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Introduction

The goal of the present paper is to establish C 1,γ regularity results and to obtain a priori estimates for viscosity solutions of a class of fully nonlinear elliptic equations which may be singular or degenerate at the points where the gradient of the solution vanishes.

Regularity properties of viscosity solutions of fully nonlinear elliptic equations have been studied since a long time, starting with the seminal paper of Caffarelli [START_REF] Caffarelli | Interior a priori estimates for solutions of fully nonlinear equations[END_REF] in 1989, which contains in particular C 1,γ estimates for F (x, D 2 u) = f when f ∈ L p , p > n. His results were extended to L p viscosity solutions of operators F (x, D 2 u, Du) at most linear in the gradient by Swiech in [START_REF] Swiech | p -interior estimates for solutions of fully nonlinear, uniformly elliptic equations[END_REF]. Later, Winter [START_REF] Winter | Estimates at the Boundary for Solutions of Fully Nonlinear, Uniformly Elliptic Equations[END_REF] proved C 1,γ (Ω) estimates in the presence of a regular boundary datum. In the recent preprint [START_REF] Nornberg | C 1,α regularity for fully nonlinear elliptic equations with superlinear growth in the gradient[END_REF], Saller Nornberg proves C 1,γ and W 2,p results for L p viscosity solutions, when F (x, D 2 u, Du) is fully nonlinear, uniformly elliptic and at most quadratic in the gradient.

In [START_REF] Birindelli | First eigenvalue and maximum principle for fully nonlinear singular operators[END_REF], the first two authors of the present paper consider singular or degenerate equations of the form

|∇u| α F (D 2 u) = f (x, ∇u) ,
where F is fully nonlinear uniformly elliptic, α > -1, and f has growth at most of order 1 + α in the gradient. Lipschitz regularity results are proved in [START_REF] Birindelli | First eigenvalue and maximum principle for fully nonlinear singular operators[END_REF], and C 1,γ regularity up to the boundary in the case α ≤ 0 in [START_REF] Birindelli | Regularity and uniqueness of the first eigenfunction for singular fully nonlinear operators[END_REF], for the Dirichlet problem with homogeneous boundary conditions. Later, C 1,γ interior regularity was obtained in the case α > 0 by Imbert and Silvestre [START_REF] Imbert | C 1,α regularity of solutions of degenerate fully non-linear elliptic equations[END_REF], when f does not depend on ∇u. These results have been extended to the case where f depends on the gradient with growth at most α + 1, and to boundary C 1,γ results in the presence of sufficiently regular boundary datum, in [START_REF] Birindelli | C 1,β regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations[END_REF][START_REF] Birindelli | Fully nonlinear operators with Hamiltonian: Hölder regularity of the gradient[END_REF][START_REF] Birindelli | Hölder regularity of the gradient for solutions of fully nonlinear equations with sub linear first order term, Geometric Methods in PDE?s[END_REF].

In this note we prove C 1,γ interior and boundary regularity results when the equation possesses some Hamiltonian "superlinear" but at most "quadratic" in the gradient. More precisely, we consider equations of the form

-|∇u| α F (D 2 u) + b(x)|∇u| β = f (x) , (1.1) 
where the coefficient functions b and f are continuous, and the exponents α and β always satisfy α > -1 and α + 1 < β ≤ α + 2. On the second order operator F , we assume it is a continuous function F : S N → R defined on the set S N of N × N symmetric matrices, positively homogeneous of degree one, and satisfying further the uniform ellipticity condition

a tr(N ) ≤ F (M + N ) -F (M ) ≤ A tr(N ) , (1.2) 
for any M, N ∈ S N , with N ≥ 0, for given positive constants A ≥ a > 0.

The considered equations include, as a very special case, the semilinear equation

-∆u + b(x)|Du| β = f (x)
with 1 < β ≤ 2, and it is for this reason that the growth of the first order terms of equations (1.1) is referred to as "superlinear" and "subquadratic". The definition of viscosity solution we adopt is the one firstly introduced in [START_REF] Birindelli | First eigenvalue and maximum principle for fully nonlinear singular operators[END_REF], which is equivalent to the usual one in the case α ≥ 0, and, in any cases, allows not to test points where the gradient of the test function is zero, except in the locally constant case.

In the paper [START_REF] Birindelli | Dirichlet problems for fully nonlinear equations with "subquadratic" Hamiltonians[END_REF], we proved local and global Lipschitz regularity results for viscosity solutions of (1.1). In particular, we showed that if u satisfies in the viscosity sense equation (1.1) in a domain Ω ⊆ R N , then, for any pair of bounded subdomains ω ⊂⊂ ω ⊂⊂ Ω, there exists a positive constant M depending on a, A, N, α, β, u

L ∞ (ω ) , f L ∞ (ω ) , b W 1, ∞ ( 
ω ) and on ω, ω such that |∇u(x)| ≤ M a.e. in ω .

Our main result in the present paper reads as follows.

Theorem 1.1. Suppose that Ω is an open subset in R N , that f ∈ C(Ω), and b ∈ W 1,∞ loc (Ω). Let u ∈ C(Ω) be a viscosity solution of (1.1) in Ω ⊆ R N . Then, there exists 0 < γ ≤ 1 1+α + depending on the data, such that u belongs to C 1,γ loc (Ω) and, moreover, for any pair of subsets ω ⊂⊂ ω ⊂⊂ Ω one has

|∇u| C 0,γ (ω) ≤ C 1 |u| L ∞ (ω ) , |b| W 1,∞ (ω ) , |f | L ∞ (ω ) . (1.3) 
Note that some more explicit bound, depending on the Lipschitz norm of u, is given by

|∇u| C 0,γ (ω) ≤ C |u| W 1,∞ (ω ) + |b| 1 1+α ∞ |u| β 1+α W 1,∞ (ω ) + |f | 1 1+α L ∞ (ω )
. Theorem 1.1 complements the case β ≤ α + 1, treated in [START_REF] Birindelli | C 1,β regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations[END_REF]. We remark that the arguments used in [START_REF] Birindelli | C 1,β regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations[END_REF] are different and fail in the case β > α + 1. Furthermore, Theorem 1.1 includes the results of [START_REF] Nornberg | C 1,α regularity for fully nonlinear elliptic equations with superlinear growth in the gradient[END_REF] for α = 0. We observe that in [START_REF] Nornberg | C 1,α regularity for fully nonlinear elliptic equations with superlinear growth in the gradient[END_REF] the author uses essentially the ABP estimate of [START_REF] Koike | Maximum principle for fully nonlinear equations via the iterated comparison function method[END_REF] for fully nonlinear elliptic equations with quadratic growth in the gradient, and Caffarelli's iterative method. This method cannot be employed when α = 0. The main ingredients in the proof of Theorem 1.1 are the Lipschitz continuity of solutions, a fixed point argument, the existence and uniqueness result for Dirichlet problems proved in [START_REF] Birindelli | Dirichlet problems for fully nonlinear equations with "subquadratic" Hamiltonians[END_REF], and the C 1,γ estimates of [START_REF] Caffarelli | Interior a priori estimates for solutions of fully nonlinear equations[END_REF] for α = 0, of [START_REF] Imbert | C 1,α regularity of solutions of degenerate fully non-linear elliptic equations[END_REF][START_REF] Birindelli | Fully nonlinear operators with Hamiltonian: Hölder regularity of the gradient[END_REF] for α > 0, and the one proved in Proposition 2.1 when α < 0 . As an application of the C 1,γ loc regularity of viscosity solutions of equation (1.1), we prove the uniqueness of the ergodic function associated with the considered operators. Let us recall that, as recently proved in [START_REF] Birindelli | Ergodic pairs for singular or degenerate fully nonlinear operators[END_REF]

, if Ω ⊂ R N is an open, bounded, C 2 domain, if d(x)
denotes the distance function from ∂Ω and if the operator F satisfies the extra regularity assumption

F (∇d(x) ⊗ ∇d(x)) is C 2 in a neighborhood of ∂Ω , (1.4) 
then, given a locally Lipschitz continuous datum f , there exists a unique constant c Ω , called the ergodic constant or additive eigenvalue of F , such that the infinite boundary condition problem

-|∇u| α F (D 2 u) + |∇u| β = f + c Ω in Ω u = +∞ on ∂Ω (1.5)
has a solution u ∈ C(Ω), called ergodic function. In Section 3 we will prove the following result.

Theorem 1.2. Let Ω ⊂ R N be a bounded domain of class C 2 and let F satisfy (1.2) and (1.4). Assume further that α > -1, α + 1 < β < α + 2 and that f ∈ C(Ω) is bounded. Then, up to additive constants, problem (1.5) has at most one solution, provided that, when α = 0, sup Ω f < -c Ω and ∂Ω is connected.

2 Proof of Theorem 1.1.

In all this section we set |v| W 1,∞ := |v| ∞ + |∇v| ∞ . Furthermore, we always assume that F satisfies (1.2) and that α > -1.

We begin by proving a C 1,γ interior estimate for the case β = 0, which completes the results in [START_REF] Birindelli | Regularity and uniqueness of the first eigenfunction for singular fully nonlinear operators[END_REF]. The proof is very similar to the one employed in [START_REF] Birindelli | Regularity and uniqueness of the first eigenfunction for singular fully nonlinear operators[END_REF], but we reproduce it here for the sake of completeness. We denote by C lip some constant such that, by [START_REF] Birindelli | First eigenvalue and maximum principle for fully nonlinear singular operators[END_REF], for any u ∈ W 1,∞ (B(0, 1)) and for any g continuous and bounded in B(0, 1), any solution w of

-|∇w| α F (D 2 w) = g in B(0, 1) w = u on ∂B(0, 1) (2.1) 
satisfies |w| W 1,∞ (B(0,1)) ≤ C lip (|u| W 1,∞ (B(0,1)) + |g| 1 1+α
L ∞ (B(0,1)) ).

(2.2)

We have the following Proposition 2.1. Under the above assumptions, there exists 0 < γ ≤ 1 1+α + , depending only on N, a, A and α, such that any solution w of (2.1) belongs to C 1,γ loc (B(0, 1)) and, for any r < 1, there exists C r > 0 such that

|w| C 1,γ (B(0,r)) ≤ C r (|u| W 1,∞ (B(0,1)) + |g| 1 1+α L ∞ (B(0,1)) ) (2.3)
Proof. This result is well known in the case α = 0, see [START_REF] Caffarelli | Interior a priori estimates for solutions of fully nonlinear equations[END_REF], while the case α > 0 is proved in [START_REF] Imbert | C 1,α regularity of solutions of degenerate fully non-linear elliptic equations[END_REF]. It remains to consider the case α < 0. Take = 1 4C lip and 0 < δ ≤ 1. Let

K R = {v ∈ C 1 (B(0, 1)) ∩ W 1,∞ (B(0, 1)) : |v| W 1,∞ ≤ R}
where R has to be chosen large enough. Precisely, we fixed such

R satisfying R ≥ |w| W 1,∞ and R ≥ 2 C lip |f | ∞ (1 + R -α ) + R 1+α 2 C lip + |u| W 1,∞ ,
which is possible since both -α and 1 + α are lesser than 1.

We define the map T : v ∈ K R → w δ , where w δ satisfies

-F (D 2 w δ ) = (f -|v| α v + |w| α w)(δ 2 + |∇v| 2 ) -α 2 in B(0, 1) w δ = u on ∂B(0, 1).
The map T is well defined since the right hand side is continuous and bounded. Furthemore, w δ belongs to C 1 (B(0, 1)) and, by (2.2) in the case α = 0, one has

|w δ | W 1,∞ ≤ C lip (f -|v| α v + |w| α w)(δ 2 + |∇v| 2 ) -α 2 ∞ + |u| W 1,∞ ≤ C lip (|f | ∞ + 2 R 1+α 4C lip )(δ -α + R -α ) + |u| W 1,∞ ≤ C lip |f | ∞ (1 + R -α ) + R 2C lip + R 1+α 2C lip + |u| W 1,∞ ≤ R
by the choice of R. Hence, K R is a closed convex set invariant for T . Moreover, T is a compact operator, see [START_REF] Birindelli | First eigenvalue and maximum principle for fully nonlinear singular operators[END_REF], so that, by Schauder's theorem, T possesses a fixed point denoted by w δ . We further observe that, by the convexity inequalities

δ -α |w δ | 1+α ∞ ≤ (1 + α) |w δ | ∞ + (-α) δ and |f + |w| α w| ∞ |w δ | -α W 1,∞ ≤ (-α) |w δ | W 1,∞ + (1 + α) α 1+α (|f | ∞ + |w| 1+α ∞ ) 1 1+α , it follows that |w δ | W 1,∞ ≤ 2 C lip α 1+α (|f | ∞ + |w| 1+α ∞ ) 1 1+α + (-α) δ +δ -α |f | ∞ + |w| α+1 ∞ + |u| W 1,∞ .
Moreover, by (2.3) for α = 0, we also deduce that

|w δ | C 1,γ (B(0,r)) ≤ C r |f | ∞ + |w| 1+α ∞ 4 C lip + |w δ | 1+α ∞ 4 C lip (1 + |w δ | -α W 1,∞ ) + |u| W 1,∞ (2.4)
Note that w δ satisfies

-(δ 2 + |∇w δ | 2 ) α 2 F (D 2 w δ ) + |w δ | α w δ = f + |w| α w in B(0, 1) w δ = u on ∂B(0, 1)
Using estimate (2.4), which is uniform with respect to δ ≤ 1, we obtain that as δ → 0, up to a subsequence, w δ converges uniformly and locally in C 1 to a solution w of

-|∇w| α F (D 2 w) + |w| α w = f + |w| α w in B(0, 1) w = u on ∂B(0, 1)
By uniqueness of solutions of this boundary value problem, see [START_REF] Birindelli | First eigenvalue and maximum principle for fully nonlinear singular operators[END_REF], one gets that w = w and then, by (2.4), w is C 1,γ (B(0, r)). In order to get the precise estimate (2.3), we observe that, being of class C 1 , w is a solution of

-F (D 2 ϕ) = |∇w| -α f in B(0, 1) ϕ = u on ∂B(0, 1)
and therefore, by ( 2.3) in the case α = 0,

|w| C 1,γ (B(0,r)) ≤ C r (|∇w| -α ∞ |f | ∞ + |u| W 1,∞ ) ≤ C r (|f | 1 1+α ∞ + |w| W 1,∞ + |u| W 1,∞ ) ≤ C r (1 + C lip )(|f | 1 1+α ∞ + |u| W 1,∞ ) .
Thus, for α < 0 we get estimate (2.3) with C r replaced by C r (1 + C lip ).

Next, we recall the Lipschitz estimate proved in [START_REF] Birindelli | Dirichlet problems for fully nonlinear equations with "subquadratic" Hamiltonians[END_REF].

Theorem 2.2. Suppose that F is uniformly elliptic, f is continuous in B(0, 1), b is locally Lipschitz continuous in B(0, 1), α > -1 and β ∈ (0, α + 2]. Let u be a locally bounded viscosity solution of

-|∇u| α F (D 2 u) + b(x)|∇u| β = f (x) in B(0, 1)
Then u is locally Lipschitz continuous in B(0, 1), that is, for any r < r < 1, there exists some constant c depending on the ellipticity constants of F , on r, r and on universal constants, such that

|u| W 1,∞ (B(0,r)) ≤ c(|u| L ∞ (B(0,r )) , |f | L ∞ (B(0,r )) , |b| W 1,∞ (B(0,r )) ) Remark 2.3.
The assumption that b is Lipschitz continuous is needed only in the case β = α + 2. For the case β < α + 2, b bounded is sufficient.

We can now proceed with the Proof of Theorem 1.1. We will use both a truncation method and a fixed point argument. Estimate (2.3) will then enable us to get the conclusion.

With no loss of generality, we assume that u ∈ W 1,∞ (B(0, 1)) is a Lipschitz continuous solution of (1.1) in B(0, 1), and we set M = |u| W 1,∞ (B(0,1)) . In the following, T M denotes the truncation operator at level M , that is

T M (s) = inf{|s|, M } s |s| . Let α = 2 -1-(-α) + 1+α C lip
. For g bounded and continuous, let w be the unique solution, see [START_REF] Birindelli | First eigenvalue and maximum principle for fully nonlinear singular operators[END_REF], of the Dirichlet problem

-|∇w| α F (D 2 w) + 1+α α |w| α w = g in B(0, 1) w = u on ∂B(0, 1)
.

By (2.
2), the solution w satisfies

|w| W 1,∞ ≤ C lip |g -1+α α |w| α w| 1 1+α ∞ + |u| W 1,∞ ≤ 2 (-α) + 1+α C lip 1 1+α ∞ + α |w| ∞ + |u| W 1,∞ ≤ |w| W 1,∞ 2 + 2 (-α) + 1+α C lip |g| 1 1+α ∞ + |u| W 1,∞ , hence |w| W 1,∞ ≤ 2 1+( -α) + 1+α C lip |g| 1 1+α ∞ + |u| W 1,∞ .
(2.5)

We set

R = 2 1+ (-α) + 1+α C lip |f | ∞ + 1+α α |u| 1+α ∞ + |b| ∞ M β 1 1+α + |u| W 1,∞ ,
and we define

K R = {v ∈ C 1 (B(0, 1)) ∩ W 1,∞ (B(0, 1)) : |v| W 1,∞ ≤ R} .
We also define the map T : v ∈ K R → w, where w is the unique solution, see [START_REF] Birindelli | First eigenvalue and maximum principle for fully nonlinear singular operators[END_REF], of

-|∇w| α F (D 2 w) + 1+α α |w| α w = f + 1+α α |u| α u -b(x)T M (|∇v|) β in B(0, 1) w = u on ∂B(0, 1)
The map T is well defined, since the right hand is continuous and bounded. By (2.5)

w satisfies |w| W 1,∞ ≤ 2 (-α) + 1+α C lip |f | ∞ + 1+α α |u| 1+α ∞ + |b| ∞ M β 1 1+α + |u| W 1,∞
and, therefore,

|w| W 1,∞ ≤ R
by the choice of R. Hence, T sends K R into itself and, by classical uniform estimates (see [START_REF] Birindelli | First eigenvalue and maximum principle for fully nonlinear singular operators[END_REF]), T is a compact operator. Then, by Schauder's fixed point Theorem, T possesses a fixed point w, that is a solution of

-|∇w| α F (D 2 w) + b(x)|T M (∇w)| β + 1+α α |w| w = f + 1+α α |u| α u in B(0, 1) w = u
on ∂B(0, 1) (2.6) Since |∇u| ≤ M , it is easy to see that u satisfies the same equation. By a mere adaptation of the comparison principle in [START_REF] Birindelli | First eigenvalue and maximum principle for fully nonlinear singular operators[END_REF], there is uniqueness of solution for problem (2.6), hence u = w. By (2.3) one gets that u is C 1,γ for the γ allowed by (2.3).

Remark 2.4. Let us observe that, if α ≤ 0 and if the operator F is convex or concave in the Hessian argument, then we can repeat the above proof with the C 1,γ loc norm replaced by the W 2,p loc norm, for any 1 < p < ∞, see [START_REF] Caffarelli | Interior a priori estimates for solutions of fully nonlinear equations[END_REF][START_REF] Caffarelli | on Viscosity solutions of Fully Non linear equations with measurable coefficients[END_REF]. This yields the local a priori estimate, for any ω ⊂⊂ ω ⊂⊂ Ω

u W 2,p (ω) ≤ C p u L ∞ (ω ) , f L ∞ (ω ) , |b| W 1,∞ (ω )
for any viscosity solution u of equation (1.1). Furthermore, suppose that Ω ⊂ R N is a smooth bounded domain, that f ∈ C(Ω), b ∈ W 1,∞ (Ω), and that u is a viscosity solution of (1.1) in Ω, satisfying the boundary condition u = ψ on ∂Ω, with ψ ∈ C 1,γ 0 (∂Ω). By using the up to the boundary estimates of [START_REF] Winter | Estimates at the Boundary for Solutions of Fully Nonlinear, Uniformly Elliptic Equations[END_REF][START_REF] Birindelli | C 1,β regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations[END_REF], we obtain the global regularity bound

u C 1,γ (Ω) ≤ C ψ C 1,γ (∂Ω) , f L ∞ (Ω) , |b| W 1,∞ (Ω)
for some exponent γ ≤ inf γ 0 , 1 1+α + .

Remark 2.5. As in [START_REF] Nornberg | C 1,α regularity for fully nonlinear elliptic equations with superlinear growth in the gradient[END_REF], for α ≤ 0 our results can be extended to the case where F (M ) is replaced by F (p, M ), satisfying the following structural assumptions: there exist positive constants µ, b such that for any (p,

q) ∈ (R N ) 2 , (X, Y ) ∈ (S N ) 2 one has -b|p -q| -µ(|p| + |q|)(|p -q|) + M -(X -Y ) ≤ F (p, X) -F (q, Y ) ≤ M + (X -Y ) + b|p -q| + µ(|p| + |q|)(|p -q|)
where M + and M -denote the Pucci extremal operators. The fixed point argument and the truncation method can be easily adapted to this case.

3 Gradient estimates and proof of Theorem 1.2.

As an application of the regularity results proved in the previous section, we now focus on the ergodic pairs associated to the class of operators we are considering. Precisely, given a function f ∈ C(Ω), let c Ω ∈ R be a constant for which there exist solutions u ∈ C(Ω) of the infinite boundary value problem (1.5).

In [START_REF] Birindelli | Ergodic pairs for singular or degenerate fully nonlinear operators[END_REF] we gave sufficient conditions for the existence of ergodic pairs (c Ω , u) which solve (1.5), and we proved the uniqueness of c Ω in some cases. Here, we are concerned in particular with the uniqueness of u.

As proved in [START_REF] Birindelli | Ergodic pairs for singular or degenerate fully nonlinear operators[END_REF] and recalled in the introduction, the rate of boundary explosion of any ergodic function can be made precise assuming that the operator F satisfies the "boundary" regularity condition 

F (∇d(x) ⊗ ∇d(x)) is a C 2 function in a neighborhood of ∂Ω . ( 3 
u(x) d(x) χ C(x) = 1 if χ > 0, (3.2) 
and lim

d(x)→0 u(x) | log d(x)| C(x) = 1 if χ = 0 , (3.3) 
where

χ = 2 + α -β β -1 -α ,
and, for x in a neighborhood of ∂Ω, C(x) = ((χ + 1)F (∇d(x) ⊗ ∇d(x)))

1 β-α-1 χ -1 if χ > 0, C(x) = F (∇d(x) ⊗ ∇d(x)) if χ = 0. (3.4)
Let us now observe that any ergodic function verifies the assumptions of Theorem 1.1, so that it is a C 1,γ loc (Ω) function and satisfies the local a priori bound (1.3). This regularity property, jointly with the asymptotic estimates (3.2), allows us to precise, at least in the case χ > 0, the boundary asymptotic behaviour of its gradient. We obtain the analogous of the result proved in [START_REF] Porretta | The ergodic limit for a viscous Hamilton-Jacobi equation with Dirichlet conditions[END_REF] for Laplace operator and in [START_REF] Leonori | Large solutions and gradient bounds for quasilinear elliptic equations[END_REF] for p-Laplace operator.

Theorem 3.1. Assume that F satisfies (1.2) and (3.1), let f ∈ C(Ω) be bounded and suppose that χ > 0 (i.e. β < α + 2). Then, for any ergodic function u, one has

lim d(x)→0 d(x) χ+1 ∇u(x) • ∇d(x) C(x) = -χ . (3.5) 
Proof. Let us consider, for x 0 ∈ ∂Ω fixed and δ > 0, the function

u δ (ζ) = δ χ u(x 0 + δ ζ) , defined for ζ ∈ 1 δ (Ω -x 0 ). By (3.2), one has lim δ→0 u δ (ζ) = C(x 0 ) (∇d(x 0 ) • ζ) χ
locally uniformly with respect to ζ in the halfspace H = {ζ ∈ R N : ζ • ∇d(x 0 ) > 0}, and uniformly with respect to x 0 ∈ ∂Ω. In particular, u δ is locally uniformly bounded in H. Moreover, by direct computation, u δ satisfies the equation

-|∇u δ | α F (D 2 u δ ) + |∇u δ | β = δ β β-α-1 [f (x 0 + δ ζ) + c] in 1 δ (Ω -x 0 ) .
Thus, as a consequence of Theorem 1.1, u δ belongs to C 1,γ loc (H) and verifies estimate (1.3). This implies that u δ is converging in C 1 loc (H), and, therefore,

lim δ→0 ∇u δ (ζ) = -χ C(x 0 ) ∇d(x 0 ) (∇d(x 0 ) • ζ) χ+1
locally uniformly with respect to ζ ∈ H and, again, uniformly with respect to x 0 ∈ ∂Ω.

Hence, we deduce that lim

δ→0 d(x 0 + δ ζ) χ+1 ∇u(x 0 + δ ζ) = -χ C(x 0 ) ∇d(x 0 )
locally uniformly with respect to ζ ∈ H and uniformly with respect to x 0 ∈ ∂Ω. This immediately yields (3.5).

Remark 3.2. In the case χ = 0, one can try to use an analogous argument as above, and to consider the function

u δ (ζ) = u(x 0 + δζ) + C(x 0 ) log(δ) .
By Theorem 4.2 and Theorem 6.3 of [START_REF] Birindelli | Ergodic pairs for singular or degenerate fully nonlinear operators[END_REF], it follows that u δ is uniformly bounded. Moreover, arguing as in the above proof, we obtain that u δ actually converges in C 1 loc (H) to a solution of

-|∇v| α F (D 2 v) + |∇v| 2+α = 0 in H v = +∞ on ∂H
Using the same argument as in Section 4 of [START_REF] Imbert | C 1,α regularity of solutions of degenerate fully non-linear elliptic equations[END_REF], one gets that v satisfies 

. 1 )

 1 Here, d(x) denotes the distance function from ∂Ω, and it is of class C 2 in a neighborhood of ∂Ω by the regularity assumption on the domain. Condition (3.1) is certainly satisfied if the domain Ω is of class C 3 and the operator F is C 2 , but there can be also cases with non smooth F satisfying (3.1) in C 2 domains. For instance, when F (M ) depends only on the eigenvalues of M , as in the case of Pucci's operators,F (∇d(x) ⊗ ∇d(x))is a constant function as long as |∇d(x)| = 1. Under assumptions (1.2) and (3.1) on F , and if f ∈ C(Ω) is locally Lipschitz continuous, bounded from below and satisfying lim d(x)→0 f (x)d(x) β β-α-1 = 0 , then ergodic pairs (c Ω , u) exist, and any ergodic function u satisfies lim d(x)→0

-F

  (D 2 v) + |∇v| 2 = 0 in H v = +∞ on ∂HNow, consider first the case when F is a linear operator, that is F (M ) = a tr(M ). Then, defining ϕ = e -v/a , one sees that ϕ is positive and harmonic in H, and it satisfies zero boundary conditions. Hence,ϕ(ζ) = c ∇d(x 0 ) • ζ for some constant c > 0. Coming back to v, one gets that v(ζ) = -a log ∇d(x 0 ) • ζ -a log c, and, by the local C 1 convergence of u δ to v, we conclude that lim δ→0 δ ∇u(x 0 + δ ζ) = -a ∇d(x 0 ) ∇d(x 0 ) • ζ .Observing that in this case a = C(x 0 ), we deduce for linear operators the asymptotic gradient behaviour limd(x)→0 d(x)∇u(x) • ∇d(x) C(x) = -1 ,which is the analogous of (3.5) for χ = 0. For general F , the same result could be obtained as a consequence of the following Liouville type property: if u is a solution in the half spaceH = {x N > 0} of -F (D 2 u) + |∇u| 2 = 0 in {x N > 0} u(x , 0) = +∞,then there exists some constant c such thatu(x) = F (e N ⊗ e N )| log x N | + c .As far as the authors know, this is an open question.of[START_REF] Birindelli | Fully nonlinear operators with Hamiltonian: Hölder regularity of the gradient[END_REF], and we get that for any maximum point x ∈ Ω of u -(v + m) there exists a neighborhood V x of x where u ≡ v + m. Denote O δ = {x ∈ Ω 2δ : u(x) = v(x) + m}. Then, we have proved that O δ is non empty and open. On the other hand, by definition, it is closed in Ω 2δ , hence O δ = Ω 2δ . Finally, the comparison principle applied in Ω \ Ω δ yields u = v + m in Ω \ Ω δ , and therefore u = v + m in the whole of Ω.
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We are finally in the position to prove the uniqueness, up to additive constants, of the ergodic function.

Proof of Theorem 1.2. By Theorem 3.1, any ergodic function u satisfies the asymptotic gradient boundary behaviour (3.5). Hence, there exists a positive constant

. Suppose now that u and v are two ergodic functions related to the same ergodic constant c Ω . For > 0, consider u = (1 -)u. For further computations, let c α and c β be positive constants such that, for < 1 2 ,

and take

by the choices of δ and . By the boundary asymptotic behavior both of u and v, there exists a neighborhood V of ∂Ω, contained in Ω δ , on which u < v. Since u is a strict subsolution, the comparison principle (see [START_REF] Birindelli | First eigenvalue and maximum principle for fully nonlinear singular operators[END_REF]) can be applied in

On the other hand, the comparison principle for equations having no zero order terms proved in [START_REF] Birindelli | Ergodic pairs for singular or degenerate fully nonlinear operators[END_REF] under the assumption sup(f +c Ω ) < 0 yields that u ≤ v +sup {d=δ} (u-v) in Ω \ Ω δ . Therefore, we obtain that u ≤ v + sup {d=δ} (u -v) in the whole of Ω. We claim that u coincides with v + sup d=δ (u -v) := v + m in Ω. When α = 0, this is a direct consequence of the strong maximum principle, since the supremum of u -(v + m) is zero and is achieved inside Ω. When α = 0, we use the assumption that ∂Ω has only one connected component. This implies that Ω 2δ is connected. We note that, by the choice of δ, ∇u = 0 in Ω δ , since |∇u| ≥ C 0 δ -χ-1 in Ω δ . This allows to apply the strong comparison principle