
HAL Id: hal-02411294
https://hal.science/hal-02411294

Submitted on 5 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Applications Mapping onto Network on Chip
Based on Heterogeneous MPSoCs Using Hybrid

Algorithms
Dihia Belkacemi, Mehammed Daoui, Samia Bouzefrane, Youcef Bouchebaba

To cite this version:
Dihia Belkacemi, Mehammed Daoui, Samia Bouzefrane, Youcef Bouchebaba. Parallel Appli-
cations Mapping onto Network on Chip Based on Heterogeneous MPSoCs Using Hybrid Algo-
rithms. International Journal of Distributed Systems and Technologies, 2019, 10 (2), pp.37-63.
�10.4018/IJDST.2019040103�. �hal-02411294�

https://hal.science/hal-02411294
https://hal.archives-ouvertes.fr

Parallel applications mapping onto

network on chip based on

heterogeneous MPSoCs using hybrid

algorithms

Dihia Belkacemi

LaRI Lab, University of Tizi-Ouzou, Algeria.

Mehammed Daoui

LaRI Lab, University of Tizi-Ouzou, Algeria.

Samia Bouzefrane

CEDRIC Lab, CNAM, France.

Youcef Bouchebaba

ONERA-Toulouse, France.

ABSTRACT

Mapping parallel applications onto a Network on chip (NoC) that is based on heterogeneous MPSoCs is

considered as an instance of an NP-hard and a multiobjective problem. Various multiobjective

algorithms have been proposed in the litterature to handle this issue. Metaheuristics stand out as highly

appropriate approaches to deal with this kind of problem. These metaheuristics are classified into two

sets: population based metaheuristics and single solution based ones. To take advantage of the both sets,

the trend is to use hybrid solutions that have shown to give better results. In this paper, we propose to

hybridize these two metaheuristics' sets to find good Pareto mapping solutions to optimize the execution

time and the energy consumption simultaneously. The undertaken experimental results have shown that

the proposed hybrid algorithms give high quality non dominated mapping solutions in a reasonable

runtime.

Keywords: Hybridation, Multi-objective optimization, Mapping, Network on chip (NoC), Heterogeneous

Multiprocessor Systems-on-Chips (MPSoCs)

INTRODUCTION

Todays's applications that run on embedded systems such as multimedia (Sanchez et al., 2015),

automative context (Stoychev et al. 2016; Rettkowski et al. 2015), signal processing (Meloni et al. 2015),

and healthcare (Iranfar et al., 2018; El Mimouni & Karim 2014) have performance requirements which

can no longer be satisfied by uniprocessor systems (Tafesse & Muthukumar, 2013). Heterogeneous Multi-

processor Systems-on-Chips (MPSoCs) are widely accepted as a solution for future embedded systems

(Leupers et al., 2017). With the increase of the number of processing elements in Systems-on-Chip

(SoCs), it becomes very difficult to continue with the traditional non-scalable bus-based communication

systems (Mukherjee & Chattopadhyay, 2017). The Network on chip (NoC) (Benini &Micheli, 2002)

paradigm has been introduced as a promising interconnection solution to these systems. NoCs offer a

scalable and flexible-communication infrastructure with a highly supported modularity and a powerful

performance (Hesham et al., 2016).

One critical issue of NoC based on heterogeneous MPSoCs is how to map an application on this platform,

which is known to be NP-hard (Garey & Johnson, 1979). Furthermore, searching for an optimal mapping

involves a frequent optimization of multiple objectives (functions) simultaneously which are often

conflicting (e.g., overall completion time with energy consumption or load balancing with communication

cost). So it is not possible to find a single mapping solution which optimizes all the objectives

simultaneously. Instead, there exists a set of mapping solutions known as a Pareto optimal set. Various

multiobjective algorithms have been proposed in the litterature to handle this issue. Metaheuristics stand

out as a highly appropriate approaches to deal with this kind of problem in order to find good trade-off

solutions (Talbi, 2009). These metaheuristics are broadly classified into two classes: Single solution based

metaheuristics (S-metaheuristics) and Population based ones (P-metaheuristics). S-metaheuristics start

from one solution's candidate and try to find better solutions in its neighborhood (local area search) so

that this kind of metaheuristics focuses on exploitation. On the other hand, P-metaheuristics start with a

set of solutions called population, instead of one solution. The power of the latter is its capability to

explore a huge search space, hence allowing these metaheuristics to focus on exploration. Combining

these two sets (i.e., hybridization) gives a well-balanced approach in both exploration and exploitation.

Archived Multiobjective Simulated Annealing (AMOSA) (Bandypadhyay et al.,2008) is applied in this

work to further improve the P-metaheuristics' Pareto front.

In this paper, we discuss our contribution followed by the related work. Then, we describe the multi-

objective optimization principles and we formalize the problem to be solved. After that, we present the

proposed hybrid algorithms and discuss the experimental results. Finally, we conclude the paper.

OUR CONTRIBUTION

Since the mapping problem is considered as the one of the most design challenges in NOC based

heterogeneous MPSoC which affects greatly the final system performance, design of robust optimizers is

required. Several optimization methods such as exact methods and metaheuristics have been proposed in

the litterature to tackle this problem. Due to the todays' high systems complexities, the exact methods

have quickly reached their limitations because of their unacceptable runtime. Metaheuristics stand out as

highly appropriate approaches to tackle this problem. As stated above, these metaheuristics are classified

into S-metaheuristics and P-metaheuristics. These latter especially Multiobjective Evolutionary

Algorithms (MOEA) are widely used and have proved their success in solving this problem. Our solution

is to further improve these MOEAs using local search based metaheuristic called AMOSA and gives new

approaches which draw advantages from both metaheuristics' kind and consequently supply designers

with a best trade-off mapping solutions.

RELATED WORK

Several multi-objective approaches have been proposed to solve the NoC mapping problem (Ascia et al.,

2005; Zhou et al., 2006; Jena & Sharma, 2007; Tornero et al., 2009; Nedjah et al., 2011; He & Guo,

2013; Zhu et al., 2015; Chatterjee et al., 2016; Bruch et al., 2017). Ascia et al. (2005) present an approach

for exploring the mapping design space while optimizing performance and power consumption by using

SPEA2 (Ziztler et al., 2001) meta heuristic. Zhou et al. (2006) consider the mapping problem as a two

conflicting objective optimization problem that attempts to minimize the average number of hops and

achieves a thermal balance using NSGA (Srinivas & Deb, 1995) meta heuristic. Jena and Sharma (2007)

propose an approach that tries to optimize energy consumption and bandwidth requirements by using

NSGAII (Deb et al., 2002). To determine the Pareto-optimal configuration, a multi-objective genetic

algorithm (MOGA) is used to optimize the average delay and the routing robustness by Tornero et al.

(2009). Nedjah et al. (2011) propose solution which relies on multiobjective evolutionary algorithms

NSGAII (Deb et al., 2002) and MicroGA (Coello & Pulido, 2001) to minimize the hardware area, the

execution time and the total power consumption. An ant colony optimization approach (ACO) is used by

He and Guo (2013) to optimize the communication power consumption and the delay. Another mapping

approach is proposed by Zhu et al. (2015) where a trade-off between temperature and latency is made. A

constructive heuristic based method is proposed by Chatterjee et al. (2016) to solve the mapping problem

where both network communication cost and system reliability are optimized. Bruch et al., (2017) use

NSGAII (Deb et al., 2002) meta-heuristic to find trade-off solutions that improve the deadline

compliance, reduce both the number of virtual channels used in the routers and the static energy

consumed by the network. Some of the aforementioned works (He &Guo,2013;Zhu et al., 2015;

Chatterjee et al., 2016) aggregate several objectives in a unified cost function. The drawback of these

approaches comes from its difficulty to adjust the weights. Some other cited works (Zhou et al.,2006;

Jena & Sharma, 2007; Nedjah et al., 2011) do not take into account the dynamic effect on network on

chip (NoC) such as contention, and assume that the NoC is contention-free when they explore the

mapping space. Most of these works use metaheuristics approaches, especially population based ones (P-

metaheuristics) to find the approximation of Pareto optimal set (For instance: SPEA2 by Ascia et al.

(2005) , MOGA byTornero et al. (2009), NSGAII by Bruch et al. (2017), etc.). From this, one can under-

stand that metaheuristics (P-metaheuristics) are appropriate approaches used to find a set of optimal or

sub optimal mapping solutions. Combining these meta-heuristics' set with other search techniques,

referred to as hybrid (or memetic) metaheuristics, prove their effectiveness and achieve better

performance compared to non hybrid ones (Blum et al.,2011). Several hybrid approaches are proposed in

the context of the NoC and MPSoCs mapping (Wu et al., 2012; Wang et al., 2016;Yan et al., 2017; Guo

et al., 2018).Wu et al. (2012) propose a new mapping algorithm called GA-MMAS based on Genetic

Algorithm GA and MAX-MIN Ant System Algorithm (MMAS) to optimize energy consumption and

latency for NoC. An adaptive memetic algorithm (AMA) to solve the mapping problem is proposed

byWang et al. (2016), which combines an adaptive GA and an effective local search algorithm. Another

hybrid approach is presented byYan et al. (2017), a multi objective hybrid algorithm (MOHA), which

integrates a Pareto local search into NSGAII (Deb et al., 2002) metaheuristic is proposed. Guo et al.

(2018) propose a novel IP-core mapping algorithm called CGSA (Cataclysm Genetic based Simulated

Annealing). Their proposed algorithm integrates genetic with an improved simulated annealing algorithm

assorted with cataclysm strategies. Some of the aforementioned hybrid approaches(Wang et al.,2016; Guo

et al., 2018) consider only one cost function such as communication cost (Wang et al.,2016) and

reliability (Guo et al., 2018). Some other works use a unified cost function(Wu et al.,2012), or target

homogeneous MPSoCs (Yan et al.,2017).In this work, the multi-objective hybrid approach which merges

P metaheuristics and S-metaheuristicsis proposed to solve our mapping problem and unlike other works

which use analytical models to provide a fast evaluation of a given mapping (Wu et al.,2012;Wang et

al.,2016), in this work, a simulation model is used to evaluate the two objectives we consider (execution

time and energy consumption) where the dynamic effect of the network on chip is considered.

MULTI-OBJECTIVE OPTIMIZATION

As the name suggests, the multi-objective optimization problem involves a simultaneous optimization of

multiple objectives that are often conflicting. When solving such problems, it is not possible to find a

single solution which optimizes all the objectives simultaneously. Instead, there exists a set of trade-off

optimal solutions known as Pareto-optimal set solutions. More formally, a multi-objective optimization

problem can be formulated in the following as in given by Zhou et al. (2011):

 "𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒" 𝐹(𝑥) = [𝑓1(𝑥), . . . 𝑓𝑚(𝑥)]𝑇| 𝑥 ∈ Ω

(1)

where Ω is the decision space and 𝑥 ∈ Ω is the decision vector. 𝐹(𝑥) consists of m objective functions

𝑓𝑖: Ω → 𝑅, 𝑖 = 1, 2, . . . , 𝑚, where 𝑅𝑚 is the objective space. The objectives in formula (1) are often

conicting. The Pareto optimality is defined as follows.

Definition 1.

A vector 𝑢 = (𝑢1, . . . , 𝑢𝑚)𝑇 is said to dominate another vector 𝑣 = (𝑣1, . . . , 𝑣𝑚)𝑇, denoted as𝑢 ≺ 𝑣, if

∀ 𝑖 ∈ {1, . . . , 𝑚} , 𝑢𝑖 ≤ 𝑣𝑖 and𝑢 ≠ 𝑣.

Definition 2.

A feasible solution 𝑥∗ ∈ Ω of problem (1) is called a Pareto optimal solution, if ∄𝑦 ∈ Ω such that F(y) ≺
F(x∗). The set of all the Pareto optimal solutions is called the Pareto set (PS), denoted as: The image of

the PS in the objective space is called the Pareto front (PF).

𝑃𝐹 = {𝐹(𝑥)| 𝑥 ∈ 𝑃𝑆}

The mapping problem can be considered as an instance of the multi-objective optimization problem. In

this work, a set of multi-objective hybrid optimization algorithms has been proposed to explore the

mapping space and to find the set of Pareto optimal solutions.

MAPPING PROBLEM FORMALIZATION

The mapping problem can be formalized as the assignment of an application model onto a platform model

in such a way that the metrics of interest (cost functions) will be optimized under a set of constraints. In

this section, we introduce our mapping system models, including the application and the platform models.

The cost functions and the constraints used for the evaluation of the mapping solutions are also presented.

1. Application model

The application model is represented by a task graph denoted by A(T, E), where T is a non-empty set of

vertices (tasks) ti and E is a non-empty set of edges ei. Each task ti is annotated with two vectors Vi and Ci

which contain respectively the energy consumption and the execution time of task ti on each type of

processing element. Each edge ei in E corresponds to a dependency relation between two tasks connected

by ei labeled with volume (ei) representing the amount of data exchanged between these tasks.

2. Architecture model

From the architecture point of view, the high level platform model contains a set of heterogeneous

processing elements (PEs). Each PE is connected to a router and has the following characteristics: Id,

type, frequency and location. Routers are interconnected with each other through bidirectional links

which are assumed to be homogeneous (same data rate D) and transfer data through a NoC topology in

the form of packets (set of flits). Figure 1 depicts the NoC's topology and the router-based architecture

that we consider in our work. Each router has five direction links: North (N), South (S), East (E), West

(W) and Local (L). The local port is connected to the processing element (PE) and the other ports are

connected to neighboring routers. Input and output ports are assumed to have each a fixed-size buffer.

In order to communicate between PEs through the NoC, a method of routing is required. An XY routing

algorithm is assumed as a deterministic routing algorithm which first routes packets on X direction to the

Figure 1: (a) Example of Heterogeneous MPSoC with four types of processors

interconnected using 2D Torus NoC Topology. (b) Router's architecture

correct column and then on the Y direction toward the destination. A wormhole switching techniqueis

also assumed in our work due to the small buffering space available in NoC's routers. The Round Robin

(RR) technique is used as an arbitration mechanism to solve contentions, and the credit-based flow

control technique is used to check the availability of router's buffers, hence avoiding data overflows.

3. Cost functions

We consider, in this work, two cost functions: the execution time (overall completion time) as well as the

energy consumption described using simulation models.

a) Simulation model

To compute the both fitness functions (the overall completion time and the energy consumption), a

discrete event based simulation model has been developed. The advantages of this model over analytical

ones is its capability to analyze and represent the NoC system behavior in sufficient details. For example,

the user can specify switching techniques, routing algorithms, flow control and arbitration policies, etc. In

addition, our model allows capturing the waiting time due to the dynamic effects of NoC based MPSoCs

systems like contentions. As in all discrete event based simulation models, we have maintained an event

list to store the system events in a chronological order. Each event occurs at a particular instant of time. In

our work, the following events have been considered:

i. Event1. Execute_Task (ti,Pj) : The simulation starts by executing the ready tasks of each

processor.

ii. Event2.Generate_Packets: Once the task ends its execution, the generation of packets occurs at

the network interface (NI). Each packet contains a header, a payload and tail flits.

iii. Event3.Transfer Flits (ProcessorToRouter): Packets' flits will be sent flit by flit from the

processor to the router.

iv. Event4.Apply Routing:As soon as a header flit arrives at the router's input buffer, the next hop is

calculated according to the assumed routing protocol.

v. Event5.Apply Arbitration:According to the header flits, if several packets request the same output

port, Round Robin arbitration policy is applied to select one of them.

vi. Event6.Traverse Router:The selected packet sends its flits through the router if there is enough

space in its output buffer.

vii. Event7.TraverseLink:By applying the credit-based flow control technique, flits are transmitted

between two neighboring routers through the link if the credit value of a source router's output

buffer is higher than zero.

viii. Event8.Transfer Flits (RouterToPocessor): This event occurs if the final destination corresponds

to the router's local port.

The output of this simulation model returns the two considered metrics measures (i.e. the overall

completion time and the energy consumption) for a given mapping configuration from a single simulation

run. In the following, we describe how these two metrics are computed using this simulation model.

b) Overall completion time using simulation model

To explain how the overall completion time of a given application is computed using the simulation

model, let us take an example of a given mapping configuration (see Figure 2(c)).The simulation starts by

executing the first event (Execute_Task (T1,P5)) as given by algorithm 1.

Algorithm1: Execute_Task (T1,P5)

for each Rlist(P5)do

T1=Rlist(P5).peek()

if(P5.state()= free)then

Schedule(Execute_Task (T1,P5), current_time)

ST(T1,P5) = current_time

FT(T1,P5) = ST(T1,P5)+ C15

Schedule(Generate_Packets, FT(T1,P5))

Rlist(P5).remove(T1)

else

delta = FT(Tk,P5)- current_time

Schedule(Execute_Task (T1,P5), current_time+delta)

endif

endfor

where ST(T1,P5) and FT(T1,P5) are respectively the Start Time and Finish Time of task T1on a processor

P5, FT(Tk,P5) is the finish time of the last task running on the same processor P5 where T1 is mapped, C15

is the execution time of the task T1 on a processor P5, Rlist(P5) is a list of ready tasks assigned to a

processor P5 and delta is the waiting time required to release the processor P5 so the task T1 can start its

execution on it.

Once the task T1 ends its execution on P5, its communication can be started after a packetization phase

(event 2). Flits are sent from the processor P5 where T1is mapped to the local port of router R5 attached to

it, TP5R5 is the flit traversal time between the processor P5 to the router R5. As soon as the header flit

arrives to R5' input buffer, a next destination is searched according to the control techniques of this router

including the routing algorithm, arbitration and control policies. Let TR5 is the R5 router traversal time

which is computed as the sum of routing (Tro), arbitration (Tarb) and flow control (Tctr) times. It is worth

mentioning that the waiting time is added if concurrent communications (contentions) occur. After

applying the routing algorithm (XY in our case study), flits traverse the link lR5R6 connecting the two

routers R5 and R6 (event 7). TR5R6 is the link traversal time between R5 and R6. As the R6' local port is

not attached to the final destination (i.e., the processor P9), flits traverse the router R6 (TR6) towards next

hop R9 through the link lR6R9. By invoking control techniques again at router R9 (i.e. event 4, event 5 and

event 6), event 8 occurs and TR9P9is the flit traversal time between router R9 and processorP9. According

to this example and since our simulation is flit-based level, the communication time of a given flit

Tflit(P5P9) from P5 to P9 where T1 and T2 are mapped respectively can be computed as following:

𝑇𝑓𝑙𝑖𝑡(P5P9) = 𝑇𝑃5𝑅5 + 𝑇𝑅5 + 𝑇𝑅5𝑅6 + 𝑇𝑅6 + 𝑇𝑅6𝑅9 + 𝑇𝑅9 + 𝑇𝑅9𝑃9

(2)

In general, the simulation model pulls off and executes event by event until all the application tasks have

been finished (i.e.the event list becomes empty). Hence, the overall completion time of an application

consists of the time elapsed between the execution of the first event and the execution of the last one.

Figure 2: Example illustrating overall completion time computation using a

simulation model

c) Energy consumption

As the overall completion time cost function, the energy consumption of NoC based on a heterogeneous

MPSoC's system is estimated using the simulation model. This model computes the overall energy

consumption of the system as the sum of energy's system components at each clock cycle including

processing (i.e. processors' energy) and communication energies (i.e. NoC components' energy). The

advantage of using this model comes from its capability to take into account the additional energy

consumed by routers' buffer in presence of contentions.

4. Application and architecture constraints

In this paper, we consider the following constraints.

a) Task's assignment

Each task is assigned to exactly one processor, i.e:

where P is the number of processors (PEs) and NBT is the number of tasks. xij is a decision

variable defined as follows: xij=1 if Ti is assigned to processor Pj, xij=0 otherwise.

b) Pre-assignment

In some cases such as hardware constraints (like dedicated accelerators), we can predefine a tasks

assignment on specific processors for better performance purposes.

THE MULTI-OBJECTIVE MODEL

As mentioned above, the multiobjective model considered in this work consists in minimizing both the

overall completion time and the energy consumption"𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒" 𝐹(𝑥) =

[𝑓1(𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒), 𝑓2(𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)] under the two considered constraints. The

two cost functions considered in this work are in Pareto. Hence, reliable trade-off mapping solutions

which simultaneously optimize these two contradictory metrics are required. In this paper, we propose a

hybrid multi-objective approach which combines the power of two metaheuristics' sets to solve this

mapping problem.

HYBRID ALGORITHMS PROPOSAL

In this section, new hybrid metaheuristics are proposed for mapping applications onto NoC based on

heterogeneous MPSoCs. Our hybridization approach is divided into two phases as shown in Figure 3. In

the first phase, a set of well-known MultiObjective Evolutionary Algorithms (MOEAs) including

NSGAII (Deb et al., 2002), SPEA2 (Ziztler et al., 2001), PESA2 (Corne et al., 2001), FastPGA

(Eskandari et al., 2007) and IBEA (Zitzler Zitzler & Künzli, 2004) have been applied to get promising

mapping solutions. In the second phase, the obtained solutions from the first phase and randomly

generated solutions are used to initialize AMOSA’s archive to further improve the P-metaheuristics’

Pareto front and to ensure diversity by using random generated solutions. First, we describe how these

∑ 𝑥𝑖𝑗

𝑃−1

𝑗=0

= 1, ∀𝑖 ∈ [0; 𝑁𝐵𝑇 − 1]

(3)

MOEAs metaheuristics are adapted to solve the mapping problem; and then how AMOSA is used to

refine Pareto mapping solutions.

1. Solving the mapping problem using P-metaheuristics algorithms

Population based metaheuristics called P-metaheuristics have been proved as an ideal candidates to solve

Multi-Objective Problems (MOPs). These metaheuristics work with multiple solutions called population

rather than a single solution. Due to the population-based property, they can find several solutions of the

Pareto optimal set in a single run, which lead them to be major and efficient approches recognized in

solving multiobjective optimization. The most representative set of this kind of algorithms are

Multiobjective Evolutionary Algorithms (MOEAs). In this section, we give an overview and describe

briefly the five well-known MOEAs selected to be used in our proposed hybrid algorithms:

a) NSGA II: Nondominated Sorting Genetic Algortithm II is the most popular MOEA proposed by

Deb et al. (2002), it uses in its selection operator: Pareto nondominated sorting and crowding

distance.The Pareto nondominated sorting consists in dividing individuals into ranked non

dominated fronts as follows: from a given solutions'set S, we have to find a set NS1 which

contains the non dominated solutions according to non dominance relation applied to S.All the

solutions that belong to the NS1's set are assigned to rank 1. This NS1 set is removed from S, and

the same process is repeated on S-NS1, the next non dominated solutions' set NS2 is found from

S-NS1. All the solutions belonging to the NS2's set are assigned to rank 2. This process goes on

until S becomes empty. Solutions from a given rank are ranked again according to a crowding

distance which is used to estimate the spread of solutions. To find a good Pareto front in terms of

convergence and diversity, NSGAII selects the solutions with a lower rank, and if the solutions

have the same rank, the crowding distance is used to select more diverse solutions.

b) SPEA2: Strength Pareto Evolutionary Algorithm 2 has been widely used in MOPs, initially

proposed by Zitler et al. (2001).This algorithm uses both population and an archive in its

operation.The archive is initially empty and size limited. It is used to save non dominated

solutions found during the search, and if the number of non dominated solutions exceeds the

archive size's limit, a truncation method is applied to preserve the boundary solutions. A fine

grained fitness assignment is also used in this algorithm, which incorporates both the concept of

Pareto dominance and density information.

c) PESA2: Pareto Envelope-based evolutionary algorithm 2 is proposed by Corne et al. (2001). This

algorithm divides the search space in hyper boxes and instead of selecting individuals according

to their fitness, one hyper box is selected and a random solution from the selected hyper box is

kept. So this kind of selection is called region based selection.

d) FastPGA: Fast Pareto Genetic Algorithm is proposed by Eskandari et al. (2007). It classifies the

parents and offspring solutions into two sets: the first one contains the non dominated solutions

and the second one contains dominated ones. The fitness value of the solutions from the first set

is calculated using the crowding principle presented in NSGAII algorithm (Deb et al., 2002). For

the other solutions, the fitness-value procedure looks like the one used in SPEA2 (Ziztler et al.,

2001). In addition, FastPGA uses a population regulation operator to dynamically regulate the

size of the population.

e) IBEA: Indicator Based Evolutionary Algorithm is proposed by Zitzler and Künzli (2004). This

algorithm uses an arbitrary quality indicator, such as Hypervolume in its selection phase.Unlike

other algorithms cited above, IBEA algorithm does not require additional diversity-preservation

mechanisms.

Figure 3: Hybridization approach

The five above cited algorithms are already implemented in jMetal framework (jMetal) which we have

adapted to solve our mapping problem.For this purpose, we have defined the solution coding and adapted

the different mutation and crossover operators, as described in the following.

i. Solution coding

For our mapping, we used an integer coding. Each mapping solution is represented by a tuple

(𝑥1 , 𝑥2 , … , 𝑥𝑛), where xi gives the PE on which the task ti has been mapped. The value of each variable xi

is chosen from the set Pti which is the list of all permissible processors for the task ti. Figure 4 gives a

chromosome example where 5 tasks are mapped on a given heterogeneous platform.

Let us assume that Pt0={1, 3, 8} is the permissible processors of the task t0. For example the value of the

task t0 is 3 which is chosen from its Pt0.

ii. Mutation and crossover

After applying crossover and mutation operators, it is possible that some solutions (chromosomes) will be

invalid due to the assignment of a given task to unfeasible processor. An example of invalid solution after

applying a mutation operator (for instance a polynomial mutation) is depicted in Figure 5 (the task t0 is

assigned to the processor 22 which is not in its permissible set Pt0={1, 3, 5, 9, 11, 15}).

To tackle this problem, we first transform the initial coding to an intermediate one by using the indices of

Pti elements. As shown in Figure 6, the parent's chromosome (15, 7, 9, 4, 15) will be transformed to (5, 1,

3, 0, 2). 5 is the index of the element 15, 1 is the index of the element 7, 3 is the index of the element 9,

etc. The set Pti will be transformed to P'ti. The aim of this new representation is to minimize invalid

solutions' numbers.

Unfortunately, we do not eliminate all of them. An example of invalid solution after applying this new

representation is given in Figure 7.

Thus task t0 is assigned to processor with index 7 which is not in the set of processors' indexes P't0 ={0, 1,

2, 3, 4, 5}. To correct these invalid solutions, we propose Algorithm 2.

Algorithm 2:Correct invalid solutions to valid ones.

for all invalid solutions do

for all tasks do

Figure 4: chromosome example

Figure 5: Example of invalid solution after applying Polynomial mutation

operator

Figure 6:Intermediate coding

Figure 7: Example of invalid solution with the new representation after

applying Polynomial mutation.

if (val(ti) ∉P'(ti)) then
generate a random valueinside P'(ti)

replace val(ti) by a generated random value.

endif

endfor

endfor

The result's solution after applying Algorithm 2 is depicted in Figure 8. At the last step, we transform the

obtained intermediate coding to the initial one (see Figure 9), the chromosome (1, 1, 3, 0, 2) is then

transformed to (3, 7, 9, 4, 15). 3 is the element with index 1 in the set Pt0, 7 is the element with index 1 in

the set Pt1, 9 is the element with index 3, etc.

Although these P-metaheuristics give a good trade-off mapping solutions used by several authors in the

litterature, these metaheuristics can be further improved by a local search method, we have selected

AMOSA metaheuristics as an S-metaheuristic which use the P-metaheuristics' results as a good start

points in its archive as well as random solutions' set to ensure more spread solutions.

2. Refinement of P-metaheuristics results using AMOSA algorithm

Archived Multiobjective Simulated Annealing proposed by Bandyopadhyay et al. it is a multiobjective

version of the simulated annealing (SA) algorithm which is a well-known single solution based search

algorithm. It incorporates the concept of archive to store the non-dominated solutions during search

process as well as to determine its acceptance probabilities. We have used AMOSA in this study as local

reseach to further refine the mapping solutions. In this section, before describing AMOSA' archive

initialization which is the heart of this novel proposal, we first show how we adapt AMOSA to solve the

mapping problem.

a) Solving mapping problem using AMOSA

To apply this algorithm to our mapping problem, we have to specify a solution representation and a

corresponding neighbourhood move operator.

i. Solution representation

The potential solution (point) in AMOSA algorithm is like the chromosome representation shown in

Figure 4. As AMOSA is a single solution based metaheuristic, the search process starts from an initial

solution and tries to find a new one (new search area) by applying the neighbourhood move operator that

is described below.

ii. Neighbourhood move operator

For AMOSA algorithm, the neighbourhood move operator is like the mutation operator which we have

adapted above. So all the mutation operators like Flip Mutation, Polynomial Mutation, Uniform

Mutation and Non Uniform Mutation can be specified as neighbourhood move operators in AMOSA

algorithm.

Figure 8:Correct invalid solution byapplying algorithm 2

Figure 9:Return to the initial coding

b) Initialize AMOSA' archive

Our approach consists in injecting the Pareto mapping solutions provided by P-metaheuristics as well

as random ones in AMOSA's archive in order to further improve solutions given by standard MOEAs

and give new well balanced approaches in both exploration and exploitation. These new approaches are

called according to the P-metaheuristic used preceded by H. For instance HNSGAII, use AMOSA

algorithm to further improve the standard NSGAII (see Algorithm 3).

Algorithm 3: HNSGAII-main.

Step1: execute NSGAII

S: is a set which contains non-dominated solutions returned by NSGAII

R: is a set which contains non-dominated solutions generated randomly

A: is AMOSA' archive

HL: is the maximum size of the Archive on termination

Add all the solutions of S to the A

for each solution rR do

if (l≺ 𝐫) then|lA
 delete r

else

add r to A

endif

endfor

if (A.size()> HL) then
 Apply clustering

Step2: execute AMOSA

Experimental results

In this section, our proposed hybrid algorithms are evaluated using various mapping problem's instances

(small, medium and large).These instances differ from each other regarding the task graph's and

platform's size used as depicted in Table 1. The implementation of P-metaheuristics used in the proposed

hybrid approach is the one of jMetal framework (jMetal) which we have adapted to our mapping problem.

We have also extended this framework by adding new algorithms' implementations such as the S-

metaheuristic algorithm (AMOSA) and the Multi-objective exact one called Multi-objective Branch and

Bound (MBB). It is worth mentioning that the exact method is used to check the efficiency of the

proposed hybrid multiobjective algorithms in solving small and medium mapping problem's instances.

For our experiments, TGFF(TGFF) is used to generate a set of synthetic task graphs by varying the

number of nodes (tasks). On the other hand, the architecture model (Platform) consists of k types of

processors interconnected using 2D Torus NoC topology. Table 2 gives the NoC's parameters used in our

experiments.

Table 1. Mapping problem's instances

Mapping problem Task graph Platform

Small 6 3x3 torus topology

Medium 10 4x4 torus topology

Large 100 8x8 torus topology

Table 2. NoC's parameters

NoC topology 2D Torus

Switching technique Wormhole switching

Routingtechnique XY routing algorithm

Arbitration technique Round Robin (RR)

Flow control Credit-based

Table 3. Algorithm's Parameterization

NSGAII/FastPGA

Population Size 100

Max Iterations 10000

Mutation Probability 1.0/L (L : individual length)

Crossover Probability 0.9

SPEA2/PESA2/IBEA

Population Size 100

Archive Size 100

Max Iterations 10000

Mutation Probability 1.0/L (L : individual length)

Crossover Probability 0.9

AMOSA

Initial temperature (T0) 800

Final temperature (T1) 0.001

• Cooling rate α 0.9

Max Iterations 100

HL 100

SL 110

Gamma 1.8

The proposed multiobjective hybrid algorithms are evaluated according to their quality of the Pareto

solutions returned and their computational time (runtime). To measure the hybrid algorithms' quality

solutions, two properties are usually required: convergence and uniform diversity. A number of quality

indicators for measuring these two criteria are included in jMetal framework (jMetal). In this paper, we

have considered the following evaluation metrics:

1. Inverted Generational Distance (IGD) (Nebro et al., 2006): this metric measures both

convergence and diversity. It uses the optimal Pareto front and measures the distance of each of

its elements and the computed approximation.

2. Epsilon (Durillo& Nebro, 2011): measures the smallest distance it would be necessary to translate

every solution in a computed front for a problem. So it dominates the optimal Pareto front of this

problem. This metric measures only convergence.

The smaller the IGD and Epsilon values are, the closer the approximation set is to the reference Pareto

front (better convergence). A small value of IGD means also a good diversity of the obtained

solutions.When IGD and Epsilon values are 0, it implies that all the generated solutions of a given

algorithm are in the optimal Pareto set of the problem. These applied metrics require an optimal Pareto set

to be computed. To this end, we have considered the Pareto front returned by MBB as an optimal Pareto

set (reference Pareto front) for small and medium mapping problems. For the large mapping problem, the

optimal Pareto is obtained by collecting the results of several runs of the different algorithms. In all our

experiments, we have performed 30 independent runs and the obtained tables (4, 5, 6, 7, 10 and 11)

represent statistical informations of the quality indicator applied as well as algorithms' runtime. Table 3

gives algorithms'parameter settings used in the following experiments. Notice that these parameters have

been chosen after a primary phase where sensitivity analysis is done to find the parameters which give

good results for all instances in terms of both solutions' quality and runtime. All the calculations were

performed on a PC Intel(R) Core(TM) i7 CPU, 2.7GHz, with 8 Go of RAM.

Tables (4,5, 6 and 7) show respectively a comparative study between the proposed hybrid algorithms

called (HNSGAII, HSPEA2, HPESA2, HFastPGA, HIBEA) and the non hybrid ones (NSGAII, SPEA2,

PESA2, FastPGA, IBEA) on small and medium mapping problem's instances. The fronts returned by the

different algorithms are compared with the optimal Pareto set provided by the multiobjective branch and

bound (MBB). We have limited the number of permissible processors for each task, so that the maximum

search space's size of small and medium mapping problems considered in these experiments are

respectively 21600 and 139968 instead of 96 and 1610.

From Tables (4,5, 6 and 7), one can see that the proposed hybrid approaches present better mean and

median values compared to non hybrid ones for both small and medium mapping instances. These

enhancements are well viewed by boxplots given in Figures 10 and 11 (in terms of Epsilon). This shows

that for the small and medium mapping problem instances, our proposed hybrid algorithms outperform

the non hybrid ones according to the two performance metrics applied (IGD and Epsilon). It is important

to note that except HIBEA metaheuristic which outperforms IBEA in all runs (HIBEA's boxplots are

above IBEA' ones), hybrid algorithms do not outperform non hybrid ones in all runs. For instance, Tables

8 and 9 compare first ten consecutive runs among 30 runs where hybrid and non hybrid algorithms have

been compared according to the Epsilon quality indicator.As seen from Tables 8 and 9, the hybrid

algorithms outperform non hybrid ones in almost all the runs and never deteriorate non hybrid algorithms'

results. It can also be concluded that our proposed hybrid algorithms provide results which are the same

or close to those returned by MBB in a very reasonable runtime. For example, more than 75% of

HNSGAII's runs give the same Pareto front as MBB while NSGAII gives lower than 50% best runs (see

Figure 9). This confirms the optimality of the proposed hybrid algorithms' results for the small and

medium mappings problems. Consequently, we can trust our proposed algorithms' results for solving

large mapping problem instances.

Table 4. Statistical indices. IGD. Hybrid vs non Hybrid algorithms (small mapping's instance)

Algorithms
IGD

Runtime
Mean Standard

deviation

Median min max

NSGAII 5.72e-04 5.8e-04 4.89e-04 0.00e+00 1.84e-03 4,759 s

HNSGAII 1.42e-04 3.6e-04 0.00e+00 0.00e+00 1.83e-03 10,683s

SPEA2 1.55e-03 9.8e-04 1.46e-03 7.91e-04 6.79e-03 5,132s

HSPEA2 1.83e-04 3.8e-04 0.00e+00 0.00e+00 1.56e-03 11,127s

PESA2 4.66e-03 2.4e-03 3.13e-03 1.21e-03 8.98e-03 4,140s

HPESA2 1.81e-03 2.0e-03 5.18e-04 0.00e+00 5.19e-03 10,171s

FastPGA 1.74e-03 1.0e-03 1.54e-03 5.72 e-04 6.79e-03 7,938s

HFastPGA 1.07e-03 1.6e-03 4.89e-04 0.00e+00 5.01e-03 13,933s

IBEA 1.15e-02 2.2e-03 1.15e-02 7.37 e-03 1.79e-02 0,169s

HIBEA 3.50e-03 2.3e-03 5.01e-03 0.0e+00 8.01e-03 6,093s

MBB 0.00e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 43,663s

Table 5. Statistical indices. Epsilon. Hybrid vs non Hybrid algorithms (small mapping's instance)

Algorithms
Epsilon

Runtime
Mean Standard

deviation

median min max

NSGAII 3.53e+00 5.1e+00 1.00e+00 0.00 e+00 1.40e+01 4,759 s

HNSGAII 6.33e-01 2.5e+00 0.00 e+00 0.00 e+00 1.40e+01 10,683s

SPEA2 5.83e+00 8.6e-01 6.00 e+00 5.00 e+00 9.00e+00 5,132s

HSPEA2 9.00e-01 2.0e+00 0.00 e+00 0.00 e+00 8.00 e+00 11,127s

PESA2 2.56e+01 3.6e+01 1.40e+01 5.00 e+00 1.68e+02 4,140s

HPESA2 3.87e+00 5.1e+00 2.00e+00 0.00 e+00 2.10e+01 10,171s

FastPGA 6.90e+00 1.5e+00 6.00 e+00 5.00 e+00 9.00e+00 7,938s

HFastPGA 2.03e+00 2.0e+00 1.00 e+00 0.00 e+00 6.00 e+00 13,933s

IBEA 1.86e+02 6.2e+01 18.85e+01 9.1e+01 3,06e+02 0,169s

HIBEA 6.73e+00 1.5e+01 4.00e+00 0.00e+00 8.40e+01 6,093s

MBB 0.00e+00 0.0e+00 0.00 e+00 0.00e+00 0.00 e+00 43,663s

Table 6. Statistical indices. IGD. Hybrid vs non Hybrid algorithms (medium mapping's instance)

Algorithms IGD Runtime

Mean Standard

deviation

median min max

NSGAII 1.28e-03 4.6e-04 1.38e-03 0.0e+00 2.55e-03 0,584m

HNSGAII 3.65e-04 5.5e-04 0.00 e+00 0.00 e+00 1.38e-03 1,322m

SPEA2 1.98e-03 4.9e-04 1.83e-03 1.38e-03 3.21e-03 0,574m

HSPEA2 9.93e-04 5.6e-04 1.22e-03 0.00 e+00 1.64e-03 1,315m

PESA2 4.36e-03 3.8e-03 2.78e-03 8.96e-04 1.70e-02 0,559m

HPESA2 9.53e-04 6.5e-04 1.24e-03 0.00 e+00 1.87e-03 1,328m

FastPGA 2.65e-03 6.5e-04 2.49 e-03 1.58 e-03 4.26e-03 0,597m

HFastPGA 6.12e-04 6.3e-04 4.06e-03 0.00 e+00 1.56e-03 1,344m

IBEA 1.24e-02 3.4e-03 1.21e-02 6.82e-03 2.08e-02 0,018m

HIBEA 8.89e-04 7.5e-04 1.16e-03 0.00 e+00 2.96e-03 0,770m

MBB 0.00e+00 0.0e+00 0.00 e+00 0.00 e+00 0.00 e+00 27,065m

Table 7. Statistical indices. epsilon. Hybrid vs non Hybrid algorithms (medium mapping's instance)

Algorithms Epsilon
Runtime

Mean Standard

deviation

median min max

NSGAII 1.13e+01 5.9e+00 1.05e+01 0.00 e+00 2.20e+01 0,584m

HNSGAII 3.00e+00 5.2e+00 0.00 e+00 0.00 e+00 1.90e+01 1,322m

SPEA2 2.09e+01 8.3e+00 2.35e+01 7.00 e+00 3.80e+01 0,574m

HSPEA2 6.47e+00 4.5e+00 7.0 e+00 0.00 e+00 1.90e+01 1,315m

PESA2 6.01e+01 8.1e+01 2.60e+01 1,00e+01 3.27 e+02 0,559m

HPESA2 7.07e+00 6.1e+00 7.00 e+00 0.00 e+00 2.20e+01 1,328m

FastPGA 2.63e+01 8.6e+00 2.60e+01 1.00e+01 3.80e+01 0,597m

HFastPGA 4.47e+00 4.9e+00 5.00 e+00 0.00 e+00 1.90e+01 1,344m

IBEA 2.03e+02 9.1e+01 2.03 e+02 6.30e+01 4.02 e+02 0,018m

HIBEA 6.67e+00 1.0e+01 7.00 e+00 0.00 e+00 5.50e+01 0,770m

MBB 0.00e+00 0.0e+00 0.00 e+00 0.00 e+00 0.00 e+00 27,065m

Table 8. Epsilon metric according to Table 5

Algorithms Run 0 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9

NSGAII 1.0 0.0 0.0 1.0 14.0 0.0 0.0 0.0 1.0 0.0

HNSGAII 1.0 0.0 0.0 0.0 14.0 0.0 0.0 0.0 0.0 0.0

SPEA2 5.0 6.0 6.0 6.0 5.0 6.0 6.0 6.0 5.0 6.0

HSPEA2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0

PESA2 8.0 21.0 14.0 14.0 14.0 14.0 14.0 168.0 19.0 14.0

HPESA2 3.0 1.0 4.0 1.0 6.0 4.0 0.0 4.0 0.0 1.0

FastPGA 8.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0 9.0

HFastPGA 3.0 0.0 1.0 0.0 5.0 1.0 1.0 0.0 0.0 3.0

IBEA 257.0 211.0 251.0 122.0 154.0 125.0 109.0 182.0 240.0 168.0

HIBEA 1.0 4.0 3.0 3.0 5.0 4.0 4.0 4.0 4.0 4.0

MBB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 9. Epsilon metric according to Table 7

Algorithms Run 0 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9

NSGAII 3.0 19.0 19.0 7.0 7.0 7.0 19.0 4.0 13.0 7.0

HNSGAII 3.0 19.0 7.0 0.0 0.0 0.0 0.0 0.0 7.0 0.0

SPEA2 21.0 19.0 11.0 24.0 24.0 24.0 20.0 10.0 7.0 11.0

HSPEA2 7.0 7.0 0.0 0.0 11.0 19.0 4.0 7.0 7.0 11.0

PESA2 38.0 24.0 24.0 24.0 26.0 10.0 16.0 327.0 26.0 202.0

HPESA2 10.0 0.0 14.0 13.0 19.0 0.0 0.0 7.0 13.0 7.0

FastPGA 38.0 38.0 20.0 24.0 10.0 38.0 38.0 26.0 24.0 38.0

HFastPGA 0.0 7.0 7.0 0.0 7.0 3.0 0.0 7.0 0.0 0.0

IBEA 180.0 63.0 220.0 361.0 83.0 246.0 132.0 148.0 148.0 248.0

HIBEA 0.0 55.0 0.0 0.0 7.0 3.0 7.0 0.0 0.0 0.0

MBB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 10: Epsilon. Hybrid vs non hybrid algorithms (small mapping's instance)

Figure 11: Epsilon. Hybrid vs non hybrid algorithms (medium mapping's instance)

In Figure 12, a comparative study has been carried out between the two previous algorithms' sets (hybrid

and non hybrid algorithms) for large mapping's instances (see Table 1). In this experiment, we have

mapped a task graph with 100 tasks on a heterogeneous MPSoC platform with six types of processors

interconnected using 8x8 Torus topology.

Figure 12: Mapping of randomly generated graph with 100 tasks on a

heterogeneous MPSoC platform with six types of processors interconnected

using 8x8 Torus topology. Two cost functions are optimized (execution time and

energy consumption)

The plotted graphs, as depicted in Figure 12, represent the non dominated mapping's solutions of each

algorithm after 30 runs. As seen from Tables (10 and 11) and Figures (12 and 13), hybrid algorithms

yield the most promising results (give better Pareto front) compared with non hybrid ones in both IGD

and Epsilon metrics at the expense of time. This additional time of hybrid algorithms compared with non

hybrid ones is due to the time needed by Archived Multi-Objective Simulated Annealing (AMOSA) to

improve the P-metaheuristics' Pareto front.

Figure 13: Hybrid vs non hybrid algorithms (large mapping's instance)

Table 10. Statistical indices.IGD.Hybrid vs non Hybrid algorithms (large mapping's instance)

Algorithms
IGD

Runtime
Mean Standard

deviation

median min max

NSGAII 7.97e-01 4.2e-02 7.87e-01 7.21e-01 8.75e-01 3,12m

HNSGAII 1.80e-01 5.0e-02 1.70e-01 9.10e-02 2.82e-01 6,354m

SPEA2 5.28e-01 6.3e-02 5.43e-01 3.99e-01 6.30e-01 2,933m

HSPEA2 1.46e-01 3.2e-02 1.45ee-01 8.95e-02 2.08e-02 6,121m

PESA2 3.61e-01 9.5e-02 3.49 e-01 1.98 e-01 5.81e-01 2,639m

HPESA2 1.57e-01 5.1e-02 1.48 e-01 3.57e-02 2.99 e-01 5,83m

FastPGA 4.76e-01 9.6e-02 4.67e-01 2.74 e-01 6.84 e-01 2,87m

HFastPGA 1.63e-01 5.6e-02 1.59 e-01 4.35e-02 3.21e-01 6,049m

IBEA 1.14e+00 5.8e-02 1.15e+00 9.04 e-01 1.22e+00 0,1m

HIBEA 1.77e-01 5.4e-02 1.66e-01 9.25 e-02 3.21e-01 3,339m

Table 11. Statistical indices.epsilon.Hybrid vs non Hybrid algorithms (large mapping's instance)

Algorithms
EPSILON

Runtime
Mean Standard

deviation

median min max

NSGAII 8.62e+03 5.5 e+02 8.72e+03 7418 e+03 9.59e+03 3,12m

HNSGAII 2.79e+03 7.0 e+02 2.78e+03 1.36 e+03 4.14e+03 6,354m

SPEA2 6.07e+03 7.6 e+02 6.11 e+03 4.70 e+03 7.76e+03 2,933m

HSPEA2 2.22 e+03 7.4e+02 2.32 e+03 1.44 e+02 3.30 e+03 6,121m

PESA2 4.67 e +03 9.8 e+02 4.57 e+03 3.14 e+03 6.96 e+03 2,639m

HPESA2 2.48e +03 7.6e+02 2.50 e+03 9.82 e+02 4.31e+03 5,83m

FastPGA 5.52 e+03 9.4e+02 5.32e+03 3.70 e+03 7.57e+03 2,87m

HFastPGA 2.61e +03 7.3e+02 2.65e+03 1.08e+03 4.66 e+03 6,049m

IBEA 1.18 e +04 4.9 e+02 1.190e+03 1.03e+04 1.26e+04 0,1m

HIBEA 2.65e +03 7.9 e+02 2.52e+03 1.32 e+03 4.73e+03 3,339m

Lastly, we provide experiments that show how our proposed hybrid algorithms are sensitive to their

parameters. Figures 14 and 15 present two experiments on the effect of some parameters like AMOSA's

Max iterations (Figure 14) and AMOSA's Cooling rate (Figure 15) on the performance of an example of

the proposed hybrid algorithms HNSGAII. Note that we did not show all the proposed hybrid algorithms’

Pareto fronts in order to have clear figures. In these experiments, we have varied one parameter at one

time for HNSGAII algorithm. In the first experiment (Figure14), the AMOSA's Max iterations values

setting are as follows: 50, 100 and 500 and in the second one (Figure15), cooling rate α values are the

following: 0.5, 0.7 and 0.9 and other parameters have been fixed (see Table 12). A large mapping instance

has been used in this experiment.

Table 12. HNSGAII's Parameterization

Figure 14: AMOSA's Max iterations' effect

Figure 15: AMOSA's Cooling rate' effect

From Figures 14 and 15, it is clear that HNSGAII is very sensitive to its input parameters which strongly

determine the mapping solutions' quality. For instance, in Figure 14, we observe that the higher

AMOSA's max iterations value gives better mapping results at the expense of time. So compromise

between both the solution quality and the runtime required must be taken into account when exploring a

given mapping problem.

Table 13. Notation list

Term Description
Ti Task i

Pj Processor j

ST(Ti,Pj) Start Time of task i on processor j

FT(Ti,Pj) Finish Time of task i on processor j

Rlist (Pj) List of ready tasks assigned to a given processor Pj

Eij The energy needed to execute the task ti on a
processor Pj

Cij The execution time of the task ti on a processor Pj

Tro The time required for routing

Tarb The time required for arbitration

Tctr The time required for flow control

HNSGAII

Population Size 100

Max Iterations (NSGAII) 10000

Mutation Probability 1.0/L (L : individual length)

Crossover Probability 0.9

Initial temperature (T0) 800

Final temperature (T1) 0.001

Cooling rate α 0.9 (0.5, 0.7)
Max Iterations (AMOSA) 100 (50, 500)
HL 100

SL 110

Gamma 1.8

TRi Router's execution time

Tflit (Ps,Pd) Time required to transfer a given flit from source

processor towards destination one.

P The number of processors (PEs)

NBT The number of tasks

xij Ti is assigned to processor PEj (Binary variable)

DISCUSSION

Through experimental results conducted on several mapping instances (small, medium and large), the

performance of our proposal is proved. So, selecting these new approaches in the mapping phase of a

given system design flow may decrease its implementation cost and has a good impact on its final

behavior since these approaches give a high quality trade-off mapping solutions compared with standard

ones. However, the proposed hybrid algorithms are very sensitive to their parameters since they combine

two metaheuristics' sets which are both sensitive to their parameters. It is the reason why an initial

experimental phase where a sensitivity analysis for each parameter of each hybrid algorithm must be

carried out in order to determine the most appropriate settings to tackle a given problem type.

CONCLUSION AND FUTURE WORK

In this paper, a set of hybrid algorithms which combine P-metaheuristics and S-metaheuristics are

proposed to solve the mapping problem in a NoC architecture. To prove the optimality of the proposed

algorithms, we first compared them to the exact method (MBB) for small and medium mapping instances.

From our experimental results, our proposed hybrid algorithms provide the same results or close to those

given by the exact method (MBB) in low runtime while exceeding the non hybrid ones in terms of results'

quality.This confirms that the S-metaheuristics (local search) can effectively improve the P-

metaheuristics. As a future work, we plan to explore a couple of directions, including, exploring the

proposed algorithms by considering other design system's metrics like communication cost, load

balancing, etc.; further improvement of the P-metaheuristics by injecting a local search in their

initialization phase or their operators like mutation, crossover, etc.; and by considering other NoC's

characteristics (other topologies, router's architecture, etc.).

REFERENCES

Leupers, R., Aguilar, M.A., Eusse, J.F., Castrillon, J., &Sheng, W. (2017). MAPS: ASoftware

Development Environment for Embedded Multicore Applications. Springer Science+Business

Media Dordrecht, 917-949.

Mukherjee, P., & Chattopadhyay, S. (2017). Low Power Low Latency Floorplan-aware Path

Synthesis in Application-Specific Network-on-Chip Design.Integration, the VLSI Journal, 58,

167-188.

Benini, L., Micheli, G. (2002). Networks on chip: A new SoC paradigm. IEEE Computer, 35 (1),

70-78.

Hesham, S., Rettkowski, J., Goehringer, D., & Abd El Ghany, M.A. (2016). Survey on Real-

Time Networks-on-Chip.IEEE Transactions on Parallel and Distributed Systems.

Garey, M.R., Johnson, D.S. (1979). Computers and Intractability, A Guide to the Theory of NP-

Completeness.

Talbi, EG. (2009). Metaheuristics: From Design to Implementation . United States, John

Wiley and Sons Ltd.

Bandypadhyay, S., Saha, S., Maulik, U., &Deb, K.(2008). A Simulated Annealing-Based

Multiobjective Optimization Algorithm: AMOSA.IEEE Transactions onevolutionary

Computation, 12 (3).

Ascia, G., Catania, V.,& Palesi, M. (2005). Mapping Cores on Network-on- Chip.International

Journal of Computational Intelligence Research (IJCIR), 109-126.

Zhou, W., Zhang, Y & Mao, Z. (2006). Pareto based Multi-objective Mapping IP Cores onto

NoC Architectures.Circuits and Systems,APCCAS, 331-334.

Jena, R.K., &Sharma, G.K. (2007). A multi-objective evolutionary algorithm-based optimisation

model for network on chip synthesis. International Journal of Innovative Computing and

Applications, 977-982.

Tornero, R., Sterrantino, V., Palesi, M,& Orduna, J.M. (2009). A multi-objective strategy for

concurrent mapping and routing in networks on chip. International Symposium on Parallel and

Distributed Processing, 1-8.

Nedjah, N., da Sliva , M.V.C, &Mourelle, L.de.M. (2011). Customized computer-aided

application mapping on NoC infrastructure using multi-objective optimization. Journal of System

Architecture, 57(1), 79-94.

He, T., Guo, Y. (2013). Power consumption optimization and delay based on ant colony

algorithm in network-on-chip.Engineering Review, 33(3),219-225.

Zhu, D., Chen, L., Pinkston, T.M., & Pedram, M. (2015). TAPP: Temperature-Aware

Application Mapping for NoC-Based Many-Core processors, Design Automation and Test in

Europe Conference and exhibition, 1241-1244.

Chatterjee, N., Reddy, She., Reddy, Shi., &Chattopadhyay.S. (2016). A reliability

awareapplication mapping onto mesh based Network-on-Chip. International Conference on

Recent Advances in Information Technology(RAIT), 537- 542.

Bruch, J.V., Sliva, E.A.da., Zeferino, C.A., &Indrusiak, L.S. (2017). Deadline, Energy and

Buffer-Aware Task Mapping Optimization in NoC-Based SoCs Using Genetic

Algorithms.Symposium on Computing Systems Engineering (SBESC), 86-93.

Blum, Ch., Puchinger, J., Raidl, G.R., & Roli, A. (2011).Hybrid Metaheuristics in Combinatorial

Optimization: A Survey.Applied Soft Computing, 11(6), 4135- 4151.

Wu, N., Mu, Y., & Ge, F. (2012). GA-MMAS: an Energy- and Latency-aware Mapping

Algorithm for 2D Network-on-Chip. IAENG International Journal of Computer Science.

Wang, X., Liu, H., & Yu, Z. (2016). A novel heuristic algorithm for IP block mapping onto

mesh-based networks-on-chip. The Journal of Supercomputing, 72(5), 2035-2058.

Yan, R., Zhou, Y., Yan, Y., Yin, M., Yu, M., Ma, F., & Huang, K. (2017). A Hybrid Multi-

objective Evolutionary Algorithm for Energy-Aware Allocation and Scheduling Optimization of

MPSoCs.International Conference on Tools with Artificial Intelligence, 701-708.

Guo, L., &Ge, Y., Hou, P., Cai, Q., & Wu, J. (2018). A Novel IP-Core Mapping Algorithm in

Reliable 3D Optical Network-on-Chips. Optical Switching and Networking.

Deb, K., Pratap, A., Agarwal, S.,& Meyarivan, T. (2002). A fast and elitist multi- objective

genetic algorithm: NSGA-II. IEEE Transactions on EvolutionaryComputation, 6(2), 182197.

Zitzler, E.,Laumanns, M., &Thiele, L. (2001). SPEA2: improving the performance of the

strength Pareto evolutionary algorithm.Technical Report 103, Computer Engineering and

Communication Networks Lab (TLK), Swiss FederalInstitute of Technology.

Corne, DW., Jerram, NR., Knowles, JD., & Oates, MJ. (2001).PESA-II: region-basedselection in

evolutionary multiobjective optimization, In Proceedings of theGenetic and Evolutionary

Computation Conference, San Francisco, California, USA.

Eskandari, H., Geiger, CD., & Lamont, GB. (2007). FastPGA: a dynamic populationsizing

approach for solving expensive multi-objective optimization problems, 4th International

Conference on Evolutionary Multi-Criterion Optimization,Matsushima, Japan.

Zitzler, E., & Kunzli, S. (2004). Indicator-based selection in multiobjective search, In:Yao X et

al., editors. Parallel problem solving from nature (PPSN VIII).Berlin, Germany: Springer Verlag,

832- 842.

Srinivas, N., & Deb, K. (1995). Multi-objective optimization function optimizationusing non-

dominated sorting genetic algorithms, 2(3), Evolutionary Computation,221-248.

jMetal. The jMetal framework. from http://jmetal.sourceforge.net/

TGFF. Task Graph For Free. fromhttp://ziyang.eecs.umich.edu/projects/tgff/index.html

Nebro, AJ., Luna, F., Alba, E., Beham, A., &Dorronsoro, B. (2006). AbYSS: Adapting

Scatter Search for Multiobjective Optimization, Tech Rep. ITI-2006-2, De partamento de

Lenguajes y Ciencias de la Computacin, University of Mlaga.

Durillo, JJ., & Nebro, AJ. (2011). jMetal: A Java framework for multiobjective optimization,

Advances in Engineering Software (Thomson Reuters),42(10), 760-771.

Coello, CA.C., & Pulido, G. (2001). A micro-genetic algorithm for multiobjective optimization. ,

Lecture Notes in Computer Science, 126-140.

http://jmetal.sourceforge.net/
http://ziyang.eecs.umich.edu/projects/tgff/index.html

Zhou, A., Qu, BY., Lui, H., Zhao, SZ., Suganthan, PN., & Zhang, Q. (2011). Multiobjective

evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation,

1(1), 32-49.

Tafesse, B., &Muthukumar, V. (2013). Framework for simulation of heterogeneous MpSoC for

design space exploration.,VLSI Design,1–16.

Sanchez G., Agostini L., Sousa L. & Marcon C. (2018). Parallelism exploration for 3D high-

efficiency video coding depth modeling mode one. In Journal of Real-Time Image Processing,

1–11.

Stoychev I. et al. (2016). Sensor data fusion with MPSoCSim in the context of electric vehicle

charging stations. In the Proc. of IEEE Nordic Circuits and Systems Conference (NORCAS), 1–

6.

Rettkowski J., Wehner P., Schülper M.,& Göhringer D. (2015). A Flexible Software Framework

for Dynamic Task Allocation on MPSoCs Evaluated in an Automotive Context. In: Sano K.,

Soudris D., Hübner M., Diniz P. (eds) Applied Reconfigurable Computing. Lecture Notes in

Computer Science, vol. 9040. Springer, Cham.

Meloni P., Tuveri G., Pani D., Raffo L., Palumbo F. (2015). Exploring custom heterogeneous

MPSoCs for real-time neural signal decoding.In the Proc. ofConference on Design and

Architectures for Signal and Image Processing (DASIP), 1–8.

Iranfar A., Pahlevan A., Zapater M., Žagar M., Kovač M., Atienza D. (2018). Online efficient

bio-medical video transcoding on MPSoCs through content-aware workload allocation. In the

Proc. ofDesign, Automation & Test in Europe Conference & Exhibition (DATE), 949 – 954.

El Mimouni E.-H.& KarimM. (2014). A MicroBlaze-based Multiprocessor System on Chip for

real-time cardiac monitoring. In the Proc. ofthe International Conference on Multimedia

Computing and Systems (ICMCS), 331 – 336.

