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ABSTRACT 

Mapping parallel applications onto a Network on chip (NoC) that is based on heterogeneous MPSoCs is 

considered as an instance of an NP-hard and a multiobjective problem. Various multiobjective 

algorithms have been proposed in the litterature to handle this issue. Metaheuristics stand out as highly 

appropriate approaches to deal with this kind of problem. These metaheuristics are classified into two 

sets: population based metaheuristics and single solution based ones. To take advantage of the both sets, 

the trend is to use hybrid solutions that have shown to give better results. In this paper, we propose to 

hybridize these two metaheuristics' sets to find good Pareto mapping solutions to optimize the execution 

time and the energy consumption simultaneously. The undertaken experimental results have shown that 

the proposed hybrid algorithms give high quality non dominated mapping solutions in a reasonable 

runtime. 

Keywords: Hybridation, Multi-objective optimization, Mapping, Network on chip (NoC), Heterogeneous 

Multiprocessor Systems-on-Chips (MPSoCs) 

INTRODUCTION 

Todays's applications that run on embedded systems such as multimedia (Sanchez et al., 2015 ), 

automative context (Stoychev et al. 2016; Rettkowski et al. 2015), signal processing (Meloni  et al. 2015), 

and healthcare (Iranfar et al., 2018; El Mimouni & Karim 2014) have performance requirements which 

can no longer be satisfied by uniprocessor systems (Tafesse & Muthukumar, 2013). Heterogeneous Multi-

processor Systems-on-Chips (MPSoCs) are widely accepted as a solution for future embedded systems 

(Leupers et al., 2017). With the increase of the number of processing elements in Systems-on-Chip 

(SoCs), it becomes very difficult to continue with the traditional non-scalable bus-based communication 

systems (Mukherjee & Chattopadhyay, 2017). The Network on chip (NoC) (Benini &Micheli, 2002) 

paradigm has been introduced as a promising interconnection solution to these systems. NoCs offer a 



scalable and flexible-communication infrastructure with a highly supported modularity and a powerful 

performance (Hesham et al., 2016). 

 

One critical issue of NoC based on heterogeneous MPSoCs is how to map an application on this platform, 

which is known to be NP-hard (Garey & Johnson, 1979). Furthermore, searching for an optimal mapping 

involves a frequent optimization of multiple objectives (functions) simultaneously which are often 

conflicting (e.g., overall completion time with energy consumption or load balancing with communication 

cost). So it is not possible to find a single mapping solution which optimizes all the objectives 

simultaneously. Instead, there exists a set of mapping solutions known as a Pareto optimal set. Various 

multiobjective algorithms have been proposed in the litterature to handle this issue. Metaheuristics stand 

out as a highly appropriate approaches to deal with this kind of problem in order to find good trade-off 

solutions (Talbi, 2009). These metaheuristics are broadly classified into two classes: Single solution based 

metaheuristics (S-metaheuristics) and Population based ones (P-metaheuristics). S-metaheuristics start 

from one solution's candidate and try to find better solutions in its neighborhood (local area search) so 

that this kind of metaheuristics focuses on exploitation. On the other hand, P-metaheuristics start with a 

set of solutions called population, instead of one solution. The power of the latter is its capability to 

explore a huge search space, hence allowing these metaheuristics to focus on exploration. Combining 

these two sets (i.e., hybridization) gives a well-balanced approach in both exploration and exploitation. 

Archived Multiobjective Simulated Annealing (AMOSA) (Bandypadhyay et al.,2008) is applied in this 

work to further improve the P-metaheuristics' Pareto front. 

In this paper, we discuss our contribution followed by the related work. Then, we describe the multi-

objective optimization principles and we formalize the problem to be solved. After that, we present the 

proposed hybrid algorithms and discuss the experimental results. Finally, we conclude the paper. 

OUR CONTRIBUTION  

Since the mapping problem is considered as the one of the most design challenges in NOC based 

heterogeneous MPSoC which affects greatly the final system performance, design of robust optimizers is 

required. Several optimization methods such as exact methods and metaheuristics have been proposed in 

the litterature to tackle this problem. Due to the todays' high systems complexities, the exact methods 

have quickly reached their limitations because of their unacceptable runtime. Metaheuristics stand out as 

highly appropriate approaches to tackle this problem. As stated above, these metaheuristics are classified 

into S-metaheuristics and P-metaheuristics. These latter especially Multiobjective Evolutionary 

Algorithms (MOEA) are widely used and have proved their success in solving this problem. Our solution 

is to further improve these MOEAs using local search based metaheuristic called AMOSA and gives new 

approaches which draw advantages from both metaheuristics' kind and consequently supply designers 

with a best trade-off mapping solutions. 

RELATED WORK 

Several multi-objective approaches have been proposed to solve the NoC mapping problem (Ascia et al., 

2005; Zhou et al., 2006; Jena & Sharma,  2007; Tornero et al., 2009; Nedjah et al., 2011; He & Guo, 

2013; Zhu et al., 2015; Chatterjee et al., 2016; Bruch et al., 2017). Ascia et al. (2005) present an approach 

for exploring the mapping design space while optimizing performance and power consumption by using 

SPEA2 (Ziztler et al., 2001) meta heuristic. Zhou et al. (2006) consider the mapping problem as a two 

conflicting objective optimization problem that attempts to minimize the average number of hops and 

achieves a thermal balance using NSGA (Srinivas & Deb, 1995) meta heuristic. Jena and Sharma (2007) 

propose an approach that tries to optimize energy consumption and bandwidth requirements by using 

NSGAII (Deb et al., 2002). To determine the Pareto-optimal configuration, a multi-objective genetic 

algorithm (MOGA) is used to optimize the average delay and the routing robustness by Tornero et al. 

(2009). Nedjah et al. (2011) propose solution which relies on multiobjective evolutionary algorithms 



NSGAII (Deb et al., 2002) and MicroGA (Coello & Pulido, 2001) to minimize the hardware area, the 

execution time and the total power consumption. An ant colony optimization approach (ACO) is used by 

He and Guo (2013) to optimize the communication power consumption and the delay. Another mapping 

approach is proposed by Zhu et al. (2015) where a trade-off between temperature and latency is made. A 

constructive heuristic based method is proposed by Chatterjee et al. (2016) to solve the mapping problem 

where both network communication cost and system reliability are optimized. Bruch et al., (2017) use 

NSGAII (Deb et al., 2002) meta-heuristic to find trade-off solutions that improve the deadline 

compliance, reduce both the number of virtual channels used in the routers and the static energy 

consumed by the network. Some of the aforementioned works (He &Guo,2013;Zhu et al., 2015; 

Chatterjee et al., 2016) aggregate several objectives in a unified cost function. The drawback of these 

approaches comes from its difficulty to adjust the weights. Some other cited works (Zhou et al.,2006; 

Jena & Sharma, 2007; Nedjah et al., 2011) do not take into account the dynamic effect on network on 

chip (NoC) such as contention, and assume that the NoC is contention-free when they explore the 

mapping space. Most of these works use metaheuristics approaches, especially population based ones (P-

metaheuristics) to find the approximation of Pareto optimal set (For instance: SPEA2 by Ascia et al. 

(2005) , MOGA byTornero et al. (2009), NSGAII by Bruch et al. (2017), etc.). From this, one can under-

stand that metaheuristics (P-metaheuristics) are appropriate approaches used to find a set of optimal or 

sub optimal mapping solutions. Combining these meta-heuristics' set with other search techniques, 

referred to as hybrid (or memetic) metaheuristics, prove their effectiveness and achieve better 

performance compared to non hybrid ones (Blum et al.,2011).  Several hybrid approaches are proposed in 

the context of the NoC and MPSoCs mapping (Wu et al., 2012; Wang et al., 2016;Yan et al., 2017; Guo 

et al., 2018).Wu et al. (2012) propose a new mapping algorithm called GA-MMAS based on Genetic 

Algorithm GA and MAX-MIN Ant System Algorithm (MMAS) to optimize energy consumption and 

latency for NoC. An adaptive memetic algorithm (AMA) to solve the mapping problem is proposed 

byWang et al. (2016), which combines an adaptive GA and an effective local search algorithm. Another 

hybrid approach is presented byYan et al. (2017), a multi objective hybrid algorithm (MOHA), which 

integrates a Pareto local search into NSGAII (Deb et al., 2002) metaheuristic is proposed. Guo et al. 

(2018) propose a novel IP-core mapping algorithm called CGSA (Cataclysm Genetic based Simulated 

Annealing). Their proposed algorithm integrates genetic with an improved simulated annealing algorithm 

assorted with cataclysm strategies. Some of the aforementioned hybrid approaches(Wang et al.,2016; Guo 

et al., 2018) consider only one cost function such as communication cost (Wang et al.,2016) and 

reliability (Guo et al., 2018). Some other works use a unified cost function(Wu et al.,2012), or target 

homogeneous MPSoCs (Yan et al.,2017).In this work, the multi-objective hybrid approach which merges 

P metaheuristics and S-metaheuristicsis proposed to solve our mapping problem and unlike other works 

which use analytical models to provide a fast evaluation of a given mapping (Wu et al.,2012;Wang et 

al.,2016), in this work, a simulation model is used to evaluate the two objectives we consider (execution 

time and energy consumption) where the dynamic effect of the network on chip is considered. 

MULTI-OBJECTIVE OPTIMIZATION  

As the name suggests, the multi-objective optimization problem involves a simultaneous optimization of 

multiple objectives that are often conflicting. When solving such problems, it is not possible to find a 

single solution which optimizes all the objectives simultaneously. Instead, there exists a set of trade-off 

optimal solutions known as Pareto-optimal set solutions. More formally, a multi-objective optimization 

problem can be formulated in the following as in given by Zhou et al. (2011): 

 

 "𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒" 𝐹(𝑥) = [𝑓1(𝑥), . . . 𝑓𝑚(𝑥)]𝑇| 𝑥 ∈ Ω 

 

(1) 

where Ω is the decision space and 𝑥 ∈ Ω is the decision vector. 𝐹(𝑥) consists of m objective functions 

𝑓𝑖: Ω → 𝑅, 𝑖 = 1, 2, . . . , 𝑚, where 𝑅𝑚 is the objective space. The objectives in formula (1) are often 

conicting. The Pareto optimality is defined as follows. 



 

 

Definition 1. 

A vector 𝑢 = (𝑢1, . . . , 𝑢𝑚)𝑇 is said to dominate another vector 𝑣 = (𝑣1, . . . , 𝑣𝑚)𝑇, denoted as𝑢 ≺  𝑣, if 

∀ 𝑖 ∈  {1, . . . , 𝑚} , 𝑢𝑖 ≤ 𝑣𝑖 and𝑢 ≠  𝑣. 

Definition 2. 

A feasible solution 𝑥∗ ∈ Ω of problem (1) is called a Pareto optimal solution, if ∄𝑦 ∈ Ω such that F(y) ≺
F(x∗). The set of all the Pareto optimal solutions is called the Pareto set (PS), denoted as: The image of 

the PS in the objective space is called the Pareto front (PF). 

 

𝑃𝐹 = {𝐹(𝑥)| 𝑥 ∈ 𝑃𝑆} 

 

The mapping problem can be considered as an instance of the multi-objective optimization problem. In 

this work, a set of multi-objective hybrid optimization algorithms has been proposed to explore the 

mapping space and to find the set of Pareto optimal solutions. 

 

MAPPING PROBLEM FORMALIZATION  

The mapping problem can be formalized as the assignment of an application model onto a platform model 

in such a way that the metrics of interest (cost functions) will be optimized under a set of constraints. In 

this section, we introduce our mapping system models, including the application and the platform models. 

The cost functions and the constraints used for the evaluation of the mapping solutions are also presented. 

 

1. Application model 

 

The application model is represented by a task graph denoted by A(T, E), where T is a non-empty set of 

vertices (tasks) ti and E is a non-empty set of edges ei. Each task ti is annotated with two vectors Vi and Ci 

which contain respectively the energy consumption and the execution time of task ti on each type of 

processing element. Each edge ei in E corresponds to a dependency relation between two tasks connected 

by ei labeled with volume (ei) representing the amount of data exchanged between these tasks. 

 

2. Architecture model 

 

From the architecture point of view, the high level platform model contains a set of heterogeneous 

processing elements (PEs). Each PE is connected to a router and has the following characteristics: Id, 

type, frequency and location. Routers are interconnected with each other through bidirectional links 

which are assumed to be homogeneous (same data rate D) and transfer data through a NoC topology in 

the form of packets (set of flits). Figure 1 depicts the NoC's topology and the router-based architecture 

that we consider in our work. Each router has five direction links: North (N), South (S), East (E), West 

(W) and Local (L). The local port is connected to the processing element (PE) and the other ports are 

connected to neighboring routers. Input and output ports are assumed to have each a fixed-size buffer. 

 

 

 

 

 

In order to communicate between PEs through the NoC, a method of routing is required. An XY routing 

algorithm is assumed as a deterministic routing algorithm which first routes packets on X direction to the 

Figure 1: (a) Example of Heterogeneous MPSoC with four types of processors 

interconnected using 2D Torus NoC Topology. (b) Router's architecture 



correct column and then on the Y direction toward the destination. A wormhole switching techniqueis 

also assumed in our work due to the small buffering space available in NoC's routers. The Round Robin 

(RR) technique is used as an arbitration mechanism to solve contentions, and the credit-based flow 

control technique is used to check the availability of router's buffers, hence avoiding data overflows. 

 

3. Cost functions 

 

We consider, in this work, two cost functions: the execution time (overall completion time) as well as the 

energy consumption described using simulation models. 

 

a) Simulation model 

 

To compute the both fitness functions (the overall completion time and the energy consumption), a 

discrete event based simulation model has been developed. The advantages of this model over analytical 

ones is its capability to analyze and represent the NoC system behavior in sufficient details. For example, 

the user can specify switching techniques, routing algorithms, flow control and arbitration policies, etc. In 

addition, our model allows capturing the waiting time due to the dynamic effects of NoC based MPSoCs 

systems like contentions. As in all discrete event based simulation models, we have maintained an event 

list to store the system events in a chronological order. Each event occurs at a particular instant of time. In 

our work, the following events have been considered: 

i. Event1. Execute_Task (ti,Pj) : The simulation starts by executing the ready tasks of each 

processor. 

ii. Event2.Generate_Packets: Once the task ends its execution, the generation of packets occurs at 

the network interface (NI). Each packet contains a header, a payload and tail flits. 

iii. Event3.Transfer Flits (ProcessorToRouter): Packets' flits will be sent flit by flit from the 

processor to the router. 

iv. Event4.Apply Routing:As soon as a header flit arrives at the router's input buffer, the next hop is 

calculated according to the assumed routing protocol. 

v. Event5.Apply Arbitration:According to the header flits, if several packets request the same output 

port, Round Robin arbitration policy is applied to select one of them. 

vi. Event6.Traverse Router:The selected packet sends its flits through the router if there is enough 

space in its output buffer. 

vii. Event7.TraverseLink:By applying the credit-based flow control technique, flits are transmitted 

between two neighboring routers through the link if the credit value of a source router's output 

buffer is higher than zero. 

viii. Event8.Transfer Flits (RouterToPocessor): This event occurs if the final destination corresponds 

to the router's local port. 

 

The output of this simulation model returns the two considered metrics measures (i.e. the overall 

completion time and the energy consumption) for a given mapping configuration from a single simulation 

run. In the following, we describe how these two metrics are computed using this simulation model. 

 

b) Overall completion time using simulation model 

To explain how the overall completion time of a given application is computed using the simulation 

model, let us take an example of a given mapping configuration (see Figure 2(c)).The simulation starts by 

executing the first event (Execute_Task (T1,P5)) as given by algorithm 1. 

 

 

 

 

 



 

 

 

 

 
Algorithm1: Execute_Task (T1,P5) 

 

for each Rlist(P5)do 

T1=Rlist(P5).peek() 

if(P5.state()= free)then  

Schedule(Execute_Task (T1,P5), current_time) 

ST(T1,P5) = current_time 

FT(T1,P5) = ST(T1,P5)+ C15 

Schedule(Generate_Packets, FT(T1,P5)) 

Rlist(P5).remove(T1) 

else 

delta = FT(Tk,P5)- current_time 

Schedule(Execute_Task (T1,P5), current_time+delta) 

endif 

endfor 

 

where ST(T1,P5) and FT(T1,P5) are respectively the Start Time and Finish Time of task T1on a processor 

P5,  FT(Tk,P5) is the finish time of the last task running on the same processor P5 where T1 is mapped, C15 

is the execution time of the task T1 on a processor P5, Rlist(P5) is a list of ready tasks assigned to a 

processor P5 and delta is the waiting time required  to release the processor P5 so the task T1 can start its 

execution on it. 

 

Once the task T1 ends its execution on P5, its communication can be started after a packetization phase 

(event 2). Flits are sent from the processor P5 where T1is mapped to the local port of router R5 attached to 

it, TP5R5 is the flit traversal time between the processor P5 to the router R5. As soon as the header flit 

arrives to R5' input buffer, a next destination is searched according to the control techniques of this router 

including the routing algorithm, arbitration and control policies. Let TR5 is the R5 router traversal time 

which is computed as the sum of routing (Tro), arbitration (Tarb) and flow control (Tctr) times. It is worth 

mentioning that the waiting time is added if concurrent communications (contentions) occur. After 

applying the routing algorithm (XY in our case study), flits traverse the link lR5R6 connecting the two 

routers R5 and R6 (event 7). TR5R6 is the link traversal time between R5 and R6. As the R6' local port is 

not attached to the final destination (i.e., the processor P9), flits traverse the router R6 (TR6) towards next 

hop R9 through the link lR6R9. By invoking control techniques again at router R9 (i.e. event 4, event 5 and 

event 6), event 8 occurs and TR9P9is the flit traversal time between router R9 and processorP9. According 

to this example and since our simulation is flit-based level, the communication time of a given flit 

Tflit(P5P9) from P5 to P9 where T1 and T2 are mapped respectively can be computed as following: 

 

𝑇𝑓𝑙𝑖𝑡(P5P9) = 𝑇𝑃5𝑅5 + 𝑇𝑅5 + 𝑇𝑅5𝑅6 + 𝑇𝑅6 + 𝑇𝑅6𝑅9 + 𝑇𝑅9 + 𝑇𝑅9𝑃9  

 

(2) 

In general, the simulation model pulls off and executes event by event until all the application tasks have 

been finished (i.e.the event list becomes empty).  Hence, the overall completion time of an application  

consists of the time elapsed between the execution of the first event and the execution of the last one. 

 

 

 

 

 

Figure 2: Example illustrating overall completion time computation using a 

simulation model  



c) Energy consumption 

As the overall completion time cost function, the energy consumption of NoC based on a heterogeneous 

MPSoC's system is estimated using the simulation model. This model computes the overall energy 

consumption of the system as the sum of energy's system components at each clock cycle including 

processing (i.e. processors' energy) and communication energies (i.e. NoC components' energy). The 

advantage of using this model comes from its capability to take into account the additional energy 

consumed by routers' buffer in presence of contentions. 

 

4. Application and architecture constraints 

 

In this paper, we consider the following constraints. 

 

a) Task's assignment 

 

Each task is assigned to exactly one processor, i.e: 

 

where P is the number of processors (PEs) and NBT is the number of tasks. xij is a decision 

variable defined as follows: xij=1 if Ti is assigned to processor Pj, xij=0 otherwise. 

 

b) Pre-assignment 

 

In some cases such as hardware constraints (like dedicated accelerators), we can predefine a tasks 

assignment on specific processors for better performance purposes. 

THE  MULTI-OBJECTIVE MODEL 

As mentioned above, the multiobjective model considered in this work consists in minimizing both the 

overall completion time and the energy consumption"𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒" 𝐹(𝑥) =

[𝑓1(𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒), 𝑓2(𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)] under the two considered constraints. The 

two cost functions considered in this work are in Pareto.  Hence, reliable trade-off mapping solutions 

which simultaneously optimize these two contradictory metrics are required. In this paper, we propose a 

hybrid multi-objective approach which combines the power of two metaheuristics' sets to solve this 

mapping problem. 

HYBRID ALGORITHMS PROPOSAL  

In this section, new hybrid metaheuristics are proposed for mapping applications onto NoC based on 

heterogeneous MPSoCs. Our hybridization approach is divided into two phases as shown in Figure 3. In 

the first phase, a set of well-known MultiObjective Evolutionary Algorithms (MOEAs) including 

NSGAII (Deb et al., 2002), SPEA2 (Ziztler et al., 2001), PESA2 (Corne et al., 2001), FastPGA 

(Eskandari et al., 2007) and IBEA (Zitzler Zitzler & Künzli, 2004) have been applied to get promising 

mapping solutions. In the second phase, the obtained solutions from the first phase and randomly 

generated solutions are used to initialize AMOSA’s archive to further improve the P-metaheuristics’ 

Pareto front and to ensure diversity by using random generated solutions. First, we describe how these 

∑ 𝑥𝑖𝑗

𝑃−1

𝑗=0

= 1, ∀𝑖 ∈ [0; 𝑁𝐵𝑇 − 1] 

 

 

 

(3) 



MOEAs metaheuristics are adapted to solve the mapping problem; and then how AMOSA is used to 

refine Pareto mapping solutions. 

 

 

 

 

1. Solving the mapping problem using P-metaheuristics algorithms 

 

Population based metaheuristics called P-metaheuristics have been proved as an ideal candidates to solve 

Multi-Objective Problems (MOPs). These metaheuristics work with multiple solutions called population 

rather than a single solution. Due to the population-based property, they can find several solutions of the 

Pareto optimal set in a single run, which lead them to be major and efficient approches recognized in 

solving multiobjective optimization. The most representative set of this kind of algorithms are 

Multiobjective Evolutionary Algorithms (MOEAs). In this section, we give an overview and describe 

briefly the five well-known MOEAs selected to be used in our proposed hybrid algorithms:  

  

a) NSGA II: Nondominated Sorting Genetic Algortithm II is the most popular MOEA proposed by 

Deb et al. (2002), it uses in its selection operator: Pareto nondominated sorting and crowding 

distance.The Pareto nondominated sorting consists in dividing individuals into ranked non 

dominated fronts as follows: from a given solutions'set S, we have to find a set NS1 which 

contains the non dominated solutions according to non dominance relation applied to S.All the 

solutions that belong to the NS1's set are assigned to rank 1. This NS1 set is removed from S, and 

the same process is repeated on S-NS1, the next non dominated solutions' set NS2 is found from 

S-NS1. All the solutions belonging to the NS2's set are assigned to rank 2. This process goes on 

until S becomes empty. Solutions from a given rank are ranked again according to a crowding 

distance which is used to estimate the spread of solutions. To find a good Pareto front in terms of 

convergence and diversity, NSGAII selects the solutions with a lower rank, and if the solutions 

have the same rank, the crowding distance is used to select more diverse solutions. 

b) SPEA2: Strength Pareto Evolutionary Algorithm 2 has been widely used in MOPs, initially 

proposed by Zitler et al. (2001).This algorithm uses both population and an archive in its 

operation.The archive is initially empty and size limited. It is used to save non dominated 

solutions found during the search, and if the number of non dominated solutions exceeds the 

archive size's limit, a truncation method is applied to preserve the boundary solutions. A fine 

grained fitness assignment is also used in this algorithm, which incorporates both the concept of 

Pareto dominance and density information. 

c) PESA2: Pareto Envelope-based evolutionary algorithm 2 is proposed by Corne et al. (2001). This 

algorithm divides the search space in hyper boxes and instead of selecting individuals according 

to their fitness, one hyper box is selected and a random solution from the selected hyper box is 

kept. So this kind of selection is called region based selection. 

d) FastPGA: Fast Pareto Genetic Algorithm is proposed by Eskandari et al. (2007). It classifies the 

parents and offspring solutions into two sets: the first one contains the non dominated solutions 

and the second one contains dominated ones. The fitness value of the solutions from the first set 

is calculated using the crowding principle presented in NSGAII algorithm (Deb et al., 2002). For 

the other solutions, the fitness-value procedure looks like the one used in SPEA2 (Ziztler et al., 

2001). In addition, FastPGA uses a population regulation operator to dynamically regulate the 

size of the population. 

e) IBEA: Indicator Based Evolutionary Algorithm is proposed by Zitzler and Künzli (2004). This 

algorithm uses an arbitrary quality indicator, such as Hypervolume in its selection phase.Unlike 

other algorithms cited above, IBEA algorithm does not require additional diversity-preservation 

mechanisms. 

 

Figure 3: Hybridization approach 



The five above cited algorithms are already implemented in jMetal framework (jMetal) which we have 

adapted to solve our mapping problem.For this purpose, we have defined the solution coding and adapted 

the different mutation and crossover operators, as described in the following. 

 

i. Solution coding 

 

For our mapping, we used an integer coding. Each mapping solution is represented by a tuple 

(𝑥1 , 𝑥2 , … , 𝑥𝑛), where xi gives the PE on which the task ti has been mapped. The value of each variable xi 

is chosen from the set Pti which is the list of all permissible processors for the task ti. Figure 4 gives a 

chromosome example where 5 tasks are mapped on a given heterogeneous platform. 

 

 

 

 

Let us assume that Pt0={1, 3, 8} is the permissible processors of the task t0. For example the value of the 

task t0 is 3 which is chosen from its Pt0. 

 

ii. Mutation and crossover 

 

After applying crossover and mutation operators, it is possible that some solutions (chromosomes) will be 

invalid due to the assignment of a given task to unfeasible processor. An example of invalid solution after 

applying a mutation operator (for instance a polynomial mutation) is depicted in Figure 5 (the task t0 is 

assigned to the processor 22 which is not in its permissible set Pt0={1, 3, 5, 9, 11, 15}). 

 

 

 

 
 

To tackle this problem, we first transform the initial coding to an intermediate one by using the indices of 

Pti  elements. As shown in Figure 6, the parent's chromosome (15, 7, 9, 4, 15) will be transformed to (5, 1, 

3, 0, 2). 5 is the index of the element 15, 1 is the index of the element 7, 3 is the index of the element 9, 

etc. The set Pti will be transformed to P'ti. The aim of this new representation is to minimize invalid 

solutions' numbers. 
 

 

 

 

Unfortunately, we do not eliminate all of them. An example of invalid solution after applying this new 

representation is given in Figure 7. 

 

 

 

 

Thus task t0 is assigned to processor with index 7 which is not in the set of processors' indexes P't0 ={0, 1, 

2, 3, 4, 5}. To correct these invalid solutions, we propose Algorithm 2. 

 
Algorithm 2:Correct invalid solutions to valid ones. 

 

for all invalid solutions do 

for all tasks do 

Figure 4: chromosome example 

Figure 5: Example of invalid solution after applying Polynomial mutation 

operator 

Figure 6:Intermediate coding 

 

Figure 7: Example of invalid solution with the new representation after 

applying Polynomial mutation. 



if (val(ti) ∉P'(ti)) then  
generate a random valueinside P'(ti)  

replace val(ti) by a generated random value. 

endif 

endfor 

endfor 

 

 

The result's solution after applying Algorithm 2 is depicted in Figure 8. At the last step, we transform the 

obtained intermediate coding to the initial one (see Figure 9), the chromosome (1, 1, 3, 0, 2) is then 

transformed to (3, 7, 9, 4, 15). 3 is the element with index 1 in the set Pt0, 7 is the element with index 1 in 

the set Pt1, 9 is the element with index 3, etc. 

 

 

Although these P-metaheuristics give a good trade-off mapping solutions used by several authors in the 

litterature, these metaheuristics can be further improved by a local search method, we have selected 

AMOSA metaheuristics as an S-metaheuristic which use the P-metaheuristics' results as a good start 

points in its archive as well as random solutions' set to ensure more spread solutions. 

2. Refinement of P-metaheuristics results using AMOSA algorithm 

Archived Multiobjective Simulated Annealing proposed by Bandyopadhyay et al. it is a multiobjective 

version of the simulated annealing (SA) algorithm which is a well-known single solution based search 

algorithm. It incorporates the concept of archive to store the non-dominated solutions during search 

process as well as to determine its acceptance probabilities. We have used AMOSA in this study as local 

reseach to further refine the mapping solutions. In this section, before describing AMOSA' archive 

initialization which is the heart of this novel proposal, we first show how we adapt AMOSA to solve the 

mapping problem. 

 

a) Solving mapping problem using AMOSA  

 

To apply this algorithm to our mapping problem, we have to specify a solution representation and a 

corresponding neighbourhood move operator. 

 

i. Solution representation 

 

The potential solution (point) in AMOSA algorithm is like the chromosome representation shown in 

Figure 4. As AMOSA is a single solution based metaheuristic, the search process starts from an initial 

solution and tries to find a new one (new search area) by applying the neighbourhood move operator that 

is described below. 

 

ii. Neighbourhood move operator 

 

For AMOSA algorithm, the neighbourhood move operator is like the mutation operator which we have 

adapted above. So all the mutation operators like Flip Mutation, Polynomial Mutation, Uniform 

Mutation and Non Uniform Mutation can be specified as neighbourhood move operators in AMOSA 

algorithm. 

 

Figure 8:Correct invalid solution byapplying algorithm 2 

Figure 9:Return to the initial coding 



b) Initialize AMOSA' archive  

 

Our approach consists in injecting the Pareto mapping solutions provided by P-metaheuristics as well 

as random ones in AMOSA's archive in order to further improve solutions given by standard MOEAs 

and give new well balanced approaches in both exploration and exploitation. These new approaches are 

called according to the P-metaheuristic used preceded by H. For instance HNSGAII, use AMOSA 

algorithm to further improve the standard NSGAII (see Algorithm 3). 

 
Algorithm 3: HNSGAII-main. 

 

Step1: execute NSGAII 

S: is a set which contains non-dominated solutions returned by NSGAII 

R: is a set which contains non-dominated solutions generated randomly 

A: is AMOSA' archive 

HL: is the maximum size of the Archive on termination 

 

Add all the solutions of S to the A 

for each solution rR do 

if (l≺ 𝐫) then|lA 
 delete r 

else 

add r to A 

endif 

endfor 

if (A.size()> HL) then 
   Apply clustering 

 

Step2: execute AMOSA 

Experimental results 

In this section, our proposed hybrid algorithms are evaluated using various mapping problem's instances 

(small, medium and large).These instances differ from each other regarding the task graph's and 

platform's size used as depicted in Table 1. The implementation of P-metaheuristics used in the proposed 

hybrid approach is the one of jMetal framework (jMetal) which we have adapted to our mapping problem. 

We have also extended this framework by adding new algorithms' implementations such as the S-

metaheuristic algorithm (AMOSA) and the Multi-objective exact one called Multi-objective Branch and 

Bound (MBB). It is worth mentioning that the exact method is used to check the efficiency of the 

proposed hybrid multiobjective algorithms in solving small and medium mapping problem's instances. 

For our experiments, TGFF(TGFF) is used to generate a set of synthetic task graphs by varying the 

number of nodes (tasks). On the other hand, the architecture model (Platform) consists of k types of 

processors interconnected using 2D Torus NoC topology. Table 2 gives the NoC's parameters used in our 

experiments. 

 

Table 1. Mapping problem's instances 

Mapping problem  Task graph Platform 

Small  6 3x3 torus topology 

Medium 10 4x4 torus topology 

Large 100 8x8 torus topology 

 



Table 2. NoC's parameters 

NoC topology 2D Torus 

Switching technique Wormhole switching 

Routingtechnique XY routing algorithm 

Arbitration technique Round Robin (RR) 

Flow control Credit-based 

 

Table 3. Algorithm's Parameterization 

NSGAII/FastPGA 

Population Size 100 

Max Iterations 10000 

Mutation Probability 1.0/L (L : individual length) 

Crossover Probability 0.9 

SPEA2/PESA2/IBEA 

Population Size 100 

Archive Size 100 

Max Iterations 10000 

Mutation Probability 1.0/L (L : individual length) 

Crossover Probability 0.9 

AMOSA 

Initial temperature (T0) 800 

Final temperature (T1) 0.001 

• Cooling rate α 0.9 

Max Iterations 100 

HL 100 

SL 110 

Gamma 1.8 

 

The proposed multiobjective hybrid algorithms are evaluated according to their quality of the Pareto 

solutions returned and their computational time (runtime). To measure the hybrid algorithms' quality 

solutions, two properties are usually required: convergence and uniform diversity. A number of quality 

indicators for measuring these two criteria are included in jMetal framework (jMetal). In this paper, we 

have considered the following evaluation metrics: 

 

1. Inverted Generational Distance (IGD) (Nebro et al., 2006): this metric measures both 

convergence and diversity. It uses the optimal Pareto front and measures the distance of each of 

its elements and the computed approximation. 

2. Epsilon (Durillo& Nebro, 2011): measures the smallest distance it would be necessary to translate 

every solution in a computed front for a problem. So it dominates the optimal Pareto front of this 

problem. This metric measures only convergence. 

 

The smaller the IGD and Epsilon values are, the closer the approximation set is to the reference Pareto 

front (better convergence). A small value of IGD means also a good diversity of the obtained 

solutions.When IGD and Epsilon values are 0, it implies that all the generated solutions of a given 

algorithm are in the optimal Pareto set of the problem. These applied metrics require an optimal Pareto set 

to be computed. To this end, we have considered the Pareto front returned by MBB as an optimal Pareto 

set (reference Pareto front) for small and medium mapping problems. For the large mapping problem, the 



optimal Pareto is obtained by collecting the results of several runs of the different algorithms. In all our 

experiments, we have performed 30 independent runs and the obtained tables (4, 5, 6, 7, 10 and 11) 

represent statistical informations  of the quality indicator applied as well as algorithms' runtime. Table 3 

gives algorithms'parameter settings used in the following experiments. Notice that these parameters have 

been chosen after a primary phase where sensitivity analysis is done to find the parameters which give 

good results for all instances in terms of both solutions' quality and runtime. All the calculations were 

performed on a PC Intel(R) Core(TM) i7 CPU, 2.7GHz, with 8 Go of RAM. 

Tables (4,5, 6 and 7) show respectively a comparative study between the proposed hybrid algorithms 

called (HNSGAII, HSPEA2, HPESA2, HFastPGA, HIBEA) and the non hybrid ones (NSGAII, SPEA2, 

PESA2, FastPGA, IBEA) on small and medium mapping problem's instances. The fronts returned by the 

different algorithms are compared with the optimal Pareto set provided by the multiobjective branch and 

bound (MBB). We have limited the number of permissible processors for each task, so that the maximum 

search space's size of small and medium mapping problems considered in these experiments are 

respectively 21600 and 139968 instead of 96 and 1610. 

From Tables (4,5, 6 and 7), one can see that the proposed hybrid approaches present better mean and 

median values compared to non hybrid ones for both small and medium mapping instances. These 

enhancements are well viewed by boxplots given in Figures 10 and 11 (in terms of Epsilon). This shows 

that for the small and medium mapping problem instances, our proposed hybrid algorithms outperform 

the non hybrid ones according to the two performance metrics applied (IGD and Epsilon). It is important 

to note that except HIBEA metaheuristic which outperforms IBEA in all runs (HIBEA's boxplots are 

above IBEA' ones), hybrid algorithms do not outperform non hybrid ones in all runs. For instance, Tables 

8 and 9 compare first ten consecutive runs among 30 runs where hybrid and non hybrid algorithms have 

been compared according to the Epsilon quality indicator.As seen from Tables 8 and 9, the hybrid 

algorithms outperform non hybrid ones in almost all the runs and never deteriorate non hybrid algorithms' 

results. It can also be concluded that our proposed hybrid algorithms provide results which are the same 

or close to those returned by MBB in a very reasonable runtime. For example, more than 75% of 

HNSGAII's runs give the same Pareto front as MBB while NSGAII gives lower than 50% best runs (see 

Figure 9). This confirms the optimality of the proposed hybrid algorithms' results for the small and 

medium mappings problems. Consequently, we can trust our proposed algorithms' results for solving 

large mapping problem instances. 

Table 4. Statistical indices. IGD. Hybrid vs non Hybrid algorithms (small mapping's instance) 

Algorithms 
IGD 

Runtime 
Mean Standard 

deviation 

Median min max 

NSGAII 5.72e-04  5.8e-04 4.89e-04 0.00e+00 1.84e-03 4,759 s 

HNSGAII 1.42e-04  3.6e-04 0.00e+00 0.00e+00 1.83e-03 10,683s 

SPEA2 1.55e-03  9.8e-04 1.46e-03 7.91e-04 6.79e-03 5,132s 

HSPEA2 1.83e-04  3.8e-04 0.00e+00 0.00e+00 1.56e-03 11,127s 

PESA2 4.66e-03 2.4e-03 3.13e-03 1.21e-03 8.98e-03 4,140s 

HPESA2 1.81e-03 2.0e-03 5.18e-04 0.00e+00 5.19e-03 10,171s 

FastPGA 1.74e-03 1.0e-03 1.54e-03 5.72 e-04 6.79e-03 7,938s 

HFastPGA 1.07e-03 1.6e-03 4.89e-04 0.00e+00 5.01e-03 13,933s 

IBEA 1.15e-02 2.2e-03 1.15e-02 7.37 e-03 1.79e-02 0,169s 

HIBEA 3.50e-03 2.3e-03 5.01e-03 0.0e+00 8.01e-03 6,093s 

MBB 0.00e+00  0.0e+00 0.0e+00 0.0e+00 0.0e+00 43,663s 

 

 



Table 5. Statistical indices. Epsilon. Hybrid vs non Hybrid algorithms (small mapping's instance) 

Algorithms 
Epsilon 

Runtime 
Mean Standard 

deviation 

median min max 

NSGAII 3.53e+00 5.1e+00 1.00e+00 0.00 e+00 1.40e+01 4,759 s 

HNSGAII 6.33e-01 2.5e+00 0.00 e+00 0.00 e+00 1.40e+01 10,683s 

SPEA2 5.83e+00 8.6e-01 6.00 e+00 5.00 e+00 9.00e+00 5,132s 

HSPEA2 9.00e-01 2.0e+00 0.00 e+00 0.00 e+00 8.00 e+00 11,127s 

PESA2 2.56e+01 3.6e+01 1.40e+01 5.00 e+00 1.68e+02 4,140s 

HPESA2 3.87e+00 5.1e+00 2.00e+00 0.00 e+00 2.10e+01 10,171s 

FastPGA 6.90e+00 1.5e+00 6.00 e+00 5.00 e+00 9.00e+00 7,938s 

HFastPGA 2.03e+00 2.0e+00 1.00 e+00 0.00 e+00 6.00 e+00 13,933s 

IBEA 1.86e+02 6.2e+01 18.85e+01 9.1e+01 3,06e+02 0,169s 

HIBEA 6.73e+00 1.5e+01 4.00e+00 0.00e+00 8.40e+01 6,093s 

MBB 0.00e+00 0.0e+00 0.00 e+00 0.00e+00 0.00 e+00 43,663s 

Table 6. Statistical indices. IGD. Hybrid vs non Hybrid algorithms (medium mapping's instance) 

Algorithms IGD Runtime  

Mean Standard 

deviation 

median min max 

NSGAII 1.28e-03 4.6e-04 1.38e-03 0.0e+00 2.55e-03 0,584m 

HNSGAII 3.65e-04  5.5e-04 0.00 e+00 0.00 e+00 1.38e-03 1,322m 

SPEA2 1.98e-03  4.9e-04 1.83e-03 1.38e-03 3.21e-03 0,574m 

HSPEA2 9.93e-04  5.6e-04 1.22e-03 0.00 e+00 1.64e-03 1,315m 

PESA2 4.36e-03  3.8e-03 2.78e-03 8.96e-04 1.70e-02 0,559m 

HPESA2 9.53e-04  6.5e-04 1.24e-03 0.00 e+00 1.87e-03 1,328m 

FastPGA 2.65e-03  6.5e-04 2.49 e-03 1.58 e-03 4.26e-03 0,597m 

HFastPGA 6.12e-04 6.3e-04 4.06e-03 0.00 e+00 1.56e-03 1,344m 

IBEA 1.24e-02 3.4e-03 1.21e-02 6.82e-03 2.08e-02 0,018m 

HIBEA 8.89e-04  7.5e-04 1.16e-03 0.00 e+00 2.96e-03 0,770m 

MBB 0.00e+00 0.0e+00 0.00 e+00 0.00 e+00 0.00 e+00 27,065m 

Table 7. Statistical indices. epsilon. Hybrid vs non Hybrid algorithms (medium mapping's instance) 

Algorithms Epsilon 
Runtime 

Mean Standard 

deviation 

median min max 

NSGAII 1.13e+01 5.9e+00 1.05e+01 0.00 e+00 2.20e+01 0,584m 

HNSGAII 3.00e+00 5.2e+00 0.00 e+00 0.00 e+00 1.90e+01 1,322m 

SPEA2 2.09e+01  8.3e+00 2.35e+01 7.00 e+00 3.80e+01 0,574m 

HSPEA2 6.47e+00  4.5e+00 7.0 e+00 0.00 e+00 1.90e+01 1,315m 

PESA2 6.01e+01 8.1e+01 2.60e+01 1,00e+01 3.27 e+02 0,559m 

HPESA2 7.07e+00  6.1e+00 7.00 e+00 0.00 e+00 2.20e+01 1,328m 

FastPGA 2.63e+01  8.6e+00 2.60e+01 1.00e+01 3.80e+01 0,597m 

HFastPGA 4.47e+00  4.9e+00 5.00 e+00 0.00 e+00 1.90e+01 1,344m 

IBEA 2.03e+02 9.1e+01 2.03 e+02 6.30e+01 4.02 e+02 0,018m 

HIBEA 6.67e+00  1.0e+01 7.00 e+00 0.00 e+00 5.50e+01 0,770m 

MBB 0.00e+00 0.0e+00 0.00 e+00 0.00 e+00 0.00 e+00 27,065m 

 



Table 8. Epsilon metric according to Table 5 

Algorithms Run 0 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 

NSGAII 1.0 0.0 0.0 1.0 14.0 0.0 0.0 0.0 1.0 0.0 

HNSGAII 1.0 0.0 0.0 0.0 14.0 0.0 0.0 0.0 0.0 0.0 

SPEA2 5.0 6.0 6.0 6.0 5.0 6.0 6.0 6.0 5.0 6.0 

HSPEA2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 

PESA2 8.0 21.0 14.0 14.0 14.0 14.0 14.0 168.0 19.0 14.0 

HPESA2 3.0 1.0 4.0 1.0 6.0 4.0 0.0 4.0 0.0 1.0 

FastPGA 8.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0 9.0 

HFastPGA 3.0 0.0 1.0 0.0 5.0 1.0 1.0 0.0 0.0 3.0 

IBEA 257.0 211.0 251.0 122.0 154.0 125.0 109.0 182.0 240.0 168.0 

HIBEA 1.0 4.0 3.0 3.0 5.0 4.0 4.0 4.0 4.0 4.0 

MBB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

Table 9. Epsilon metric according to Table 7 

Algorithms Run 0 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 

NSGAII 3.0 19.0 19.0 7.0 7.0 7.0 19.0 4.0 13.0 7.0 

HNSGAII 3.0 19.0 7.0 0.0 0.0 0.0 0.0 0.0 7.0 0.0 

SPEA2 21.0 19.0 11.0 24.0 24.0 24.0 20.0 10.0 7.0 11.0 

HSPEA2 7.0 7.0 0.0 0.0 11.0 19.0 4.0 7.0 7.0 11.0 

PESA2 38.0 24.0 24.0 24.0 26.0 10.0 16.0 327.0 26.0 202.0 

HPESA2 10.0 0.0 14.0 13.0 19.0 0.0 0.0 7.0 13.0 7.0 

FastPGA 38.0 38.0 20.0 24.0 10.0 38.0 38.0 26.0 24.0 38.0 

HFastPGA 0.0 7.0 7.0 0.0 7.0 3.0 0.0 7.0 0.0 0.0 

IBEA 180.0 63.0 220.0 361.0 83.0 246.0 132.0 148.0 148.0 248.0 

HIBEA 0.0 55.0 0.0 0.0 7.0 3.0 7.0 0.0 0.0 0.0 

MBB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

 

 

Figure 10: Epsilon. Hybrid vs non hybrid algorithms (small mapping's instance) 

 

 

 

 

Figure 11: Epsilon. Hybrid vs non hybrid algorithms (medium mapping's instance) 

 

 

In Figure 12, a comparative study has been carried out between the two previous algorithms' sets (hybrid 

and non hybrid algorithms) for large mapping's instances (see Table 1). In this experiment, we have 

mapped a task graph with 100 tasks on a heterogeneous MPSoC platform with six types of processors 

interconnected using 8x8 Torus topology. 

 

 

 

 

 

 

 

Figure 12: Mapping of randomly generated graph with 100 tasks on a 

heterogeneous MPSoC platform with six types of processors interconnected 

using 8x8 Torus topology. Two cost functions are optimized (execution time and 

energy consumption) 

 



 

 

The plotted graphs, as depicted in Figure 12, represent the non dominated mapping's solutions of each 

algorithm after 30 runs. As seen from Tables (10 and 11)  and Figures (12 and 13), hybrid algorithms 

yield the most promising results (give better Pareto front) compared with non hybrid ones in both IGD 

and Epsilon metrics at the expense of time. This additional time of hybrid algorithms compared with non 

hybrid ones is due to the time needed by Archived Multi-Objective Simulated Annealing (AMOSA) to 

improve the P-metaheuristics' Pareto front. 

 

 

 

Figure 13: Hybrid vs non hybrid algorithms (large mapping's instance) 

 

Table 10. Statistical indices.IGD.Hybrid vs non Hybrid algorithms (large mapping's instance) 

Algorithms 
IGD 

Runtime 
Mean Standard 

deviation 

median min max 

NSGAII 7.97e-01  4.2e-02 7.87e-01 7.21e-01 8.75e-01 3,12m 

HNSGAII 1.80e-01 5.0e-02 1.70e-01 9.10e-02 2.82e-01 6,354m 

SPEA2 5.28e-01 6.3e-02 5.43e-01 3.99e-01 6.30e-01 2,933m 

HSPEA2 1.46e-01  3.2e-02 1.45ee-01 8.95e-02 2.08e-02 6,121m 

PESA2 3.61e-01  9.5e-02 3.49 e-01 1.98 e-01 5.81e-01 2,639m 

HPESA2 1.57e-01  5.1e-02 1.48 e-01 3.57e-02 2.99 e-01 5,83m 

FastPGA 4.76e-01  9.6e-02 4.67e-01 2.74 e-01 6.84 e-01 2,87m 

HFastPGA 1.63e-01 5.6e-02 1.59 e-01 4.35e-02 3.21e-01 6,049m 

IBEA 1.14e+00  5.8e-02 1.15e+00 9.04 e-01 1.22e+00 0,1m 

HIBEA 1.77e-01 5.4e-02 1.66e-01 9.25 e-02 3.21e-01 3,339m 

 

Table 11. Statistical indices.epsilon.Hybrid vs non Hybrid algorithms (large mapping's instance) 

Algorithms 
EPSILON 

Runtime 
Mean Standard 

deviation 

median min max 

NSGAII 8.62e+03 5.5 e+02 8.72e+03 7418 e+03 9.59e+03 3,12m 

HNSGAII 2.79e+03 7.0 e+02 2.78e+03 1.36 e+03 4.14e+03 6,354m 

SPEA2 6.07e+03 7.6 e+02 6.11 e+03 4.70 e+03 7.76e+03 2,933m 

HSPEA2 2.22 e+03 7.4e+02 2.32 e+03 1.44 e+02 3.30 e+03 6,121m 

PESA2 4.67 e +03 9.8 e+02 4.57 e+03 3.14 e+03 6.96 e+03 2,639m 

HPESA2 2.48e +03 7.6e+02 2.50 e+03 9.82 e+02 4.31e+03 5,83m 

FastPGA 5.52 e+03 9.4e+02 5.32e+03 3.70 e+03 7.57e+03 2,87m 

HFastPGA 2.61e +03 7.3e+02 2.65e+03 1.08e+03 4.66 e+03 6,049m 

IBEA 1.18 e +04 4.9 e+02 1.190e+03 1.03e+04 1.26e+04 0,1m 

HIBEA 2.65e +03 7.9 e+02 2.52e+03 1.32 e+03 4.73e+03 3,339m 

 

Lastly, we provide experiments that show how our proposed hybrid algorithms are sensitive to their 

parameters. Figures 14 and 15 present two experiments on the effect of some parameters like AMOSA's 



Max iterations  (Figure 14) and AMOSA's Cooling rate (Figure 15) on the performance of an example of 

the proposed hybrid algorithms HNSGAII. Note that we did not show all the proposed hybrid algorithms’ 

Pareto fronts in order to have clear figures. In these experiments, we have varied one parameter at one 

time for HNSGAII algorithm. In the first experiment (Figure14), the AMOSA's Max iterations values 

setting are as follows: 50, 100 and 500 and in the second one (Figure15), cooling rate α values are the 

following: 0.5, 0.7 and 0.9 and other parameters have been fixed (see Table 12). A large mapping instance 

has been used in this experiment. 

Table 12. HNSGAII's Parameterization 

 

 

 

 

 

 

 

 

Figure 14: AMOSA's Max iterations' effect 

 

 

Figure 15: AMOSA's Cooling rate' effect 

 

From Figures 14 and 15, it is clear that HNSGAII is very sensitive to its input parameters which strongly 

determine the mapping solutions' quality. For instance, in Figure 14, we observe that the higher 

AMOSA's max iterations value gives better mapping results at the expense of time. So compromise 

between both the solution quality and the runtime required must be taken into account when exploring a 

given mapping problem.  

Table 13. Notation list 

Term Description 
Ti Task i 

Pj Processor j 

ST(Ti,Pj) Start Time of task i on processor j 

FT(Ti,Pj) Finish Time of task i on processor j 

Rlist (Pj)  List of ready tasks assigned to a given processor Pj 

Eij The energy needed to execute the task ti on a 
processor Pj 

Cij The execution time of the task ti on a processor Pj 

Tro The time required for routing   

Tarb The time required for arbitration 

Tctr The time required for flow control 

HNSGAII 

Population Size 100 

Max Iterations (NSGAII) 10000 

Mutation Probability 1.0/L (L : individual length) 

Crossover Probability 0.9 

Initial temperature (T0) 800 

Final temperature (T1) 0.001 

Cooling rate α 0.9 (0.5, 0.7) 
Max Iterations (AMOSA) 100 (50, 500) 
HL 100 

SL 110 

Gamma 1.8 



TRi Router's execution time  

Tflit (Ps,Pd)  Time required to transfer a given flit from source 

processor  towards  destination one. 

P The number of processors (PEs) 

NBT The number of tasks 

xij Ti is assigned to processor PEj (Binary variable) 

DISCUSSION 

Through experimental results conducted on several mapping instances (small, medium and large), the 

performance of our proposal is proved. So, selecting these new approaches in the mapping phase of a 

given system design flow may decrease its implementation cost and has a good impact on its final 

behavior since these approaches give a high quality trade-off mapping solutions compared with standard 

ones. However, the proposed hybrid algorithms are very sensitive to their parameters since they combine 

two metaheuristics' sets which are both sensitive to their parameters. It is the reason why an initial 

experimental phase where a sensitivity analysis for each parameter of each hybrid algorithm must be 

carried out in order to determine the most appropriate settings to tackle a given problem type. 

CONCLUSION AND FUTURE WORK 

In this paper, a set of hybrid algorithms which combine P-metaheuristics and S-metaheuristics are 

proposed to solve the mapping problem in a NoC architecture. To prove the optimality of the proposed 

algorithms, we first compared them to the exact method (MBB) for small and medium mapping instances. 

From our experimental results, our proposed hybrid algorithms provide the same results or close to those 

given by the exact method (MBB) in low runtime while exceeding the non hybrid ones in terms of results' 

quality.This confirms that the S-metaheuristics (local search) can effectively improve the P-

metaheuristics. As a future work, we plan to explore a couple of directions, including, exploring the 

proposed algorithms by considering other design system's metrics like communication cost, load 

balancing, etc.; further improvement of the P-metaheuristics by injecting a local search in their 

initialization phase or their operators like mutation, crossover, etc.; and by considering other NoC's 

characteristics (other topologies, router's architecture, etc.). 
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