
HAL Id: hal-02411296
https://hal.science/hal-02411296v1

Submitted on 20 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NDN-over-ZigBee: A ZigBee support for Named Data
Networking

Amar Abane, Mehammed Daoui, Samia Bouzefrane, Paul Mühlethaler

To cite this version:
Amar Abane, Mehammed Daoui, Samia Bouzefrane, Paul Mühlethaler. NDN-over-ZigBee: A ZigBee
support for Named Data Networking. Future Generation Computer Systems, 2019, 93, pp.792-798.
�10.1016/j.future.2017.09.053�. �hal-02411296�

https://hal.science/hal-02411296v1
https://hal.archives-ouvertes.fr


NDN-over-ZigBee: A ZigBee Support for Named Data Networking

Amar Abanea,b, Mehammed Daouia, Samia Bouzefraneb,∗, Paul Muhlethalerc

aLARI Lab, University Mouloud Mammeri of Tizi-Ouzou (Algeria)
bCEDRIC Lab, Conservatoire National des Arts et Metiers, Paris (France)

cEva team, Inria, Paris (France)

Abstract

Named Data Networking (NDN) is a new architecture which allows communications using data’s natural
names rather than hosts’ logical addresses. In recent years, several research projects have demonstrated
the ability of NDN to support emerging IoT applications like home automation, smart cities and smart
farming applications. This paper aims to integrate NDN with ZigBee to give NDN a better support for IoT
applications that are known to require wireless sensing/actuating abilities, mobility support and low power
consumption. For this purpose, we present our NDN-over-ZigBee design and we show through experiments
conducted with three different scenarios the suitablity and the ease of use of NDN in IoT context. The
choice of ZigBee is motivated by the fact that it is a network specification for low-power wireless personal
area networks (WPANs) and supports a large number of nodes.

Keywords: Named Data Networking, ZigBee, IoT.

1. Introduction

The Internet of Things (IoT) is mainly built by smart embedded devices which bring new requirements
in terms of connectivity, mobility support and efficient power-management. From a communication point of
view, these devices are mostly connected via TCP/IP protocols. However, it is becoming clear that these
(traditional) protocols are quite far from intrinsically addressing IoT platforms issues [1], such as handling5

complex and dynamic mobile networks, strongly securing communications and data exchanges, or linking
the information with its location efficiently to easily discover it.

Unlike the Internet Protocol (IP), Named Data Networking (NDN) is a new architecture which proposes
to access data using natural names rather than IP addresses of the hosts. Such a mechanism facilitates10

application development because the design does not consider host location. Also, this new architecture
can support mobility of a large number of nodes which makes it very compatible with IoT requirements.
Moreover, the security in NDN is based on the data, making it more flexible to support different security
requirements.

15

To visualize NDN’s advantages, suppose we need to design a communication solution for a large scale
scenario: water balance management. The aim of the water balance is to estimate the intake and consumption
of drinking water around one or several sources (e.g. dam). This balance is calculated on the basis of
precipitation, consumption by the population, ground humidity, etc.
An important issue in this case is the use of different wireless technologies in the same solution. Indeed,20

in a realistic design, a certain wireless standard (and its related equipments) is more suitable for one part
of the architecture, when another standard is unavoidable for another part. For example, ZigBee is widely
used in WSNs (Wireless Sensor Networks), thus it is a wise choice to use it for precipitation monitoring

∗Corresponding author
Email address: samia.bouzefrane@lecnam.net (Samia Bouzefrane)

Preprint submitted to Elsevier June 20, 2020



and ground humidity, since the coverage area is delimited and known; but it is more suitable to manage the
population consumption by a solution like LoRaWAN, since each sensor (e.g. water consumption meter)25

will be independent and the communication range is very wide (Kilometers). In addition, each standard
has its security mechanisms and obviously its flaws, as well as the involved entities have different security
requirements. All the technical challenge is to integrate these heterogeneous pieces to provide a uniform
and reliable data acquisition. Security mechanisms must also be unified above the used protocols to ensure
an end-to-end security from the sensors to the applications. In this situation, we can report important30

requirements for which the NDN’s approach is more elegant and more efficient:

• Allow applications to uniformly request data regardless whether it is provided by ZigBee, LoRaWAN or
another technology. NDN’s approach naturally has this property; each data is accessed by its name
without establishing and maintaining explicit connections between servers, applications and sensors.
To provide an equivalent feature, a host-based (IP-based) architecture needs a middleware to bind35

each data with the corresponding sensor. Middlewares add protocol overhead, complexity and cause
communication latency due to the additional processing.

• Allow applications to check the origin of each sensed value even if the sensor is offline, replaced or
has joined another local network. A host-based approach cannot natively provide this kind of security,
because the sensors must be available when the application retrives the data in order to check its40

authenticity. Host-based architecture also needs middlewares and servers to implement this feature.
In contrast, NDN allows to check authenticity of each Data packet at any time, even if the sensor is
not available when the Data is consumed; the mandatory signature carried in each Data packet and
the associated trust model make this verification possible.

• Reuse the same data. We can observe in a lot of IoT scenarii that applications ask for the same content45

at different times. In host-based architectures, each data is in a packet which involves two hosts (source
and destination), thus reusing the same packet for different requests is not possible. A Data packet in
NDN is independent from any source or destination address. This allows Data packets to be cached to
satisfy further requests, and prefetch some popular packets to satisfy the requests faster.

On the other hand, ZigBee is a communication protocol designed to suit embedded device requirements.50

It provides low power consumption and supports a great number of devices over long distances with many
different topologies. Nowadays, the success of many IoT solutions proves the efficiency of the ZigBee speci-
fication and its compatible hardware. Thus, if we provide NDN with ZigBee features, it will be much more
attractive for IoT applications development.

55

In this paper, we propose to leverage the strengths of NDN and ZigBee, and combine them to make a new
step towards IoT application development. In real terms, we propose an implementation that allows NDN
communication over the ZigBee protocol acting as a layer 2 support for NDN. Since our implementation can
run on any Linux distribution with an NDN module (NFD1), we believe that it will allow NDN to target a
larger set of devices and gateways, and cover more IoT applications.60

This paper is organized as follows. Section 2 presents a brief description of the NDN architecture, an
overview of wireless supports and their integration with NDN. Section 3 details the design of the proposed
NDN-over-ZigBee layer. Section 4 describes the performance tests undertaken to evaluate our implementa-
tion, and discusses the results obtained. Section 5 concludes our work with future perspectives.65

1NFD stands for NDN Forwarding Daemon

2



2. Background

2.1. NDN overview

NDN [2] follows the Content-Centric Networking (CCN) architecture [3] which is based on the Information-
Centric Networking (ICN) paradigm [4]. The basic principle of NDN is to identify the data rather than its
holder. While the TCP/IP architecture is based on source and destination addresses to identify hosts and70

ensure communication, NDN uses data’s natural names. The hourglass architecture of NDN contains in its
thin waist all the relevant network operations which are traditionally provided by higher network layers (see
Figure 1). For instance, flow control and security mechanisms are supported in the network layer of the
NDN architecture while they are implemented in transport and application layers in the IP architecture.

75

NDN defines two types of packets [5]: Interest and Data. Each NDN node maintains three data structures
to ensure its operations: FIB (Forwarding Interest Base), PIT (Pending Interest Table) and CS (Content
Store). The communication is consumer driven, which means that it is initiated by the consumer (i.e., the
one who asks for data). As a consequence, an NDN application can play two roles: a consumer role if the
application sends Interests to ask for Data packets, or a producer role if the application responds to incoming80

Interests by sending Data packets.

NDN packets do not carry any source or destination address. Interest forwarding is completely based
on names. When a Data packet arrives in a node, the PIT is checked and the Data packet is forwarded to
all the originating interfaces or applications (abstracted in NDN as “Faces”) of the corresponding Interest.85

After that, the node discards the Interest from the PIT, and keeps for a while the recently forwarded Data
packet in its CS. Thus, before forwarding an incoming Interest, a node firstly checks if the requested Data
is available in its CS. If a corresponding Data is found, it is sent back as a response without forwarding the
Interest any further. There is no limitation on NDN names, because the namespaces are hierarchical and
unbounded, and the routers handle names as sequences of components bounded by “/” . The hosts’ mobility90

does not affect a communication since the names of Interests and Data are kept coherent.

NDN was especially designed to support new communication patterns and emerging applications like
those dedicated to IoT. Many research projects [6, 7, 8, 9] demonstrate in different ways and areas that NDN
is a promising architecture to build IoT applications as well as global IoT platforms.95

Figure 1: Architecture comparison of NDN and IP [9]

3



2.2. NDN and Wireless communication

The IEEE 802 Standard is a set of networking (physical) standards for both wired and wireless networks.
The better known wireless specifications include 802.11 (WiFi), 802.15.4 (ZigBee) and 802.15.1 (Bluetooth).
Due to its satisfactory bandwidth and admissible cost, WiFi nicely meets LAN requirements and is widely
used in businesses and homes. However, there are network types that focus on other aspects like low power100

consumption, great numbers of nodes and long distances. Thankfully, many physical specifications were
designed to support these aspects. For example, Bluetooth is designed for low-power wireless personal area
networks (WPANs) and allows a 1-2 Mb/s data rate with an acceptable power consumption (BLE) and
complexity. Other communication specifications were proposed for specialized networks such as DSRC for
VANETs and 3G/4G for very long distances. Also, new wireless technologies explicitly designed for IoT105

have recently appeared such as Sigfox [10] and LoRaWAN [11].

Currently, the focus is on the Internet of Things and wireless sensors/actuators communication. Al-
though this kind of communication does not generally require a large bandwidth, it needs an efficient power
management plan, a low cost of production and needs to support a great number of –mobile– nodes in a110

simple way. To meet these requirements, ZigBee was designed as a mesh network specification for WPANs.
It was mainly designed to support a large number of nodes (sonsors) over long distances and provide low
power consumption since most ZigBee devices are powered by battery. This has led ZigBee to be closely
associated with WSN communication and the Internet of Things.

115

To summarize, Figure 2 gives a comparison of some relevant wireless technologies involved in the IoT
according to some important evaluation criteria.

Figure 2: Wireless technologies comparison

As said above, NDN is a promising network architecture for IoT and mobile communications. Many
NDN-based IoT architectures have to use proprietary protocols to manage sensors/actuators rather than120

4



using NDN in their whole solution. Hence, the integration of NDN with ZigBee may be very interesting and
will allow NDN to cover more emerging applications such as home automation, smart cities, smart farming,
etc. In addition, ZigBee is designed to simply allow sensing and actuating (through XBee modules for exam-
ple [12]). This particular feature can be integrated with NDN to provide an almost native sensing/actuating
ability.125

An implementation of the NDN protocol stack is now available for RIOT-OS [13] (NDN-RIOT [14])
which basically supports the IEEE 802.15.4 (ZigBee [15]) specification; but RIOT-OS is a specialized plat-
form which targets a limited set of devices, and we believe that a more general support of ZigBee will be
beneficial and useful. For example, one may need to use ZigBee as a wireless support in an existing NDN130

application that runs on a general purpose platform such as Linux.

As regards other wireless specifications, WiFi and 3G are currently supported by NDN implementation,
and an implementation of NDN over Bluetooth (called NDNBlue) was proposed in [16].

135

Generally, the main task in a L3 protocol integration with low rate wireless networks is the header
compression (e.g., 6LoWPAN [17]). Fortunately, since NDN packets are not based on predefined field size
(unlike IP), the NDN integration can be naturally designed: it is sufficient to ban some unrelevant fields and
limit the size and number of components in NDN names. However, an NDN communication is consumer
driven; meaning that only the consumer can initiate the communication. Knowing that low rate wireless140

protocols also have communication constraints (like sleep mode for sensors), the integration must find a way
to adapt the pull-based nature of NDN to the communication pattern of the considered wireless protocol.
For example, Class A devices in LoRaWAN cannot be reached instantly by the gateway; this caracteristic
needs to carefully choose how to combine NDN with LoRaWAN. In the case of ZigBee, we have made some
design choices which will be described in details in the next section.145

In all cases, NDN integration with low rate wireless protocols can play an important role in building a
global IoT platform. The device address will be used only for local communications, while global commu-
nication and security will be ensured based on the content names. This will allow heterogeneous wireless
technologies to be used to produce the same Data packet format which is bound to its producer (sensor). In150

addition, by combining packet reuse with the small headers of low rate wireless protocols, the network will
transmit much less overhead than IP-based solutions. Since the NDN security is built on the content, we
believe that shifting the security paradigm from channels to contents can remedy the security flaws of the
underlying low rate wireless protocols.

155

However, due to the small payload of low rate wireless protocols; the first rule for NDN integration is
to limit names length. This will give less expressive names, but encoding mechanisms can be used to carry
more information in small names. Forwarding strategies choice is also limited: although NDN provides
plenty of possibilities to select interfaces for Interests forwarding, wireless nodes can only rebroadcast the
received Interests, increasing the probabilities of collisions. However, the case of one hop communications160

(devices-gateway) is not much affected.
Low rate wireless protocols can also limit the integration possibilities. For example, the limited packet
number and the restricted payload in LoRaWAN, and the small number of nodes in BLE creates a lot of lim-
itations. Fortunately, as Figure 2 shows, ZigBee technology provides satisfying and balanced characteristics
for NDN integration, which is described in the next section.165

3. NDN-over-ZigBee design

For the reasons given in the last section, we have chosen to use ZigBee protocol as a wireless commu-
nication support for NDN. To achieve this, we have developed a software layer added to the NDN module.
The role of this layer is to intercept Interests with a certain prefix name and to send them through ZigBee.

5



We have decided not to integrate this layer into the NDN software module for two main reasons: Firstly,170

the implementation of NDN module (called NFD [18]) is under development and may substantially change
and cause stability issues. Secondly, the hardware modules used for ZigBee communications (called XBee)
offer I/O pins that are used to handle sensors and actuators for many interesting IoT applications; hence
integrating I/O pins management in the NDN module is deprecated since the NDN module has become a
complete network protocol. Figure 3 depicts the software and hardware layers stack after integrating the175

ZigBee layer.

Figure 3: Software and hardware layers of an NDN-over-ZigBee node

3.1. Software structure

A simple NDN application can act as a producer or a consumer. Thus, an NDN node that runs an appli-
cation is generally either sending Interests to get Data (consumer) or waiting for Interests to respond with
Data (producer). This behavior leads us to divide the ZigBee layer into two independent processes: the first180

manages sending Interests and getting Data (emission process); the second receives incoming Interests and
sends Data back (reception process). In this way, each node can use only one of the two processes according
to its role: emission process for a consumer, reception process for a producer. This design choice provides a
lightweight and less complex NDN-over-ZigBee layer running in each node, and avoids hardware access con-
flict. However, a router or a gateway node can be considered as a producer; thus it uses the reception process.185

To handle communication errors, the emission process can detect when the remote ZigBee hardware is
not responding. In the other side, the reception process can detect and inform the emission process when the
remote application is not responding. In this way, a consumer application that uses our NDN-over-ZigBee
layer can identify whether the remote ZigBee hardware or the remote application is not responding.190

3.2. Sensors management

In addition to the management of ZigBee communications, the NDN-over-ZigBee layer is able to manage
sensors that are connected to ZigBee hardware modules. In fact, in addition to receiving Interests, the
reception process can also read the state of its hardware module pins, perform a personalized process on
each value, and send personalized Interests that carry the result in their names (notification Interest [19])195

through another network interface (Ethernet, Wifi, etc.).

By sending local sensor data using Interests rather than the basic NDN communication pattern, a node
can send sensor information in real time and the whole network can benefit from it. This feature is cheap
and mainly designed for gateway nodes to provide them with real-time sensing capability in addition to their200

main role (gateway). For example, gateway nodes can collect data related to the environment and send them
to servers and/or routers for information purposes.

6



In addition to the personalized Interest name, pins’ values may need to be converted to meaningful infor-
mation. To couple each input pin with its corresponding treatment and Interest name, we use a configuration205

file. This file makes it possible to define what function is associated to each pin, and which Interest name
must be sent after reading each pin. Reading input pins is a task performed periodically; the period is also
defined in the configuration file.

In both processes, control bytes and timeouts are used to drive the communication. The following210

algorithms describe the main actions of each process2. Algorithm 1 recaps the emission process. Algorithm
2 recaps the reception process. Algorithms 3 and 4 are the callback functions used by the Algorithm 2
respectively when Interest timeout occurs and when the Data packet arrives:

Function SendInterest
Data: Interest from NDN daemon
begin

Send Interest through ZigBee frames
Get ZigBee frames from remote XBee module
Create the Data packet from buffered frames
Send Data to NDN daemon

end
Algorithm 1: Emission process

Function ReceiveFrame
Data: frame from ZigBee HW module
begin

if the frame type is a local sensing frame then
Send notification Interest carrying the corresponding value

else
if the frame type is a remote data frame then

Add the frame and its source address to the buffer
end
if the frame is the last frame of the Interest then

Create Interest from buffered frames
Associate the Interest to ’onTimeout’ and ’onData’ callbacks
Send Interest to NDN Daemon

end

end

end
Algorithm 2: Reception process

Function onTimeout
Data: ZigBee source address
begin

Send ZigBee frame(’application not responding’ , ZigBee source address)
end

Algorithm 3: On Timeout callback

2In the actual code, additional verifications are included

7



Function onData
Data: NDN Data packet , ZigBee source address
begin

Send ZigBee frames(NDN Data packet , ZigBee source address)
end

Algorithm 4: On Data callback

3.3. ZigBee layer-2 Addressing

In our implementation, the ZigBee protocol acts as a layer-2 support for NDN. It uses the 16-bit ad-215

dressing defined in the ZigBee specification: the emission process needs a 16-bit destination address to send
its Interests. The default destination address for the emission process is the broadcast address 0xFF, but
we can specify any other destination address when starting the emission process. For example, if a node
needs to communicate with a fixed gateway, we can use the address 0x00 (which is the default address of
the coordinator node in the ZigBee specification) as a destination address.220

When responding, the reception process uses the source address of the incoming Interest as the destination
address. This avoids communication conflicts due to broadcasts, and a node running a reception process can
manage multiple communications without worrying about address conflicts.

3.4. NDN routing and ZigBee layer225

In a consumer node, the emission process needs to intercept Interests with a certain prefix to send them
through ZigBee. This prefix is specified during the start of the process and the default value is ’/zig-
bee’. In this way, all the Interests that have names starting with ’/zigbee’ prefix (or other specified prefix)
will be sent through ZigBee. The NDN daemon acts in a normal way; it forwards these Interests to the
emission process and when the corresponding Data comes back, it sends them to the appropriate application.230

In a producer or a router node, the NDN daemon needs to know the Face corresponding to the ZigBee
Interests in order to forward them. This Face can be either a local application (if the node runs a producer
application) or a next hop through Ethernet or WiFi (if the node is a router/gateway). Table 1 gives the
typical FIBs of a consumer node and a producer/router node.235

Table 1: Typical FIB of an NDN-over-ZigBee node

Consumer Producer, gateway or router
Prefix Face Cost Prefix Face Cost

/zigbee
Local

emission
process

0 /zigbee
Local

application
or next hop

0 (or +)

4. Implementation and tests

The proposed NDN-over-ZigBee layer was implemented in Python using the PyNDN2 library [20]. Thanks
to which, our implementation can run on any Linux-based distribution with NFD installed such as Ubuntu,
Debian and Raspbian.

240

In order to test our implementation and check if it is interesting for IoT applications, our experimenta-
tions deal with three scenarios: the first one is a point-to-point communication between a consumer node
and a producer node. The second one is a devices-gateway communication (i.e. many to one). It consists
of two consumer nodes (devices) that interact with one gateway on which a producer application runs. The

8



last scenario is a qualitative evaluation of the sensing features and error detection.245

To be as close as possible to usual IoT hardware platforms which are embedded and resource-constrained,
we carried out all the experiments with Raspberry Pis 1 model B+3 and XbeePro S1 modules. For the sens-
ing test in scenario 3, we used a CO2 gas sensor connected to the producer’s XbeePro module.

250

In scenarios 1 and 2, we performed different sets of Interest-Data exchanges by sending 5, 10, 25, 50
Interests, and restarted again with different Data packet sizes, ranging from 50 bytes (10 bytes of payload)
to 293 bytes (250 bytes of payload). During these tests, we measured the total time taken by each exchange
(from sending the Interest to getting the Data) and also the percentage of satisfied Interests on each set.
The results are shown and discussed below.255

Scenario 3 is a point-to-point communication in which we voluntarily induced different errors in the
producer’s side (breaking its application, unplugging its Xbee module, etc). We also checked whether the
reception process performs correctly with respect to the sensing features as well as the appropriate treat-
ments described in the last section.260

Figures 4 and 5 represent the average time taken to retrieve a Data packet, respectively for the point-to-
point scenario and the devices-gateway scenario, versus the Data packet size. In both scenarios, this average
time does not increase significantly when the Data packet size increases. Considering the tight bandwidth
of Xbee modules and by assuming that most of the IoT traffic consists in sending commands/notifications265

and getting acknowledgments or small information, the results show that our implementation can support
this kind of communication.

Figure 4: Data retrieval time (p2p scenario)

3700 MHz CPU and 521 Mo RAM

9



Figure 5: Data retrieval time (gateway scenario)

During the experimentations, we also measured the percentage of Interest satisfaction 4 for the point-to-
point scenario and the gateway scenario. In all the tests of Scenario 1, Interest satisfaction was 100%. For
Scenario 2, it remains higher than 98% for the biggest Data packet sizes (> 150 bytes) and the small Data270

packet sizes went out with 100% Interest satisfaction.

Concerning scenario 3, our implementation nicely detected the expected errors such as: a remote Xbee
module is not responding, a remote application is not responding, and avoided infinite waiting time for a
response. The sensing management was correctly performed according to the specifications of the configu-275

ration file.

In addition to these three scenarios, we have made a comparison between our NDN-over-ZigBee imple-
mentation and the basic NDN wireless communication over WiFi. For this purpose, we have estimated5

the additional data (bytes) needed to perform the NDN communication over WiFi as provided by the NDN280

module (NFD). By default, NFD uses the UDP/IP protocol stack to send NDN packets. Thus, we calculated
the overhead needed for our first scenario described above as if it had been made with NDN over UDP/IPv4
with 802.11 (WiFi) as a communication support.

Figure 6 shows the comparison of overheads between our NDN-over-ZigBee implementation and the basic285

NDN-over-UDP/IPv4/WiFi with different Data packet sizes. In the NDN-over-UDP/IPv4/WiFi case, the
total overhead is the sum of overheads added successively by UDP, IPv4 and 802.11 protocols in order to
send one Interest and get one Data. In the NDN-over-ZigBee case, the total overhead is the sum of overheads
added successively by ZigBee and our implemented layer in order to send one Interest and get one Data.

4The Interest lifetime was fixed to the default value (4 seconds)
5This estimation was made by assuming that each IPv4 packet size is 256 bytes without adding option bytes. Also, security

(encryption, etc.) have not been taken into account.

10



Figure 6: Total overhead comparison

Because current network equipment and OSs cannot directly support NDN communications over layer290

2 protocols like WiFi and Ethernet [21], NDN runs on top of UDP/IP or TCP/IP stack. Therefore, the
comparison shown in Figure 6 makes sense; it gives an idea about the complexity and the waste that occurs
when running NDN above traditional protocol stacks comparing to using it with IoT wireless protocols. We
can see that the additional data sent when using WiFi is much greater than using ZigBee; and additional
data means additional processing and more power consumption. This difference is highlighted when sending295

a great number of individual commands/notifications or retrieving small data packets, because the large
bandwidth offered by WiFi is no longer interesting in these cases. Note that in the case of small information,
even if we consider NDN communication directly over WiFi the overhead will be greater than NDN-over-
ZigBee overhead. The waste of data presented here has a significant impact on energy consumption, thus
the known advantage of ZigBee comparing to WiFi in terms of energy consumption is enhanced by our300

implementation.

Since the purpose of our implementation is to target NDN/IoT applications, we can say that the results
are satisfactory for sending commands/notifications, sensing and pulling small volumes of data. Also, error
detection allows application developers to be more accurate and manage errors in the network more efficiently.305

5. Conclusion

In this paper, we proposed and tested a ZigBee support for NDN communications by extending the NDN
stack with an adaptation layer. Since ZigBee is widely used, we aim to target more IoT applications using
the proposed NDN implementation. In addition to providing a cheap wireless support, our implementation
integrates to NDN nodes sensing capabilities that we hope can open new perspectives in the NDN/IoT310

development area. We have developed this layer as an application in order to provide users with a simple
way to finely customize it to fit their needs.

Many new wireless protocols for IoT (such as Sigfox and LoRa) rely on using packets with small payloads
in order to provide communications with low energy consumption. Even if these IoT wireless protocols315

11



provide a tight bandwidth; they offer a very efficient power management, they are quite cheap and they
provide nodes native sensing/actuating abilities. Thus, more effort must be made in order to integrate NDN
with them.

As future work, we aim to improve the efficiency of our NDN-over-ZigBee layer by reducing time exchanges320

and by making it faster and more reliable. Besides the sensing management, we are currently developing
an actuating support. Thus, symmetrically to the sensing feature, the emission process can receive spe-
cialized Interests that express commands towards actuators connected to its ZigBee hardware module; and
rather than sending these Interests, the emission process will locally send ZigBee commands to modify the
corresponding output pins.325

Acknowledgments

This work is supported by 17MDU988 project which is a PHC (Partenariat Hubert Curien) Tassili, a
French-Algerian cooperation program. This Tassili project is funded by the French ministries (MAEDI and
MENESR) and the Algerian ministry MESRS.

References330

[1] Y. Zhang, D. Raychadhuri, L. Grieco, E. Baccelli, J. Burke, R. Ravindran, G. Wang, ”ICN based
architecture for iot - requirements and challenges”, Tech. rep., ICN Research Group (December 2014).
URL http://tools.ietf.org/html/draft-zhang-iot-icn-challenges-01

[2] L. Zhang, D. Estrin, J. Burke, ”named data networking NDN project”, Tech. Rep. NDN-0001, NDN
(October 2010).335

URL http://named-data.net/techreports.html

[3] M. Mosko, I. Solis, E. Uzun, C. Wood, ”CCNx 1.0 protocol architecture”, Tech. rep., PARC (2015).
URL http://www.ccnx.org/pubs/CCNxProtocolArchitecture.pdf

[4] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, B. Ohlman, ”A Survey of Information-Centric
Networking”, IEEE Communications Magazine 50 (7) (2012) 26–36.340

[5] NDN Project Team, ”NDN specification documentation”, Tech. Rep. 0.1a2, NDN (March 2014).
URL http://named-data.net/wp-content/uploads/2013/11/packetformat.pdf

[6] W. Shang, Q. Ding, A. Marianantoni, J. Burke, L. Zhang, ”securing building management systems
using named data networking”, IEEE Network Journal 28 (3) (2014) 50–56.

[7] D. Saxena, V. Raychoudhury, N. SriMahathi, ”SmartHealth-NDNoT: Named data network of things345

for healthcare services”, ACM Workshop on Pervasive Wireless Healthcare (2015) 45–50.

[8] M. A. Hail, S. Fischer, Flexible API for IoT Services with Named Data Networking, in: IEEE Interna-
tional Conference on Emerging Technologies and Innovative Business Practices for the Transformation
of Societies (EmergiTech), 2016, pp. 1–6.

[9] W. Shang, A. Bannisy, T. Liangz, Z. Wangx, Y. Yu, A. Afanasyev, J. Thompsonx, J. Burkex, B. Zhangz,350

L. Zhang, ”Named Data Networking of Things” (Invited paper), in: The 1st IEEE Intl. Conf. on
Internet-of-Things Design and Implementation, Berlin, Germany, 2016.
URL https://named-data.net/publications/ndn-iotdi-2016/

[10] Sigfox, ”website Sigfox”, [Online]; http://www.sigfox.com/.

[11] LoRa Alliance, ”website LoRa Alliance”, [Online]; https://www.lora-alliance.org/.355

12

http://tools.ietf.org/html/draft-zhang-iot-icn-challenges-01
http://tools.ietf.org/html/draft-zhang-iot-icn-challenges-01
http://tools.ietf.org/html/draft-zhang-iot-icn-challenges-01
http://tools.ietf.org/html/draft-zhang-iot-icn-challenges-01
http://named-data.net/techreports.html
http://named-data.net/techreports.html
http://www.ccnx.org/pubs/CCNxProtocolArchitecture.pdf
http://www.ccnx.org/pubs/CCNxProtocolArchitecture.pdf
http://named-data.net/wp-content/uploads/2013/11/packetformat.pdf
http://named-data.net/wp-content/uploads/2013/11/packetformat.pdf
https://named-data.net/publications/ndn-iotdi-2016/
https://named-data.net/publications/ndn-iotdi-2016/
http://www.sigfox.com/
https://www.lora-alliance.org/


[12] Digi International Inc., XBee/XBee-PRO DigiMesh 2.4 OEM RF modules, Tech. rep., Digi International
(2008).
URL http://www.digi.com/products/xbee-rf-solutions/modules/xbee-802-15-4

[13] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, T. Schmidt, ”RIOT OS: Towards an OS for the Internet
of Things”, in: The 32nd IEEE International Conference on Computer Communications (INFOCOM360

2013), 2013.

[14] W. Shang, A. Afanasyev, L. Zhang, ”the design and implementation of the NDN protocol stack for
RIOT-OS”, Tech. Rep. NDN-0043, NDN (July 2016).
URL http://named-data.net/techreports.html

[15] ZigBee Alliance, ”what is ZigBee?”, [Online]; http://www.zigbee.org/what-is-zigbee/.365

[16] A. Attam, I. Moiseenkoy, ”NDNBlue: NDN over bluetooth”, Tech. Rep. NDN-0015 (November 2013).
URL http://named-data.net/techreports.html

[17] IETF, Transmission of IPv6 Packets over IEEE 802.15.4 Networks, [Online]; https://tools.ietf.
org/html/rfc4944.

[18] NDN Project Team, ”NFD overview”, [Online]; http://named-data.net/doc/NFD/current/370

overview.html.

[19] M. Amadeo, C. Campolo, A. Molinaro, ”internet of things via named data networking: The support of
push traffic”, in: International Conference and Workshop on the Network of the Future (NOF), 2014,
pp. 1–5.

[20] Github, ”NDN client library with TLV wire format support in native Python”, [Online]; https://375

github.com/named-data/PyNDN2.

[21] NDN Project Team, ”get NFD connected”, [Online]; http://named-data.net/2015/01/06/

get-nfd-connected/#more-2221.

13

http://www.digi.com/products/xbee-rf-solutions/modules/xbee-802-15-4
http://www.digi.com/products/xbee-rf-solutions/modules/xbee-802-15-4
http://named-data.net/techreports.html
http://named-data.net/techreports.html
http://named-data.net/techreports.html
http://named-data.net/techreports.html
http://www.zigbee.org/what-is-zigbee/
http://named-data.net/techreports.html
http://named-data.net/techreports.html
https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc4944
http://named-data.net/doc/NFD/current/overview.html
http://named-data.net/doc/NFD/current/overview.html
http://named-data.net/doc/NFD/current/overview.html
https://github.com/named-data/PyNDN2
https://github.com/named-data/PyNDN2
https://github.com/named-data/PyNDN2
http://named-data.net/2015/01/06/get-nfd-connected/#more-2221
http://named-data.net/2015/01/06/get-nfd-connected/#more-2221
http://named-data.net/2015/01/06/get-nfd-connected/#more-2221

	Introduction
	Background
	NDN overview
	NDN and Wireless communication

	NDN-over-ZigBee design
	Software structure
	Sensors management
	ZigBee layer-2 Addressing
	NDN routing and ZigBee layer

	Implementation and tests
	Conclusion

