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Abstract: We propose a technique to modify a given discrete-time (nonlinear) observer so that
the state estimate remains in a given convex set, without altering the observer performances
in terms of convergence and robustness to external disturbances. The proposed approach can
be used to remove the peaking phenomenon or to attenuate the effect of impulsive outliers
in the measures. it assumes that it is possible to execute a certain number of computations
between any two sampling times in order to refine the current estimate and bring it back into
the prescribed set. The proposed technique can be applied to any class of nonlinear observers
for which a quadratic Lyapunov function is used to prove stability.

1. INTRODUCTION

In the context of observer design, it is well known that
a wrong initialization of the estimate may induce very
large estimation errors during transient behaviors. This
phenomenon, also named peaking, see Khalil and Praly
(2014), can be observed in both continuous and discrete
time observers. For instance, peaking may be induced
by large gains selected to guarantee fast convergence of
the estimation error, or by dynamics possessing large
overshoots caused by unstable poles on the open loop
system, or by underdamping oscillatory behaviors, see,
e.g., (Seron et al., 2012, §1, §8, §9). Moreover, large
estimation errors can also occur in presence of large
measurement disturbances of impulsive nature, denoted
also as outliers, see Alessandri and Zaccarian (2018).
This phenomena may make the observer impractical or
unsafe to use during transient if not properly handled, see,
e.g. Khalil and Praly (2014), and renders implementation
tricky from a numerical perspective, in particular if the
computational power is limited as in embedded systems,
see, e.g., Henriksson (2006), Kopetz (2011). A simple
solution could be to keep the observer dynamics intact
but saturate its estimate. However, this approach does not
solve the numerical issues and does not attenuate the effect
of impulsive disturbances inducing undesired peaking in
steady-state behavior. Another natural idea would be to
saturate the observer dynamics and force the observer to
remain in the prescribed set, but this may destroy the
observer convergence properties as we show on an example.

For continuous-time systems, some solutions have been
proposed, such as reducing the peaking in high-gain ob-
servers in Andrieu et al. (2016), Astolfi et al. (2018),

or ensuring the invariance of a convex set for the high-
gain observers in Astolfi and Praly (2013); Maggiore and
Passino (2003), and for linear Kalman filters with linear
constraints in Berkane et al. (2018) and references therein.
For discrete-time systems, many techniques have been de-
veloped to address the problem of outliers, as in Alessandri
and Awawdeh (2016), Alessandri and Zaccarian (2018),
De Palma and Indiveri (2017), Gandhi and Mili (2010).
Yet, these approaches do not guarantee the state of the
observer to remain in some given prescribed set.

We propose a technique to modify a given discrete-time
observer that guarantees the estimate to remain in a pre-
scribed convex compact set, while preserving the observer
convergence properties. This technique is inspired from
the convex design method first proposed in Astolfi and
Praly (2013) for continuous-time observers and can be
applied to any class of discrete-time nonlinear observer
provided that a quadratic Lyapunov function for the er-
ror dynamics is known, see, for instance, Califano et al.
(2003), Ciccarella et al. (1993), Ibrir (2007), Kazantzis
and Kravaris (2001), Xie et al. (1994), Zemouche and
Boutayeb (2013). We assume for this purpose that each
discrete time corresponds to a sampling time of the plant
and that some computations can be carried out between
each consecutive sampling times. More precisely, if the
estimate – following the initially given observer’s dynamics
– exits the prescribed set at a sample time, we propose a
refining strategy that brings it back into that viable set
before the next sampling event. We guarantee that the
Lyapunov function does not increase at these intermediate
computations. Hence, the convergence properties of the
observer are not altered.



The rest of the paper is organized as follows. The prob-
lem formulation is stated in Section 2 and the redesign
approach presented in Section 3. Then, our main result is
given in Section 4 and a numerical simulation is shown in
Section 5. Finally, conclusions and future perspectives are
discussed in Section 6.

Notation: We denote by R the set of real numbers, R≥0 is
the set of non-negative real numbers, N is the set of non-
negative integers, and N>0 is the set of positive integers.
We define Rn≥0 := R≥0× · · · ×R≥0 with n ∈ N>0. Given a

set A ⊂ Rn, int(A) stands for the interior of A, namely the
set of all points in A that do not belong to its boundary.
Given a real number x ∈ R≥0, we denote with ceil(x) the
ceiling function, namely ceil(x) = min{y ∈ N : y ≥ x}.
We define | · | as the standard Euclidean norm. Given a
matrix A ∈ Rn×n, we denote by |A| its induced norm, and
eig(A) the set of its eigenvalues. Given x ∈ R, we define
satr(x) := max(min(x, r),−r). A continuous function α :
R≥0 → R≥0 is of class K if it is strictly increasing and
α(0) = 0.

2. PROBLEM STATEMENT

Consider the discrete-time system

xk+1 = f(xk, uk, dk), yk = h(xk, dk) (1)

where xk ∈ Rnx is the state, uk ∈ Rnu a known input,
yk ∈ Rny is the output, and dk ∈ Rnd is a perturbation
acting on the dynamics and/or the measurement, at time
k ∈ N. The following assumption is stated.

Assumption 1. We are given compact subsets X0 ⊂ Rnx ,
U ⊂ Rnu , D ⊂ Rnd , and X ⊂ Rnx , such that any trajectory
of (1) initialized in X0, with input in U and perturbation
in D, remains in X for all k ∈ N.

We suppose to know an observer of the form

x̂k+1 = F (x̂k, uk, yk) (2)

where x̂k ∈ Rnx is the state estimate at time k ∈ N. By
denoting the estimation error e := x̂− x and the observer
error dynamics as

ek+1 = ∆(xk, ek, uk, dk)

:= F (ek + xk, uk, h(xk, dk))− f(xk, uk, dk) , (3)

the performances of observer (2) are characterized in the
following assumption.

Assumption 2. There exist a matrix P = P> > 0 and a
map β : R≥0 × Rnd → R≥0, such that, by defining

V (e) := e>Pe (4)

on Rnx , the following inequality holds for all (x, e, u, d) ∈
X × Rnx × U ×D

V (∆(x, e, u, d)) ≤ β
(
V (e), d

)
. (5)

Remark 1. At this point, no particular assumption is
made on the map β which characterizes the performances
of the observer. For an exponentially stable observer
which is input-to-state stable (ISS) with respect to the
perturbation, the function β is typically of the form

β(v, d) = ρ v + α(|d|) (6)

with ρ ∈ [0, 1) and α ∈ K. 4

In the following, λ and λ̄ are the minimum and maximum
eigenvalue of P , respectively, so that for all e in Rnx ,

λ|e|2 ≤ V (e) ≤ λ̄|e|2 . (7)

Although the plant state xk is known to remain in X ,
the estimate x̂k may leave X , especially during transient
behaviors. As a consequence, our goal is to modify the
observer dynamics (2) to ensure the estimate x̂k remains in

a given compact set X̂ ⊃ X , while preserving the original
performances stated in Assumption 2.

In the following, we suppose that the discrete-time in-
stances k correspond to sampling times tk where a mea-
surement yk is available, and that between any two consec-
utive sampling events tk and tk+1, we are able to carry out
θ ∈ N – to be defined – computations in order to refine
the estimates given by (2). This assumption is realistic
when system (1) is the exact or approximate discrete-time
model obtained by sampling 1 a continuous-time system
at instants tk, tk+1, . . ., if the digital controller has a com-
putational frequency which is higher than the sampling
frequency. In other words, we run the following algorithm
depicted in Figure 1:

(1) at instant tk, we compute

x̂k,1 = F (x̂k, uk, yk) . (8)

(2) if x̂k,1 ∈ X̂ , we select x̂k+1 = x̂k,1. Otherwise, if

x̂k,1 6∈ X̂ , we carry out θ refining computational steps
leading to x̂k,i, i = 2 . . . θ+ 1, such that at the end of

those steps x̂k,θ+1 ∈ X̂ .
(3) we finally define

x̂k+1 = x̂k,θ+1. (9)

t0 tk tk+1
. . . . . .

x̂k x̂k+1

. . .

x̂k,1 x̂k,θ+1x̂k,2

yk yk+1

=

Figure 1. Discrete observer framework: θ computational
steps between each tk and tk+1.

We thus address the following problem.

Problem 1. For a given convex compact set X̂ ⊃ X , design
a refining strategy, i.e. a map G : Rnx → Rnx and a
number θ ∈ N so that, by combining (8)-(9) with

x̂k,i+1 = G(x̂k,i) , i = 1 . . . θ , k ∈ N, (10)

the resulting new observer dynamics

x̂k+1 = Fm(x̂k, uk, yk) (11)

with Fm : Rnx × Rnu × Rny → Rnx , verify

(1) the Lyapunov function (4) still satisfies (5) with ∆
replaced by

∆m(xk, ek, uk, dk)
:= Fm(ek + xk, uk, h(xk, dk))− f(xk, uk, dk) ,

(12)

i.e. the performances of the observer are preserved,
(2) for any initial conditions pair (x0, x̂0) ∈ X0 ×X , any

input in U and perturbation in D, the corresponding

solution to (11) lies in X̂ for all k ∈ N.

3. REDESIGN APPROACH

3.1 Convexity assumption

The method we propose requires convexity properties

of the set X̂ in which we want to keep the estimate
trajectories. For this, let us define vmax as
1 See for instance Nešić et al. (1999) and references therein.



vmax := max
(x,x̂,d)∈X×X̂×D

β
(
V (x̂− x), d

)
, (13)

with β given by Assumption 2, and the compact sets Ωmax

and X̂max as

Ωmax := {e ∈ Rnx : V (e) ≤ vmax}, (14)

X̂max := {x̂ ∈ Rnx : ∃x ∈ X , x̂− x ∈ Ωmax}. (15)

According to Assumption 1, and in view of (5), vmax

defines the size of the largest Lyapunov level sets of V

after a jump from xk ∈ X , x̂k ∈ X̂ , with uk ∈ U and

dk ∈ D. In other words, x̂k+1 is in X̂max and ek+1 is in

Ωmax when (xk, x̂k, uk, dk) is in X × X̂ × U ×D along the
dynamics (2). We make the following assumption.

Assumption 3. There exist nc ∈ N, a C1 function c :
Rnx → Rnc

≥0 and real numbers εmax > εmin > 0 and δ > 0
such that, by letting ci the i-th component of c and

C0 := {x ∈ Rnx : c(x) = 0},
Cmin := {x ∈ Rnx : |c(x)| ≤ εmin},
Cmax := {x ∈ Rnx : |c(x)| ≤ εmax},

(16)

the following properties hold.

(1) X ⊂ C0 ⊂ Cmin ⊂ X̂ ⊂ Cmax.

(2) X̂max ⊆ Cmax.
(3) Each function ci : Rnx → R≥0 is convex on Cmax, i.e.

ci(x̂) ≤ ci(x)+
dci
dx

(x̂)(x̂−x) ∀x, x̂ ∈ Cmax. (17)

(4) sup
x∈Cmax

∣∣∣∣ dcdx (x)

∣∣∣∣ ≤ δ.
If the set X̂ can be arbitrarily chosen, we have the following
result.

Lemma 1. Consider Q = Q> > 0 and r > 0, such that
X ⊂ {x ∈ Rnx : x>Qx ≤ r}. Then, Assumption 3 is

verified with X̂ = {x ∈ Rnx : x>Qx ≤ r̄},

c(x) := max
{
x>Qx
r − 1, 0

}2

, (18)

for some r̄ > r > r and εmax > εmin > 0.

If X , X̂ are imposed but a compact convex intersection of

half-planes and quadrics fits between X and X̂ , c can be
taken multi-dimensional with each ci built as in (18) from
linear or quadratic maps, as showed in the next lemma.

Lemma 2. Suppose there exist real numbers ri and ri
i = 1 . . . nx such that X ⊂

∏nx

i=1[ri, ri] ⊂ X̂ . Then,
Assumption 3 is verified with

c(x) = (c1(x), c1(x), . . . , ci(x), ci(x), . . . , cnx
(x), cnx

(x)),

ci(x) = max {ri − xi, 0}2 , ci(x) = max {xi − ri, 0}2 ,
(19)

for some εmax > εmin > 0.

The proofs of Lemma 1 and 2 are omitted for space
reasons.

3.2 Refining strategy

We introduce the map M : Cmax → Rnx defined as

M(x̂) = −γP−1 dc
dx

(x̂)>c(x̂) , (20)

with a positive scalar γ, and P coming from Assumption 2.
As proved in Lemma 3 of Appendix A, if γ is sufficiently

small, modifying the estimate x̂ as x̂+M(x̂) makes V (x̂−
x) decrease no matter where the plant state x actually is,
with V the quadratic Lyapunov function defined in (4).
Besides, V decreases strictly (by γε2min) when x̂ is outside
int(Cmin), with Cmin defined in (16).

Since Cmin ⊆ X̂ , a possible strategy is therefore to repet-

itively use M to bring the estimate back in X̂ at each
iteration k. For that, consider vmin > 0 as

vmin := max{v ∈ R≥0 : ∀ x ∈ X ,
{x̂ ∈ Rnx : V (x̂− x) ≤ v} ⊆ Cmin} .

In other words, vmin is the largest positive number such
that the following property holds

x ∈ X and V (x̂− x) ≤ vmin =⇒ x̂ ∈ Cmin ⊂ X̂ . (21)

Since the true state x is known to be in X , a way to bring

x̂ back into X̂ is thus to bring V below the threshold vmin.
This can be done by applying M at most θ ∈ N times,
with θ defined as

θ := ceil

(
max{vmax − vmin, 0}

γε2min

)
. (22)

Remark 2. By definition of X̂max, it may occur that

X̂max ⊂ Cmin and that vmax < vmin. This means that after
every jump of the original observer (2), the estimate re-

mains in the desired set X̂ . In such a case, no modification
is needed, namely θ = 0 and all the analysis is trivially
satisfied since no refining is needed. 4

The redesign we propose consists in correcting the state
estimate with the map M as long as the estimate is outside
Cmin, namely the function (10) is selected as

G(x̂k,i) =

{
x̂k,i +M(x̂k,i) if x̂k,i ∈ Cmax \ Cmin

x̂k,i otherwise
(23)

for i = 1 . . . θ. As it can be noted by the expression of M ,
the correction (23) uses the gradient of the convext map

c, namely −dc/dx, to bring x̂k,i+1 closer to X̂ along level
sets of V . The recursive algorithm stops when we cross
Cmin. This strategy is depicted in Figure 2. Note that this
could not be achieved in one iteration because γ needs to
be sufficiently small to ensure that V decreases, as shown
in Lemma 3 in the Appendix, which justifies the θ steps.

Cmax

Cmin

X̂

V (e) ≤ vmax

V (e) ≤ vmin

x̂k,1

x̂k,θ+1

Figure 2. Refining strategy in (23). Red ellipsoides: Cmin,

Cmax. Green polygon: X̂ . Dotted blue ellipsoides:
V (e) ≤ vmin and V (e) ≤ vmax. Dashed black line:
path of x̂k,i+1, i = 0, . . . , θ.

Remark 3. This redesign generates new observer dynamics
(11) with a function Fm recursively defined through (23).
If an explicit expression of Fm is available known, as in
Berkane et al. (2018) for the particular case of linear dy-



namics with linear constraints, then the θ computational
steps of the refining algorithm are not necessary. 4

4. MAIN RESULT

With the refining strategy proposed in the previous sec-
tion, we obtain the next result, addressing Problem 1.

Theorem 1. Suppose Assumptions 2 and 3 hold and take

0 < γ ≤ λ

δ2
. (24)

Then, the functions V , Fm, ∆m, defined by (4), (11), (12)
with the algorithm (23), satisfy

V (∆m(x, e, u, d)) ≤ β
(
V (e), d

)
(25a)

Fm(x̂, u, h(x, d)) ⊂ X̂ , (25b)

for any (x, x̂, u, d) ∈ X×X̂×U×D such that f(x, u, d) ∈ X ,
and with e = x̂− x.

Proof. The proof of the theorem is omitted for space rea-
sons. It can be deduced by direct application of Lemma 3
given in appendix. In particular, property (25a) can be
proved by using the fact that at each step i ∈ {1, . . . , θ},
the decrease of the Lyapunov function is preserved in
view of inequality (A.1a). Property (25b) can be similarly
proved by applying inequality (A.1b) θ times and by using
item 1) of Assumption 3. 2

In Theorem 1, (25a) states that inequality (5) is preserved
when using the modified dynamics (11). (25b) implies the

invariance of X̂ for the dynamics (11) at times k ∈ N,

namely that x̂k+1 ∈ X̂ if x̂k+1 is computed according to
the modified dynamics along (23), for any initial condition

(xk, x̂k) ∈ X × X̂ , input in U and perturbation in D. We
immediately deduce the next corollary.

Corollary 1. Consider system (1) and suppose Assump-
tions 1, 2 and 3 hold with β of the type (6). There exist
ν > 0 and a class K function α0 such that for any γ
verifying (24) and for any solution xk to (1) initialized

in X0, any solution x̂k to (11) initialized in X̂ , with input

(u, d) in U × D and yk = h(xk, dk), satisfies x̂k ∈ X̂ and

|x̂k − xk| ≤ ν|x̂0 − x0|ρk/2 + α0

(
max
i≤k
|di|
)

(26)

for all k ∈ N.

The same ISS gain that we would have obtained without
modifying the observer is ensured in (26), but we have

gained the fact that x̂ remains in the prescribed set X̂ .

In order to use the algorithm in (23) we need to be
able to make (at most) θ + 1 recursive computations
between tk and tk+1. As a consequence, depending on the
sampling period tk+1 − tk and the computational power
of the system, this algorithm may have some limitations
in practical applications. Note however that the Lyapunov
function decreases even if we perform less than θ+1 steps.
Therefore, in case of limited computational power, it is still
interesting to do as many θm steps, , with θm ∈ {0, . . . , θ},
as possible, as long as the estimate is outside of Cmin: the
Lyapunov function will decrease by θmγε

2
min which will

make the algorithm converge faster and make the estimate

stay closer to X̂ .

The number θ defined in (22) gives the largest number of
refining steps needed to bring x̂ in Cmin. However, this
number may be significantly smaller, as the analysis is
made on the conservative assumption that at each step, the
decrease rate of V is γε2min. But according to Lemma 3 in
Appendix A, the true decrease is γ|c(x̂)|2, which is larger
than γε2min when x̂ is far from Cmin. In fact, the definition of
the refining strategy (23) provides, from a computational
point of view, a fast way to interrupt the algorithm once
x̂ is in Cmin.

An important observation is that although x̂k stays in

X̂ , the intermediary estimates x̂k,i can leave this set.

However, according to the proof, they remain in X̂max

defined in (15). Therefore, X̂max gives the magnitude of the
numbers to be computed throughout the algorithm. This
information can be useful to optimize the number encoding
and increase numerical precision in case of limited memory,
for instance in embedded systems. Actually, this set can
be made more precise by considering the evolution of V
given by (5) and the maximal initial error e0 = x̂0 − x0.
For instance, in the case of Corollary 1, V remains smaller
than

v̌max := V (e0,max) +
1

1− ρ
α(dmax)

where e0,max and dmax are bounds for the initial error
and the disturbance respectively. Therefore, x̂k,i actually
remain in˜̂Xmax :=

{
x̂ ∈ Rnx : ∃x ∈ X , V (x̂−x) ≤ min{vmax, ṽmax}

}
contained in X̂max. However, if the bounds e0,max and dmax

are small, it can happen that ṽmax ≤ vmax, in which case
x̂k,i are not guaranteed to be in a smaller set than if we
had not modified the observer. Nevertheless, those bounds
are extremely conservative, and it is very likely in practice
that x̂k,i remain closer to X .

All the aforementioned considerations are illustrated in
Section 5 on an example.

Remark 4. The robustness property of the modified ob-
server with respect to the perturbation d is characterized
by (25a), and is therefore the same as with the initial
observer. The added computational steps are not affected
by perturbations, they are carried out independently from
the plant and the observer. Therefore, the only robustness
property we could be concerned about is the robustness
of Theorem 1 with respect to numerical errors in the
refining steps. The discrete dynamics (23) are not outer
semicontinuous on the boundary of Cmin, so that sequential
compactness of solutions is not guaranteed. However, it
turns out that the same result holds when allowing to
use the correction M on the boundary, and we can show
using the framework of discrete inclusion that the result
of Theorem 1 is robust to computational errors. 4

5. SIMULATIONS

As a simple illustration, we consider the linear system

xk+1 = Axk , yk = Cxk + dk (27)

with xk ∈ R2, initial condition x0 = (−1,−1), dk ∈ R a
measurement disturbance and

A =

(
0 1
1 0

)
, C = (1 0) .
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Figure 3. a) Error ek, for k ∈ {0, . . . , 300}, provided by observer (28) without modification (blue line) and with
modification (23) (red line) with θm = 10. b) Number of refining steps of observer (28) with modification (23) at
each k ∈ {0, . . . , 300}, with θm = 10. c) Trajectory of x̂k,i, for k ∈ {0, . . . , 150} and i ∈ {0, . . . , 10}, of observer (28)
with modification (23).

The corresponding solution to (27) is constant, namely
xk = (−1,−1) for all k ∈ N, and lives therefore in the set
X = [−1, 1]× [−1, 1]. Consider the observer

x̂k+1 = Ax̂k + L(yk − Cx̂k) , (28)

with L chosen such that the matrix A − LC is Schur,
namely its eigenvalues lie in the open unit disk. The
result of a simulation of observer (28) with x̂0 = (1, 1),
L = [−1.87, 1874] (eig(A − LC) = {0.95, 0.92}), and a
disturbance dk selected as

dk =

{
0, 0 ≤ k ≤ 150 or k ≥ 154,
3, 150 < k < 154

is given in Figure 3a). Two large peaking phenomena are
present, caused by the wrong initial conditions and by the
effect of the disturbance d.

We would like to preserve the convergence of observer (28)

while keeping x̂ in the set X̂ = [−r, r] × [−r, r], for some
scalar r > 1. Note that we cannot implement the saturated
observer

x̂k+1 = satr(F (x̂k, uk, yk)) , (29)

where the function sat is taken component-wise, because
the convergence is not preserved in absence of disturbances
if r is taken too small. For instance, by selecting x̂0 = (1, 1)
and r = 2, solutions to (29) remain stuck in x̂k = (2,−2)
for all k > 0.

We thus apply the method presented in this paper. We
know that for all λ > max | eig(A−LC)|, there exists 2 P
solution to

(A− LC)>P (A− LC) ≤ λ2P , P > 0 .

We choose for instance λ = 0.955,

P = 105 ·
(

1.259 1.319
1.319 1.381

)
, P−1 =

(
0.039 −0.037
−0.037 0.036

)
.

Then, Assumption 2 holds along the lines of Remark 1, so
that we can follow Section 4 to modify the observer (28).
By following Lemma 2, we choose the function c satisfying
Assumption 3 as in (19) with

r1 = −1.1, r̄1 = 1.1, r2 = −1.1, r̄2 = 1.1,

and εmin = 0.01 which defines the set Cmin that will
be made invariant for the observer. As for εmax and
Cmax, notice that they are not used in the design apart
from providing an upper bound on γ in (24) through δ
defined in Assumption 3. Here we take γ = 17. Instead of
computing the theoretical number of steps θ by using (22),
we suppose that, due to computation limit constraints, we
cannot carry out more than θm computations in-between

2 Because 1
λ

(A− LC) is Schur.
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Figure 4. Error components ek, k ∈ {0, . . . , 300}, provided
by observer (28) without modification (blue line) and
with modification (23) (red line) with θm = 3.

sample times to apply the refining algorithm (23). We
performed two different scenarios: θm = 3 and θm = 10.
Figure 3 shows the behavior of the estimation error, the
trajectory of the refining steps, and the number of refining
steps required at each k for θm = 10 and for the same
initial condition x̂0 = (1, 1). The benefits of the refining
algorithm are obvious: the convergence rate is fastened
and the estimate is constrained in a set close to X which
is far smaller than the set where solutions to (28) naturally
evolve. As a comparison, the results of the same simulation
for θm = 3 are presented on Figure 4: the solution goes
further from X during the transients, but the benefits of
the modification algorithm are still clearly visible. Table 1
shows the maximum values of each component in the three
cases. Moreover, we see from Figures 3 and 4 how the
modification algorithm enables to reject more efficiently
the impulsive measurement disturbance dk.

6. CONCLUSION

We proposed a technique that guarantees the estimate to
remain in a prescribed convex set for a given observer’s
dynamics, without modifying its convergences properties.
For this, we need to know a quadratic Lyapunov function
for the error dynamics and we assume that, between any
two samples, we are able to make a certain number of com-
putations in order to refine the estimate of the observer.
The proposed methodology allows one to attenuate the
peaking phenomenon caused by wrong initial conditions
and/or by measurement outliers, as illustrated by the
numerical example. Future works aim at extending the
proposed technique to observers with a state-dimension
different from the plant’s, as in e.g. Astolfi et al. (2018),
observers with time-varying dynamics to handle Kalman-
like designs as in Besançon (1999) or Boutayeb et al.
(1997), and finally observers whose convergence is proved
in other coordinates (Astolfi and Praly (2013), Bernard
and Marconi (2018) Ciccarella et al. (1993)).



Observer without modification

supk |x̂1k| = 22.582 supk |x̂2k| = 21.611

Observer with modification θm = 10

supk |x̂1k| = 1.195 supk |x̂2k| = 1.238

supk,i |x̂1k,i| = 6.602 supk,i |x̂2k,i| = 4.783

Observer with modification θm = 3

supk |x̂1k| = 9.795 supk |x̂2k| = 8.366

supk,i |x̂1k,i| = 11.960 supk,i |x̂2k,i| = 10.358

Table 1. Bounds on x̂k = (x̂1k, x̂
2
k) and refining

steps x̂k,i = (x̂1k,i, x̂
2
k,i) for k ∈ {0, . . . , 300}

and i ∈ {0, . . . , θm}, with x0 = (−1,−1),
x̂0 = (1, 1).

Appendix A. PROPERTIES OF THE MAP M

Lemma 3. Suppose Assumptions 1 to 3 hold. If γ verifies
(24), the functions V and M defined in (4) and (20) satisfy

V (e+M(x̂)) ≤ V (e) ∀(x, x̂) ∈ X × Cmax (A.1a)

V (e+M(x̂)) ≤ V (e)− γε2min
∀(x, x̂) ∈ X × (Cmax \ int(Cmin))

(A.1b)

where e = x̂− x.

Proof. Take x in X and x̂ in Cmax. In view of (20),

V (e+M(x̂)) ≤ V (e)− 2γc(x̂)> dcdx (x̂)(x̂− x) (A.2)

+ γ2c(x̂)> dcdx (x̂)P−1 dcdx (x̂)>c(x̂).

By using the convexity properties in (17), we compute

−c(x̂)> dcdx (x̂)(x̂− x) = −
∑nc

i=1 ci(x̂)dcidx (x̂)(x̂− x)

≤ −c(x̂)>(c(x̂)− c(x))

≤ −c(x̂)>c(x̂) ≤ 0 (A.3)

where we used the fact that ci takes nonnegative values
and c(x) = 0 for all x ∈ X by Assumption 3. By combining
(A.2), (A.3), and by using (20), we obtain

V (e+M(x̂))
≤ V (e)− γc(x̂)>

(
2I − γ dcdx (x̂)>P−1 dcdx (x̂)

)
c(x̂)

≤ V (e)− γ|c(x̂)|2 ≤ V (e)

in which we used |P−1| ≤ λ−1. Hence (A.1a) holds.
Moreover, when x̂ ∈ Cmax\int(Cmin), we have |c(x̂)| ≥ εmin

and hence (A.1b) holds. 2
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