matrix S is neutrally stable by construction. The variable
w is not directly measurable for feedback design, but the
matrix S is supposed to be perfectly known. We consider
the next definition of output regulation.

Definition 1. For system (1), the problem of output regu-
lation is solved if there exists a controller processing the
regulated output y satisfying the following requirements:

(i) Internal stability requirement: when w = 0, any tra-
jectory of the closed-loop system converges exponen-
tially to zero.

(ii) Output regulation requirement: when w 6= 0, the
trajectories of the closed-loop are bounded for all t ≥ 0
and the output y asymptotically converges to zero.

As shown in (Byrnes et al., 2012, Section 1.3), the output
regulation problem for linear system (1) can be solved if
and only if there exist matrices Π,Ψ being the solution to
the regulator equations

ΠS = AΠ +BΨ + P
0 = CΠ +Q,

(3)

where the matrix Π uniquely defines the state steady-state
x = Πw on which the regulated output y is zero, and Ψ
defines the input steady-state u = Ψw, denoted in the
following as friend (see Isidori and Marconi (2012)), which
renders the given manifold x = Πw positively invariant.
Equation (3) always admits a solution under the following
assumption.

Assumption 1. The pair (A,B) is stabilizable, the pair

(A,C) is detectable, and the matrix
(
A− λI B
C 0

)
is full rank

for any λ in the spectrum of S.

Under Assumption 1, the output regulation problem is
solved by a controller of the form

ξ̇ = Fξ +Gy , u = Kξ , (4)

where ξ ∈ Rnξ is the state of the regulator, with nξ ∈ N,
and F,G,K are of the form



F =

(
Φ 0
M N

)
, G =

(
Γ
H

)
, K = (K1 K2) (5)

with (Φ,Γ) being a controllable pair satisfying σ(Φ) =
σ(S), and such that the closed-loop matrix

A :=

(
A BK
GC F

)
(6)

is Hurwitz. In the rest of the paper, we assume that
regulator (4) has been designed as described above so that
items (i) and (ii) of Definition 1 hold. We refer to (Byrnes
et al., 2012, Section 1.3) for more details.

2.2 NCS model

We investigate the scenario where a network is used to
ensure the communication between plant (1) and regula-
tor (4), as depicted in Figure 1. In this work, we focus on
the effects of sampling and scheduling, and ignore delays,
packet loss and quantization. See the remark at the end of
this subsection. In particular, we describe the model used
to characterize the channel limitations and the transmis-
sion protocol by following the framework used in Nešić
and Teel (2004); Carnevale et al. (2007); Heemels et al.
(2010). This framework allows to take into account a large
class of network scheduling protocols, such as round robin
(RR), try-once-discard (TOD), as well as the simplest case
of sampled-data systems. Afterwards, we derive a hybrid
model for the resulting NCS.

Transmission over the network occur at times ti, i ∈ Z≥0,
satisfying 0 < ε ≤ ti+1− ti ≤ τ∗ where τ∗ is the maximum
allowable transmission interval (MATI) and ε is the lower
bound on the minimum achievable transmission interval
given by hardware constraints. The inter-transmission
intervals ti+1−ti may be time-varying and uncertain. Note
that ε can be arbitrarily small and prevents Zeno solutions
(see Goebel et al. (2012)). We model this transmission
policy using the variable τ , whose dynamics is given by

τ̇ = 1 τ ∈ [0, τ∗], τ+ = 0 τ ∈ [ε, τ∗] . (7)

The sensors and actuators are grouped into ` ∈ N nodes,
which are connected to the network. Hence, at each trans-
mission instant a single node is allowed to transmit its data
over the channel by the scheduling rule. The networked
versions of y and u are denoted respectively as ŷ and û
and these correspond to the most recently transmitted
output and input values. For sake of simplicity, in this work
we suppose that the variables û, ŷ are generated by zero-
order hold devices between two successive transmission
instants in (8), though more complex holding functions
could be taken into account, see Nešić and Teel (2004).
The associated dynamics are given by{

˙̂u = 0
˙̂y = 0

τ ∈ [0, τ∗],

{
û+ = u+ hu(κ, eu, ey)
ŷ+ = y + hy(κ, eu, ey)

τ ∈ [ε, τ∗],

(8)
where e := (ey, eu) ∈ Rne , ne = ny + nu, ey := ŷ − y,
eu := û − u, and where κ ∈ N0 is a counter variable
needed to keep track of the number of transmissions, whose
dynamics is given by

κ̇ = 0 τ ∈ [0, τ∗], κ+ = p(κ) τ ∈ [ε, τ∗]. (9)

We suppose that κ lives in a given compact set [0, κ∗],
for some κ∗ ∈ N0, hence p(κ) ∈ [0, κ∗], for all κ ∈ N0.
Note that usually the jump map of κ is taken as κ + 1,

Exosystem System
w

Network Regulator

y ŷ

uû
Fig. 1. Output regulation for NCS.

see, e.g., Nešić and Teel (2004); Postoyan et al. (2014).
We proceed differently here to ensure that κ remains in a
compact set, which is useful to endow for the forthcoming
stability results with some nominal robustness according
to Goebel et al. (2012). The functions h := (hu, hy) in
(8) and p in (9) model the scheduling mechanism, which
grants access to the network to a single node at each
transmissions instant. Static and dynamic algorithms can
be described by appropriate selection of h, p, κ∗, in view
of Nešić and Teel (2004). For instance, in the case of RR
protocol, each node transmits in an `-cyclic manner. In
this case, we select h(κ, e) := (I − ∆(κ))e, with ∆(κ) :=
diag(δ1(κ), . . . , δne(κ)),

δi(κ) :=

{
1, if i = κ
0, otherwise,

p(κ) =

{
κ+ 1, if κ < κ∗

0, otherwise,

(10)
and κ∗ = `−1, see Nešić and Teel (2004). Another example
is the TOD protocol, which grants access to the node
with the biggest local network-induced error, see Walsh
et al. (2002); Nešić and Teel (2004). In this case, we select
h(e) = (I −Υ(e))e, Υ(e) := diag(ψ1(e), . . . , ψne(e)),

ψi(e) :=

{
1, if i = min(arg max

i
|ei|)

0, otherwise,

and κ∗ = 0, p = 0. The simple case in which inputs
and outputs values are simultaneously transmitted at each
transmission instant, namely the case of sampled-data
systems, is described by p = 0, h = 0 and κ∗ = 0.

Now, the dynamics of the plant in (1), with u replaced by
its networked version û, is described by

ẋ = Ax+Bû+ Pw τ ∈ [0, τ∗], x+ = x τ ∈ [ε, τ∗].
(11)

Similarly, controller (4) no longer receives y but its net-
worked version ŷ. As a consequence, we study the in-
terconnection of system (11) with the following emulated
regulator

ξ̇ = Fξ +Gŷ τ ∈ [0, τ∗], ξ+ = ξ τ ∈ [ε, τ∗],
u = Kξ.

(12)

By denoting χ := (x, ξ) ∈ Rnχ , with nχ = nx + nξ,
we derive the following hybrid model of the overall NCS
closed-loop system

ẇ = Sw
χ̇ = Aχ+ Be+ Pw
ė = Mχ+ Ne+ Rw
κ̇ = 0
τ̇ = 1

 q ∈ C,

w+ = w
χ+ = χ
e+ = h(e, κ)
κ+ = p(κ)
τ+ = 0

 q ∈ D,

y = Cχ+ Qw
(13)

where q := (χ, e, κ, τ), C := Rnχ × Rne × [0, κ∗] × [0, τ∗],
D := Rnχ × Rne × [0, κ∗] × [ε, τ∗], the matrix A is
defined in (6), C := (C 0), Q := Q, and the matrices
B,M,N,P,R are given by



B :=

(
0 B
G 0

)
, P :=

(
P
GQ

)
, M :=

(
−C 0
0 −K

)
A,

N :=

(
−C 0
0 −K

)
B, R :=

(
−CP −QS
−KGQ

)
(14)

Remark. Delays and packet loss effects can be similarly
handled in the hybrid context by following Heemels et al.
(2010), Nešić and Teel (2004).

2.3 Problem Statement

The objective of this work is to investigate whether it is
possible to preserve both requirements of Definition 1 for
system (13), namely internal stability and output regu-
lation, under suitable conditions on the network. As far
as the first requirement is concerned, note that without
appropriate conditions on the scheduling protocol and on
τ∗, Assumption 1 is not sufficient, in general, to guarantee
the stability of the trajectories of closed-loop system (13)
(see for instance Carnevale et al. (2007) in case of asymp-
totic stabilization). Concerning the second requirement,
we will show that asymptotic output regulation can be
preserved only in some particular cases. As a consequence,
in all those cases in which we are not able to guarantee
convergence to zero of the output, we aim to provide an
error bound, depending on plant, controller and network
properties.

3. STABILITY AND PERFORMANCE GUARANTEES

We present now the main results of this paper. First,
we formulate an assumption on the scheduling protocol.
Then, we derive the main theorems and we analyse a
certain number of special cases where asymptotic output
regulation can be achieved. Finally, we briefly discuss how
the main result can be used to compute bounds on the
MATI and on the asymptotic gain of the output.

3.1 Assumption on the scheduling protocol

We adopt the following assumption on the scheduling
protocol, similar to Nešić and Teel (2004); Heemels et al.
(2010).

Assumption 2. The function h is continuous and there
exist W : N0 × Rne → R≥0 that is locally Lipschitz in
its second argument, λ ∈ [0, 1), a, ā, b̄ > 0 such that
a|e| ≤ W (κ, e) ≤ ā|e|, W (p(κ), h(κ, e)) ≤ λW (κ, e) and∣∣∣∂W (κ,e)

∂e

∣∣∣ ≤ b̄ for all κ ∈ [0, κ∗] and almost all e ∈ Rne .

Assumption 2 mainly states that the protocol (8), (9) is
UGES, see Nešić and Teel (2004). Examples of protocols
verifying Assumption 2 are the RR protocol, TOD proto-
col. We refer to Nešić and Teel (2004) for more details.

3.2 Main Result

Before introducing the main result of this paper, we state
the following supporting lemma.

Lemma 1. There exist X = XT > 0 and ρ, c > 0 satisfyingATX + XA + 2ρ2X +
2b̄2

c2
MTM XB

BTX −c2a2I

 < 0 . (15)

We impose that the maximum allowed transmission inter-
val (MATI) τ∗ is less than T (c, ρ, λ), where

T (c, ρ, λ) :=



1

Lr
arctan

(
r(1− λ)

2 λ
1+λ

( γ
L
− 1) + 1 + λ

)
γ > L

1

L

1− λ
1 + λ

γ = L

1

Lr
arctanh

(
r(1− λ)

2 λ
1+λ

( γ
L
− 1) + 1 + λ

)
γ < L

(16)

with r :=

√∣∣∣( γL)2 − 1
∣∣∣, γ := c2, L := |N|b̄/a + ρ2, with

c, ρ satisfying Lemma 1 and λ satisfying Assumption 2.
We are now ready to state the main result.

Theorem 1. Suppose that Assumptions 1 and 2 are verified
with λ ∈ (0, 1) and moreover τ∗ < T (c, ρ, λ), with T
defined in (16). Then, the following properties hold:

(1) Consider system (13) with flow set characterized by
(w, q) ∈ {0}×C and jump set (w, q) ∈ {0}×D. Then,
the set {0} × {0} × {0} × [0, κ∗]× [0, τ∗] is UGES.

(2) Consider system (13) with flow set W × C and jump
set W × D, for some given compact set W ⊂ Rnw .
Then, all the maximal solutions q to (13) are pre-
compact and limt+j→∞ ‖q(t, j)‖A = 0 where A :=

{q : |y| ≤ θ w} with w := maxv∈W |v| and θ := b̄|ΨS|
µ ρ c ,

where Ψ is defined in (3) and µ > 0 is the largest real
number satisfying µ2CTC ≤ X.

Item 1) of Theorem 1 ensures that the internal stability
requirement of Definition 1 is guaranteed, namely that
the origin of the closed-loop system is exponentially stable
when w = 0, even in presence of sampling and scheduling.
This result is a consequence of the fact that, in this case,
output regulation reduces to a stabilization problem via
emulation approaches, thus boiling down in the framework
considered for instance in Carnevale et al. (2007).

Item 2) of Theorem 1 states that, when w 6= 0, the
trajectories of the resulting NCS closed-loop system are
bounded, but in general, the output y is not asymptot-
ically converging to zero, namely the output regulation
requirement in Definition 1 is not ensured. This comes from
the fact that, in steady-state, the networked version of u
is not able to provide the right friend Ψw, but only an
approximation of it. As a consequence, the steady-state
behaviour of the x-component in (13) will not coincide
exactly with Πw defined in (3), and y cannot converge to
zero. In Section 3.4, however, we discuss some special cases
where asymptotic regulation can still be achieved. Note
that this analysis is consistent with Postoyan et al. (2014),
where it is shown that asymptotic tracking control is in
general not achievable in presence of network phenomena,
due to the sampling and hold of the feedforward action.

In item 2) of Theorem 1, we also provide an explicit
expression of the asymptotic gain θ relating the impact
of w on y. The parameter θ is directly proportional to
the norm of the friend Ψ and to the frequencies of the
exosignal w (namely to S), and inversely proportional to
the parameters ρ, c which uniquely define the MATI τ∗ via
(16). Further comments about the relation between θ and
τ∗ are given in Section 3.5.



3.3 Sampled-data case

Theorem 1 requires that λ ∈ (0, 1) in Assumption 2. When
λ = 0, which corresponds to the sampled-data case (or
in other words, in absence of scheduling), the analysis
needs to be slightly modified. First, we revisit Lemma 1 as
follows.

Lemma 2. There exist X = XT > 0, H = HT > 0 and
ρ, c > 0 satisfying[

ATX + XA + 2ρ2X +
2

c2
MTHM XB

BTX −c2H

]
< 0 . (17)

We have the next result for the sampled-data case, the
proof of which is given in the Appendix.

Proposition 1. Suppose Assumption 1 is verified and τ∗ <
T (c, ρ, 0), with T defined in (16) where γ := c2 and L > 0
is the smallest real number satisfying (L− ρ2)H ≥ H|N|,
with ρ, c and H according to Lemma 2. Then, items 1) and
2) of Theorem 1 hold for system (13) with p = 0, h = 0

and κ∗ = 0, where in particular θ :=

√
|STΨTHΨS|

µρc .

3.4 Asymptotic regulation

We discuss here two particular cases in which the exact
output regulation requirement of Definition 1 can be still
achieved for the NCS system (13).

Constant exosignals. When w is constant signal, i.e. S =
S0 = 0 in (2), then θ = 0 in Theorem 1 and Proposition
1 and the output regulation requirement of Definition 1
holds. In other words, the internal model property of the
integral action (see Francis and Wonham (1976); Byrnes
et al. (2012)) is preserved in case of zero-sampling holder
and scheduling of the measured output and the control
input. We expect that similar results may hold also for
general classes of nonlinear systems, see Astolfi and Praly
(2017); Astolfi et al. (2018).

No network between the controller and the actuators.
When only the output y is transmitted over the net-
work, namely when we interconnect the system (1) with
the regulator (12), system (13) is defined with e := ey,
B := (0, GT )T , M := −CA, N := −CB, R := −CP−QS.
The following result can be stated.

Proposition 2. Suppose Assumptions 1 and 2 are verified
with λ ∈ (0, 1). Let τ∗ < T (c, 0, λ), with T defined as
in Theorem 1, with c coming from Lemma 1. Then item
1) and 2) of Theorem 1 are verified where in particular
A := {q : y = 0}, hence items 1) and 2) of Definition 1
hold.

Remark. The emulation approach considered in this work
is different from the approach followed in many other
papers, such as Lawrence and Medina (2001); Garćıa-
Sandoval et al. (2007) and references therein, where ripple-
free regulators composed by a discrete-time regulator and
a continuous-time modulator are used to asymptotically
guarantee zero inter-sampling behaviour. Most likely, the
approach followed in Lawrence and Medina (2001), Garćıa-
Sandoval et al. (2007), allows to design a regulator with
larger MATI, though its use is limited to the case of peri-
odic sampling, namely when ε = τ∗, with no scheduling.

3.5 Network design for practical regulation

A consequence of Theorem 1 (and Proposition 1) is that,
in general, asymptotic regulation cannot be guaranteed.
Therefore, a question of particular interest is how to design
the communication network in order to guarantee given
performance in terms of the asymptotic regulated output
bound θ. To this end, we can exploit Theorem 1 as follows.

Suppose, in particular, that we want to ensure θ < θmax

in Theorem 1 for some fixed θmax > 0. By recalling that
µ2CTC ≤ X, compute c∗ > 0 as the smallest value for c
satisfyingATX + XA + 2

b̄2

c2

(
|ΨS|2

θ2
max

CTC + MTM

)
XB

BTX −c2a2I

 < 0

(18)
and select ρ(c) = b̄|ΨS|/(µc θmax). Finally, compute
τ∗max = T ∗(c, ρ(c), λ) with (16), which is the maximum
allowable transmission interval for which, given the plant
dynamics and emulated regulator, the maximum gain θmax

from w to y is satisfied. The same reasoning can be followed
in the case λ = 0 where, in place of (15), we use (17). In
view of the proposed procedure, performances in terms
of θ can be improved by choosing a smaller MATI τ∗.
This is confirmed in Section 4 via a numerical example.
In conclusion, the result of Theorem 1 can be used as a
design tool (with potentially some conservatism) to select
the communication network parameter MATI with a per-
formance based design trade-off.

4. NUMERICAL EXAMPLE

Consider the output regulation problem described in Sec-
tion 2.1 with nx = 3, nu = 2, ny = 1, nω = 1,

A =

(
0.1 0 1
0 −1 0
0 1 −1

)
B =

(
1 0
0 1
0 0

)
P =

(−1 0
0 0
0 1

)
C = (1 0 0), Q = (1 0), S is of the form (2) with ω1 = 0.1
and S0 is not present and therefore no integral action is
needed. We design controller (4) with (5), and we compute
Ψ solution to (3). We select nξ = 5, Φ = S, Γ = (0 , 1)T ,
H = (1 , 0.1 , 0.1)T ,

M =

(
0 −0.2
0 −0.2
0 0

)
N =

(−1.9 0 0
−0.1 −1.1 0
−0.1 1 −1

)
K1 =

(
0 −0.2
0 −0.2

)
K2 =

(
−1 0 −1
0 −0.1 0

)
Ψ =

(
−0.193 0.901
1.580 −1.733

)
.

It can be verified that the matrix A is Hurwitz. Finally, we
suppose that the exogenous signal w ranges in the compact
set W = {w ∈ R2 : |w| ≤ w}, with w = 1. We consider,
in this numerical example, the case in which there are
` = 3 nodes corresponding to the 2 inputs and the output,
respectively, with the RR protocol (10) and with aperiodic
sampling with ε = τ∗/2. From Nešić and Teel (2004), we

know that Assumption 2 is satisfied with λ =
√

(`− 1)/`,

ā = b̄ =
√
`, a = 1. By following Section 3.5, we derive

the MATI τ∗ to satisfy given gain θmax for the regulated
output. We used the inequality (18) to obtain c, ρ and the
definition (16) to compute τ∗. We compare those value
by running a simulation in Matlab/Simulink for the same



θmax c ρ τ∗ (·10−2) θsim (·10−4)

1 2.581 0.182 2.25 3.47

0.5 2.676 0.336 2.11 3.31

0.1 4.337 0.667 0.94 0.86

0.05 6.039 0.668 0.51 0.44

Table 1. Given bound of θmax and bound θsim
obtained from simulation.

values of MATI τ∗. It can be also verified that values of
τ∗ larger than 0.35 leads to instability. The asymptotic
bounds of the output found in the simulations, denoted as
θsim, are given in Table 1. As expected by the discussion
in Section 3.5, performances in terms of output bounds
can be improved by choosing a smaller MATI. On the
other hand, the specifications on the network can be less
stringent if the performance specification is loosened.

5. CONCLUSION

We investigated the problem of output regulation for lin-
ear NCSs in presence of uncertain transmission intervals
and scheduling between the plant, sensors, actuators and
controller. We have shown that in general internal sta-
bility and boundedness of the regulated output error is
guaranteed, provided that the network and the scheduling
protocol satisfy certain properties. In other words, the
presence of network effects may destroy the internal model
property of the regulator. Specific cases where asymptotic
output regulation is achieved are discussed, namely when
the regulator is directly connected with the actuators, or
when the exogenous signals are constants. For the general
case we have provided a performance analysis in which
an expression for the gain from external disturbances to
output error is given. Future works include the analysis of
other network phenomena (such as delay or quantization)
and the set up of new control strategies able to guarantee
asymptotic regulation in such framework by means of
smart actuators.
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W.M.H. (2014). Tracking control for nonlinear net-
worked control systems. IEEE Transactions on Auto-
matic Control, 59(6), 1539–1554.

Sureshbabu, N. and Rugh, W.J. (1997). On output regu-
lation for discrete-time nonlinear systems. Automatica,
33(9), 1683–1689.

van de Wouw, N., Naghshtabrizi, P., Cloosterman, M., and
Hespanha, J.P. (2010). Tracking control for sampled-
data systems with uncertain time-varying sampling in-
tervals and delays. International Journal of Robust and
Nonlinear Control, 20(4), 387–411.

Walsh, G.C., Ye, H., and Bushnell, L.G. (2002). Stability
analysis of networked control systems. IEEE transac-
tions on control systems technology, 10(3), 438–446.



Appendix A. PROOFS

A.1 Proof of Lemma 1

Since A is Hurwitz, there always exist a symmetric and
positive definite matrix X and a sufficiently small ρ > 0
such that ATX + XA + 2ρ2X < 0. The desired result
is obtained by the Schur’s complement of (15) and by
selecting c > 0 large enough.

A.2 Proof of Lemma 2

Since A is Hurwitz, there always exist a symmetric and
positive definite matrix X and a sufficiently small ρ > 0
such that ATX + XA + 2ρ2X < 0. The desired result
is obtained by the Schur’s complement of (15) and by
selecting any H = HT > 0 and c > 0 large enough. Note
that when H = I, inequality (17) coincides with (15), with
a = b̄ = 1.

A.3 Proof of Theorem 1

The proof of this theorem follows the main arguments used
in the proof of Theorem 1 in Postoyan et al. (2014), though
three main points characterize the framework considered
here: the definition of a change of coordinates for system
(13) where the regulated output does not depend on
the exogenous signal w; the definition of a Lyapunov
function which is slightly different from the one proposed
in Carnevale et al. (2007), since it is adapted for the use
of inequality (15); the use of the regulator equations (3)
to give an explicit expression of the asymptotic bound
θ showing its explicit dependency on the MATI via the
parameters c, ρ > 0, on the properties of the network via
b̄ coming from Assumption 2, on the friend Ψ, and on the
frequency of w contained in S.

First, let ΠΠΠ = (ΠΠΠx,ΠΠΠξ) ∈ Rnχ be computed as the
unique solution 3 to the Sylvester equation ΠΠΠS = AΠΠΠ+P.
Standard results in output regulation theory 4 can be used
to show that ΠΠΠx = Π, with Π defined in (3), and, moreover,
KΠΠΠξ = Ψ. Consider the change of coordinates χ̃ = χ−ΠΠΠw
by which system (13) is transformed into

ẇ = Sw
˙̃χ = Aχ̃+ Be
ė = Mχ̃+ Ne+ Lw
κ̇ = 0
τ̇ = 1

 κ ∈ [0, κ∗], τ ∈ [0, τ∗],

w+ = w
χ̃+ = χ̃
e+ = h(e, κ)
κ+ = p(κ)
τ+ = 0

 κ ∈ [0, κ∗], τ ∈ [0, τ∗],

y = Cz

(A.1)

where L := MΠΠΠ + R =

(
0

−KΠΠΠξS

)
=

(
0
−ΨS

)
. The last

equality is a direct consequence of the definitions of the

3 Uniqueness of ΠΠΠ is a direct consequence of the fact that the matrix
A defined in (6) is Hurwitz and therefore σ(A) ∩ σ(S) = ∅.
4 See (Byrnes et al., 2012, Section 1.3).

matrices M, R and ΠΠΠξ. We write system (A.1) in the
compact form

ẇ=Sw
η̇=F(η, w)

}
η ∈ Cη,

w+=w
η+=G(η)

}
η ∈ Dη, (A.2)

where η := (χ̃, e, κ, τ). Note that in view of (Goebel
et al., 2012, Theorem 6.30), of Assumption 2, and of the
definition of Cη, Dη, system (A.2) is well-posed.

Let φ : [0, T ]→ R, with T defined in (16), be the solution
to

φ̇ = −2Lφ− γ(φ2 + 1) φ(0) = λ−1 (A.3)

where λ ∈ (0, 1) is defined in Assumption 2, and γ = c2.
We have the following result according to Carnevale et al.
(2007).

Claim 1. φ(τ) ∈ [λ, λ−1] for all τ ∈ [0, T ].

Consider now the following function as also employed in
Carnevale et al. (2007):

U(η) := V (χ̃) + φ(τ)W 2(κ, e) (A.4)

where V (z) := χ̃TXχ̃, with X satisfying (15), and W
defined in Assumption 2. By definition of V,W , and as
a consequence of Claim 1, there exist %̄, % > 0 such that

%|(χ̃, e)|2 ≤ U(η) ≤ %̄|(χ̃, e)|2 (A.5)

for any η ∈ Cη ∪ Dη. Let η ∈ Cη. By using Assumption 2,
Claim 1 and the definition of G according to (A.1) and
(A.2), we have that

U(G(η)) = V (χ̃) + φ(0)W 2(p(κ), h(k, e))
≤ V (χ̃) + λW 2(κ, e) ≤ U(η)

(A.6)

for all (w, η) ∈ W×Dη. Hence, we have shown that U does
not increase at jumps. Next, by using the definitions of F
according to (A.1) and (A.3), we compute

U◦(η,F(η, w))
= χ̃T (XA + ATX)χ̃+ χ̃TXBe+ eTBTXχ̃

+2φ(τ)W (κ, e)
∂W (κ, e)

∂e

(
Mχ̃+ Ne+ Lw

)
−[2Lφ(τ) + γ(φ2(τ) + 1)]W 2(κ, e)

(A.7)
for all (w, η) ∈ W × Cη. By using Young’s inequality and
Assumption 2, we have

2φ(τ)W (κ, e)
∂W (κ, e)

∂e

(
Mχ̃+ Lw

)
≤ γφ2(τ)W 2(κ, e) +

2b̄2

γ

(
χ̃TMTMχ̃+ wTLTLw

)
and ∣∣∣∣∂W (κ, e)

∂e
Ne

∣∣∣∣ ≤ |N| b̄aW (κ, e)

in view of Assumption 2. As a consequence, by definition
of L and γ, and by using the first inequality in Assumption
2, we derive from (A.7)

U◦(η,F(η, w))
≤ χ̃T (XA + ATX)χ̃+ 2χ̃TXBe− 2ρ2φ(τ)W 2(κ, e)

−γa2|e|2 +
2b̄2

c2
(
χ̃TMTMχ̃+ wTLTLw

)
(A.8)

for all (w, η) ∈ W × Cη. Therefore, by applying (15) to
(A.8), and by recalling the definition of U in (A.4), we
directly obtain

U◦(η,F(η, w)) ≤ −2ρ2 U(η) +
2b̄2

c2
wTLTLw (A.9)



for all (w, η) ∈ W × Cη.

When w = 0, inequality (A.9) reads

U◦(η, f) ≤ −2ρ2 U(η) . (A.10)

As a consequence, item (1) of Theorem 1 holds in view of
(A.5), (A.6), (A.10), and by invoking the same arguments
as in the proof of Theorem 1 in Carnevale et al. (2007).
Note that maximal solutions are complete as all the
conditions of (Goebel et al., 2012, Proposition 6.10) are
verified.

When w 6= 0 and w ∈ W ⊂ Rnw , we may upper bound
the term in (A.9) wTLTLw ≤ supw∈W |w|2|ΨS|2, where
we used the definition of L in (A.1). As a consequence,
inequalities (A.6) and (A.9) give

U◦(η,F(η, w)) ≤ −2ρ2(U(η)− µ2θ2w2)
U(G(η))− U(η) ≤ 0

(A.11)

for all (w, η) ∈ W × Cη and (w, η) ∈ W ×Dη respectively,
with θ, µ and w defined in the statement of the theorem.
Let (w, η) be a solution to system (A.2). By definition of
the Clarkes derivative (see Section II) and page 100 in Teel
and Praly (2000), it holds that, for all j and for almost all
t ∈ Ij (where Ij = {t : (t, j) ∈ dom (w, η)})

U̇(η(t, j)) ≤ U◦(η(t, j),F(η(t, j), w(t, j)))
≤ −2ρ2(U(η(t, j))

as η(t, j) ∈ Cη for all (t, j) ∈ dom (w, η). From previous
inequality, and by recalling that for all j ∈ J (where
J = {j : (t, j) ∈ dom (w, η)}) the second inequality (A.11)
holds, we obtain

U(η(t, j)) ≤ exp(−2ρ2t)U(η(0, 0)) + µ2θ2w2, (A.12)

for (t, j) ∈ dom (w, η). As a consequence, since system
(A.2) is well-posed (Goebel et al., 2012, Theorem 6.8),
we can apply (Goebel et al., 2012, Proposition 6.10)
to conclude that all maximal solutions are complete.
Therefore, in view of (A.12) and (A.5) are compact and
converge to the set Aq := {(w, η) : U(η) ≤ µ2θ2w2}. Since
y = Cχ̃, by using the inequality µ2yTCTCy ≤ χ̃TXχ̃ ≤
U(η) we have that A ⊇ Aq concluding the proof.

A.4 Sketch of the proof of Proposition 1

First of all, note that when h = 0, p = 0, κ∗ = 0,

Assumption 2 is verified with W (κ, e) :=
√
eTHe and

λ = 0. As a consequence, the proof follows the same
arguments of the proof of Theorem 1, which are here
omitted for sake of brevity, where in particular we use
the inequality (17) instead of (15). Note that by taking
H = I, we obtain a = ā = b̄ = 1 in Assumption 2, and the
inequality (17) reduces to (15).

A.5 Sketch of the proof of Proposition 2

By applying the change of coordinates χ̃ = χ − ΠΠΠw we
obtain system (A.1) where in particular L := 0 (this can
be easily shown by removing the last nu rows from the
definition of L in (A.1)). As a consequence, since the (χ̃, e)-
flow map and jump maps are independent of w, the proof
reduces to show UGAS of the setW×{0}×{0}× [0, κ∗]×
[0, τ∗] of system (A.1). This can be shown by using the
inequality (15) with ρ = 0 and by following the same
arguments of the proof of Theorem 1 in Carnevale et al.

(2007) and by properly recalling the definition of γ = c2.
The proof concludes by noting that solutions in that set
satisfy y = 0 in view of the definition of system (A.1).


