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Abstract In this work, we review the family of direct Ar-
bitrary-Lagrangian-Eulerian (ALE) Finite Volume (FV) and
Discontinuous Galerkin (DG) schemes on moving meshes
that at each time step are rearranged by explicitly allow-
ing topology changes, in order to guarantee a robust mesh
evolution even for high shear flow and very long evolution
times. Two different techniques are presented: a local non-
conforming approach for dealing with sliding lines, and a
global regeneration of Voronoi tessellations for treating gen-
eral unpredicted movements.

Corresponding elements at consecutive times are con-
nected in space–time to construct closed space–time con-
trol volumes, whose bottom and top faces may be polygons
with a different number of nodes, with different neighbors,
and even degenerate space–time sliver elements. Our final
ALE FV-DG scheme is obtained by integrating, over these
arbitrary shaped space-time control volumes, the space-time
conservation formulation of the governing hyperbolic PDE
system: so, we directly evolve the solution in time avoid-
ing any remapping stage, being conservative and satisfy-
ing the GCL by construction. Arbitrary high order of ac-
curacy in space and time is achieved through a fully dis-
crete one-step predictor-corrector ADER approach, also in-
tegrated with well balancing techniques to further improve
the accuracy and to maintain exactly even at discrete level
many physical invariants of the studied system.

A large set of different numerical tests has been carried
out in order to check the accuracy and the robustness of
our methods for both smooth and discontinuous problems,
in particular in the case of vortical flows.
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1 Introduction

Lagrangian-type Finite Volume (FV) and Discontinous Ga-
lerkin (DG) schemes are characterized by a moving com-
putational mesh: at each time step the new position of all
the nodes is recomputed according to a prescribed mesh ve-
locity, which generally is chosen as close as possible to the
local fluid velocity. In the Lagrangian description of the fluid
the nonlinear convective terms disappear and Lagrangian
schemes exhibit virtually no numerical dissipation at con-
tact waves and material interfaces. So the aim of these meth-
ods is to reduce the numerical dissipation errors due to the
convective terms, hence to capture contact discontinuities
sharply and to precisely identify and track material inter-
faces. Among the different variants, that will be briefly re-
called below, we would like to underline the role of the di-
rect Arbitrary-Lagrangian-Eulerian (ALE) schemes. In this
case the mesh velocity can be chosen in an arbitrary way, so
usually it is chosen close to the fluid velocity, but the fact
that it can be slightly modified allows first, some flexibil-
ity in the mesh motion reducing the mesh distortion, sec-
ond let us perform the rezoning before the computation of
the numerical flux, so that the remapping stage is no more
needed, and finally it naturally extends to complex unstruc-
tured meshes, to slide lines treatment and to topology changes.
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The key point of this work on direct ALE schemes lies in
the use of closed, non-overlapping, space-time control vol-
umes of arbitrary shapes, constructed via connecting the
two meshes at time tn and tn+1; then, on these closed space–
time control volumes, the space–time conservation formu-
lation of the governing PDE system is directly integrated by
means of a high order fully discrete one-step ADER method,
without needing of any further remapping steps. This allows
to reach easily both arbitrary high order of accuracy in space
and time and robust mesh motion.

1.1 State of the art

Lagrangian schemes were already of interest in the fifties
when John von Neumann and Richtmyer were working on
the one-dimensional case [124] and Wilkins proposed a two-
dimensional extension in 1964 [154]. So, here we will only
briefly recall the major contributions to the topic and for a
complete review on general Lagrangian-type methods we re-
fer the reader to [6,123,50,76].

Examples of low order Lagrangian cell centered Finite
Volume schemes, based on a conservation form of the equa-
tions involving mass, momentum and total energy, can be
found in [123,30,43,138,116,119,118,117]. Higher order
Lagrangian-type schemes have been introduced in [38,110,
39], where high order of accuracy in space is achieved with
the aid of a ENO/WENO reconstruction and Runge-Kutta
time stepping guarantees high order time discretization as
well. Then, also staggered Lagrangian schemes [112,113,
114] have been introduced to define the velocity at the grid
vertexes and the other variables at the cell center, hence
avoiding the need of a nodal solver [38,110,30,116] to com-
pute the mesh velocity of the grid nodes.

Another option for the numerical solution of hyperbolic
conservation laws is given by Discontinuous Galerkin [136]
and Finite Element (FE) schemes [45,46,47], where the nu-
merical solution is approximated by piecewise polynomials
within each control volume. Lagrangian DG schemes up to
third order have been proposed for the first time in [75,73,
74,108], while high order FE methods applied to Lagrangian
hydrodynamics and elasto-plasticity can be found in [127,
140,53,55,54].

Although all these different schemes are widely used,
a common problem that affects all Lagrangian methods is
the severe mesh distortion or mesh tangling that happens
in the presence of shear flows and that may even destroy
the computation. Hence, all Lagrangian methods must be
in general combined with an algorithm to (locally) rezone
the mesh at least from time to time and to remap the solu-
tion from the old mesh to the new mesh in a conservative
manner. This also led to the development of the Arbitrary-
Lagrangian-Eulerian (ALE) methods [138,9,102,109,100,
7,3], where the mesh velocity can be chosen independently

of the local fluid velocity and thus the grid nodes can be
moved at an arbitrary velocity. The ALE schemes are gen-
erally divided into two families: the indirect ALE schemes
[155,99,82] characterized by a purely Lagrangian phase fol-
lowed by a remesh and a subsequent remap phase, and the
direct ALE schemes [13,14,15], where the local rezoning is
performed before the computation of the numerical fluxes,
hence changing directly the chosen mesh velocity of the
ALE approach. The direct approach naturally extends to un-
structured meshes in multiple space dimensions [10] and to
arbitrary high order both in the FV and DG case [18,14,15,
17,12], and can also be combined with time-accurate local
time stepping (LTS), see [56,21,96].

However, all the works characterized by a fixed mesh
topology make it impossible to study phenomena affected
by strong shear motion and vortex flows for very long simu-
lation times, since mesh tangling would inevitably occur and
lead to a breakdown of the simulation before the final time
is reached. To overcome this problem some solutions, alter-
native to the remesh/remap approach, have been proposed in
literature: i) special treatment of sliding lines [28,133,101,
41,42,29,133,8], which deal with moving interfaces so that
elements on the two sides can slide in a nonconforming way
in order to accommodate the distortion induced by shear
flows; ii) a very original solution represented by the AREPO
code of Springel and collaborators [143,144,129,130], i.e. a
second order direct ALE FV scheme where the connectivity
of the moving mesh is dynamically regenerated via a mov-
ing unstructured but conforming Voronoi tessellation of the
domain; iii) the well-known particle finite element method
of Oñate and Idelsohn et al., see [94,132,126,103,93,125],
where again the mesh is completely regenerated at each time
step.

1.2 Structure of the paper

This paper is organized as follow. In Section 2 we will derive
the direct ALE schemes on unstructured polygonal grids in a
unified framework that already involves both the Finite Vol-
ume approach and the Discontinous Galerkin approach at
arbitrary high order of accuracy in space and time through
the predictor-corrector ADER paradigm.

Then in what follows we will concentrate on the two
dimensional case and on two novel techniques for a robust
mesh motion based on the dynamical changes at each time
step of the grid topology, i.e. of the elements shapes and
neighbors. The topology changes are essential to preserve a
good quality mesh in presence of high shear flow or vortical
flows for very long computational times, but also imply the
appearance of degenerate spece–time control volumes that
must be treated with special care.

In particular, in Section 3 we will propose a new and ef-
fective local technique to move the nodes at the interfaces
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between regions with different characteristics in a noncon-
forming way. This approach will be presented in the case
of a second order FV scheme, for the sake of simplicity,
reproducibility and to facilitate the coupling with the well
balancing. Indeed in Section 6 we will couple our noncon-
forming ALE algorithm with some new well balanced path-
conservative schemes, i.e. methods appropriate to treat non-
conservative products and able to maintain up to machine
precision families of equilibria of the studied system (see
Section 4). Since our nonconforming ALE scheme is espe-
cially well suited for modeling in polar coordinates vorti-
cal flows affected by strong differential rotation, and thanks
to the novel combination with the well balancing, in Sec-
tion 6.2 we will be able to show great results for challenging
astronomical phenomena as the rotating Keplerian disk.

Then, in Section 7 we will describe a global technique
that starting from a set of generator points rapidly rebuilds a
new Voronoi tessellation at each time step, connects differ-
ent grids in space–time and extends the high order scheme
presented in Section 2 even to sliver degenerate elements.

Each Section is closed by a large set of numerical results
proving the robustness and the accuracy of the proposed ap-
proach and the enhancements with respect to literature. The
paper is closed by some conclusive remarks and an outlook
to future work in Section 8.

2 Arbitrary high order direct ALE FV-DG schemes

2.1 System of equations

We consider here a very general formulation of the govern-
ing equations in order to model a wide class of physical phe-
nomena, namely all the ones which are governed by equa-
tions that can be cast into the following form,

∂Q
∂ t

+∇ ·F(Q)+B(Q) ·∇Q = S(Q),x ∈Ω(t)⊂ Rd , t ∈ R+
0 .

(1)

In this system, x is the spatial position vector, d = [1,2,3] de-
notes the number of space dimensions, t represents the time,
and Ω(t) is the computational domain at time t. Q(x, t) =
(q1(x, t),q2(x, t), . . . ,qν(x, t)) is the vector of the conserved
variables defined in the space of the admissible states ΩQ ⊂
Rν , F(Q) = (f(Q),g(Q),h(Q)) is the nonlinear flux tensor,
B(Q) = (B1(Q),B2(Q),B3(Q)) is a matrix collecting the
non-conservative terms, and S(Q) represents a nonlinear al-
gebraic source term. The system (1) can also be written in
the following quasi-linear form

∂Q
∂ t

+A(Q) ·∇Q = S(Q), x ∈Ω(t)⊂ Rd , t ∈ R+
0 , (2)

with the system matrix A(Q) = ∂F/∂Q+B(Q). The system
is hyperbolic if for any normal direction n 6= 0 the matrix

A(Q) ·n has ν real eigenvalues and a full set of ν linearly
independent eigenvectors for all Q ∈ΩQ. PDE systems like
(1) include as particular cases systems of conservation laws
(B = 0, S = 0), systems of conservation laws with source
terms or balance laws (B = 0), and even non-conservative
hyperbolic systems (B 6= 0).

They appear in many different physical models: in par-
ticular, in this work we will take into account the shallow
water equations, the Euler equations of gas dynamics with
and without gravity, and the magnetohydrodynamics equa-
tions.

2.2 Domain discretization

To discretize the moving two-dimensional domain Ω(t) we
employ an unstructured mesh made of NP non overlapping
polygons Pi, i = 1, . . .NP. The tessellation is firstly built at
time t = 0 and then it is rearranged at each time step tn: ele-
ments and nodes are moved following the local fluid veloc-
ity and when necessary, in order to prevent mesh distortions,
also the mesh topology is changed according to the proce-
dures described in Sections 3 or 7.

Given a polygon Pn
i we denote by V (Pn

i ) = {vn
i1 , . . . ,v

n
i j
,

. . . ,vn
iNn

Vi

} the set of its Nn
Vi

Voronoi neighbors (the neighbors

that share with Pn
i a vertex), by E (Pn

i )= {en
i1 , . . . ,e

n
i j
,. . . ,en

iNn
Vi

}

the set of its Nn
Vi

edges, and by D(Pn
i )= {dn

i1 , . . . ,d
n
i j
,. . . ,dn

iNn
Vi

}

the set of its Nn
Vi

vertexes, consistently ordered counterclock-
wise. Finally, the barycenter of Pn

i is noted as xn
bi
= (xn

bi
,yn

bi
).

When necessary, by connecting xn
bi

with each vertex of D(Pi)

we can subdivide a polygon Pn
i in Nn

Vi
subtriangles denoted

as T (Pn
i ) = {T n

i1 , . . . ,T
n

i j
, . . . ,T n

iNn
Vi

}.

To lighten the notation, when there is no confusion, with
an index i we refer to an element Pn

i , with an index j we
refer to one of its neighbors Pn

i j
∈ V (Pn

i ), and with an index
k we refer to a node. The coordinate of each node at time tn

are denoted by xn
k , and Vn

k represents the velocity at which it
is supposed to move, so that its new coordinates at time tn+1

are given from the following relation

xn+1
k = xn

k +∆ tVn
k , (3)

More details on how to obtain Vn
k will be given in Section 3.2

for the nonconforming case and in 7.2 for the regenerating
Voronoi case.

2.3 Spatial representation of the numerical solution

Data are represented via high order polynomials in each
polygon, which are either given by a MUSCL or (C)WENO
reconstruction of the cell average values for FV schemes, or
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directly available from the numerical solution when a DG
method is considered.

Indeed, the conserved quantities Q in (1) are represented
via a cell-centered approach inside each polygon Pn

i at the
current time tn by piecewise polynomials of degree N ≥ 0
denoted by un

h(x, t
n) and defined in the space Uh,

un
h(x, t

n) =
N −1

∑
`=0

ϕ`(x, tn) ûn
`,i := ϕ`(x, tn) ûn

`,i, x ∈ Pn
i , (4)

where ϕ`(x, tn) are modal spatial basis functions used to
span the space of polynomials Uh up to degree N. In the
rest of the paper we will use classical tensor index notation
based on the Einstein summation convention, which implies
summation over two equal indices. The total number N of
expansion coefficients (degrees of freedom) ûn

l for the basis
functions depends on the polynomial degree N and is given
by N = L (N,d), with

L (N,d) =
1
d!

d

∏
m=1

(N +m), (5)

where d = 2 for the two-dimensional case. As basis func-
tions ϕ` in (4) we employ a Taylor series of degree N in the
variables x = (x,y) directly defined on the physical element
Pn

i , expanded about its current barycenter xn
bi

and normal-
ized by its current characteristic length hi

ϕ`(x, tn)|Pn
i
=

(x− xn
bi
)p`

p`!hp`
i

(y− yn
bi
)q`

q`!hq`
i

,

`= 0, . . . ,N −1, 0≤ p`+q` ≤ N,

(6)

hi being the radius of the circumcircle of Pn
i . The unknown

expansion coefficients ûn
`,i in (4) are the rescaled derivatives

hp`
i hq`

i
∂

p`+q`
∂xp`∂yp

`
Q
(

xn
bi

)
of the Taylor expansion about xn

bi
.

The discontinuous finite element data representation (4)
leads naturally to both a Discontinuous Galerkin (DG) scheme
if N > 0, but also to a Finite Volume (FV) scheme in the case
N = 0. This indeed means that for N = 0 we have ϕ`(x) = 1,
with `= 0 and (4) reduces to the classical piecewise constant
data representation that is typical of finite volume schemes:

un
h(x, t

n) = 1 · ûn
0,i= ûn

0,i, x ∈ Pn
i ,

ûn
0,i =

1
|Pn

i |

∫
Pn

i

Q(x, tn)dx. (7)

Here, the only degree of freedom per element Pn
i is the usual

cell average ûn
0,i. Note also that in the case N > 0 the repre-

sentation given by (4) already provides a spatially high order
accurate data representation with accuracy N + 1, which is
not the case when N = 0. If we are interested in increas-
ing the spatial order of accuracy of a finite volume scheme,
up to M + 1 for example, we need to perform a spatial re-
construction that generates a spatially high order accurate

reconstruction polynomial wn
h(x, t

n) of degree M > N (see
the MUSCL procedure described in 3.4 or the CWENO pro-
cedure presented in 7.1) that reads

wn
h(x, t

n) =
M−1

∑
`=0

ψ`(x, tn) ŵn
`,i := ψ`(x, tn) ŵn

`,i,

x ∈ Pn
i , M = L (M,d),

(8)

where we simply employ the same basis functions ψl(x, tn)=

ϕl(x, tn) for the reconstruction according to (6), but with
0≤ `≤M −1 rather than 0≤ `≤N −1, see also [58].

With this notation, our method falls within the more gen-
eral class of PNPM schemes introduced in [58] for fixed un-
structured simplex meshes in two and three space dimen-
sions. In this paper, in Section 3 and 4 we will consider the
simple case of M = 0 and M = 1, i.e. a FV scheme of order
one or two; instead in Section 7 we consider the two main
situations: (i) N = 0, with arbitrary high order reconstruction
of degree M > N, which indeed corresponds to a FV scheme
of order M+1, and (ii) N = M, which corresponds to a DG
scheme of accuracy N +1.

For the sake of uniform notation, in the DG case, i.e.
when N > 0 and M = N, we trivially impose that the re-
construction polynomial is given by the DG polynomial, i.e.
wn

h(x, t
n) = un

h(x, t
n), which automatically implies that in the

case N = M the reconstruction operator is simply the iden-
tity.

2.4 Space–time control volumes - general framework

As already said in the Introduction, the family of direct ALE
schemes proposed in this work are based on integrating the
governing equation directly over space–time control volumes;
they are constructed as follow.

For each element Pn
i the new vertex coordinates xn+1

k ,
k = 1, . . . ,Nn

Vi
, are connected to the old coordinates xn+1

k via
straight line segments, yielding the multidimensional space-
time control volume Cn

i , that involves overall Nn,st
Vi

+2 space-
time sub-surfaces. Specifically, the space-time volume Cn

i is
bounded on the bottom and on the top by the element con-
figuration at the current time level Pn

i and at the new time
level Pn+1

i , respectively, while it is closed with a total num-
ber of Nn,st

Vi
lateral space–time surfaces ∂Cn

i j
, j = 1, . . . ,Nn,st

Vi
that are given by the evolution of each edge en

i j
of element Pn

i

within the time step ∆t = tn+1−tn. Therefore the space-time
volume Cn

i is bounded by its surface ∂Cn
i which is given by

∂Cn
i =

(⋃
j

∂Cn
i j

)
∪ Pn

i ∪ Pn+1
i . (9)

For a graphical interpretation one can refer to Figure 1, where
we have reported an example of a control volume and of the
parametrization of the lateral space–time surfaces.
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Fig. 1: Left. In blue we show the physical space–time control volume Cn
1 obtained by connecting via straight line segments

each vertex of Pn
1 with the corresponding vertex of Pn+1

1 , and its space-time midpoint Mn
1 . In pink we show one of the lateral

surfaces of Cn
2 , ∂Cn

2,1, together with its space–time midpoint Mn
2,1. Right. The reference system (χ,τ) adopted for the bilinear

parametrization of the lateral surfaces ∂Cn
i j.

2.5 Fully-discrete predictor-corrector ADER approach

Now we can solve (1) using a high order fully-discrete one-
step predictor-corrector ADER FV-DG method obtained by
generalizing the scheme first presented in [58] to our mov-
ing geometry. ADER finite were firstly introduced by Toro
and Titarev in [147,150,148,139,151] and have been suc-
cessfully developed in the fixed grids framework in [61,27];
subsequently they have been extended to moving meshes in
the ALE context [12,15,10,16].

The predictor step consists in a local solution of the gov-
erning PDE (1) in the small, see [89], inside each space-time
element Cn

i . We underline that the predictor step is the key
for obtaining the high order of accuracy in time in a one
single step procedure and that this is achieved acting at a
completely local level: indeed it is obtained by only consid-
ering cell Cn

i with initial data wn
h on Pn

i , the governing equa-
tions (1) and the geometry of Cn

i , without taking into account
any interaction between Cn

i and its neighbors. It provides,
for each space–time control volume Cn

i , a polynomial data
representation qn

h (see below for the details) of high order
both in space and time, which serves as a predictor solution,
only valid inside Cn

i , to be used for evaluating the numeri-
cal fluxes and sources when integrating the PDE in the final
corrector step.

Then, the corrector step integrates the weak form of the
PDE over the space-time control volumes Cn

i , making use
of the predictor solution qn

h, and returns un+1
h by taking care

of the coupling with neighbors through the numerical flux
computations across ∂Cn

i . It ensures high order of accuracy

in space and time, provided the high order of accuracy of
qn

h. The scheme is by construction conservative since it takes
into account all the flux contributions over ∂Cn

i .
Finally, the time step size ∆ t is given by

∆ t < CFL

 |Pn
i |

(2N +1) |λmax,i| ∑∂Pn
i j
|`i j |

, ∀Pn
i ∈Ω

n, (10)

where, `i j is the length of the edge j of Pn
i and |λmax,i| is

the spectral radius of the Jacobian of the flux F. Stability on
unstructured meshes is guaranteed by the satisfaction of the
inequality CFL < 1

d , see [58].

2.6 High order space–time predictor

Our ADER space–time predictor is given by a high order
piecewise space-time polynomial qn

h(x, t) of degree M of the
form

qn
h(x, t) =

Q−1

∑
`=0

θ`(x, t)q̂n
` , (x, t) ∈Cn

i , Q = L (M,d +1).

(11)

with θ`(x, t) being a modal space–time basis of the polyno-
mials of degree M in d +1 dimensions (d space dimensions
plus time), which read

θ`(x,y, t)|Cn
i
=

(x− xn
bi
)p`

p`!hp`
i

(y− yn
bi
)q`

q`!hq`
i

(t− tn)q`

q`!hq`
i

,

`= 0, . . . ,L (M,d +1), 0≤ p`+q`+ r` ≤M.

(12)
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It will serve as a predictor of the solution valid locally inside
Cn

i .
It is computed through an iterative procedure that looks

for the polynomial satisfying a weak form of (1) obtained
for any control volume Cn

i as follows. We multiply the gov-
erning PDE (1), evaluated on qn

h, by a test function θk and
we integrate over Cn

i , hence∫
Cn

i

θk(x, t)
∂qn

h
∂ t

dxdt+
∫

Cn
i

θk(x, t)∇ ·F(qn
h)dxdt =∫

Cn
i

θk(x, t)S(qn
h)dxdt.

(13)

Differently from what has been proposed in [58,61,14,15],
here we do not integrate the first term in (13) by parts in
time. Instead, we take into account potential jumps of qh
on the boundaries of Cn

i in the sense of distributions, com-
bined with upwinding of the fluxes in time. This approach is
similar to the path-conservative schemes proposed in [131,
33,31], but much simpler, since the test functions are only
taken from within Cn

i and there is no need to define a non-
conservative product on ∂Cn

i . Therefore, the integral con-
taining the time derivative in (13) is rewritten as

∫
Cn

i

θk(x, t)
∂qn

h
∂ t

dxdt =
∫

Cn
i \∂Cn

i

θk(x, t)
∂qn

h
∂ t

dxdt

+
∫

∂Cn
i

θk(x, t)
(

qn,+
h −qn,−

h

)
ñ−t dS.

(14)

Here, qn,−
h and qn,+

h denote the boundary-extrapolated inner
and outer states across the jump on ∂Cn

i . Furthermore, ñ−
are only those outward pointing unit-normal vectors on ∂Cn

i
that point back in time and ñ−t is their time component, i.e.
ñ−t = min(0, ñ · (0,0,1)) ≤ 0. Upwinding in time is there-
fore automatically guaranteed, since we only consider the
contributions coming from the past, according to the causal-
ity principle. In other words, only time fluxes that enter the
space–time control volume Cn

i contribute to the jump term
in (14), and they are easily identified by checking the sign
of the time component of the space–time normal vector ñ.

In the classical case of control volume with the shape
of an oblique prism, we apply the jump term only on the
bottom surface Pn

i of the space–time element Cn
i under con-

sideration: in this manner all space–time predictors are de-
coupled from each other, since they only require the initial
data wn

h and no information from the neighbor elements and
the procedure that gives us high order in time results to be
completely local.

In particular, the jump term simplifies(
qn,+

h −qn,−
h

)
ñ−t
∣∣∣
Pn

i

=− (wn
h(x, t

n)−qn
h(x, t

n))

= qn
h(x, t

n)−wn
h(x, t

n),
(15)

with qn,+
h = wh(x, tn) being simply given by the reconstruc-

tion polynomial at time tn, ñ− = (0,0,−1) on Pn
i and thus

ñ−t =−1. In this case, (14) reduces to∫
Cn

i

θk(x, t)
∂qn

h
∂ t

dxdt =
∫

Cn
i \P

n
i

θk(x, t)
∂qn

h
∂ t

dxdt+∫
Pn

i

θk(x, tn) (qn
h(x, t

n)−wh(x, tn)) dx.

(16)

Finally, with the following definitions

K1 =
∫

Cn
i \P

n
i

θk
∂θ`

∂ t
dxdt, Kx =

∫
Cn

i

θk
∂θ`

∂x
dxdt,

Ky =
∫

Cn
i

θk
∂θ`

∂y
dxdt, M =

∫
Cn

i

θkθ` dxdt,

F0=
∫

Pn
i

θk(x, tn)ψ`(x, tn)dx, F1=
∫

Pn
i

θk(x, tn)θ`(x, tn)dx,

(17)

the weak form (13)-(14) can be compactly rewritten as

(K1 +F1) q̂n
i = F0ŵn

i −Kx f(q̂n
i )−Ky g(q̂n

i )+MS(q̂n
i ),

(18)

where q̂n
i and ŵn

i contain all the expansion coefficients of
q̂n
`,i in (11) and ŵn

`,i in (8), respectively. The solution of (18)
can be found via a simple and fast converging fixed point
iteration (a discrete Picard iteration), as detailed in [58,90].
Here, as initial guess we simply impose q̂n

`,i = ŵn
`,i for the

common spatial degrees of freedom (with `≤M ) and zero
for the other ones. For linear homogeneous systems, the dis-
crete Picard iteration converges in a finite number of at most
M+1 steps, since the involved iteration matrix is nilpotent,
see [95]. In the nonlinear case we allow a maximum of 10
iterations if convergence is not reached before, being M+1
iterations enough for obtaining the correct order M of con-
vergence.

The integrals above are evaluated using multidimensional
Gaussian quadrature rules of suitable order of accuracy, see
[145] and Figure 2 for details. In order to carry out the inte-
gration, we split the space-time volume Cn

i into a set of sub–
space-time volume sCn

i j
of Cn

i , whose shape is an oblique
triangular prism.

2.7 Corrector step: flux computation and update of the
solution

This Section contains the core of our direct ALE FV-DG
scheme used to solve (1) on regenerating moving meshes.

Following [14,15,16], the PDE system (1) is rewritten
in a space-time divergence form as

∇̃ · F̃ = S, (19)
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tn

tn+1
sCn

ij

(a)

tn

tn+1

∂Cn
ij

(b)

Fig. 2: Space–time quadrature points for third order methods, i.e. M = 2. (a) Quadrature points for the volume integrals and
the space–time predictor. (b) Quadrature points for the surface integrals, i.e. for flux computation.

with ∇̃= (∂x, ∂y, ∂t) denoting the space-time divergence op-
erator and F̃ = (f, g, Q) being the corresponding space-time
flux tensor. Then, we multiply (19) by a set of moving spatial
modal test functions ϕ̃k(x, t), which coincide with (6) at t =
tn and at t = tn+1, i.e. ϕ̃k(x, tn) = ϕk(x, tn) and ϕ̃k(x, tn+1) =

ϕk(x, tn+1). The test functions are tied to the motion of the
barycenter xbi(t) and move together with Pi(t) in such a way
that at time t = tn+1 they refer to the new barycenter xn+1

bi
.

Thus, the test functions explicitly read as follows:

ϕ̃`(x,y, t)|Cn
i
=

(x− xbi(t))
p`

p`!hp`
i

(y− ybi(t))
q`

q`!hq`
i

, (20)

with xbi(t) =
t− tn

∆ t
xn

bi
+

(
1− t− tn

∆ t

)
xn+1

bi
, (21)

`= 0, . . . ,N , 0≤ p+q≤ N.

These moving modal basis functions are essential for the
approach presented in this paper. They naturally allow for
topology changes, without the need of any remapping steps,
which we want to avoid in a direct ALE formulation.

Next, integration over the closed space-time control vol-
ume Cn

i yields∫
Cn

i

ϕ̃k∇̃ · F̃(Q)dxdt =
∫

Cn
i

ϕ̃kS(Q)dxdt. (22)

Application of the Gauss theorem leads to the following
weak form that is the basis of our fully-discrete ALE scheme

∫
∂Cn

i

ϕ̃kF̃(Q) · ñdS−
∫

Cn
i

∇̃ϕ̃k · F̃(Q)dxdt=
∫

Cn
i

ϕ̃kS(Q)dxdt,

(23)

where ñ = (ñx, ñy, ñt) denotes the outward pointing space-
time unit normal vector on the space-time faces composing
the boundary ∂Cn

i of the space-time control volume. More-
over, the surface integral can be decomposed over the faces
of ∂Cn

i given by (9).
After introducing the discrete solution uh, the space–

time predictor qh and a two-point numerical flux function
on the element boundaries of the type

F̃(Q) · ñ := F (qn,−
h ,qn,+

h ) · ñ, (24)

into (23), where qn,−
h and qn,+

h are the inner and outer boundary-
extrapolated data respectively, (i.e. the values assumed by
the predictors of two elements at a point on the shared space–
time lateral surface), we obtain the final direct ALE scheme:∫

Pn+1
i

ϕ̃kuh(x, tn+1)dx =
∫
Pn

i

ϕ̃kuh(x, tn)dx

−
Nn,st

Vi

∑
j=1

∫
∂Cn

i j

ϕ̃kF (qn,−
h ,qn,+

h ) · ñdS

+
∫

Cn
i

∇̃ϕ̃k · F̃(qh)dxdt +
∫

Cn
i

ϕ̃kS(qh)dxdt,

(25)

where the unknown solution at the new time step uh(x, tn+1)

can be computed directly from the solution at the previous
time step uh(x, tn) through the integration of the fluxes and
source terms over Cn

i , without needing any further remap-
ping/remeshing steps.

The boundary fluxes are obtained by a Riemann solver,
thus providing the coupling between neighbors, which was
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neglected in the predictor step. The ALE Jacobian matrix
w.r.t. the normal direction in space reads

AV
n(Q)=

(√
ñ2

x + ñ2
y

)[
∂F
∂Q
·n− (V ·n)I

]
, n=

(ñx, ñy)
T√

ñ2
x + ñ2

y

,

(26)

with I representing the identity matrix and V · n denoting
the local normal mesh velocity. Furthermore, n is the spatial
normalized normal vector, which is different from the space-
time normal vector ñ. We adopt either a simple and robust
Rusanov-type [137] ALE scheme,

F (qn,−
h ,qn,+

h ) · ñ =
1
2

(
F̃(qn,+

h )+ F̃(qn,−
h )

)
· ñi j

− 1
2

smax

(
qn,+

h −qn,−
h

)
,

(27)

where smax is the maximum eigenvalue of AV
n(q

n,+
h ) and

AV
n(q

n,−
h ), or a less dissipative Osher-type [128,67] ALE

flux

F (qn,−
h ,qn,+

h ) · ñ =
1
2

(
F̃(qn,+

h )+ F̃(qn,−
h )

)
· ñi j

− 1
2

(∫ 1

0

∣∣AV
n(Ψ(s))

∣∣ds
)(

qn,+
h −qn,−

h

)
,

(28)

where we choose to connect the left and the right state across
the discontinuity using a simple straight–line segment path

Ψ(s) = qn,−
h + s

(
qn,+

h −qn,−
h

)
, 0≤ s≤ 1. (29)

The absolute value of AV
n is evaluated as usual as R|Λ |R−1,

where R, R−1 and Λ denote, respectively, the right eigen-
vector matrix, its inverse and the eigenvalues matrix of AV

n.

Finally, using the definitions (4) and (8), our arbitrary
high order one-step direct ALE FV-DG scheme becomes(∫

Pn+1
i

ϕ̃kϕ` dx
)

ûn+1
` =

(∫
Pn

i

ϕ̃kψ` dx
)

ŵn
`

−
Nn,st

Vi

∑
j=1

∫
∂Cn

i j

ϕ̃kF (qn,−
h ,qn,+

h ) · ñdS

+
∫

Cn
i

∇̃ϕ̃k · F̃(qn
h)dxdt +

∫
Cn

i

ϕ̃kS(qn
h)dxdt.

(30)

The volume integrals in the above expression (30) can be
easily computed directly on the physical space-time element
Cn

i by summing up the contributions on each sub-volume
sCn

i j
and employing Gaussian quadrature rules of sufficient

precision, see [145]. The lateral space–time surfaces of ∂Cn
i j

instead are parameterized using a set of bilinear basis func-
tions [14], that is

∂Cn
i j = x̃(χ,τ) =

4

∑
k=1

βk(χ,τ) X̃n
i j,k,

0≤ χ ≤ 1, 0≤ τ ≤ 1,

(31)

where the X̃n
i j,k represent the physical space–time coordi-

nates of the four vertexes of ∂Cn
i j

, and the functions βk(χ,τ)

are defined as follows

β1(χ,τ) = (1−χ)(1− τ), β2(χ,τ) = χ(1− τ),

β3(χ,τ) = χτ, β4(χ,τ) = (1−χ)τ.
(32)

The mapping in time is given by the transformation

t = tn + τ ∆ t, τ =
t− tn

∆ t
. (33)

In this way, every ∂Cn
i j

can be mapped to a reference square
[0,1]× [0,1] and surface integrals can be computed.

2.7.1 Properties

We want to emphasize that the integration over a closed
space–time control volume, as done above, automatically
satisfies the so-called geometric conservation law (GCL),
for all test functions ϕ̃k. This simply follows from Gauss
theorem∫

∂C n
i

ñdS = 0, (34)

applied to closed space–time control volumes. The relation
between (34) and the usual form of the GCL that is typi-
cally employed in the community working on Lagrangian
schemes has been established in the appendix of [15]. The
satisfaction of the GCL property up to machine precision
has been numerically verified in each simulation presented
in this paper and a series of test cases aiming in demonstrat-
ing its validity is presented in Section 7.6.2.

Moreover the scheme is locally and globally conserva-
tive for mass and inertial momentum.

Finally, we underline that the direct ALE scheme pre-
sented here does in general not lead to a vanishing mass flux
across element boundaries, similar to previous work on di-
rect ALE schemes presented in [14,15]. The mass flux is ex-
actly zero only for isolated contact discontinuities moving in
uniform flow when using appropriate Riemann solvers that
resolve contact waves, like the Godunov method, or the Roe,
HLLC, HLLEM and Osher flux.

2.8 A posteriori sub–cell finite volume limiter

The direct ALE scheme presented so far is arbitrarily high
order accurate in space and time and incorporates the FV
case, if N = 0 and if a high order spatial reconstruction is
adopted, and the DG case, when N =M. But actually there is
one major difference between FV and DG: indeed the recon-
struction operators (CWENO or MUSCL) provide a nonlin-
ear stabilization of the FV scheme, while the DG scheme
presented so far is unlimited and, as such, it is affected by
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the so-called Gibbs phenomenon, i.e. oscillations are likely
to appear in presence of shock waves or other discontinu-
ities, which typically occur while solving nonlinear hyper-
bolic systems. These oscillations could be explained also by
the Godunov theorem [83], because the presented high order
DG scheme is linear in the sense of Godunov.

As a consequence, a limiting technique is required. Our
strategy is based on the MOOD approach [40,51,52], which
has already been successfully introduced in the framework
of ADER finite volume schemes [111,24,22]. The idea be-
hind this kind of schemes consists in checking the numeri-
cal solution a posteriori for nonphysical values and spurious
oscillations: we consider as troubled elements those that do
not pass a set of admissibility detection criteria, given by
both physical and numerical requirements. If the solution in
a cell is discarded, instead of applying a limiter to the al-
ready computed solution, the solution is locally recomputed
relying on a first order finite volume method applied to a fine
sub-grid generated within each troubled cell.

We refer in particular to [69,156,66,17,26] for an ex-
haustive description of the a posteriori finite volume subcell
limiter. Here, for the sake of clarity, we briefly recall the
main concepts and we underline the differences introduced
for dealing with moving polygonal elements.

Firstly, using the notation adopted in [17], the numeri-
cal solution computed so far is assumed to be a candidate
solution and denoted with un+1,∗

h (x, tn+1). Then, we define a
sub-triangulation of Pn

i made of a set of non-overlapping so
called small sub-triangles. Consequently, each control vol-
ume Cn

i is split into sub-triangular prisms, called small sub-
volumes, as follows.

– For N = 1 we consider a total number of small sub-
triangles Si which is equal to Nn

Ci
, i.e. Si = Nn

Ci
. The

small sub-triangles are given by T n
i j

and the associated
small sub-volumes are sCn

i j
.

– For N ≥ 2 we further subdivide each T n
i j

into N2 small
sub-triangles, which are defined through the sub-nodes
provided by standard nodes of classical high order con-
forming finite elements on triangular meshes. In this way,
a total number of Si = Nn

Ci
·N2 small sub-triangles is

taken into account. The splitting of sCn
i j

is consequently
defined.

We denote each small sub-triangle of Pn
i with sn

i,α , where
α ∈ [1,Si]. Next, we define the corresponding subcell aver-
age of the numerical solution at time tn

vn
i,α(x, t

n) =
1
|sn

i,α |

∫
sn
i,α

un
h(x, t

n)dx

=
1
|sn

i,α |

∫
sn
i,α

ϕ`(x)dxûn
l := P(un

h) ∀α ∈ [1,Si],

(35)

where |sn
i,α | denotes the volume of subcell sn

i,α of element
Pn

i and the definition P(uh) is the L2 projection operator.
We fix also the candidate subcell average of the numerical
solution at time tn+1 as vn+1,∗

i,α (x, tn+1) = P(un+1,∗
h ).

Now, we mark the troubled cells. The candidate solution
vn+1,∗

h (x, tn+1) is checked against a set of detection criteria.
According to [17], the first criterion is the requirement that
the computed solution is physically acceptable, i.e. belongs
to the phase space of the conservation law being solved. For
instance, if the compressible Euler equations for gas dynam-
ics are considered, density and pressure should be positive
and in practice we require that they are greater than a pre-
scribed tolerance ε = 10−12. Then, a relaxed discrete maxi-
mum principle (DMP) is applied, hence we verify

min
m∈V (Cn

i )

(
min

β∈[1,Sm]
(vn

m,β )

)
−δ ≤ vn+1,∗

i,α

≤ max
m∈V (Cn

i )

(
max

β∈[1,Sm]
(vn

m,β )

)
+δ ∀α ∈ [1,Si],

(36)

where δ is a parameter which, according to [17,69,156],
reads

δ = max

(
δ0 , ε·

[
max

m∈V (Cn
i )

(
max

β∈[1,Sm]
(vn

m,β )

)
−

min
m∈V (Cn

i )

(
min

β∈[1,Sm]
(vn

m,β )

)])
,

(37)

with δ0 = 10−4 and ε = 10−3.
If a cell fulfils the detection criteria in all its subcells,

then the cell is marked as good, otherwise the cell is trou-
bled. Note that, this step is performed independently in each
element and thus the projection v∗h(x, t

n+1) does not need to
be retained after the cell is assigned its mark.

Then we need to recompute the solution only in the trou-
bled cells with a first order FV scheme, applied in each small
sub-triangle/sub-volume, that evolves the cell averages vn

i,α

in order to obtain vn+1
i,α .

We do not report the details on the first order ALE-FV
scheme (assumed to be well-known), but we add some re-
marks on flux computation at the space–time lateral sur-
faces of each sn

i . i) The same numerical flux function, i.e.
(27) or (28), used in the rest of the scheme is adopted here
as well. ii) The employed quadrature rule is a simple mid-
point rule that makes use of the space–time barycenters of
the space–time lateral faces of the sub-volume. iii) The nor-
mal vectors are also computed at the space–time barycen-
ters. iv) Referring to (24), when computing the flux between
the sub-volume α of Cn

i and the neighboring sub-volume β

(of Cn
i or of any other Cn

i j
), boundary data are simply given

by qn,−
h = vn

i,α and qn,+
h = vn

i/i j ,β
. v) If instead the neighbor

is not troubled (which thus has not been sub-triangulated),
then qn,−

h = vn
i,α and qn,+

h = qn
h|Cn

i j
(gn

i j
).
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A first order finite volume scheme always provides a
valid solution, hence vn+1

i,α is acceptable. Moreover, since the
FV scheme is not directly applied to the element but to each
of its sub-triangles, the sub-mesh resolution does not com-
pletely spoil the solution of the DG scheme. Nevertheless,
the method does not maintain the formal order of accuracy
of the PNPM scheme, but it is only used and activated across
shock waves and strong discontinuities. Note also that for a
troubled cell the mesh motion is not recomputed because it
has been fixed using only information coming from space at
time tn, which are, as such, not affected by any problem.

Finally, the DG polynomial for the cell Pn+1
i is recovered

from the robust and stable solution on the sub-grid level vn+1
i,α

by applying the reconstruction operator R(vn+1
i,α (x, tn)), that

is∫
Sn

i,α

un+1
h (x, tn+1)dx =

∫
Sn

i,α

vn+1
i,α (x, tn)dx := R(vn+1

i,α (x, tn))

∀α ∈ [1,Si].

(38)

The reconstruction is imposed to be conservative on the main
cell Pn

i , hence yielding the additional linear constraint∫
Pn

i

uh(x, tn+1)dx =
∫

Pn
i

vh(x, tn+1)dx. (39)

As a consequence, the projection operator P in (35) and
the reconstruction operator R in (38) satisfy the property
P ·R = I , with I being the identity operator.

If a cell Cn
i is good but has at least one bad neighbor

cell Cn
i j

in its V (Cn
i ), we cannot accept its candidate solution

un+1,∗
h (x, tn+1) because the scheme would become noncon-

servative. Indeed, at the common space–time lateral surface
∂Cn

i j
, the flux computed from Cn

i would be obtained through
the DG scheme (i.e. high order predictor and high order cor-
rector), while the one coming from the troubled neighbor Cn

i j
would be updated using the first order FV scheme. Thus, the
DG solution in these cells is recomputed in a mixed way: the
volume integral and the surface integrals on good faces are
kept, while the numerical flux across the troubled faces is
always provided by the first order limiter.

The numerical method given in this Section provides an
exhaustive description for our arbitrary high order accurate
both in space and time direct ALE FV-DG scheme on mov-
ing meshes. The high order of accuracy in space is obtained
as in any standard FV scheme through a reconstruction op-
erator, and is available for free in the DG case; in both the
cases it relies only on information coming from time tn, thus
independent of the mesh motion. The high order in time,
provided by the predictor-corrector ADER paradigm, nat-
urally fits into our moving framework, being already con-
structed on space–time control volumes. Finally, in order to

stabilize the DG scheme we have proposed a limiter, both
robust because based on a FV strategy and accurate because
applied on a sub-triangulation.

In the following, we will concentrate on new techniques
to move the mesh in such a way to maintain its high qual-
ity for long times and we will extend the numerical scheme
presented so far to degenerate space–time control volume.

3 Second order ALE FV scheme on nonconforming
moving unstructured meshes

In this Section we propose a new and effective technique
to move the nodes at the interfaces between regions with
different characteristics, in order to avoid the typical mesh
distortion of Lagrangian-type methods [80,81].

In particular, in our new approach the interfaces could be
both prescribed a priori by the user or automatically detected
by the algorithm, if the tangential velocity difference across
an element interface is sufficiently large. The new scheme
then subdivides the neighbors of an interface edge into two
groups, each of which has similar properties, namely the left
and the right neighbors. The nodes far away from the shear
discontinuity are moved with a standard node solver, while
for those at the interface a new node is inserted in such a
way that the old one moves according to an averaged ve-
locity over the left neighbors, and the new one slides along
the edge according to the average velocity prescribed by the
right group.

We refer to the resulting mesh as nonconforming be-
cause each edge can be shared between more than two el-
ements and a node can lie on an edge not only at its ex-
tremities, i.e. we explicitly allow so-called hanging nodes,
see Figure 3 for an example of a nonconforming mesh that
can be treated by our algorithm. This gives us more flexibil-
ity in the grid motion and helps to maintain a high quality
mesh: indeed, the elements on both sides of the shear wave
can move with a different velocity, without producing highly
distorted elements. The core of the proposed method is the
local update of all the necessary connectivity tables, as a
consequence of the insertion or the deletion of nodes and
edges, and the computation of the numerical fluxes between
the space-time control volumes, taking in particular into ac-
count that the lateral faces can be shared between more than
two elements.

In this case, we restrict ourselves to a FV scheme for
which second order of accuracy in space and time is ob-
tained through a MUSCL-Hancock strategy, together with
a Barth and Jespersen slope limiter, which can be seen as
an ADER predictor-corrector approach but is simpler to be
reproduced. Moreover, in consider conservative systems of
hyperbolic equations; the non-conservative case will be treated
in Sections 4.
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Fig. 3: Example of a nonconforming mesh that can be
treated by our algorithm. The mesh contains NE = 12 ele-
ments: triangles, quadrilaterals and five-sided polygons. The
mesh is nonconforming: note for example edge e1. It is
shared between the elements P1,P2,P3,P5 and on it we can
find two intermediate nodes 2,3 called hanging nodes. A
similar situation can be noted for edge e2.

Finally, in Section 3.6 some numerical test problems are
presented in order to check the efficiency and the robust-
ness of the proposed approach in maintaining a high quality
mesh, local and global volume conservation, and in satis-
fying the GCL condition. The numerical results presented
in this Section concern the shallow water equations both in
Cartesian coordinates (see Section 3.5.1), and in polar coor-
dinates (see Section 3.5.2). In particular we have compared
the results for a steady vortex in equilibrium solved with
a standard conforming ALE method (without any rezoning
technique) and with our new nonconforming ALE scheme,
to show that the new nonconforming scheme is able to avoid
mesh distortion even after very long simulation times, refer
to Figure 15. Other interesting applications will be shown in
Section 6 where the nonconforming ALE framework will be
coupled together with a well balancing technique both for
studying the shallow water equations and the Euler equa-
tions with gravity.

Note that, the algorithm presented here is not necessarily
limited to logically straight slipe lines. In Section 3.7 we
therefore show first preliminary results for general, logically
non-straight slide lines.

3.1 Nonconforming mesh motion

In this Section we focus on the detailed description of the
procedure needed to determine how the computational mesh
moves: a crucial point in any moving mesh algorithm, be-
cause following the fluid exactly with its own velocity may

become sometimes very complex, leading to highly deformed
or degenerate control volumes. Moreover these damaged el-
ements may drastically reduce the admissible time step, which
is computed under a classical CFL stability condition, see
(10), causing a slowdown or even an interruption of the al-
gorithm.

In particular, at each time step our algorithm computes
the new node positions through the following intermediate
stages. First, the edges along relevant shear flows are de-
tected (see Section 3.1.2) and the nodes on these edges are
marked as problematic. Then the new node positions are
computed according to the type of the considered node, in
particular

a) Regular non-hanging nodes that are not in regions of rel-
evant shear flow (i.e. they have not been marked as prob-
lematic) are evolved using a mass-weighted Cheng and
Shu node solver, see (43).

b) Regular non-hanging nodes that are in regions of rele-
vant shear flow (i.e. they have been marked as problem-
atic) are doubled; their new position is projected along
the nearest interface edge, and they subsequently change
their type from regular non-hanging nodes to hanging
nodes (refer to Section 3.2.1).

c) Hanging nodes on an edge are allowed to slide only along
that edge (see Section 3.2.2), and if they get too close to
other nodes, they are merged together (deleted), even-
tually changing back their type from hanging nodes to
regular non-hanging nodes (refer to Section 3.2.3).

Associated to b) and c) there is a procedure for updating all
the connectivities of the unstructured mesh: we would like to
underline that all these procedures are done at a local level,
so affecting only the neighbors of the considered node and
nothing else.

3.1.1 Connectivity matrices

Since the core of the proposed method is the motion and
the changing of the nonconforming mesh topology in time,
we have to know all the connectivities of the mesh and to
maintain them updated. In this way we will have enough
information both to rearrange the mesh after the insertion of
a new node, or the fusion of two existing nodes, and to know
all the neighbors of each space–time lateral surface during
the numerical flux computation.

As in the standard conforming case for each element Pn
i

we save the global numbering of its vertexes dn
i1 , . . . ,d

n
iNn

Vi
in row i of a matrix called tri in counterclockwise order,
and in matrix Elem2Edge we store the global numbering of
its edges en

i1 , . . . ,E
n
iNn

Vi

. However, in the nonconforming case,

additional connectivity tables are needed, since more than
two elements can share the same edge and more than two
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points can belong to it. For each edge en
i j

, we store the ele-
ments that share it in row j of matrix Edge2Elem, and all the
nodes that belong to en

i j
in row j of matrix Edge2Vertex in

such a way that the first two entries of each row contain the
endpoints of the corresponding edge. Then, for each node
we memorize the edge to which it belongs in Vertex2Edge

(both if this node is an endpoint of the edge or an inter-
mediate point) and the elements for which it is a vertex in
Vertex2Elem. Moreover, each node has a label that indi-
cates whether the node is free to move everywhere, if it has
been doubled, or if it is constrained to slide along a particu-
lar edge, i.e. if it is a hanging node.

Besides, we allow our data structures to be completely
dynamic in such a way that nodes and edges can appear and
disappear in time: so rows can be added to our matrices or be
nullified, and the information regarding which global num-
bering of nodes and edges is currently used is always avail-
able.

3.1.2 Shear interface detector

Since the sliding interfaces are not defined a priori by the
user, at the beginning of each time step the algorithm has
first to identify along which edges the shear interfaces lie,
and mark the corresponding edges and nodes. Basically an
edge e will be considered at the interface if the tangential
velocity difference ∆Ve across e exceeds a certain threshold
value κe. So for each edge we need to compute ∆Ve and κe.

Given the set of nodes Sn
e over the edge e, and the set

of neighbors Sn
j of each node j, the threshold value κe is

computed as

κe = min
j∈Sn

e
κ j, with κ j = max

i∈Sn
j

(
α di

||Ji||

)
, (40)

where di is the encircle diameter of element Pn
i , Ji is the

Jacobian of the transformation that maps element Pn
i in the

corresponding reference element, the norm is the two-norm
of Frobenius divided by

√
2 (other matrix norms could also

be used), and α is chosen in [0,1] according to the desired
sensitivity of the detector. If the velocity jump at the inter-
face is very large, the value of α does not matter. Instead,
where the velocity field changes smoothly, the number of
interfaces, and as a consequence the number of new nodes,
will be dependent on α . Moreover, in the limit α →+∞ we
recover the standard conforming algorithm.

Once the threshold value has been fixed we loop over
all the edges of the mesh: for each edge e we consider all
its neighbors and we compute their tangential velocity with
respect to e. Say, for example, that two elements A = Pn

a and
B = Pn

b with area |Pn
a | and |Pn

b | share the same edge e and
their tangential velocities are vn

A and vn
B. If the quantity ∆Ve

exceeds κe

∆Ve =

∣∣vn
A |Pn

a |− vn
B |Pn

b |
∣∣(

|vn
A||Pn

a |+ |vn
B||Pn

b ||+ ε
) ≥ κe, (41)

with ε = 10−14 to avoid division by zero, then edge e is
marked as an edge at a shear interface, and the elements A
and B are divided into two different groups: the elements on
the left and the ones on the right with respect to this partic-
ular edge e. Afterwards, we also need to find the nodes that
have to be doubled and to separate their Voronoi neighbors
(the elements stored in Vertex2Elem) into two groups. So
we loop over the nodes considering the ones which belong to
an interface edge. If in their list of Voronoi neighbors there
are elements from both the sides of the interface, according
to the previous subdivision, we mark them and we separate
their Voronoi neighbors into two groups which are stored
in two matrices. Note that the two cycles, the one over the
edges and the other over the nodes, are not nested one into
the other, but are run one after the other.

3.2 Node motion

At this point we are able to distinguish between nodes far
away from the interfaces, hanging nodes and nodes which
lie at the interface. So we loop over the nodes and according
to their labels we choose what to do. First, consider a regular
non-hanging node k located in a smooth region. We compute
its coordinates at the new time level tn+1 simply by

xn+1
k = xn

k +∆ tVn
k , (42)

where Vn
k is obtained using the node solver of Cheng and

Shu. Cheng and Shu introduced a very simple and general
formulation for obtaining the final node velocity, which is
chosen to be the arithmetic average velocity among all the
contributions coming from the Voronoi neighbor elements
V n

k . Moreover, following the ideas presented in [19] we take
a mass weighted average velocity among the neighborhood
V n

k , that is,

Vn
k =

1
µk

∑
Pn

j ∈Vk

µk, jVk, j (43)

with

µk = ∑
Pn

j ∈Vk

µk, j, µk, j = ρ
n
j |Pn

j |. (44)

The local weights µk, j, which are the masses of the elements
Pn

j , are defined by multiplying the cell averaged value of
density ρn

j (or water depth hn
j for shallow water flows) with

the cell area |Pn
j |. The local contributions Vk, j in a pure La-

grangian context represent the fluid velocity in the jth neigh-
bor of vertex k, while in the ALE framework they can be
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obtained either according to an arbitrary, prescribed mesh
velocity function or by the local fluid velocity.

Now let us consider the nodes at the interfaces. The fol-
lowing considerations are carried out by supposing for the
moment that each interface is separated from the others and
lies on a straight line. Even if this is a rigid constraint, al-
ready with this configuration interesting test cases can be
studied; a proof of concept that the extension to the general
case of piece-wise linear interfaces is feasible will be pre-
sented in Section 3.7.

3.2.1 Insertion of a new node

The first situation we encounter is a node k that has some of
its Voronoi neighbors on the left of the interface, call them
left neighbors, Vk,left, and the others on the right of the same
interface, call them right neighbors, Vk,right; these two sets
of neighbors have been provided by the interface detector
described above. We apply the node solver of Cheng and
Shu at the two sets of neighbors obtaining two different new
coordinates

x̃n+1
k, left = xn

k +∆ t ∑
Pn

j ∈Vk,left

µk, j

µk
Vk, j, and

x̃n+1
k, right = xn

k +∆ t ∑
Pn

j ∈Vk,right

µk, j

µk
Vk, j.

(45)

We allow this kind of nodes to move only along the inter-
face, so basically according to their averaged tangential ve-
locity with respect to the interface: for this reason we need
to find the nearest interface edges and to project onto them
the coordinates in (45) obtaining thus xn+1

k, left and xn+1
k, right. Call

the nearest interface edges belonging to the left elements e`1
and e`2, and the nearest interface edges belonging to the right
elements er

1 and er
2 (suppose also that e`,r1 are closer to x̃n+1

k, left

than to x̃n+1
k, right, so that xn+1

k, left is obtained by projecting x̃n+1
k, left

onto e`1, and xn+1
k, right by projecting x̃n+1

k, right onto er
1). We decide

to assign xn+1
k,left as new coordinate to the old node k

xn+1
k = xn+1

k,left (46)

and to create a new node with global number knew and coor-
dinates (at time n and n+1)

xn
knew

= xn
k and xn+1

knew
= xn+1

k, right. (47)

The global number knew can be larger than the total number
of nodes if all the numbers below are currently used, oth-
erwise we choose the first of the unused numbers (indeed
if two nodes have been merged together one of their global
numbers is no more used, see Section 3.2.3).

Now we have to update the connectivity tables taking
into account the insertion of this new node. See also Fig-
ure 4 to follow our construction. First, in matrix tri we

substitute k with knew in all the right elements; moreover,
we consider matrix Vertex2Elem and in row k we leave
only the left elements and we put the others in row knew (be-
cause now k is no more a vertex for the right neighbors).
Then we have to deal with the edges: if e`1 = er

1 we need to
substitute er

1 with a new edge er
1new

. In matrix Elem2Edge

all the right neighbors change er
1 with er

1new
, and in matrix

Edge2Elem we insert a new row er
1new

equal to row er
1 (the

new edge inherits all the characteristics from the old one).
The same has to be done if e`2 = er

2. The endpoints of these
new edges are the endpoints of the substituted edges seen
from the right (so basically there is knew instead of k). The
endpoints of the left edges do not change. Besides we add k
as intermediate point in er

1 and knew as intermediate point of
e`2, (note that an edge is allowed to have more than one in-
termediate point). In this way also matrix Edge2Vertex has
been updated. Matrix Vertex2Edge is easily modified at the
same time. Finally, we have to revise the list of neighbors:
in particular the edges that gained an intermediate point (er

1
and e`2) gain also neighbors. In particular the new neighbors
of er

1 are the left neighbors of e`2 and the new neighbors of
e`2 are the right neighbors of er

1. This allows us to update
Edge2Elem and Elem2Edge.

At the end we mark with a label the nodes which are
intermediate for an edge: we call them hanging nodes and
they are constrained to move along that edge. Note that in
the case of straight slip-lines no distinction between master
and slave nodes is required, since both will move along the
same straight interface. To extend the algorithm to the case
of piece-wise linear interfaces, this distinction is introduced
in such a way that only slave nodes will be constrained to
slide along edges, while the master nodes can move freely.
For some first preliminary results concerning the extension
to completely general slide lines, see Section 3.7.

3.2.2 Hanging nodes

Consider a hanging node k which lies on the edge e: it is at
the interface and it is a vertex only of elements lying on one
side of the interface, so its Voronoi neighbors are in the same
smooth region. However it is not free to move everywhere
but it must slide along that edge, to avoid creation of holes
or superposition of elements in the mesh.

We apply the averaged node solver of Cheng and Shu
among its Voronoi neighbors, we find its new coordinates
x̃n+1

k and we project them over edge e, obtaining xn+1
k . Now,

we compute also the new coordinates of the other points over
edge e. If two of them are sufficiently close, we decide to
merge them (see Section 3.2.3), otherwise the computed co-
ordinates xn+1

k are the new coordinates of such a node and
no update of the connectivity matrices is required.
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Fig. 4: Example of how to double a node. At the top we show the situation before a nonconforming motion, and at the
bottom after the motion and the corresponding update of the connectivity matrices. Precisely at the bottom on the left we
have supposed to move in a nonconforming way only one of the nodes at the interface, while the realistic motion of all the
nodes at the interface is shown on the right. The black vertical dotted line represents the interface: suppose that the elements
on the left {1,2,3,5}move with velocity v = (0,2) and the elements on the right {4,6,7,8}move with velocity v = (0,−2).
We want to double vertex number k = 5, so we insert a new node knew = 11. The nearest interface edges on which we project
the new coordinates of node 5 are e`1 = er

1 = 10 and e`2 = er
2 = 4. Note that edges e`,r1 are closer to k than to knew. Since

the edges from the left and from the right are equal we create two new edges er
1new

= 18 and er
2new

= 17. The endpoints of
edges 10 and 4 remain untouched. Edge 4 gains an intermediate point, the node 11, and edge 18 gains the node 5. To better
understand we list now the vertexes of each edge at the end of the updating process (first we write the endpoints and then,
if existing, the intermediate points): e`1 = 10→ {5,8}, e`2 = 4→ {4,5,11}, er

1 = 18→ {11,6,5} and er
2 = 17→ {4,11}.

Finally, elements {1,3,5,6,7,8} maintain the same edge neighbors, while the neighbors of elements 2 and 4 are augmented:
indeed edge 4 has neighbors {2,6,4} and edge 18 has neighbors {4,5,2}. Note that the situation on the right appears to be
more complicated only because also nodes 4 and 6 have been doubled and so the corresponding update of the connectivity
matrices has been done.

3.2.3 Fusion of two existing nodes

Suppose we computed the new coordinates at time tn+1 of
all the nodes ki over the same edge e denoted by xn+1

ki
, which

are assumed to be already projected onto the straight line
spanned by edge e. If the new coordinates of two of them,
say k1 and k2, are too close, we decide to merge them. More-
over, if one intermediate node of edge e falls outside the
edge, we decide to merge it with the closest endpoint of the
edge. Since the loop over the nodes is carried out according
to the increasing global numbering of the nodes, we decide

to remove the node with the largest global number (we call
it dead node, kdn) because we have not worked with it yet,
and to maintain the one with the smallest global numbering
(call it fusion node, kfn) assigning to it as new coordinates
the average between xn+1

k1
and xn+1

k2

xn+1
kfn

=
xn+1

k1
+xn+1

k2

2
. (48)

We assign the same coordinates also to the dead node

xn+1
kdn

=
xn+1

k1
+xn+1

k2

2
. (49)
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Fig. 5: Example of how to merge two existing nodes. The black dotted line represents the interface: suppose that the elements
on the left {1,3,10} move with positive velocity and the elements on the right {5,7,8} move with negative velocity. On the
left we show the situation at time tn and on the right at time tn+1. Nodes 6 and 15 at tn+1 will be so close that we decide
to merge them (as in the previous example, for the sake of clarity, we present on the right the situation after the fusion of
only two nodes). We maintain the smallest global number so kfn = 6 and we remove kdn = 15. In triNew elements {5,7,8}
substitute kdn = 15 with kfn = 6. Note that in tri nothing changes, so some elements refer to node 6 and some other to
node 15, but everything works because at time tn+1 they have the same new coordinates xn+1

kdn
= xn+1

kfn
and at the successive

time step tn+2 tri will no longer exist because it will be overwritten by triNew. In row kfn of matrix Vertex2ElemNew

there are listed elements {1,3,5,7,8,10}, while row kdn is empty. In row kfn of matrix Vertex2EdgeNew there are edges
{1,3,6,12,13,18,25,26}, while row kdn is empty. List Edge[dn-fn] contains edges {18,25} and list Elem[dn-fn] con-
tains elements {8,10}. Knowing these lists we can update matrices Edge2ElemNew because we remove element 8 from the
neighbor of edge 18 and element 10 from the neighbors of edge 25. In this case even if we removed the segment 6,15 no
edge becomes equal so we do not need to merge edges neither to update Elem2EdgeNew.

Now, we need to update the connectivity tables. See also
Figure 5 to follow our construction. This process is some-
how more complicated than the nodes splitting. Indeed when
we insert a new node at time tn+1 we only add information
without losing anything about the previous time step, and
even if it is true that the right neighbors of a doubled node
k change their node k with a new one knew, we can dispose
of all its reference simply by giving to knew at time tn the
same coordinates of k, see also (45). On the contrary, when
we remove a node we lose all the reference to it, reference
that, only for time tn+1, we still need during the computa-
tion of the interface fluxes in the Finite Volume scheme (it is
for this reason that in (49) we have assigned the coordinates
xn+1

kdn
even to the dead node). So we decide to duplicate some

of the connectivity tables, creating triNew, Elem2EdgeNew,
Edge2ElemNew, Edge2VertexNew, and Vertex2ElemNew.
During the insertion procedure we modify in the same way
both the old and the new matrices, while during the fusion
we modify only the new matrices. Hence we can use the old
ones in the Finite Volume scheme, because they store all the
needed information (for example they refer both to the dead
and the fusion node which have the same coordinates at the
new time tn+1), while when we advance in time, to tn+2, we
maintain updated only the new ones because the information

about two previous time steps are no longer necessary and
so we can overwrite the old connectivity matrices with the
new ones.

First, in matrix triNew we substitute kdn with kfn in all
the neighbors of the dead node; moreover, we consider ma-
trix Vertex2ElemNew, in row kfn we put both the neighbors
of the dead and the fusion node and we nullify row kdn. We
do the same with matrix Vertex2EdgeNew: we nullify row
kdn and we put in row kfn all the edges that contain kfn or
kdn. Then all the edges that contain kdn substitute it with
kfn (in matrix Edge2VertexNew), whereas the edges with
both kdn and kfn (that we memorize in a list Edge[dn-fn])
remove kdn. We note that merging kdn and kfn we are re-
moving the segment in between, so we look for the edges
that contain it (listed in Edge[dn-fn]) and its neighbor el-
ements that we list in Elem[dn-fn]. We update now matrix
Edge2ElemNew because the edges in Edge[dn-fn] have no
more one of the neighbors in Elem[dn-fn]. Afterward we
check if the absence of this segment makes some edges in
Edge[dn-fn] equal: in this case we remove one of them
(the one with the largest global number) and we update cor-
respondingly the new connectivity matrices. Besides we mod-
ify the labels telling us if a node is hung to some edges and
which nodes and edges are currently existing. This last step
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prevents us to work again with disappeared nodes and allows
us to reuse their global numbering when we want to insert a
new node or a new edge.

3.3 Space–time control volumes - nonconforming case

As introduced in Section 2.4, our direct ALE schemes are
based on integrating the governing equation directly in space
and time over the space–time control volumes Cinn.

Let us consider now the peculiarity connected with the
nonconforming case, i.e. the case when on the same edge
we can find more than the two extreme nodes that means
that more then two control volumes share the same edge.
In this case the surface can be subdivided in sub–surfaces.
The treatment of the nonconforming lateral space–time sur-
faces basically requires only to repeat the computation of
the necessary geometric information over each sub–surface
(the same will hold for the flux computation, which will be
simply split in several parts).

For example, consider the case of ∂Cn
i, j with the four

standard vertexes and two more hanging nodes on the edges
orthogonal to the time coordinate (as in the middle of Fig-
ure 6). Then the lateral surface is shared between three (and
not two, as usual) control volumes. However it can be sub-
divided into two pieces, each one shared between only two
control volumes, which are still trapezoidal, so each of them
can be mapped into the reference element using the stan-
dard map in (31), just taking care to select in a correct way
the vertexes of each piece. Hence areas, normal vectors, and
space–time midpoints can be computed exactly as in the
conforming case but on each part. Next, we have to analyze
the two extreme situations that happens due to our dynam-
ical insertion and deletion of nodes. On the left and on the
right of Figure 6 we have reported these two limiting cases:
first, at time tn+1 a new node has been inserted, which at
the previous time tn did not yet exist; or vice-versa, at time
tn+1 a hanging node is merged together with one of the other
vertexes and hence it disappears. In these cases the lateral
surfaces can still be divided into two parts, and even if one
of them is triangular it can still be treated as a degenerate
quadrilateral face, so all the computations can be performed,
once again, as above. The coordinates of a hanging node at
the moment of its creation or destruction will be set equal to
those of the vertex from which the hanging node was born,
or those of the vertex to whom it was merged, respectively.

3.4 MUSCL type space–time reconstruction

Here, we restrict ourselves to a simple second order FV
scheme. Thus, the first step consists in reconstructing a sec-
ond order spatial polynomial wh(x, tn) for each Pn

i exploit-
ing the cell averages of the cell ûn

0,i and of its neighbors ûn
0,i j

,

through a MUSCL approach. Then, in order to obtain the
high order both in space and in time predictor qh(x, tn) of
(11), we employ a time-evolution procedure, the so-called
MUSCL-Hancock procedure, that was for the first time pro-
posed by van Leer in [152] and which is very well explained
in [149],

For the spatial reconstruction, let us define a polynomial
wh(x, tn) of the form

wh(x, tn) |Pn
i
= wi(x, tn) = ûn

0,i + ûn
1,i(x− xn

bi
)+ ûn

2,i(y− yn
bi
),

x = (x,y) ∈ Pn
i ,

(50)

where xn
bi
= (xn

bi
,yn

bi
) is the barycenter of cell Pn

i . We denote
by S n

i the set of neighbors of Pn
i that share a common edge

with Pn
i (the set S n

i may change at each time step). To com-
pute ûn

1/2,i, integral conservation is imposed on each element
of S n

i

1
|Pn

i j
|

∫
Pn

i j

wh(x, tn)dx = ûn
0,i j

∀Pn
j ∈S n

i . (51)

The above system is in general over-determined, so we add
the constraint that equation (51) holds exactly at least for Pn

i .
This is easily satisfied by rewriting the equations as

1
|Pn

i j
|

∫
Pn

i j

ûn
1,i(x− xn

bi
)+ ûn

2,i(y− yn
bi
)dx = ûn

0,i j
− ûn

0,i

∀Pn
i j
∈S n

i ,

(52)

then we solve (52) via a classical least-squares approach us-
ing the normal equation of (52), and we thus obtain the non-
limited slope ûn

1/2,i.
To ensure that new extrema are not created in the re-

construction process, we employ the classical slope limiter
function Φi presented by Barth and Jespersen in [5]. The
idea is to find the largest admissible Φi in such a way that

w̃h(x, tn) = ûn
0,i +Φi

(
ûn

1,i(x− xn
bi
)+ ûn

2,i(y− yn
bi
)
)

(53)

satisfies

min
j∈V n

i

ûn
0,i j

= Qmin
i ≤ w̃h(x, tn)≤Qmax

i = max
j∈V n

i

ûn
0,i j

, (54)

where Qmax
i and Qmin

i are the componentwise maximum and
minimum among the cell-averages of the set V n

i , respec-
tively. The set V n

i contains all the vertex neighbors of Pn
i

and the element Pn
i itself. Since wh is obtained as a piece-

wise linear reconstruction of the data, its extrema occur at
the vertices of Pn

i . Hence, to compute the limiter for each
conserved variable, it suffices to find for all vertices di j of
Pn

i

Φi, j =


min

(
1, Qmax

i −Qn
i

wh, j−ûn
0,i

)
, if wh, j− ûn

0,i > 0

min
(

1, Qmin
i −Qn

i
wh, j−ûn

0,i

)
, if wh, j− ûn

0,i < 0

1 if wh, j− ûn
0,i = 0.

(55)
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(a) Insertion of a new node (b) Motion of hanging nodes (c) Fusion of two nodes

Fig. 6: Suppose that at time tn across the pink and the yellow elements the tangential fluid velocity changes sharply, as
suggested by the arrows; at tn+1 the pink elements will move in one direction and the yellow ones will move in the opposite
direction. In (a) at time tn we have a conforming mesh, but in order to avoid a severe mesh distortion in the following time
steps we decide to double the green node An. So at time tn+1 there are both An+1

1 and An+1
2 : An+1

1 is a vertex for the pink
elements and An+1

2 is a vertex for the yellow elements. Moreover An+1
2 is hung to edge en+1. So the blue lateral face of Pn

i ,
which has en and en+1 as bases, is composed by two pieces: the one in light blue which is trapezoidal and touches elements
P1 and P6, and the one in dark blue which is triangular and touches elements P1 and P4. Note in particular that we need to
compute the flux between P1 and P4 during the interval [tn, tn+1] even if at time tn they were not in contact. In (b) we show
the intermediate situation where a hanging node slides along an edge. In this case the blue surface is still divided into two
parts and it is shared between three elements P3,P4 and P6, so the computation of two fluxes will be required. In order to
compute the fluxes and to maintain the second order of accuracy of the entire method the reconstruction polynomial qh(x, t)
will be evaluated at the midpoints of each of the part of the lateral surface. Finally, in (c) we report the last limiting case: An

1
and An

2 are close and at tn+1 will be even closer since they are moving one towards the other, so we decide to merge them and
to restore the conforming and simpler situation, in particular to avoid that An

1 will leave edge en+1 at time tn+1. Eventually
An+1 could be doubled again at tn+2 if the tangential velocity difference across the interface is sufficiently large.

with wh, j = wh(x j, tn) (ratios and inequalities are to be un-
derstood component-wise). Then, the slope limiter is defined
as

Φi = min
j
(Φi, j). (56)

Finally, second order of accuracy in time is achieved
by an element-local predictor stage that evolves the recon-
structed polynomials wi(x, tn) within each element Pn

i (t) dur-
ing the time interval [tn, tn+1]. The piecewise space-time poly-
nomials are denoted by qh(x, t), and are of the form

qh(x, t)|Pn
i
= qi(x, tn)

= ûn
0,i+Φi(ûn

1,i(x− xn
bi
)+ûn

2,i(y− yn
bi
))+∂tQi(t− tn),

x ∈ Pi(t), t∈ [tn, tn+1].

(57)

The value of ∂tQi can be easily recovered through the strong
form of the PDE

∂tQ =−fx(Q)−gy(Q)+S(Q), (58)

where the r.h.s of (58) can be easily computed. Indeed the
fields f and g over pn

i are approximated as linear fields

f(x,y) = f0 + f1(x− xi)+ f2(y− yi),

g(x,y) = g0 +g1(x− xi)+g2(y− yi),
(59)

whose coefficients fi and gi are determined interpolating the
values of the fields computed at the vertices j of Pn

i , i.e.

f(w̃h(x j, tn)) and g(w̃h(x j, tn)), ∀ j = 1, . . . ,Nn
Vi
.

(60)

Then f1 = fx(Q) and g2 = gy(Q). Besides, the source S(Q)

is computed at the barycenter xn
bi

of Pn
i , i.e. S(w̃h(xi, tn)).

Now, qh can be employed in the corrector step, exactly
as described in Section 2.7.

3.5 Shallow water equations

In the next Section, we will solve a large set of numerical
tests in order to validate the presented nonconforming direct
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ALE scheme. The robustness of the method is checked both
on smooth and discontinuous problems related to the shal-
low water equations written both in Cartesian and in polar
coordinates. These equations are briefly recalled here.

3.5.1 Cartesian coordinates

We consider the shallow water equations with flat bottom
topography, which can be cast into form (1) with

Q=

 h
hu
hv

, f=

 hu
hu2 + 1

2 gh2

huv

, g=

 hv
huv

hv2 + 1
2 gh2

, (61)

where the variables h, u and v are respectively the water
depth, the velocity in x−direction, and the velocity in y−di-
rection. The term p = 1

2 gh2 denotes the averaged pressure
force along the water depth (normalized with the fluid den-
sity ρ), where g is the gravity acceleration along the verti-
cal direction. Since the shallow water equations are derived
from depth-integrating the incompressible Navier-Stokes equa-
tions assuming that the horizontal length scale is much larger
than the vertical one, the vertical pressure is assumed to be
hydrostatic.

The Jacobian matrices, necessary for the computation of
the ALE Jacobian matrix in (26), are

∂ f
∂Q

=

 0 1 0
a2−u2 2u 0
−uv v u

,
∂g
∂Q

=

 0 0 1
−uv v u

a2− v2 0 2v

 . (62)

where a =
√

gh.

3.5.2 Polar coordinates

We recover here the formulation of the shallow water equa-
tions in polar coordinates. Consider the usual relation be-
tween polar (r,ϕ) and Cartesian (x,y) coordinates

x = r cosϕ , and y = r sinϕ , (63)

and the corresponding relations for the derivatives

∂

∂x
= cosϕ

∂

∂ r
− sinϕ

r
∂

∂ϕ
, and

∂

∂y
= sinϕ

∂

∂ r
+

cosϕ

r
∂

∂ϕ

(64)

and let uρ and uϕ be respectively the radial and the tangen-
tial component of the velocity, linked to u and v by

u = cosϕ uρ − sinϕ uϕ , v = sinϕ uρ + cosϕ uϕ . (65)

Now by substituting into (61) the expressions given in (65)
and (64), after some calculations, we derive a new set of
hyperbolic equations

∂ rh
∂ t +

∂ rhuρ

∂ r +
∂huϕ

∂ϕ
= 0,

∂ rhuρ

∂ t + ∂

∂ r

(
rhu2

ρ +
1
2 grh2

)
+

∂huρ uϕ

∂ϕ
= hu2

ϕ + 1
2 gh2,

∂ rhuϕ

∂ t +
∂ rhuρ uϕ

∂ r + ∂

∂ϕ

(
hu2

ϕ + 1
2 gh2

)
=−huρ uϕ ,

(66)

which, however, does not yet fit into the form (1), since the
fluxes in the above system depend explicitly on the spatial
coordinate r (i.e. the system is not autonomous). Thus, we
add to the system the trivial equation,

∂ r
∂ t

= 0, (67)

obtaining finally

∂ rh
∂ t +

∂ rhuρ

∂ r +
∂huϕ

∂ϕ
= 0,

∂ rhuρ

∂ t + ∂

∂ r

(
rhu2

ρ +
1
2 grh2

)
+

∂huρ uϕ

∂ϕ
= hu2

ϕ + 1
2 gh2,

∂ rhuϕ

∂ t +
∂ rhuρ uϕ

∂ r + ∂

∂ϕ

(
hu2

ϕ + 1
2 gh2

)
=−huρ uϕ ,

∂ r
∂ t = 0.

(68)

The vector of the conserved variables, the nonlinear flux,
and the source can now be written as

Q=


rh

rhuρ

rhuϕ

r

, f=


rhuρ

rhu2
ρ +

1
2 grh2

rhuρ uϕ

0

, g=


huϕ

huρ uϕ

hu2
ϕ + 1

2 gh2

0

,

S=


0

vhu2
ϕ + 1

2 gh2

−huρ uϕ

0

.
(69)

and the Jacobian matrices, necessary for the computation of
the ALE Jacobian matrix in (26), are

∂ f
∂Q

=


0 1 0 0

−u2
ρ +gh 2uρ 0 − 1

2 gh2

−uρ uϕ uϕ uρ 0
0 0 0 0

,

∂g
∂Q

=


0 0 1

r − huϕ

r
− uρ uϕ

r
uϕ

r
uρ

r − huρ uϕ

r

− u2
ϕ

r +g h
r 0 2uϕ

r −
hu2

ϕ

r −g h2

r
0 0 0 0

.

(70)
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3.6 Numerical results

The test cases presented in this Section are carried out by
supposing straight slip lines and using either the Rusanov or
the Osher type flux; the value of α in (40) is always taken
equal to α = 1 unless otherwise specified, and the CFL num-
ber is chosen as CFL= 0.3. Furthermore, the order of con-
vergence is verified first fixing for the mesh motion an arbi-
trary velocity, then in the case of a steady vortex in equilib-
rium using the local fluid velocity.

3.6.1 Sanity checks: pure sliding

The numerical examples reported in this Section are sanity
checks testing the ability of the method to detect and main-
tain straight slip-line interfaces.

First, we consider the shallow water equations (61), with
initial computational domain given by Ω(t0) = [−2,2]×
[0,4] and the following initial condition

Q(x,0) =
{
(1,0,−2) if x≤ 0,
(1,0,2) if x > 0,

(71)

which also coincides with the exact solution at any time. We
impose wall boundary conditions on the left and on the right
side of the domain, respectively, whereas at the top and at
the bottom of the domain we impose transmissive boundary
conditions. In Figure 7 we show the numerical results over
a triangular mesh and then over a mixed mesh composed
of both, triangular and quadrilateral elements. The chosen
mesh velocity coincides exactly with the fluid velocity, as in
a pure Lagrangian context. At each time step we have veri-
fied that the total water volume is conserved up to machine
precision both locally and globally and that relation (34), the
GCL, is verified also up to machine precision.

Next, we consider as initial condition

Q(x,0) = (1,0,0.5floor(2x)) , −2≤ x≤ 2, (72)

with floor(x) = bxc denoting the lower Gauss bracket, and
we run our algorithm until a final time t = 0.7 with differ-
ent threshold values, see (40), in such a way that there will
be a different number of interfaces along which nodes have
to be doubled and merged in time. The discretization of the
computational domain is reported in Figure 8. Also in this
case we reach the exact solution (that is the initial condition
translated in the motion direction), the total volume of wa-
ter is conserved and relation (34) is verified up to machine
precision at each time step and on each element.

Finally, we want to show that the interface can be along
any straight line (provided that edges lie over this line): we
take as initial condition

Q(x,0) =
{
(1,−1,1) if x+ y−2≤ 0,
(1,1,−1) if x+ y−2 > 0,

(73)

and in Figure 9 we report the computational domain at dif-
ferent times. Again, the numerical solution matches the ex-
act one and as expected, the total volume is conserved and
equation (34) is satisfied up to machine precision.

3.6.2 Periodic boundary conditions

The tests reported in the previous Section can be run also
by imposing periodic boundary conditions on the top and at
the bottom of the computational domain. In Figure 10 we
show the discretization of the computational domain at time
t = 100.2 for the initial conditions in (71) and in (72). We
would like to underline that no distortion of the mesh el-
ements appears even after a very long computational time,
and as a direct consequence the time steps remain almost
constant during the computation. As always in this type of
test cases the volume conservation holds and the numerical
solution is equal to the exact one up to machine precision.

3.6.3 Riemann problem

Let us now consider as initial condition a Riemann problem
with a discontinuity in the water level

Q(x,0) =
{

(1,0,0) if x≤ 0,
(0.5,0,0) if x > 0,

(74)

that originates a left-traveling rarefaction fan and a right-
moving shock wave. We decided to move the mesh with an
arbitrary mesh velocity function

V = (0, 0.5floor(2x)) −2≤ x≤ 2, (75)

in order to check the robustness of the algorithm also in the
presence of discontinuities. We impose periodic boundary
conditions on the top and on the bottom of the square, and
wall boundary conditions on the left and on the right. The fi-
nal discretization of the computational domain together with
the comparison between the numerical and the exact solu-
tion are depicted in Figure 11 both for the first order accu-
rate scheme (i.e. without the MUSCL-Hancock strategy for
the reconstruction) and the second order accurate scheme.

3.6.4 Convergence test

To verify the order of convergence of the proposed method
we study the passive transport of a quantity c, that at time
t = 0 is taken equal to a Gaussian profile and then will be
passively transported in the direction of the fluid flow with-
out changing its shape. The PDE system describing this situ-
ation is obtained from the standard shallow water equations
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Fig. 7: Slide lines test case with initial condition as in equation (71). The mesh is moved with the local fluid velocity, which
at x = 0 is discontinuous: so nodes over there are handled in a nonconforming way. At the top we show the results obtained
employing a triangular mesh and at the bottom using a mesh made of both triangular and quadrilateral elements. We report
the mesh at three different computational times: note that the computational domain can also be split in two non connected
parts. The level of the water, the total area and the total volume are conserved at any time step, and the solution coincides
with the exact one up to machine precision.
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Fig. 8: Slide lines test case with initial condition as in equation (72). We start with a conforming quadrilateral mesh; using a
value of α = 1 in (40) we obtain only two slip-lines (at x = 0 and x = 0.5), whereas using α = 0.4, which makes the detector
more strict, the mesh slides along each straight line where the fluid velocity changes.
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(b) mesh at t = 0.35
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(c) mesh at t = 0.7

Fig. 9: Oblique slide line. We show the discretization of the computational domain at three different times. The corresponding
numerical solution matches the exact one.

Table 1: Numerical convergence results for the passive transport of a Gaussian profile on moving nonconforming meshes.
The error norms refer to the variable c at time t = 0.5. On the left we report the result for the first order method (i.e. without
using the MUSCL-Hancock reconstruction procedure) and on the right using the second order accurate scheme.

O1 O2
mesh points h(Ω(t f )) εL2 O(L2) mesh points h(Ω(t f )) εL2 O(L2)

12 × 12 1.95E-01 1.44E-01 - 12 × 12 1.95E-01 4.96E-02 -
24 × 24 9.78E-02 7.58E-02 0.93 24 × 24 9.78E-02 1.23E-02 2.02
40 × 40 5.88E-02 4.69E-02 0.94 40 × 40 5.88E-02 4.24E-03 2.10
80 × 80 2.95E-02 2.41E-02 0.97 80 × 80 2.95E-02 1.01E-03 2.09
120×120 1.98E-02 1.62E-02 0.99 120×120 1.98E-02 4.51E-04 2.01

(61) with the addition of the concentration c of a passive
tracer,

Q=


h

hu
hv
hc

, f=


hu

hu2 + 1
2 gh2

huv
huc

, g=


hv

huv
hv2 + 1

2 gh2

hvc

. (76)

We fix the following initial condition

Q(x,0) =

(
1,u,0,1+ e

−0.5(x2+(y−0.5 p)2)
0.52

)
,

−2≤ x≤ 2, 0≤ y≤ p,

(77)

where we use a fluid velocity of u = 1 and where we have
taken the period p = 4. The mesh is moved with the velocity

V = (0, 0.5floor(x)) −2≤ x≤ 2, (78)

according to the ALE framework, where the mesh veloc-
ity can be chosen arbitrarily. We prescribed periodic bound-
ary conditions on the upper and lower side of the rectangu-
lar domain, and wall boundary conditions on the left and
right sides. Since the exact solution is known (Q(x, t) =
Q(x− ut,0)) and it is smooth, we can verify the order of
convergence of our method. In Table 1 we report the order of
convergence of the basic first order Finite Volume method,

and of its second order extension that uses the MUSCL-
Hancock strategy for the reconstruction procedure in space
and time. Moreover, in Figure 12 we compare the numeri-
cal solution for the variable c with the profile of the exact
solution and we show the mesh at the final time.

3.6.5 Steady vortex in equilibrium

To show that our method is also robust enough for vortex
flows, we simulate the case of a steady vortex in equilib-
rium and we will compare the results obtained with our non-
conforming method with a standard conforming algorithm
(without any rezoning technique) looking at the differences
after long simulation times.

Consider the shallow water in polar coordinates (69) and
the following initial condition

h(r,ϕ,0)=1− 1
2g

e−(r
2−1),

uρ(r,ϕ,0)=0, uϕ(r,ϕ,0)=re−
1
2 (r

2−1),

(79)

which is a stationary solution, and so coincides with the ex-
act solution at any time. We performe our test both with the
Osher-type and the Rusanov-type fluxes and with a mesh
made of triangles, quadrilaterals or both. The considered
computational domain is Ω(r,ϕ) = [0.2,2]× [0,2π] which
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Fig. 10: Slide lines with periodic boundary conditions. We
report the final computational domain at time t = 100.2 cor-
responding to the initial condition in (71) on the left, and
the one corresponding to the initial condition in (72) on the
right. No distortion of the computational domain appears
neither at the interfaces, and the numerical solution coin-
cides with the exact one.

is easily mapped into the annulus with radius [0.2,2]. In-
deed the choice of considering the shallow water equations
in polar coordinates allows us to study the vortex over a rect-
angular domain with periodic boundary conditions (at ϕ = 0
and ϕ = 2π) instead of dealing with circles. At r = 0.2 and
r = 2 we impose reflective boundary conditions. In particu-
lar using the polar coordinates the detected shear interfaces
lie over straight lines and so they are perfectly handled by
our algorithm. The images presented in this Section are then
obtained by mapping back our results to Cartesian coordi-
nates, as shown in Figure 13.

First, Table 2 confirms the designed order of conver-
gence of our algorithm in multiple situations: so primarily
we can say that the mesh motion does not affect the stan-
dard order of convergence of the MUSCL-Hancock strategy
and moreover this shows once again that the numerical flux
computation, even at the nonconforming interfaces, is car-

ried out correctly. The numerical solution at t = 15 is com-
pared with the analytical one in Figure 14.

Then we compare the results with a standard conform-
ing method. First, let us underline that when the velocity
changes even within the same element the only way to over-
come the mesh distortion would be to split the element itself.
For this reason, where the velocity field changes smoothly
and as a consequence the shear flow affects all the vertexes
of the same element, at a certain time the mesh will become
invalid even in the nonconforming case. This would not hap-
pen if the velocity field were uniform within each element,
i.e. if each element moved all its vertexes with the same ve-
locity, e.g. the velocity of the barycenter. The main differ-
ence between the new nonconforming algorithm and a con-
ventional conforming method is the final time at which the
computation stops due to an invalid mesh, and the time step
restriction that depends on the smallest encircle diameter of
the elements.

In Table 3 we report the employed number of time steps
and their dimension for different kinds of meshes and at dif-
ferent times. We remark that a larger value of ∆ t decreases
the required number of time steps and in this way also the
total amount of computational time. The last results of each
group refer to the moment at which the algorithm breaks
due to an invalid mesh: one can easily see that the noncon-
forming method is able to run almost eight times longer than
a conventional ALE method on conforming grids. Finally,
looking at Figure 15 one can appreciate that the conform-
ing method destroys the mesh immediately and then breaks,
whereas the new nonconforming algorithm maintains a high
quality mesh for a very long time, even with a very coarse
mesh.

3.7 Proof of concepts: general slide lines

All test problems shown before were limited to logically
straight slide lines. However, there is no intrinsic limita-
tion to logically straight slide lines in our algorithm, since
the integral space-time conservation form of the conserva-
tion law is valid for arbitrary closed space-time control vol-
umes. This simple, elegant but at the same time very power-
ful formulation allows also to dynamically add and remove
elements or to change their type during the simulation in
a consistent manner that respects the GCL as well as lo-
cal and global conservation. All these features are trivially
built in by construction, due to the integral formulation on
closed space-time control volumes. In Figure 16 we show
examples of space-time control volumes that result when
elements change type or when elements are dynamically
added and removed during a simulation. For logically non-
straight slide lines, it is necessary to divide elements and
nodes into masters and slaves, where the master elements
maintain their number of nodes, while the slave elements
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Fig. 11: Riemann problem with an arbitrary mesh velocity. Taking α = 0.4 in (40) the algorithm identifies 7 interfaces which
are then handled in a nonconforming way. In the figure we report the final discretization of the computational domain, and
the comparison between the exact solution and the numerical solutions obtained with our nonconforming method showing
first order results (left), second order results (center) and the mesh at the final time (right).
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Fig. 12: Comparison of the exact solution for the quantity c with the numerical solution obtained on moving nonconforming
meshes. The results obtained with the first order algorithm are shown on the left, while those obtained with the second order
MUSCL-Hancock method are presented in the center. The comparison is done at time t = 0.5 taking a cut of the profile of c
corresponding to y = 2. On the right we show the discretization of the computational domain at time t = 0.5.
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Fig. 13: Domain discretization at time t = 15. On the left we report the grid in polar coordinates where the shear discontinu-
ities lie over straight lines. On the right the corresponding grid in Cartesian coordinates.
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Fig. 14: Comparison between analytical solution and second-order accurate numerical results for the water level h (left) and
the tangential component of the velocity uϕ (right), with ϕ = 2π and r ∈ [0.2,2].
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Fig. 15: Steady vortex in equilibrium. We compared the behavior of a standard conforming algorithm (without any rezoning
technique) and of our new nonconforming method. Using the conforming algorithm the elements are deformed in a very
short time, the time step is heavily reduced and hence the computation is slower. On the contrary, the nonconforming slide
lines introduced by our scheme are able to maintain a good shape of each element and an almost constant time step for a long
computational time. Indeed only at time t = 90 some elements with r→ 0 are deformed because of the presence of shear
inside the elements, which could be remedied only by subdividing the elements themselves or by removing them.
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Table 2: Numerical convergence results for the steady vortex in equilibrium using nonconforming meshes. In the left table we
report the results obtained on a quadrilateral mesh using the Osher type flux. For the results on the right we have employed
a triangular mesh and the Rusanov type flux. The error refers to the difference between the computed water level h and the
exact one at time t f = 0.5.

O2, Osher flux, quadrilateral elements O2, Rusanov flux, triangular elements
mesh points h(Ω(t f )) εL2 O(L2) mesh points h(Ω(t f )) εL2 O(L2)

12 × 12 2.33E-01 1.36E-03 - 20 × 20 7.18E-02 5.97E-04 -
24 × 24 1.17E-01 3.42E-04 1.99 30 × 30 5.21E-02 2.54E-04 2.11
32 × 32 8.74E-02 1.94E-04 1.97 40 × 40 3.91E-02 1.43E-04 2.01
44 × 44 6.36E-02 1.03E-04 1.98 55 × 55 2.84E-02 7.76E-05 1.91
60 × 60 4.66E-02 5.57E-05 1.99 60 × 60 2.60E-02 6.58E-05 1.91

Table 3: In this table we report the number of time steps n necessary to reach the time t and the dimension of the time step
∆ t at that time. We used three different meshes with NE total number of elements (triangles or quadrilaterals). The results
are obtained by applying a standard conforming method and our new nonconforming algorithm. Looking at the bold data
one can see that with almost the same number of time steps one reaches a simulation time that is twice as large with the
nonconforming algorithm compared to a classical conforming one. Besides the final simulation time that can be reached
before obtaining an invalid mesh is almost 8 times larger.

NE → 216 264 300
conforming algorithm

t n ∆ t t n ∆ t t n ∆ t
1 110 9.58E-03 1 180 5.40E-03 1 180 5.71E-03
8 1163 4.13E-03 8 2180 2.52E-03 10 2071 3.11E-03
12 2370 2.70E-03 12 4035 1.89E-03 15 4098 2.04E-03

stop at→ 15.3 3773 2.06E-03 15.5 6072 1.54E-03 17 5190 1.78E-03
nonconforming algorithm

1 110 9.58E-03 1 180 5.82E-03 1 175 5.68E-03
8 851 9.50E-03 8 1410 5.52E-03 10 1720 5.92E-03
30 3175 9.30E-03 30 6033 4.06E-03 15 2565 5.94E-03
60 7757 4.90E-03 60 15010 2.84E-03 80 15979 3.34E-03

stop at→ 119 26430 2.24E-03 129 35791 1.94E-03 132 36275 2.13E-03

must in general change their element type during the sliding
process. Also note that master nodes are free to move any-
where, while slave nodes must slide along the master edges.
Furthermore, small elements need to be removed if they lead
to excessively small time steps due to the CFL condition.

We now repeat the same shallow water vortex test prob-
lem as described in the previous Section, but using the PDE
in Cartesian coordinates. This leads to logically non-straight
slide lines. The comparison between the classical conform-
ing moving mesh algorithm and our new nonconforming ap-
proach is shown in Fig. 17 and Table 4. We observe the im-
proved mesh quality and time step size compared to the clas-
sical conforming approach, in particular when the moving
nonconforming mesh is combined with the removal of small
elements. The obtained results look promising and justify
further research in this direction in the future.

Table 4: Time step size for three different moving mesh al-
gorithms. The main improvement is achieved when using a
nonconforming algorithm combined with small element re-
moval. This allows to maintain reasonable time steps also
for longer simulation times.

Time step size
time conforming nonconforming nonconforming +

element removal
0.3 3.8E-3 3.2E-3 3.2E-2
0.6 3.6E-3 2.1E-3 2.1E-3
1.0 1.9E-3 9.0E-4 1.2E-3
1.3 5.8E-4 1.2E-4 1.4E-3
1.7 - - 1.4E-3

4 Well balanced path-conservative methods - outline

This central part of the article is dedicated to the presentation
of a new family of Well Balanced (WB) path-conservative
schemes, able to maintain up to machine precision the equi-
librium solutions of the studied system and to drastically in-
crease the power of resolutions on small perturbations that
may appear around those equilibria. In particular we show
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Fig. 16: Dynamic change of element type (left), element removal (center) and element insertion (right) between time tn and
time tn+1. Nodes and element T n

i at time tn are highlighted in blue, nodes and element T n+1
i at time tn+1 are colored in red.
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Fig. 17: Isolated vortex in Cartesian coordinates. Classical conforming algorithm without any rezoning technique (top).
Moving mesh obtained with the new nonconforming algorithm at different times (center) without small element removal.
Moving nonconforming mesh with small element removal (bottom), which allows to control the time step size and to maintain
a better mesh quality. The nonconforming algorithms used here use logically non-straight slide lines. The sliding edges are
automatically detected based on the tangential velocity difference.
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that the little dissipative Osher scheme is modified in or-
der to be well balanced for nontrivial equilibria on moving
meshes, and we couple the WB technique with ALE for the
Euler equations with gravity; moreover thanks to the use
of a well balanced Osher scheme joint with the Lagrangian
framework allows we are able to maintain exactly even mov-
ing equilibria. This topic is covered in the next two Sections.

In Section 5, we concentrate on the one-dimensional case.
In Section 5.1 we recall the basic notions on well balanced
path-conservative schemes introduced by Dal Maso et al.
[120] and Parés et al. [131,31]. Then we have decided to
detail our novel well balanced scheme in the particular case
of the Euler equations of gas dynamics with gravity in po-
lar coordinates, which are recovered in Section 5.2. Indeed,
the method is based on very general and powerful funding
concepts, but some computations differ from system to sys-
tem and depend on the family of equilibria that has to be
maintained, so in order to present all its specific features we
have to introduce a concrete case. However, it is easy to re-
produce the same reasoning for other systems following the
presented line, as it is done for shallow water equations in
Section 6.3.

Moreover, the Euler equations with gravity represent a
very interesting and highly challenging case of study. They
allow to explore complex astrophysical phenomena as the
rotating Keplerian disk: it is characterized by a family of
steady equilibria between pressure gradient, centrifugal force
and gravity force and by a high shear flow due to the differ-
ential rotation in the disk. In order to model with high ac-
curacy and minimal dissipation small perturbations around
those equilibria for very long period of times we propose
to use a well balanced method coupled with our noncon-
forming ALE framework, [78]. This coupling is presented
in Section 6.1, together with a large set of numerical test
cases in Section 6.2 that witnesses the power of resolution
of our method both close and far away from the equilib-
ria. Besides, a comparison with not well balanced schemes
or not Lagrangian-type methods show the superiority of the
proposed scheme with respect to the state of the art, demon-
strated also by the comparison with the PLUTO code (a well
established software targeting astrophysical simulations); we
would like to emphasize the excellent quality of the results
obtained in Section 6.2. Then we conclude by showing that
the same coupling between ALE and WB can be applied to
the shallow water equations, refer to Section 6.3.

To conclude, we would like to focus the attention on the
key idea for the construction of our well balanced scheme:
the introduction of a path which directly exploits the known
stationary solution (and so it is exact on it), and treats in a ap-
proximate way only the fluctuations around the equilibrium,
see equation (208). The same idea of using an approximate
technique only on the fluctuations appears even in the re-

construction process, see equation (145)-(147). This simple
idea can guide to the understanding of the method.

5 Well balancing: one dimensional case

5.1 General framework

For the numerical approximation of the a one dimensional
system, the spatial domain is discretized by N fixed intervals
Pn

i = Ii = [xi−1/2,xi+1/2] of regular size ∆x= xi+1/2−xi−1/2,
i = 1, . . . ,N. As a standard Finite Volume scheme, a path-
conservative scheme is obtained first by integrating the gov-
erning PDE (1) in space and time. After that, instead of in-
troducing the time-averaged flux, following [131] and [36]
we write the scheme as follows

dQi

dt
(t)=− ∆ t

∆x

(
D+

i−1
2

(
q−

i− 1
2
(t),q+

i− 1
2
(t)
)
+D−

i+1
2

(
q−

i+ 1
2
(t),q+

i+ 1
2
(t)
))

− ∆ t
∆x

x
i+ 1

2∫
x

i− 1
2

∂

∂x
f(qi(x, t))dr

− ∆ t
∆x

x
i+ 1

2∫
x

i− 1
2

B1 (qi(x, t))
∂

∂x
(qi(x, t))dr.

(80)

In the scheme, qi(x, t) is the approximation of the conserved
variables inside cell Ii at time t, computed via a reconstruc-
tion operator from the conserved variables in Ii and its neigh-
bors, while q+

i− 1
2
(t)=qi(xi−1/2, t) and q−

i+ 1
2
(t)=qi(xi+1/2, t)

denote the evaluation of qi(x, t) at the left and right bound-
aries of cell Ii. According to the above reference, D±

i+ 1
2

is

defined as follows

D±
i+ 1

2

(
q−

i+ 1
2
,q+

i+ 1
2

)
=

1
2

(
f(q+

i+ 1
2
)− f(q−

i+ 1
2
) +

Bi+ 1
2

(
q+

i+ 1
2
−q−

i+ 1
2

)
±Vi+ 1

2

(
q+

i+ 1
2
−q−

i+ 1
2

))
,

(81)

where f(q) is the physical flux, Bi+ 1
2

(
q+

i+ 1
2
−q−

i+ 1
2

)
is the

discretization of the non-conservative terms and

Vi+ 1
2

(
q+

i+ 1
2
−q−

i+ 1
2

)
is the viscosity term, that characterizes

the method. In (81), the dependency on t has been dropped
for simplicity.

Bi+ 1
2

(
q+

i+ 1
2
−q−

i+ 1
2

)
and Vi+ 1

2

(
q+

i+ 1
2
−q−

i+ 1
2

)
have to be

defined in terms of a family of paths Φ(s;q−
i+ 1

2
,q+

i+ 1
2
), s ∈

[0,1]. In this work the family of paths will be chosen so that
a class of stationary solutions could be preserved.

The scheme as written in (80) is similar to the wave-
propagation formulation proposed by LeVeque in [104] for
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standard conservative systems. We refer the reader inter-
ested in the complete theoretical framework of path-conser-
vative schemes to the very detailed paper of Parés [131],
especially to Chapter 3 where the classical Finite Volume
scheme is first rewritten in terms of distributions and then
generalized to non-conservatives products. In particular it is
shown that the terms D±

i+ 1
2

allow to decompose the punctual

masses placed at the interface in such a way that D−
i+ 1

2
con-

tributes to cell Ii and D+
i+ 1

2
to cell Ii+1, leading to the key

definition (see equation (86)) for resolving the discontinu-
ities at the interface. Moreover we refer to [48] for the defi-
nition of the non-conservative products as Borel measure.

For the sake of clarity let us now recall some definitions,
taken from the above references.

Definition 5.11 (Family of paths) A family of paths in Ω ⊂
Rd is a locally Lipschitz map

Φ : [0,1]×Ω ×Ω 7→Ω , (82)

such that

i. Φ(0;QL,QR)=QL, Φ(1;QL,QR)=QR, Φ(s;Q,Q)=

Q, for any QL, QR, Q ∈Ω ;
ii. for every arbitrary bounded set O ⊂ Ω , there exists a

constant k such that∣∣∣∣∂Φ

∂ s
(s;QL,QR)

∣∣∣∣≤ k |QR−QL| , (83)

for any QL,QR ∈ O and almost every s ∈ [0,1];
iii. for every bounded set O ⊂ Ω , there exists a constant K

such that∣∣∣∣∂Φ

∂ s

(
s;Q1

L,Q
1
R
)
−∂Φ

∂ s

(
s;Q2

L,Q
2
R
)∣∣∣∣≤

K
(∣∣Q1

L−Q2
L
∣∣+∣∣Q1

R−Q2
R
∣∣) , (84)

for any Q1
L, Q1

R, Q2
L, Q2

R ∈ O and almost every s ∈ [0,1].

Definition 5.12 (Path-conservative) Given a family of path
Φ , a numerical scheme is said to be Φ−conservative or
path-conservative if it can be written under the form (80)
with

D±(Q,Q) = 0 ∀Q ∈Ω , (85)

and

D−(QL,QR)+D+(QL,QR) =∫ 1

0
A(Φ(s;QL,QR))

∂Φ

∂ s
(s;QL,QR)ds,

(86)

for every QL, QR ∈Ω .

Note that, in the case of a one dimensional system i.e. (1)
with g,h = 0 and B2,3 = 0, we can rewrite equation (86) as

D−(QL,QR)+D+(QL,QR)=

f(QR)− f(QL)+BLR(QR−QL),
(87)

where

BLR(QR−QL) =
∫ 1

0
B1(Φ(s;QL,QR))

∂Φ

∂ s
(s;QL,QR)ds.

(88)

Definition 5.13 (Well balance) Let Γ be the set of all the
integral curves gamma of a linearly degenerate field of A(Q)

such that the corresponding eigenvalues vanishes on Γ . Given
a curve γ ∈ Γ , a numerical scheme

Qn+1
i = Qn

i +
∆ t
∆x

H(Qn
i−q, . . . ,Q

n
i+p) (89)

is said to be exactly well balanced for γ if, given any C 1

function x ∈ (α,β ) ⊂ R 7→ Q(x) ∈ Ω such that

Q(x) ∈ γ, ∀x ∈ (α,β ), (90)

and p+q+1 points in (α,β ) such that x−q ≤ ...≤ xp, then

H(Q(x−q), . . . ,Q(xp)) = 0. (91)

Proposition 5.14 A first order path-conservative scheme is
exactly well balanced for a curve γ ∈ Γ if and only if

D±(QL,QR) = 0, ∀ QL,QR ∈ γ. (92)

Proposition 5.15 A reconstruction operator P is said to be
exactly well balanced for a curve γ ∈ Γ if, given a sequence
{Qi} ∈ γ , it satisfies

P(x,Qi−l , . . . ,Qi+r) ∈ γ ∀x ∈ [xi− 1
2
,xi+ 1

2
], (93)

for every i.

Proposition 5.16 The numerical scheme in (80) is exactly
well balanced for a curve γ ∈ Γ if both the underlying first
order scheme and the reconstruction operator are exactly
well-balanced for γ .

This part was to introduce the basic notions on well bal-
anced path-conservative schemes for general systems. From
now on, we will focus on a specific set of equations and on
a family of equilibria. However, we would like to underline
once again that all the methods we will propose, for example
in Section 5.3 in the particular case of the Euler equations
with gravity in polar coordinates, are based on very general
and powerful concepts so that they can be easily extended to
other systems.
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5.2 Euler equations with gravity

The Euler equations of compressible gas dynamics with an
externally given gravitational field allow to study problems
in computational astrophysics connected with the rotation
of gas clouds around a central object. In particular, we are
interested in situations close to equilibrium solutions and
affected by strong shear flows. What we propose is to use
the nonconforming ALE technique presented in the previ-
ous Section 3 in order to maintain a good quality mesh de-
spite the differential rotation, and a well balanced method in
order to preserve exactly the steady states and to reduce the
numerical errors close to them. But in order to apply these
two techniques coupled together we have first to recover a
suitable formulation of the equations.

In this Section we present the classical Cartesian form
of the Euler equations with gravity (Section 5.2.1), than we
rewrite them in polar coordinates (Section 5.2.2) so that the
nonconforming ALE can be used in the more simple case
of straight slip lines. And finally, in Section 5.2.3 we elimi-
nate the algebraic source terms, which would make the equi-
libria preservation very difficult, by introducing some non-
conservative products. This last non-conservative formula-
tion (102) represents a very useful framework for applying
our new well balanced techniques.

5.2.1 Cartesian coordinates

The Euler equations with gravity in two space dimensions
represent a strongly hyperbolic system of equations that can
be cast in the form of balance laws, by taking in (1)

Q=


ρ

ρux

ρuy

ρE

, f(Q)=


ρux

ρu2
x + p

ρuxuy

ux(ρE + p)

, g(Q)=


ρuy

ρuxuy

ρu2
y + p

uy(ρE + p)

,

B(Q) = 0, S(Q) =


0

−cosϕ ρ
Gms

r2

−sinϕ ρ
Gms

r2

−(ux cosϕ +uy sinϕ )ρ Gms
r2

.

(94)

Here ρ is the density, ux and uy are respectively the velocities
along the x and y directions, r =

√
x2 + y2, ϕ = arctan(y/x),

E is the specific total energy (excluding the gravitational en-
ergy), ms is the mass of the central object, G is the gravita-
tional constant and the pressure p is given by

p = (γ−1)
(

ρE− 1
2

ρ
(
u2

x +u2
y
))

, γ =
cp

cv
> 1, (95)

where γ is the ratio of the specific heats at constant pres-
sure and at constant volume, and which is supposed to be
constant.

5.2.2 Polar coordinates

Now we are interested in studying rotational phenomena af-
fected by sheared vortex flows, so we decide to rewrite the
Euler equations in polar coordinates (r,ϕ). We follow the
same procedure of Section 3.5.2. To shorten the notation,
from now on when referring to the Euler equations in polar
coordinates, we denote the radial velocity ur by u, and the
angular velocity uϕ by v. The resulting hyperbolic system
still takes the form (1) with

Q =



rρ

rρu

rρv

rρE

r

, f(Q) =



rρu

rρu2 + rp

rρuv

ru(ρE + p)

0

, g(Q)=



ρv

ρuv

ρv2 + p

v(ρE + p)

0

,

B(Q) = 0, S(Q) =



0

−ρ
Gms

r + p+ρv2

−ρuv

−ρu Gms
r

0

.

(96)

Note that the system is written in terms of conserved vari-
ables, which is made possible by the insertion of an addi-
tional trivial equation as in (67)

∂ r
∂ t

= 0, (97)

which implies that the radius r is both a coordinate and a
conserved variable.

5.2.3 Non-conservative formulation and equilibrium
solutions

The aim of our work is to construct a Finite Volume scheme
that is second order accurate in general situations, and, at the
same time, can solve exactly (i.e. up to machine precision) a
class of stationary solutions given by

ρ = ρ(r), u = 0,
∂v
∂ϕ

= 0. (98)

Looking at the second equation in (96) and at the equilib-
rium constraints in (98), we notice that equilibria should bal-
ance the pressure and gravitational forces. More precisely

∂ rp
∂ r

=−ρ

(
Gms

r
− v2

)
+ p. (99)
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This relation has to be achieved also at the discrete level
in order to preserve these stationary solutions. In standard
Finite Volume schemes, fluxes and sources are typically dis-
cretized in different ways and therefore, the balancing be-
tween them is usually lost. In order to construct a numeri-
cal scheme that exactly preserves those stationary solutions,
here we first rewrite the equations in the following way,
where both, pressure and gravitational forces (99) are treated
as non-conservative terms. Thus, by exploiting some trivial
equalities as

∂ rp
∂ r

= p+ r
∂ p
∂ r

and
∂ r
∂ r

= 1, (100)

the forces in (99) can be rearranged as

r
∂ p
∂ r

+

(
ρ

Gms

r
−ρv2

)
∂ r
∂ r

= 0, (101)

and finally the Euler equations with gravity in polar coordi-
nates can be cast in form (1) with non trivial non-conservative
terms and with zero algebraic source term as

Q=



rρ

rρu

rρv

rρE

r

, f(Q)=



rρu

rρu2

rρuv

ru(ρE + p)

0

, g(Q)=



ρv

ρuv

ρv2 + p

v(ρE + p)

0

,

S(Q) = 0, B(Q) ·∇Q =



0

r ∂ p
∂ r +

(
ρ

Gms
r −ρv2

)
∂ r
∂ r

(ρuv) ∂ r
∂ r

ρu Gms
r

∂ r
∂ r

0


,

(102)

i.e.

B1=



0 0 0 0 0

r ∂ p
∂q1

r ∂ p
∂q2

r ∂ p
∂q3

r ∂ p
∂q4

r ∂ p
∂q5

+ρ
Gms

r −ρv2

0 0 0 0 ρuv

0 0 0 0 ρu Gms
r

0 0 0 0 0

, B2=0,

(103)

where qi, i = 1, . . . ,5 denotes the i-th component of vector
Q. Notice that it is possible to write the source terms as non-
conservative products thanks to the introduction of the coor-
dinate r also as conserved variables (see the added equation
in (97)), which is the typical strategy adopted in [87,86,84,
85,34].

5.3 WB for the Euler equations with gravity

In this Section we focus on the one dimensional version of
the previous system (102), i.e. g and B2 are not considered,
and we achieve an exact balancing in the radial direction r
(we use r instead of x to indicate the spatial domain). Then in
Section 6.1, we will extend the method to two space dimen-
sions and moving nonconforming meshes. In both cases the
key point of our new numerical method is the discretization
of the terms in (101).

The rest of this Section is organized as follows: we start
by proposing two different first order well balanced schemes,
the first one is named as Osher-Romberg scheme, and the
second one is a well balanced HLL scheme. Next we pro-
pose a second order scheme constructed using the previous
first order schemes in combination with a second order well
balanced reconstruction operator.

5.4 First order well balanced schemes

Let us remark first, that the scheme (80) reduces to

dQi

dt
(t)=− ∆ t

∆r

(
D+

i−1
2

(
q−

i− 1
2
(t),q+

i− 1
2
(t)
)
+D−

i+1
2

(
q−

i+ 1
2
(t),q+

i+ 1
2
(t)
))

,

(104)

if qi(r, t) = Qi(t) is constant within each cell, for every time
t and coincides with the cell average Qi(t). The time deriva-
tive is discretized by the first order explicit Euler method.
Thus, the resulting scheme will be first order accurate in
space and time. Moreover, q−

i+ 1
2
=qi =Qi and q+

i+ 1
2
=qi+1 =

Qi+1.
Therefore, to determine the numerical scheme we should

define Bi+1/2(qi+1−qi) and Vi+ 1
2
(qi+1−qi). In order to

define Bi+1/2 (qi+1−qi), a family of paths should be pre-
scribed, so that the resulting scheme is well balanced for
(98)-(99). Note that if the standard segment path is prescribed,
that is

Φ(s;qi,qi+1) = qi + s(qi+1−qi), (105)

then, the resulting scheme is not well balanced for our set of
stationary solutions.

Here we propose the following family of paths.
Let ΦE(s,QE

i ,QE
i+1) be a reparametrization of a stationary

solution given by (98)-(99) that connects the state QE
i with

QE
i+1, where QE

i is the cell average of the given stationary
solution in the cell Ii. Note that in the case of first and second
order schemes QE

i could be approximated by the evaluation
of the stationary solution at the center of the cell. Then we
define Φ(s;qi,qi+1) as follows

Φ(s;qi,qi+1) = Φ
E(s;QE

i ,Q
E
i+1)+Φ

f (s;q f
i ,q

f
i+1), (106)
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where q f
i = qi−QE

i and q f
i+1 = qi+1−QE

i+1 and

Φ
f (s;q f

i ,q
f
i+1) = q f

i + s(q f
i+1−q f

i ). (107)

That is, Φ f is a segment path on the fluctuations with respect
to a given stationary solution. With this choice, it is clear that
if qi and qi+1 lie on the same stationary solution satisfying
(98)-(99), then q f

i = q f
i+1 = 0 and Φ reduces to ΦE . In such

situations we have that f(qi+1) = f(qi) = 0 and

Bi+ 1
2
(qi+1−qi)

=
∫ 1

0
B1(Φ

E(s,qi,qi+1))
∂ΦE

∂ s
(s;qi,qi+1)ds=0.

(108)

Therefore

f(qi+1)− f(qi)+Bi+1/2(qi+1−qi) = 0. (109)

For the sake of simplicity, in the following we will use the
notation Φ(s) instead of Φ(s;qi,qi+1) when there is no con-
fusion.

Let us now define Bi+1/2(qi+1−qi) in the general case,
where qi+1 and qi do not lie on a stationary solution. In this
case we have that

Bi+1/2(qi+1−qi) =
(

bi+1/2
1 bi+1/2

2 bi+1/2
3 bi+1/2

4 bi+1/2
5

)T
.

(110)

It is clear from the definition of B1 that

bi+1/2
1 = bi+1/2

5 = 0, (111)

bi+1/2
2 =

∫ 1

0
Φr(s)

∂Φp

∂ s
(s)+Φ(rρ)(s)Φζr(s)

∂Φr

∂ s
(s)ds,

(112)

where Φr(s) = Φr(s;ri,ri+1) = ri + s(ri+1 − ri), Φp(s) =
ΦE

p (s) + Φ
f
p (s), Φ(rρ)(s)(s) = ΦE

(rρ)(s) + Φ
f
(rρ)

(s) and, fi-

nally, Φζr(s) = ΦE
ζr
(s)+Φ

f
ζr
(s) where

ζr(r) =
(

Gms

r2 −
v2

r

)
, with ζ (r) =

∫
ζr(r)dr. (113)

Taking into account that∫ 1

0
Φr(s)

∂ΦE
p

∂ s
(s)+Φ

E
(rρ)(s)Φ

E
ζr
(s)

∂Φr

∂ s
(s)ds = 0, (114)

bi+1/2
2 can be rewritten as follows:

bi+1/2
2 =

∫ 1

0
Φr(s)

∂Φ
f
p

∂ s
(s)ds

+
∫ 1

0

(
Φ

E
(rρ)(s)Φ

f
ζr
(s)+Φ

f
(rρ)

(s)Φζr(s)
)

∂Φr

∂ s
(s)ds.

(115)

Note that, ∂Φ
f
p

∂ s (s) = p f
i+1 − p f

i and ∂Φr
∂ s (s) = ri+1 − ri =

∆ri+1/2. Observe that in uniform meshes ∆ri+1/2 =∆r. With

the previous notation bi+1/2
2 reduces to

bi+1/2
2 = ri+1/2∆ p f

i+1/2

+

(∫ 1

0

(
Φ

E
(rρ)(s)Φ

f
ζr
(s)+Φ

f
(rρ)

(s)Φζr(s)
)

ds
)

∆ri+1/2,

(116)
where ri+1/2 =

ri+ri+1
2 and ∆ p f

i+1/2 = p f
i+1− p f

i . In general,
the integral term could be difficult to compute, therefore we
propose to use a numerical quadrature formula. Here the
mid-point rule is used. In this case, we define bi+1/2

2 as fol-
lows:
bi+1/2

2 =
(
(rρ)E

i+1/2(ζr)
f
i+1/2+(rρ) f

i+1/2(ζr)i+1/2

)
∆ri+1/2

+ri+1/2∆ p f
i+1/2, (117)

where

(rρ)E
i+1/2 = Φ

E
(rρ)(1/2), (ζr)

f
i+1/2 =

(ζ f
r )i +(ζ f

r )i+1

2
,

(118)

(rρ) f
i+1/2 =

(rρ) f
i +(rρ) f

i+1

2
, and (ζr)i+1/2 = Φζr(1/2).

(119)

It is clear from the definition that bi+1/2
2 = 0 if qi and qi+1 lie

on the same stationary solution as ∆ p f
i+1/2 = 0, (rρ) f

i+1/2 =

0 and (ζr)
f
i+1/2 = 0. Finally, terms bi+1/2

3 and bi+1/2
4 could be

approximated in the same way. Nevertheless, as those terms
explicitly depend on u and we are interested in preserving
equilibria with u = 0, a simpler approach can be used. Thus,
bi+1/2

3 is defined as

bi+1/2
3 =

(rρu)i+1/2

ri+1/2
vi+1/2∆ri+1/2, (120)

where

(rρu)i+1/2 =
(rρu)i +(rρu)i+1

2
, vi+1/2 =

vi + vi+1

2
, (121)

and bi+1/2
4 as

bi+1/2
4 = (rρu)i+1/2

Gms

r2
i+1/2

∆ri+1/2. (122)

Note that both terms vanish when u = 0.
As pointed in [131] and in Proposition 5.14, a sufficient

condition for a first order path-conservative scheme to be
well balanced is that D±i+1/2 (qi,qi+1) = 0, if qi and qi+1 lie
on the same stationary solution. Therefore, with the previ-
ous choice of paths, D±i+1/2 = 0 if Vi+1/2(qi+1 − qi) = 0.
In the next paragraph we are going to present two different
schemes defined in terms of two different viscosity, both of
them verifying that Vi+1/2(qi+1−qi) = 0 for stationary so-
lutions (98)-(99).
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Osher-Romberg scheme. A path-conservative Osher-type
scheme following [67,68,32] can be cast in form (81) with
V (qi+1−qi) being defined as follows

Vi+1/2(qi+1−qi) =
∫ 1

0
|A(Φ(s))|∂sΦ(s)ds, 0≤ s≤ 1,

(123)

with |A|= R|Λ |R−1 being the usual definition of the matrix
absolute value operator given in terms of the right eigen-
vector matrix R, its inverse R−1 and the diagonal matrix of
the absolute values of the eigenvalues |Λ |= diag (|λ1|, |λ2|,
..., |λν |). For the numerical approximation of the viscosity
matrix, first we notice that it can be written as

Vi+1/2(qi+1−qi) =
∫ 1

0
sign(A(Φ(s)))A(Φ(s))∂sΦ(s)ds,

(124)

with sign(A)=Rsign(Λ)R−1 and sign(Λ) the diagonal ma-
trix containing the signs of all eigenvalues of A. Then, we
approximate the previous expression by a quadrature for-
mula as follows:

Vi+1/2(qi+1−qi) =
l

∑
j=1

ω jsign(A(Φ(s j))A(Φ(s j))∂sΦ(s j).

(125)

Now, we propose to approximate A(Φ(s j))∂sΦ(s j) by the
following expression:

A(Φ(s j))∂sΦ(s j)≈
AΦ j

2ε j
(Φ(s j + ε j)−Φ(s j− ε j)) , (126)

where AΦ j = A(Φ(s j− ε j),Φ(s j + ε j)) is a Roe-matrix as-
sociated to the system (see [131] for details), that is a matrix
satisfying

AΦ j(Φ(s j + ε j)−Φ(s j− ε j)) = f(Φ(s j + ε j))− f(Φ(s j− ε j))

+ BΦ j (Φ(s j + ε j)−Φ(s j− ε j)) ,

(127)

where BΦ j (Φ(s j + ε j)−Φ(s j− ε j)) is defined as in the pre-
vious Section using the states Φ(s j−ε) and Φ(s j+ε). There-
fore, the viscosity term reads as follows

Vi+1/2(qi+1−qi) =
l

∑
j=1

ω jsign(A(Φ(s j))
R j

2ε j
, (128)

where

R j = f(Φ(s j + ε j))− f(Φ(s j− ε j))

+BΦ j (Φ(s j + ε j)−Φ(s j− ε j)) . (129)

Note that if qi and qi+1 lie on the same stationary solu-
tion we have Φ(s) = ΦE(s) and R j = 0, j = 1, . . . , l and

Vi+1/2(qi+1−qi) vanishes. Therefore, the numerical scheme
(104) with (81), where Bi+1/2(qi+1−qi) is defined as (110),
(111), (117), (120) and (122) and Vi+1/2(qi+1− qi) is de-
fined by (128) is exactly well balanced for stationary solu-
tions given by (98)-(99).

Here we propose the Romberg method with l = 3 and

s1 = 1/4, s2 = 3/4, s3 = 1/2,
ω1 = 2/3, ω2 = 2/3, ω3 =−1/3,
ε1 = 1/4, ε2 = 1/4, ε3 = 1/2.

(130)

With this choice, the viscosity term Vi+1/2(qi+1−qi) of the
Osher-Romberg method reads as follows

Vi+1/2(qi+1−qi) =

4
3

sign(A(Φ(1/4)))
(
f(Φ(1/2))− f(qi)+Bi+1/4 (Φ(1/2)−qi)

)
4
3

sign(A(Φ(3/4)))
(
f(qi+1)− f(Φ(1/2))+Bi+3/4 (qi+1−Φ(1/2))

)
− 1

3
sign(A(Φ(1/2)))

(
f(qi+1)− f(qi)+Bi+1/2 (qi+1−qi))

)
.

(131)

Note that the major drawback in the previous expression
is that the complete eigenstructure of the matrix A(Q) is
required since sign(A) = Rsign(Λ)R−1. However, on the
other hand, the Osher-Romberg method is very little dissi-
pative and is stable under the standard CFL condition.

We would like to underline that, without a well balanced
way of treating the viscosity, the entire scheme will lose the
property of preserving equilibria up to machine precision;
instead this choice of the viscosity term guarantees the well
balancing and moreover does it in a automatic way, so that it
can be easily applied to other systems of equations and fam-
ily of equilibria. For example it has been applied to a diffuse
interface model deduced from the Baer-Nunziato system in
[79] allowing to sharply follow the water-air interface.

HLL scheme. Following [37], the standard HLL scheme
can be written in the form (104) with (81), where the nu-
merical viscosity term is given by

Vi+1/2(qi+1−qi) = α
0
i+1/2Ii+1/2(qi+1−qi)+α

1
i+1/2Ri+1/2,

(132)

where Ii+1/2 is the identity matrix,

Ri+1/2 = f(qi+1)− f(qi)+Bi+1/2(qi+1−qi) (133)

and

α
0
i+1/2=

SR
i+1/2|S

L
i+1/2|−SL

i+1/2|S
R
i+1/2|

SR
i+1/2−SL

i+1/2
,

α
1
i+1/2=

|SR
i+1/2|− |S

L
i+1/2|

SR
i+1/2−SL

i+1/2

(134)
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being SL
i+1/2 and SR

i+1/2 respectively the minimum and the
maximum of the wave speeds of the Riemann problem asso-
ciated to states qi and qi+1. In particular to compute SL

i+1/2

we recover the eigenvalues associated to qi and qi+qi+1
2 and

we consider the minimum value, similarly to compute SR
i+1/2

we take the maximum of the eigenvalues associated to qi+qi+1
2

and qi+1. It is clear that Vi+1/2(qi+1−qi) does not vanish if
qi+1 and qi lie on a stationary solution: Ri+1/2 vanishes, but
it is not the case for the term α0

i+1/2Ii+1/2(qi+1−qi).
Here, we follow the ideas described in [35] and [37] to

modify the viscosity term such that the resulting scheme is
exactly well balanced for the stationary solutions (98)-(99).
In particular Ii+1/2(qi+1−qi), will be replaced by Ĩi+1/2(qi+1−
qi) that vanishes when a stationary solution is considered.
Here we consider the following expression for Ĩi+1/2(qi+1−
qi)

Ĩi+1/2(qi+1−qi) =



bi+1/2
2

(
ρ

γ p

)
i+1/2

∆ (rρu)i+1/2

bi+1/2
2

(
ρ

γ p

)
i+1/2

(v)i+1/2

bi+1/2
2

(
ρ

γ p

)
i+1/2

(z)i+1/2

0


(135)

where bi+1/2
2 is given in (117),

(
ρ

γ p

)
i+1/2

=
ρi+1+ρi

γ(pi+1+pi)
,

∆ (rρu)i+1/2 =(rρu)i+1 −(rρu)i, (v)i+1/2 =
vi+1+vi

2 ,

(z)i+1/2 =
zi+1+zi

2 , being z= ∂(ru(ρE+p))
∂q2

. Following [35] and

[37] Ĩi+1/2(qi+1 − qi) is obtained as follows: we start by
computing the eigenstructure of the extended Jacobian ma-
trix A at the equilibrium

A(Q) =


0 1 0 0 0

r ∂ p
∂q1

0 r ∂ p
∂q3

r ∂ p
∂q4

ρ
Gms

r +ρv2

0 v 0 0 0
0 ∂ (ru(ρE+p))

∂q2
0 0 0

0 0 0 0 0

 . (136)

In this situation the eigenstructure is easy to be computed:
let R the matrix of the right-eigenvectors and Λ = diag(λ1,λ2,

. . . ,λ5) the diagonal matrix of the eigenvalues of (136). In
particular we have

Λ = diag
(

ρu+
√

γρ p
ρ

,
ρu−√γρ p

ρ
,u,u,0

)
, with u = 0.

(137)

Then Ĩi+1/2(qi+1−qi) is given by

Ĩi+1/2(qi+1−qi) = Ri+1/2Λ̃(Ri+1/2)
−1(qi+1−qi), (138)

where

Λ̃ =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 . (139)

Note that Λ̃ is a diagonal matrix composed with 0 and 1,
where the 0 elements correspond to the zero eigenvalues
at the stationary solution. The final expression (135) is ob-
tained considering the following relation that it is derived
from (88)

ri+1/2

((
∂ p
∂q1

)
i+1/2

∆q1,i+1/2 +

(
∂ p
∂q3

)
i+1/2

∆q3,i+1/2

+

(
∂ p
∂q4

)
i+1/2

∆q4,i+1/2 +

(
ρ

Gms

r2 −
ρv2

r

)
i+1/2

∆ri+1/2

)
= bi+1/2

2 .

(140)

We underline once again that this identity modification al-
lows the viscosity to vanish at the equilibria, so that the
scheme is exactly well balanced. Finally, we would like to
note that a similar HLL scheme could also be obtained within
the framework of path-conservative HLLEM methods re-
cently proposed by [57], in which according to [70] the in-
termediate HLL state is assumed to be linear rather than con-
stant.

5.4.1 2nd order well balanced reconstruction

Let us recall the numerical scheme presented in (80) consid-
ering the space-time conservation form of the PDE

Qn+1
i = Qn

i −
∆ t
∆r

(
D+

i−1
2

(
qn+,−

i− 1
2
,qn+,+

i− 1
2

)
+D−

i+1
2

(
qn+,−

i+ 1
2
,qn+,+

i+ 1
2

))
− ∆ t

∆r

∫ r
i+ 1

2

r
i− 1

2

∂

∂ r
f
(

qn+
i (r)

)
dr

− ∆ t
∆r

∫ r
i+ 1

2

r
i− 1

2

B1

(
qn+

i (r)
)

∂

∂ r

(
qn+

i (r)
)

dr,

(141)

where qn
i (r, t) is the approximation of the conserved vari-

ables inside cell Ii at time tn, qn+,+
i− 1

2
(t) = qn

i (ri−1/2, tn+1/2)

and qn+−
i+ 1

2
(t) = qn

i (ri+1/2, tn+1/2), that is the evaluation of

qn
i (r, t) at the two boundaries of cell Ii at the time-midpoint

of [tn, tn+1]. We would like to underline that in order to ob-
tain a second order scheme qn

i should be a second order re-
construction of the cell averages Qn

i−1,Q
n
i ,Qn

i+1.
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According to [131], [33] and Proposition 5.16, scheme
(141) is well balanced if both, the underlying first order
scheme and the reconstruction operator are well balanced,
and all the integrals that appear in (141) are computed ex-
actly. Therefore, in order to define a second order scheme,
a second order well balanced reconstruction operator should
be defined.

The most popular way to define a second order recon-
struction operator is based on the MUSCL method intro-
duced by van Leer in [153] joint with the minmod limiter.
He proposed to reconstruct qn

i using a linear polynomial in
space and time as follows

Pn
i (r, t) = Qn

i +
∆Qn

i
∆r

(r− ri)+∂tQn
i (t− tn), (142)

where

∆Qn
i = minmod

(
∆Qn

i−1/2,∆Qn
i+1/2

)
(143)

with ∆Qn
i−1/2 = Qn

i −Qn
i−1, ∆Qn

i+1/2 = Qn
i+1−Qn

i and

minmod(a,b) =


0, if ab≤ 0
a, if |a|< |b|
b, if |a| ≥ |b|.

(144)

It is clear that the standard MUSCL method is only well bal-
anced for linear stationary solutions, which is not the case
here. In this work we therefore follow the strategy proposed
in [31], where the reconstruction operator is defined as a
combination of a smooth stationary solution together with a
standard reconstruction operator to reconstruct the fluctua-
tions with respect to the given stationary solution, that is

qn
i (r, t) = QE

i (r)+P f
i (r, t), r ∈ Ii, t ∈ [tn, tn+1], (145)

where P f
i (r, t) is the standard MUSCL reconstruction oper-

ator applied to the fluctuations around the stationary solution
at every cell of the stencil. Thus, if we define

Q f,n
i = Qn

i −QE
i , Q f,n

i−1= Qn
i−1−QE

i−1, Q f,n
i+1= Qn

i+1−QE
i+1,

(146)

then, P f
i (r, t) is defined as follows:

P f ,n
i (r, t) = Q f ,n

i +
∆Q f ,n

i
∆r

(r− ri)+∂tQn
i (t− tn), (147)

where

∆Q f ,n
i = minmod

(
∆Q f ,n

i−1/2,∆Q f ,n
i+1/2

)
(148)

with

∆Q f ,n
i−1/2 = Q f ,n

i −Q f ,n
i−1, ∆Q f ,n

i+1/2 = Q f ,n
i+1−Q f ,n

i . (149)

Note that we have replaced ∂tQ f ,n
i (t− tn) by ∂tQn

i (t− tn) in
(147) as ∂tQE

i = 0. It is clear from its construction that the

reconstruction operator is exactly well balanced, and it is
second order accurate for non-stationary solutions as QE(r)
is a smooth stationary solution. The term ∂tQn

i indicates the
time derivative of Q and it can be computed using a discrete
version of the governing equation

∂tQn
i =−

f(qn,−
i+1/2)− f(qn,+

i−1/2)

∆r
−

Bi(qn,−
i+1/2−qn,+

i−1/2)

∆r
,

qn,∓
i±1/2 = qi(x∓i±1/2, t

n),

(150)

where the fluxes have been approximated by a central finite
difference with respect to the cell center ri, and Bi(qn,−

i+1/2−
qn,+

i−1/2) is obtained in the same way of (110),(117),(120),(122),

where by replacing for example qi and qi+1 by qn,−
i+1/2 and

qn,+
i−1/2 respectively, and using as central value the cell aver-

age one obtains

Bi(qn,−
i+1/2−qn,+

i−1/2)

∆r
=
(
bi

1 bi
2 bi

3 bi
4 bi

5
)T

, with

bi
1 = bi

5 = 0, bi
3 = ρiuivi, bi

4 = ρiui
Gms

ri
,

bi
2 = ri

(
p f ,n,−

i+1/2− p f ,n,+
i−1/2

)
+
(

riρ
E
i (ζr)

f
i + riρ

f
i (ζr)i

)
.

(151)

The last ingredient for a second order scheme is the com-
putation of the integrals in (141): the first one can be com-
puted exactly

ri+1/2∫
ri−1/2

∂

∂ r
f(qi(r, t))dr = f(qn+,−

i+1/2)− f(qn+,+
i−1/2). (152)

Note that this first integral vanishes for stationary solutions
with u = 0. The second integral is more sophisticated, and
it is not easy to compute it exactly, except in some partic-
ular situations. Therefore we will use a quadrature formula
to approximate this integral, but this must be done carefully
to maintain the well balanced property of the scheme: effec-
tively, a wrong choice in the quadrature formula will destroy
all the work we have done up to now in order to define a
well balanced scheme. Here we proceed as follows: first we
express the particular form of the reconstruction operator:
qn

i (x, t) = QE
i (x)+P f

i (x, t) and we use the fact that

∫ ri+1/2

ri−1/2

B1(QE
i (r))

∂QE
i (r)

∂ r
dr = 0. (153)

Here, we only show the details for the second component of∫ ri+1/2

ri−1/2

B1(qn
i (r))

∂qn
i (r)

∂ r
dr, (154)
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i.e.

∫ ri+1/2

ri−1/2

r
[

∂ p
∂ r

+ρ

(
Gms

r2 −
v2

r

)]
dr

=
∫ ri+1/2

ri−1/2

r
[

∂ (pE+p f )

∂ r
+
(
ρ

E+ρ
f )(

ζ
E+ζ

f )
r

]
dr

=
∫ ri+1/2

ri−1/2

r
∂ p f

∂ r
+ rρ

E
ζ

f
r + rρ

f
ζrdr.

(155)

Now, the mid-point quadrature formula is used to ensure
second order accuracy obtaining that

∫ ri+1/2

ri−1/2

r
[

∂ p
∂ r

+ρ

(
Gms

r2 −
v2

r

)]
dr

≈ ∆r

[
ri
(
∆ p f )

i +
(
rρ

E)
i

(
ζ

f
r
)

i +
(
rρ

f )
i (ζr)i

]
,

where
(
∆ p f )

i =
p f ,−

i+1/2− p f ,+
i−1/2

∆r
,

(ζr)i =
Gms

r2
i
− v2

i
ri
, (ζ f

r )i =
vE2

i
ri
− v2

i
ri
.

(156)

It is clear that this approximation is second order accurate
and, moreover, will vanish for stationary solutions (98)-(99).
For the third and fourth component we could perform the
same procedure, but, again, as both trivially vanish when
u = 0, we could use directly the mid-point rule.

Finally, note that r±i+1/2 = ri+1/2 and therefore ∆ri+1/2 =

0. Therefore Bi+1/2(q
n+,+
i+ 1

2
−qn+,−

i+ 1
2
) reduces to

Bi+1/2(q
n+,+
i+ 1

2
−qn+,−

i+ 1
2
) = (0,bi+1/2

2 ,0,0,0)T (157)

where

bi+1/2
2 = ri+1/2∆ p f

i+1/2 = ri+1/2

(
p f ,+

i+1/2− p f ,−
i+1/2

)
. (158)

5.5 Numerical results

First of all, we show the ability of both schemes to preserve
a wide class of stationary solutions of the Euler equations
with gravity of the form (98)-(99); we also report the con-
vergence tables for some smooth solutions. Then, we test
both methods with a classical Riemann problem: this show
that our methods are able to deal with situations far from
the equilibrium, hence they do not fall into the case of per-
turbation methods. And finally, we study their behavior in
capturing small perturbations around the equilibrium.

Table 5: Constant pressure equilibrium. The following re-
sults show the capability of the schemes to preserve equi-
libria both for a hierarchy of meshes for a fixed time t = 1
(on the left) and for a fixed mesh (N = 64 cells) and for in-
creasing computational times. The table on the left refers to
the L1-norm error between the continuous ρ1 profile and the
table on the right refers to the discontinuous ρ2 profile. Data
have been obtained using either the Osher or HLL flux (and
no significant differences have been noticed).

tend = 1 N = 64
N Eρ - Osher time Eρ - Osher
64 9.54E-17 1 9.54E-17
128 9.54E-17 2 2.36E-16
256 6.49E-16 5 8.85E-16
512 6.23E-16 10 1.67E-15
1024 1.21E-15 50 6.24E-17

tend = 1 N = 64
N Eρ - HLL time Eρ - HLL
64 8.45E-18 1 8.45E-18
128 1.38E-16 2 1.19E-17
256 5.54E-16 5 6.71E-16
512 2.64E-15 10 2.42E-15
1024 5.05E-16 50 1.13E-13

5.5.1 Stationary solutions with constant pressure

Simple, but non trivial, stationary solutions of the Euler equa-
tions can be obtained by considering velocities as in (98) and
a constant pressure p. It is easy to verify that under these
conditions for any density profile the velocity in the angular
direction v must satisfy

v =

√
GmS

r
, (159)

while u = 0. For the numerical simulations we consider a
spatial domain r ∈ [1,2], G = 1, ms = 1, γ = 1.4, p = 1 and
two density profiles:

ρ1 = r, (160)

ρ2 =

{
1, if r < 1.5
0.1, if r ≥ 1.5.

(161)

In Table 5 we report the errors between the exact equilib-
rium and the numerical solution obtained with both schemes
using a hierarchy of meshes and long term time integration.
We can notice that all the errors are of the order of machine
precision and no significant differences can be noticed be-
tween the two fluxes. Moreover the method is perfectly well
balanced both with continuous and discontinuous density
profiles, as expected.

5.5.2 General equilibrium

Using the equilibrium relation between the pressure and the
gravitational forces in (99) and ζ given by (113), we obtain
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Table 6: General equilibrium. L1-norm error for the density
between the exact and the numerical solution. On the left
we have the error for different meshes at t = 1 and on the
right we show the error for a given mesh (N = 64 cells) for
different computational times.

tend = 1 N = 64
N Eρ - OSHER time Eρ - HLL
64 6.28E-15 1 5.03E-15
128 1.17E-14 2 1.01E-14
256 1.70E-14 5 2.65E-14
512 2.15E-14 10 7.21E-14
1024 3.19E-14 50 3.07E-12

another class of stationary solutions of the Euler equations

ρ = ρ0e−ζ (r), p = ρ + p0, v =

√
r
(

Gms

r2 −ζr

)
.

(162)

We have applied both schemes to two different choices of ζ

obtaining always a well balanced result. Table 6 shows the
L1-norm error for the density between the equilibrium and
the numerical solution in the case

ζ = kr, k =−1, ρ = ρ0e−kr, ρ0 = 1, p = ρ + p0, p0 = 1.

(163)

Again, both methods are able to exactly preserve these non-
trivial equilibria.

5.5.3 Order of convergence

To study numerically the order of convergence of both schemes
we have considered the following equilibrium situation

ρ = 1, u = 0, p = 1, v =

√
r
(

Gms

r2 −ζr

)
, (164)

and at the initial time, we have added a small perturbation
(with a Gaussian profile) to the velocity field

ũ = u+10−5exp

(
−0.5(r−1.5)2

0.01

)
,

ṽ = v+10−5exp

(
−0.5(r−1.5)2

0.01

)
.

(165)

We have computed a reference solution using our method
with the Osher-type flux over a fine mesh (N = 213 = 8192
). In Table 7 we report the L1 norm errors for the density
ρ with respect to our reference solution and both numerical
schemes achieve second order of convergence.

Table 7: Perturbation around a stationary solution. The ref-
erence solution has been obtained with the second order
Osher-type scheme over 213 cells. L1-norm errors for ρ at
time t = 0.1 are shown: on the left we report the result ob-
tained using the Osher-type flux and on the right using the
HLL-type flux.

Osher O2 HLL O2
N ε(ρ) O(L1) N ε(ρ) O(L1)
16 1.59E-07 - 16 1.16E-07 -
32 3.82E-08 2.06 32 2.90E-08 2.01
64 9.50E-09 2.00 64 7.22E-09 2.00
128 2.31E-09 2.04 128 1.77E-09 2.03
256 5.72E-10 2.01 256 4.44E-10 1.99
512 1.45E-10 1.97 512 1.14E-10 1.96

5.5.4 Riemann Problem

To show that our method is accurate even far away from
an equilibrium, we consider as initial condition a classical
Riemann problem with non-vanishing angular velocity

ρL = 1.0,uL = 0,vL =

√
Gms

r
, pL = 1.0,r = r, 1≤ r ≤ 4.5,

ρR = 0.1,uR = 0,vR =

√
Gms

r
, pR = 0.1,r = r, 4.5 < r ≤ 8,

and we compute the solution by employing the schemes set
up to preserve the equilibrium in (161). We report the results
obtained with the first and second order scheme and with
the HLL and Osher-type flux in Figure (18). Note that both
schemes produce quite similar results.

5.5.5 Evolution of perturbations

Following the idea presented in [97] we have tried to study
small perturbations around the equilibrium. We have con-
sidered a density profile as in (160) and we have imposed
a periodic perturbation on the velocity u through the left
boundary conditions, by imposing

u0 = Asin
(

6
2πtn

t f

)
, t f = 1. (166)

Two situations are analyzed. First we consider a big pertur-
bation, with A = 10−2 and we simulate the evolution using
the second order well balanced HLL scheme and a standard
second order HLL scheme using a hierarchy of grids with
increasing number of cells. A reference solution computed
with the second order well balanced HLL method is also
considered using a fine grid composed of N = 2048 cells.
Figure (19) shows the errors for the different meshes. Note
that in this case no big differences are visible between the
well balanced and not well balanced schemes as the per-
turbations are so large so that shocks are quickly generated
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Fig. 18: Riemann problem at final time t f = 1. On the top the density and velocity profiles obtained using the HLL scheme
and on the bottom the profiles obtained with the Osher-type flux. We have employed two meshes: a coarse one with N = 64
elements and a fine one with N = 512 elements. Moreover, we have compared the first and second order schemes.

and the solution is far away from the stationary profile. The
situation changed significantly when a small perturbation
is considered (A = 10−5). In that case the well balanced
method performs much better than the non well balanced
scheme on the finer grid, as shown in Figure (19).

6 Well balancing: coupling with nonconforming ALE

Now, we extend our well balanced method to the two dimen-
sional ALE context on moving nonconforming meshes. In
particular, the scheme will inherit the well balanced prop-
erty of the previous one-dimensional scheme in the radial
direction and the addition of some constraints on the mesh
structure will guarantee the well balancing in the angular
direction. The extension concerns first the Euler equations
of gas dynamics with gravity, see Section 6.1; a large num-
ber of numerical test are presented in Section 6.2. Then we
consider the shallow water equations (in Section 6.3) and in
particular the steady vortex test case already introduced in
Section 3.6.5. One can appreciate how the same basic ideas

Fig. 19: Error in the L1 norm between a reference solution
and the numerical solutions computed with the well bal-
anced HLL method and a second order non well balanced
scheme. Well balanced and non well balanced methods per-
form equally well for large perturbations, while well bal-
anced schemes perform significantly better for the small per-
turbation problem.
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can be applied to a different set of equations and of equilib-
rium solutions.

6.1 WB ALE for the Euler equations with gravity

Consider the Euler equations of gas dynamics with grav-
ity in the two dimensional non-conservative form stated in
(102). This Section is organized as follows: first, we re-
visit the moving domain discretization introduced in Sec-
tion 3.1 by specifying the required shape of the elements
and the mesh velocity. Next, we derive the one-step path-
conservative ALE scheme, and we explain where the 1D
well balanced techniques are employed in order to guarantee
the well balancing of the scheme even in a two dimensional
moving mesh framework.

6.1.1 Domain discretization and mesh constraints

To discretize the moving domain, we consider a noncon-
forming mesh T n

Ω
and we fix a total number NE = N × M

of elements that we suppose to be all quadrilaterals.
These elements should satisfy the following conditions:

i. their barycenters should be aligned along straight lines
with r = ri = const, i=1, . . .N,

ii. the two bounding edges of each element in radial di-
rection must be aligned with r = ri±1/2 = const, i =
1, . . .N+1,

iii. the other two bounding edges must be parallel between
them.

For example a Cartesian grid satisfies these conditions, but
we could accept even something more general (which al-
lows us to move the computational domain). See Figure 20
for a general mesh that satisfies the above constraints. In
Section 6.1.2 these choices will be justified. We emphasize
that our numerical scheme works for completely general un-
structured and nonconforming moving meshes, but it will be
well balanced only if the mesh satisfies these special con-
ditions. Indeed a general well balanced scheme for com-
pletely unstructured meshes is more difficult to be achieved,
since the considered equilibria have v 6= 0, which implies
that g 6= 0 (recall that instead f = 0). This does not mean that
it is impossible, but it will be the object of another work, be-
cause the above conditions do not appear to us as restrictive
for our scopes.

We have decided to couple the well balanced techniques
with a Lagrangian-type method in order to reduce the er-
rors due to the advection. And our nonconforming ALE al-
gorithm results to be particularly well suited for this sit-
uation, where the gas at the equilibrium is advected with
a known equilibrium velocity field V(x) =

(
uE(x),vE(x)

)

r11.21.41.61.82ϕ0123456

Fig. 20: Example of a mesh that allows a well balanced treat-
ment of the fluxes. Each element has two vertical edges and
the other two are parallel between them. Besides the vertical
edges lie on straight lines and the barycenters are aligned
along r = ri. Moreover the domain is periodic so that ϕ = 0
coincides with ϕ = 2π .

which reads

uE(x) = 0, vE(x) =

√
r
(

Gms

r2 −ζr

)
. (167)

Note that the a priori knowledge of the velocity field signifi-
cantly simplifies the application of an ALE scheme: indeed,
we can move the nodes following directly the exact equi-
librium velocity, which is not affected by any physical or
numerical perturbation. The node velocity Vn

k of (43) can be
obtained by choosing

Vk, j = V(xn
j), (168)

being x j the barycenter of element Pn
j . This allows us to con-

trol the movement of the mesh avoiding the violation of the
above conditions: indeed the radial component of Vn

k will be
always zero, hence nodes will slide along straight lines with
r = const where the edges lie. Besides, since the barycenters
are placed on the straight lines with r = ri, all nodes lying on
the same edge will move with the same velocity maintaining
the parallelism constraint between the edges.

Furthermore, the presence of slide lines clearly requires
a special approach to preserve a high level of grid quality
during the mesh motion, and this is automatically provided
by our nonconforming treatment of the interfaces, in ad-
dition simplified by the fact that their position is a priori
known: r = const.

6.1.2 Well balanced direct ALE scheme

In order to obtain a space-time formulation of a direct path-
conservative ALE scheme, as proposed in [59], the govern-
ing PDE (1) is first reformulated in a space-time divergence
form as

∇̃ · F̃(Q)+ B̃(Q) · ∇̃Q = S(Q), ∇̃ =
(
∂r, ∂ϕ , ∂t

)T

(169)

with

F̃=(F, Q)T =(f, g, Q)T , B̃=(B,0)T =(B1,0,0)T , and S= 0,

and it is then integrated over the space-time control volume
Cn

i∫
Cn

i

(
∇̃ · F̃(Q)+ B̃(Q) · ∇̃Q

)
dxdt = 0 . (170)
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Now, the space-time volume integral of ∇̃ · F̃(Q) can be
rewritten using the Gauss theorem as∫

∂Cn
i

F̃ · ñ+
∫

Cn
i

B̃ · ∇̃Q = 0, (171)

where ñ = (ñr, ñϕ , ñt) is the outward pointing space-time
unit normal vector on the space-time surface ∂Cn

i . Taking
into account the jump of B̃ at the interfaces, the final high
order ALE one-step Finite Volume scheme is then obtained
from equation (171) as

|Pn+1
i |Qn+1

i = |Pn
i |Qn

i −∑
j

∫ 1

0

∫ 1

0
|∂Cn

i j| D̃i j · ñi jdχdτ

−
∫

Cn
i

B̃(qn
i ) · ∇̃qn

i dxdt

(172)

where qn
i (x, t) is a well balanced second order reconstruc-

tion of the conserved variables Q inside cell Pn
i at time tn,

and the discontinuity of the solution at the space-time sub–
face ∂Cn

i j is resolved by a well balanced path-conservative
ALE flux D̃i j · ñi j, which accounts for the jump in the dis-
crete solution between two neighbors across the interme-
diate space-time lateral surface. This generalizes the ALE
scheme introduced in (30) (only in the FV case) for con-
servative systems to the non-conservative case. Recall that
when the lateral surface is shared between more than two
control volumes we have to compute the flux across each
sub-piece and sum each contribution.

Well balanced ALE numerical flux function. The core of
the well balanced method in (172) is the design of the well
balanced space-time flux function. Its final expression will
be

D̃i j · ñi j =
1
2
(
F̃(q+)+ F̃(q−)+Bi j

(
q+−q−

))
· ñi j

−1
2
Vi j
(
q+−q−

)
,

(173)

where q− is the value of the reconstructed numerical solu-
tion inside the element Cn

i evaluated at the space-time mid-
point Mn

i, j of the lateral surface ∂Cn
i j, and q+ is the evalu-

ation at the same point of the reconstructed numerical so-
lution inside the neighbor Cn

j at ∂Cn
i j. Besides, generalizing

the notation introduced in Section 5.1, F̃ is the physical flux,
the term Bi j (q+−q−) represents a well balanced way to
write the non-conservative products, and Vi+ 1

2
(q+−q−) is

the viscosity term.
As already pointed out, according to [131] (summarized

in Definition 5.12 and Proposition 5.14), the numerical flux
should satisfy the following properties

D̃i j(Q,Q) · ñi j = 0 ∀Q ∈Ω , and (174)

D̃i j(q−,q+) · ñi j =
∫ 1

0
AV

n
(
Φ(s;q−,q+)

) ∂Φ

∂ s
(s;q−,q+)ds,

(175)

where, due to the ALE framework,

AV
n(Q) =

√
ñ2

r+ñ2
ϕ

((
∂F
∂Q

+B
)
·n−(V·n)I

)
,

n = (nr,nϕ) =
(ñr, ñϕ)

T√
ñ2

r + ñ2
ϕ

,
(176)

with I representing the identity matrix and V ·n denoting the
local normal mesh velocity.

We explain now how to discretize Bi j and Vi j in (173) in
a well balanced way. Here we perform our reasoning edge–
by–edge and we distinguish two situations: the first one across
the vertical edges, which evolving in time originate a surface
orthogonal to the radial direction, easier to be treated, and
the second one across the other two parallel edges (see the
constraints stated at the beginning of Section 6.1.1).

First of all, it is easy to see that the flux across the lat-
eral surfaces evolved from the vertical edges coincides with
the one dimensional flux. Indeed, in this case, n = (nr,0),
V = (0,v) and so V ·n = 0. Hence AV

n(Q) = Jf(Q)+B1(Q)

which coincides with the one dimensional Jacobian. So we
can discretize Bi j as stated in (110)-(117)-(120)-(122), and
Vi j by using the Osher-Romberg method (131) or the modi-
fied HLL scheme as described in Section 5.4. Therefore the
scheme is well balanced in the radial direction and second
order accurate provided that the reconstruction qn

i and the
integrals in (172) are computed in a well balanced manner
and with second order of accuracy (see Section 6.1.2).

For what concerns the flux through the other two sur-
faces (see Point (iii) of Section 6.1.1) let us first state the
following remark.

Remark 6.11 Given an element Pn
i consider its two edges

which are parallel between them but not vertical. Their evo-
lution in time originates two parallel surfaces with the same
areas and opposite normal vectors. Moreover call Pj1 and
Pj2 the two neighbors of Pi through these edges. Since the
barycenters of Pi, Pj1 and Pj2 are aligned on the same verti-
cal line, i.e. their r-coordinate is the same, the equilibrium
values QE

i , QE
j1 and QE

j2 coincide.

Now let us rewrite (176) as

AV
n(Q) =

√
ñ2

r+ñ2
ϕ

(
(Jf +B1)nr +Jgnϕ − (V·n)I

)
.

(177)

and (175) as

D̃i j(q−,q+)·ñi j

=
√

ñ2
r+ñ2

ϕ

∫ 1

0

(
(Jf +B1)nr+Jgnϕ−(V·n)I

)
Φ(s)

∂Φ

∂ s
(s)ds.



40 Elena Gaburro

(178)

Thus, by exploiting the linearity of the integral, we can give
the discretization of D̃i j · ñi j in (173) as the sum of the fol-
lowing contributions

D̃i j · ñi j =
1
2
(
f(q+)+ f(q−)+Bi j

(
q+−q−

))
ñr

+
1
2
(
g(q+)+g(q−)

)
ñϕ

+
1
2
(
q++q−

)
ñt −

1
2
Vi j
(
q+−q−

)
.

(179)

Note that, whereas the discretization of F̃ and of Bi j can be
splitted, the same cannot be done automatically for the vis-
cosity Vi j, whose expression depends on the chosen method
(Osher-Romberg, HLL or others).

The expression in (179) results to be well balanced, pro-
vided that a well balanced expression for Vi j is given. Indeed
the first row coincides with the one dimensional flux along
the radial direction for which Bi j is given by (110)-(117)-
(120)-(122) that are well balanced. With regards to the sec-
ond line we know that in general it is not zero evaluated at
the equilibrium because, as already pointed out at the begin-
ning of the Section, g is not zero evaluated at the equilib-
rium. But, if we consider, together with the flux between Pi
and Pj1 , also the flux between P1 and Pj2 and we sum them
up, we can see that all the values at the equilibrium cancel
exactly, thanks to the properties stated in Remark 6.11, that
follows from the geometrical constraints we have imposed
on our mesh. Finally, the same argument shows that also the
third line goes to zero when q− = QE

i and q+ = QE
j1, j2 .

Viscosity term
To end with the formulation of the well balanced ALE flux
(173) across this second kind of surfaces, we have to provide
an expression for the viscosity Vi j(q+−q−) which vanishes
on stationary solutions (98)-(99).

First of all, it is easy to generalize the Osher-Romberg
scheme introduced in Section 5.4. Indeed in the two dimen-
sional ALE context the viscosity matrix introduced in (123)
can be written as

Vi j(q+−q−) =
∫ 1

0

∣∣AV
n(Q)(Φ(s))

∣∣∂sΦ(s), 0≤ s≤ 1.

(180)

Following the same reasoning of Section 5.4 we get the fol-
lowing expression

Vi j(q+−q−) =
l

∑
j=1

ω jsign
(
AV

n(Φ(s j)
) R j

2ε j
, (181)

where

R j =F̃(Φ(s j + ε j))− F̃(Φ(s j− ε j))

+ B̃Φ j (Φ(s j + ε j)−Φ(s j− ε j))
(182)

is discretized as explained in the 1D case above and the
Romberg quadrature formula with l = 3 is still used. Hence,
if qn

i and qn
i+1 lie on the same stationary solution Φ(s) =

ΦE(s) and R j = 0, j = 1, . . . , l. Thus, the extension to two
dimensions of the Osher-Romberg scheme results to be straight-
forward. The only drawback is that the complete eigenstruc-
ture of the extended Jacobian matrix AV

n should be com-
puted, which could be costly in particular when edges are
not parallel to the axis (we underline that AV

n does not enjoy
the property of rotational invariance that characterizes the
Euler equations in Cartesian coordinates). As counter part,
the method is very little dissipative and allows us to obtain
very good results in convective transport problems.

The generalization of the HLL scheme is simpler. equa-
tion (132) can be rewritten in two dimensions as

Vi j(q+−q−) = α
0
i jIi j(q+−q−)+α

1
i jRi j, (183)

where Ii j is the identity matrix,

Ri j = F(qi+1)−F(qi)+Bi j(q+−q−) (184)

(which can be discretized as described in Section 6.1.2 to
maintain the well balanced properties), and α

0,1
i j can be com-

puted as in (134) being SL and SR the minimum and the max-
imum eigenvalues of AV

n(qn
i,i+1).

For the same reasons stated in Section 5.4, Ii j must be
replaced by a matrix that vanishes when a stationary solution
is considered. In particular we choose the following identity
modification

Ĩi j = Ĩi+1/2 nr + Inϕ , (185)

where Ĩi+1/2 is given by (135), which we already know to
vanish for stationary solutions. Moreover it follows from
Remark 6.11 that when nϕ 6= 0 the term Inϕ cancels at the
equilibrium (by considering the two contributions of the neigh-
bors Pj1 and Pj2 of Pi).

2nd order well balanced reconstruction. The missing in-
gredient for (172) to be well balanced up to second order is
the definition of a second order well balanced reconstruction
operator. As in the one dimensional case we are going to em-
ploy a combination of a smooth stationary solution together
with the standard MUSCL method, hence our reconstruction
will be of the form

qn
i (x, t) = QE

i (x, t)+P f
i (x, t), x ∈Cn

i , (186)

where, as in Section 5.4.1, P f
i (x, t) is the standard MUSCL

method applied in order to reconstruct the fluctuations with
respect to the given stationary solution computed for all the
neighbors Pn

j of Pn
i as

Q f,n
j = Qn

j−QE,n
j . (187)
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The expression of the reconstruction operator is

P f ,n
i (x, t) = Q f ,n

i +Φi∇Q f ,n
i (x−xn

bi
)+∂tQn

i (t− tn),

(188)

where xn
bi

is the barycenter of cell Pn
i . To compute ∇Q f,n

i
we use the standard MUSCL method (see [153]) together
with the Barth and Jespersen limiter (see [5]), as described
in Section 3.4. We would like to remark that the employed
methods are standard, the novelty is in the fact that both are
applied only to the fluctuations.

Finally, the term ∂tQn
i indicates the time derivative of

Q and it can be computed using a discrete version of the
governing equation

∂tQn
i = (Jf +B1)|xn

bi
∂rQ(xn

bi
)+Jg|xn

bi
∂ϕ Q(xn

bi
), (189)

evaluated at the barycenter xn
bi

of Pn
i . In particular the gradi-

ent of the conserved variables must be expressed as the gra-
dient of the equilibrium plus the previously computed gra-
dient of the fluctuation, i.e.

∇Q = ∇QE
i +∇Q f

i = ∇QE
i +∇Q f ,n

i , (190)

in order to preserve the well balancing.
The same idea of (190) can be exploited in order to rewrite∫

Cn
i

B̃(qn
i ) · ∇̃qn

i dxdt, (191)

where, as in Section 5.4.1, the equilibrium terms cancel and
the remaining terms all contain fluctuations. So the inte-
gral can be computed through the mid-point quadrature rule
which is second order accurate on the fluctuations without
affecting the equilibrium.

6.2 Numerical results

6.2.1 Equilibrium preservation

First of all we want to show the accuracy of our scheme
in preserving some equilibrium of interest. We consider a
discontinuous equilibrium

ρ = 1, if r < rm, ρ = 0.1, if r ≥ rm,

u = 0, v =

√
Gms

r
, p = 1,

(192)

with rm = 1.5, G = 1, ms = 1, over the computational do-
main [r,ϕ] ∈ [1,2]× [0,2π]. In Figure 21 we depict the den-
sity profile at the equilibrium and in Table 8 we report the
maximum error, committed using the HLL flux, with respect
to the exact solution after long computational times over a
coarse mesh, both for order 1 and 2. The equilibrium results
to be perfectly preserved.

X
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Discontinous equilibrium

Fig. 21: Discontinous density profile for the equilibrium so-
lution considered in the test case of Section 6.2.1.

Table 8: Maximum error between the exact and the numeri-
cal density obtained with the first and the second order well
balanced methods (using the HLL flux). We underline that
similar results have been obtained using the Osher-Romberg
flux and that the same precision is achieved for the veloci-
ties.

points 20×40
time O1 O2
10 7.32E-13 4.20E-13
40 2.83E-12 8.18E-12
80 3.92E-12 1.72E-11
100 2.25E-12 1.99E-11

Then we consider a hydrostatic equilibrium without tan-
gential velocity, so that the gravity force is perfectly bal-
anced with the pressure gradient. The initial data is given
by

ρ = 1, u = (u,v) = 0, P = 1/r, G = ms = 1.

(193)

We consider a computational domain [r,ϕ] ∈ [1,2]× [0,2π]

covered by a coarse mesh of 20× 40 elements. In Table 9
we show the error between the analytical solution and our
numerical solution obtained with the second order Osher-
Romberg scheme. Since the scheme is exactly well balanced
the errors are maintained at the order of machine precision
for very long computational times. Similar results are also
achieved with our well balanced HLL-type flux.

6.2.2 Order of convergence

To study numerically the order of convergence of our method
we consider a smooth isentropic vortex, similar to the one
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Table 9: Hydrostatic equilibrium. Maximum error in L∞

norm between the exact solution and the numerical results
for density, velocity and pressure at different times. The val-
ues refer to the second order Osher-Romberg ALE scheme,
but similar results have been obtained at first order and with
the HLL-type flux.

time Eρ Eu Ev EP
1 7.77E-15 3.29E-16 3.95E-16 3.33E-16
10 1.60E-14 3.16E-16 1.05E-15 3.33E-16
40 2.66E-14 3.58E-16 1.37E-15 3.33E-16
80 3.02E-13 1.30E-13 4.98E-14 3.87E-14

proposed in [92]. The initial condition in polar coordinates
is given by

ρ = 1+δρ, u = 0, v = δv, P = 1+δP,

δv = r
ε

2π
e

1−r2
2 , δT =− (γ−1)ε2

8γπ
e1−r2

,

δP = (1+δT )
1

γ−1 −1, δρ = (1+δT )
γ

γ−1 −1,

(194)

with ε = 5, G = 0, ms = 0 and γ = 1.4 and the computa-
tional domain defined as [r,ϕ] = [1,2]× [0,2π]. The final
time is t f = 1. Our new scheme is able to preserve this equi-
librium up to machine precision if we impose the above ini-
tial data (194) also as the equilibrium profile to be preserved.
However, it is also possible to impose a different equilibrium
profile to be maintained, e.g. the one given by (192). In this
way, equilibrium and initial condition are not close one to
the other so the method comes back to its standard order of
convergence, i.e. second order. Refer to Table 10 and Figure
22 for the numerical results, which confirm that our scheme
is indeed second order accurate away from the prescribed
equilibrium profile. Finally, we would like to remark that
we are working with a moving nonconforming grid. In Fig-
ure 23 we report an example of the final mesh configuration
obtained with our Osher-Romberg scheme.

6.2.3 Riemann problem

To show the correctness of our method also in the presence
of shock waves we solve a classical Riemann problem with
non-vanishing angular velocity using both the well balanced
HLL and Osher-Romberg ALE schemes. We consider the
computational domain [r,ϕ] = [1,4]× [0,2π] and we impose
the following initial conditions

ρ = 1, if r < rm, ρ = 0.1, if r ≥ rm,

u = 0, v =
√

Gms/r,

p = 1, if r < rm, p = 0.1, if r ≥ rm,

(195)

with rm = 2.5. The results at the final computational time
t f = 0.5 are shown in Figure 24 where we report a cut along

Table 10: Order of convergence, isentropic vortex. We report
the results obtained with our second order accurate well-
balanced Osher-Romberg ALE scheme. The mesh size h is
computed as the maximum incircle diameter of the elements
of the final mesh. The errors refer to the L1 norm of the dif-
ference between our numerical solution and the exact one.
The last column refers to the setting where the initial data
(194) are also imposed as the smooth known equilibrium to
be maintained, hence in this case the scheme is accurate up
to machine precision. The other results are for the setting
where the code is used to evolve a different equilibrium pro-
file (192) that does not coincide with the initial data (194),
so that we can show its formal order of accuracy.

mesh size h Eρ , eq. (192) O(L1) Eρ , eq. (194)
5.59E-2 1.48E-4 - 1.86E-14
2.80E-2 3.60E-5 2.04 1.45E-13
1.86E-2 1.58E-5 2.03 4.78E-13
1.40E-2 8.85E-6 2.02 5.36E-13

h
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Fig. 22: Order of convergence, isentropic vortex for imposed
equilibrium (eq.) given by (192), i.e. different from the ini-
tial data of the isentropic vortex (194). We report the L1 error
norm of the density obtained with our well-balanced Osher-
Romberg and HLL ALE schemes. The dashed lines repre-
sent the theoretical slopes of order one and two, respectively.

ϕ = π/2 and a comparison with a one-dimensional refer-
ence solution computed on a fine grid using 1024 elements.
We note a good agreement between the numerical solution
obtained with the well balanced ALE scheme on moving
non-conforming meshes and the reference solution also in
this case where the solution is far from any equilibrium.
Moreover we show the order of convergence of our method
with respect to the reference solution in Figure 25: obvi-
ously it cannot reach order two because of the presence of
shocks. However, the observed convergence order is higher
than one.
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Fig. 23: Isentropic vortex, final mesh. We report the fi-
nal mesh configuration at time t f = 1 obtained with our
Osher-Romberg scheme in the case of a very coarse mesh
of 10× 20 elements so that the nonconforming motion is
clearly visible.

6.2.4 Noh shock test

The Noh shock test consists of a circular infinite strength
shock propagating out from the origin. We have chosen this
test case to prove that our method can deal also with highly
supersonic flows, low pressure atmospheres and shocks of
infinite strength. Consider a gas with γ = 5/3 initialized with
density ρ = 1, radial velocity u = −1, tangential velocity
v = 0, and pressure P = 10−6 as an approximation to zero
pressure. The shock wave propagates with speed 1/3. The
exact solution inside the shock region, i.e. r≤ t

3 , is given by
the following relations

ρ = 16, P = 16/3, u = 0, v = 0, (196)

and outside the shock region, i.e. r > t
3 , by

ρ = 1+
t
r
, P = 0, u =−1, v = 0. (197)

We consider an initial domain [r,ϕ] ∈ [0,1]× [0,π/2]. We
impose periodic boundary conditions on ϕ = 0 = π/2, and
we exploit the exact solution to impose the boundary condi-
tions at r = 0 and on the moving outer boundary.

The presented results have been obtained with the HLL-
type scheme. First we have considered the Eulerian case,
hence we have imposed a zero mesh velocity. The results
at time t f = 1.2 obtained with the second order scheme are
shown in Figure 26. Then we have employed the ALE frame-
work moving the mesh with the local fluid velocity. Due to
the absence of shear flow, the mesh remains conforming.
The results obtained with the moving mesh are shown in
Figure 27, where the well-known wall heating problem is

visible. Apart from the wall heating, in both the cases the
method shows a good agreement with the exact solution. For
what concerns the convergence performances of our code re-
fer to Figure 25.

6.2.5 Comparison with the PLUTO code

For the following test cases that concern Keplerian discs,
we compare the results obtained with our new second or-
der well balanced Osher-Romberg scheme with the results
one can obtain with the PLUTO code. PLUTO is a freely-
distributed software for the numerical solution of mixed hy-
perbolic/parabolic systems of partial differential equations
(conservation laws) targeting high Mach number flows in
astrophysical fluid dynamics. The code has been systemat-
ically checked against several benchmarks available in the
literature in the papers [121] and [122], using fixed uni-
form and AMR grids. It provides a multi-physics and multi-
algorithm modular environment, where one can choose the
Newtonian description for the fluid motion (HD option) and
add a potential Φ = −Gm

r to the right hand side by setting
the option BODY FORCE equal to POTENTIAL. In this way
one can study (94) within this code. Then we select POLAR
GEOMETRY and we do not activate any other options.

The modular structure allows us to choose between dif-
ferent numerical fluxes, limiters, spatial reconstructions and
time integrators. In particular, we have selected a little dis-
sipative setting by imposing LIMITER equal to MC LIM (the
monotonized central difference limiter), or sometimes equal
to MINMOD LIM (the classical minmod limiter), and using the
Roe solver as numerical flux. Then we have compared our
second order scheme with both a second order configuration
of PLUTO (with LINEAR reconstruction in space and RK2 in
time) and a third order configuration (with WENO3 recon-
struction in space and RK3 in time). Finally, for the compari-
son we set the number of elements in PLUTO either equal to
the number of elements used for our scheme, or we double
it in each dimension.

We remark that within PLUTO special care is taken for
the treatment of source and pressure terms when a polar
(cylindrical or spherical) geometry is chosen, because in those
cases the equations are discretized in angular momentum
conserving form and pressure terms are treated separately.
For this reason the results are more accurate than those ob-
tained with standard finite volume techniques.

6.2.6 Mass transport in a Keplerian disc

Let us consider a steady state solution of the Euler equations
with gravity which satisfies the constraints in (98)-(99) and
with a constant density profile,

ρE = 1, uE = 0, vE =

√
Gms

r
, p = 1, (198)
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Fig. 24: Riemann problem in a 2D domain. The test heave been carried out over two meshes: the first one, M1, with 64×20
control volumes and the second one, M2, with 256×40 control volumes. The reported results have been obtained using the
well balanced HLL scheme with first and second order of accuracy. On the left we report the results for the density and
on the right for the velocity at the final time t f = 0.5. The graphs have been obtained as a 1D cut along ϕ = π/2. One
can observe that the second order scheme captures the discontinuities sharply. The results are compared against a reference
solution obtained with our second order well balanced HLL scheme in one space dimension with N = 1024.
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Fig. 25: Convergence results. Left: we refer to the Riemann problem (195) and compare the results obtained with our WB
ALE HLL code with a fine grid reference solution. Right: we refer to the Noh shock test of Section 6.2.4 and we compare
our results with the exact solution. Note that the L1 norm of our numerical errors are depicted with squares and is compared
with the theoretical slopes of order one and two (dotted lines), respectively. It is evident that the method is better than first
order accurate even in presence of shocks.

over the computational domain [r,ϕ]∈ [1,2]× [0,2π]. At the
initial time, we perturb this equilibrium solution by impos-
ing a higher density ρ = 2 within the disc defined in Carte-
sian coordinates as (x−1.5)2 + y2 ≤ (0.15)2.

The expected result is the transport of this density fluc-
tuation (contact discontinuity) at different velocities which
are bigger at the interior and smaller at the exterior, without
any dissipation. The velocity and the pressure field should
remain constant in time, according to the equilibrium solu-
tion. In Figure 28 we compare the results obtained with dif-
ferent numerical methods with the exact solution: Eulerian

and ALE schemes coupled or not with the well balanced Os-
her Romberg scheme. As expected, the Eulerian scheme is
very dissipative, even when coupled with our new well bal-
anced technique. The dissipation is evident in the angular di-
rection, since the radial velocity in this problem is zero and
the Osher scheme is a complete Riemann solver that is able
to resolve steady contact waves exactly. The ALE scheme,
without well balancing does not dissipate too much in the
angular direction, but if it is not coupled with a proper well
balanced technique, some spurious velocity oscillations ap-
pear which lead to unphysical dissipation in the radial direc-
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Table 11: The results shown in this table testify that our code is able to maintain up to machine precision even moving
equilibria. Indeed for the test cases presented both in Section 6.2.6 and Section 6.2.7 the L1 norm of the difference between
the numerical solution computed with our WB ALE Osher Romberg scheme and the exact stationary profiles of angular
velocity v and pressure P, at the respective final times (t = 30 and t = 15), is of the order of machine precision. The other
two lines refer to the results obtained with PLUTO both with second and third order of accuracy.

Test Section 6.2.6 Test Section 6.2.7
Method Elem ||v−vE ||L1 ||P−PE ||L1 ||v−vE ||L1 ||P−PE ||L1

WB ALE Osher-R. 100×200 2.17E-12 7.19E-14 2.13E-12 6.36E-14
PLUTO O2 minmod 100×200 5.56E-7 2.36E-6 5.44E-7 9.89E-6
PLUTO O3 mc lim 200×400 1.30E-7 5.28E-7 1.49E-7 2.44E-6
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Fig. 26: Noh shock test. We show the numerical results ob-
tained with our second order HLL-type flux at time t f = 1.2
on three fixed grids with respectively 50×10, 100×10 and
200× 20 elements. In the figure the density profile ρ has
been depicted along the radial direction r, compared with
the exact solution.

tion and which also produce some oscillations on the den-
sity profiles, which are evident even for short computational
times.

The coupling between the two techniques reduces the
dissipation both in the radial and in the angular directions. In
our computations we have observed that for this test problem
the error in the pressure and in the velocity field was always
of the order of machine precision, since the advection of a
contact discontinuity does not affect the equilibrium of pres-
sure and velocity. We emphasize that this property of con-
serving even moving equilibria (density is not constant in
time here) is anything else than trivial to achieve and to the
best knowledge of the authors, the scheme presented here is
the first Finite Volume method to achieve it. Referring to Ta-
ble 11, one can notice that indeed the precision achieved by
our code on angular velocity and pressure is of the order of
machine precision (even at time t = 30), where instead this
is not the case for various PLUTO configurations.

Finally, we report the results obtained with PLUTO by
selecting the configuration setting described in Section 6.2.5
with the MC LIM. First, in Figure 29 we use the described
second order method and 30×350 elements. Then, in Figure
30 we use the third order method and 60× 700 elements.
In both the cases the density is dissipated faster than with
our method: this shows that it is not a finer grid or a higher
order of accuracy that can solve this type of problem, but a
very specific treatment of the equilibrium together with the
Lagrangian framework proposed in this paper.

6.2.7 Keplerian disc with density perturbations

For this test we have considered the equilibrium profile in
(198) and we have added a periodic perturbation over the
density profile as follows

ρ = ρE +Asin(k1ϕ)(0.25−|rm− r|), r ∈ [r1,r2] (199)

with A = 0.5, k1 = 12, r1 = 1.25, r2 = 1.75, rm = 1.5. The
goal of the this test is to show that our well balanced ALE
scheme is able to maintain the equilibrium pressure and ve-
locity exactly and that the numerical method does not gener-
ate any spurious numerical perturbations of pressure and ve-
locity that would usually lead to Kelvin-Helmholtz type flow
instabilities for density fluctuations combined with shear flow
as in the above setup. In Figure 31 we show the evolution of
the perturbations at different times. They are properly trans-
ported with different velocities with only very little numer-
ical dissipation. As in the previous case we stress that the
velocity and pressure remain at the equilibrium solution up
to machine accuracy throughout the entire simulation. No
spurious Kelvin-Helmhotz instabilities are generated, since
the equilibrium pressure and velocity are exactly maintained
for arbitrary long simulation times.

Finally, we compare our result at time t = 15 with the
results obtained with PLUTO, refer to Figure 32. For the vi-
sualization we have always used the software Tecplot and
the same colormap; even if the results look similar, one can
notice that to obtain the same resolution of our code (left im-
age of the panel) we need the third order version of PLUTO
and a finer mesh (last image of the panel). We stress that our
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Fig. 27: Noh shock test. We show the density profile (left) and the final mesh (center) obtained with the second order ALE
HLL-type scheme at time t f = 0.6, using a moving grid of 100×10 elements. On the right we compare the density profile
along the radial direction r with the exact solution for three different meshes with respectively 50×10, 100×10 and 200×20
elements.

code maintains u and P up to machine precision, whereas
PLUTO produces standard numerical errors, see Table 11.

6.2.8 Keplerian disc with Kelvin-Helmholtz instabilities I

Let us consider an equilibrium solution which satisfies the
equilibrium constraints in (98)-(99) so that

ρE = ρ0 +ρ1tanh
(

r− rm

σ

)
, uE = 0, vE =

√
Gms

r
, pE = 1,

(200)

with G = 1, ms = 1, ρ0 = 1, ρ1 = 0.25, rm = 1.5 and σ =

0.01. It shows a steep gradient in the density for r→ 1.5.
We consider as computational domain a ring sector with ra-
dius r ∈ [1,2] and ϕ ∈ [0,π/2]. For the boundary conditions
we exploit the exact solution when r = 1,2, and we impose
periodic boundary conditions for ϕ = 0,π/2.

As confirmed by the previous tests, our well balanced
ALE scheme is able to maintain the equilibrium up to ma-
chine precision for very long computational times. So we
can study with high accuracy the evolution of the perturba-
tions over the density, the radial velocities and the pressure
prescribed by the following initial condition

ρ = ρE +Aρ0 sin(kϕ)exp
(
− (r−rm)

2

s

)
,

u = uE +Asin(kϕ)exp
(
− (r−rm)

2

s

)
, v = vE ,

p = pE +Asin(kϕ)exp
(
− (r−rm)

2

s

)
,

(201)

with A = 0.1, k = 8, s = 0.005. The computational results
are depicted in Figure 33. In particular, for this flow con-
figuration with physical perturbations in all flow quantities
we observe the appearance of Kelvin-Helmholtz instabili-
ties and a very good resolution of the developing vortices,
which is achieved thanks to the ALE technique and despite
the rather coarse mesh of 100×200 elements used here.

Moreover we have compared our well balanced ALE
scheme with a well balanced Eulerian method on a fixed
grid, which appears to be quite diffusive, and a not well bal-
anced ALE scheme, which produces visible spurious oscil-
lations in the density profile. The results are presented in
Figure 34 and, once again, they show that it is indeed the
coupling between the well balanced techniques and the mov-
ing mesh framework that allows to achieve a high resolution
on small perturbations around an equilibrium solution for
very long computational times.

We also compare our numerical results at time t = 37.5
with those obtained by PLUTO, see Figure 35. In order to
obtain the same accuracy of our new second order well bal-
anced Osher Romberg ALE scheme (left image of the panel)
one needs the third order version of PLUTO on a finer mesh
(last image of the panel).

6.2.9 Keplerian disc with Kelvin-Helmholtz instabilities II

We finally consider another equilibrium solution which sat-
isfies the equilibrium constraints in (98)-(99) and which reads

ρE = r, uE = 0, vE =

√
Gms

r
, pE = 1, (202)

with G = 1, ms = 1 and rm = 1.5. With respect to the previ-
ous example, here the density profile is linear. However, also
in this example we expect the Kelvin-Helmholtz instabilities
to arise if some perturbations are added to the stationary pro-
file. The computational domain and the boundary conditions
are chosen as before. The initial condition used in this test
problem reads

ρ = ρE +Asin(kϕ)exp
(
− (r−rm)

2

s

)
,

u = uE +Asin(kϕ)exp
(
− (r−rm)

2

s

)
, v = vE ,

p = pE +Asin(kϕ)exp
(
− (r−rm)

2

s

)
,

(203)
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Fig. 28: We compare the exact solution with the numerical solutions obtained with different methods at times t = 2.5 (top-
left), t = 5 (top-right), t = 10 (bottom-left), t = 30 (bottom-right). For all the cases the employed numerical flux is an
Osher-type flux. The Lagrangian algorithms show their ability in reducing the viscosity along the angular direction. The well
balanced methods do not diffuse the quantities in the radial direction. When coupled together (top-right of each square) we
obtain a result very close to the exact solution (top-left of each square). We want to remark that in the well balanced ALE
case (top-right of each square), the quantity with higher density remains in the same cells in which it is confined at the initial
time since the method is very little diffusive in any direction and the differential rotation is treated in a nonconforming way.
Moreover, only the well balanced ALE scheme is able to maintain the concentration of the higher density gas.

with A = 0.1, k = 8, s = 0.005, i.e. we are again solving
a problem that is close to an equilibrium and therefore dif-
ficult to solve with standard numerical techniques that are
not well balanced. The computational results are depicted
in Figure 36. Again we observe the appearance of Kelvin-
Helmholtz instabilities that are well resolved also on a rather

coarse mesh, without any visible spurious numerical oscilla-
tions. Finally, we compare once again our code with results
obtained with PLUTO, refer to Figure 37. A similar resolu-
tion of the vortices is obtained with our second order code
and the third order version of PLUTO with a finer mesh (re-
fer to Section 6.2.5 for the details on the PLUTO configu-
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Fig. 29: Results obtained with PLUTO, using the Roe solver combined with the mc lim limiter, linear reconstruction in space
and RK2 in time on a grid of 30× 350 elements. One can observe that the results are more dissipative compared to those
shown in Fig. 28.
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Fig. 30: Results obtained with PLUTO, using the Roe solver, a third order WENO reconstruction in space combined with
the mc lim limiter and a third order RK3 time integrator on a grid of 60×700 elements.

Fig. 31: Evolution of periodic density perturbations in an equilibrium disc obtained with the well balanced ALE scheme with
Osher-Romberg flux. The perturbations are perfectly convected (with an inner velocity bigger than the outer one), and no
spurious Kelvin-Helmholtz instabilities are generated, even after long computational times.
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Fig. 32: Method comparison at time t = 15. The first image is obtained with our code and 50× 500 elements. The second
and the third one with PLUTO using 50× 500 elements and respectively a second order scheme with mc lim limiter and a
third order scheme with minmod lim limiter. The last image is obtained with the third order version of PLUTO using mc lim
and 100×1000 elements. All images are drawn with the same color map. Even if the results are similar, one can notice that
to obtain the same resolution of our code we need the third order version of PLUTO and a finer mesh.

Fig. 33: Kelvin-Helmholtz instabilities I. In the panel we show the evolution of the imposed periodic perturbations at different
times. The results have been obtained with our second order well balanced ALE Osher-Romberg scheme over a grid with
100×200 control volumes.

ration we have chosen). In this case we want to underline
also that our code avoids other oscillations that instead can
be noticed in the images obtained with PLUTO.

6.3 WB ALE for the shallow water equations

Coming back to the steady vortex test case presented in Sec-
tion 6.3 we know that our method is able to maintain a high
quality mesh even in the case of strong shear flows, to pre-
serve the physical properties of the system (mass, momen-
tum, energy) for very long computational times, and that it
is very little dissipative for contact discontinuities. In this
Section we want to extend the algorithm in such a way that
in addition it can preserve also exactly certain relevant and
non-trivial equilibrium solutions. In particular, our interest

is focused on the shallow water equations in polar coordi-
nates given by (69), and to stationary solutions characterized
by the equilibrium between the centrifugal and the gravita-
tional forces. Since the two forces appear one in the flux
and the other one in the source term, it is difficult to main-
tain the exact balancing until they are discretized with dif-
ferent techniques. So once again (as in Section 5.2.3), we
rewrite the source terms via non-conservative products so
that all the terms connected with the equilibrium could be
treated together. By adding as auxiliary variables the radius
r and the bottom topography b such that the free surface is
η(r,ϕ) = b+ h(r,ϕ), our equations can be cast in form (1)
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ALE-WB EUL-WB ALE - noWB

Fig. 34: Kelvin-Helmholtz instabilities I. In the panel we show the obtained solution for the density profile at time t = 17.5
(first row) and time t = 25 (second row). The results presented in the first column have been obtained using the Osher-
Romberg well balanced ALE scheme. The ones in the second column have been obtained using a zero velocity mesh (Eule-
rian case) and the well balanced Osher-Romberg scheme. The third column is obtained with a standard nonconforming ALE
scheme (i.e. using the ALE Osher type flux without well balancing). One can apreciate that it is really the coupling between
the ALE and the well balancing that allows to achieve this high resolution.

Fig. 35: Kelvin-Helmholtz instabilities I. Method comparison at time t = 37.5. The first image is obtained with our code and
100×200 elements. The second and the third one with PLUTO, 100×200 elements and respectively a second order scheme
with mc lim limiter and a third order scheme and minmod lim limiter. The last image is obtained with the third order version
of PLUTO using mc lim and 200×400 elements. All images are drawn with the same color map.
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Fig. 36: Kelvin-Helmholtz instabilities II. In the panel we show the evolution of the imposed periodic perturbations at
different times. The results have been obtained with our second order Osher-Romberg scheme over a grid with 100× 200
control volumes.

with

Q=


rh

rhuρ

rhuϕ

rb
r

, f=


rhuρ

rhu2
ρ

rhuρ uϕ

0
0

, g=


huϕ

huρ uϕ

hu2
ϕ + 1

2 gh2

0
0

, (204)

S=0, B1 ·∇Q=


0

grh ∂η

∂ r −hu2
ϕ

∂ r
∂ r

huρ uϕ
∂ r
∂ r

0
0

, B2 ·∇Q = 0 (205)

6.3.1 First order WB ALE scheme

In what follows we explain how to adapt the first order Osher-
Romberg scheme proposed for the Euler equations to (204),
in particular with the aim of preserving equilibrium solu-
tions such that

uρ =0,
∂uρ

∂ϕ
=

∂uϕ

∂ϕ
=

∂η

∂ϕ
=0, and

∂η

∂ r
=

u2
ϕ

gr
. (206)

For the domain discretization let us consider the same
setting introduced in Section 6.1.1, and for the basic form
of a path-conservative ALE scheme refer to (172). The core
of the scheme is the design of the well balanced space-time
flux function, whose final expression is

D̃i j · ñi j =
1
2
(
F̃(q+)+ F̃(q−)+Bi j

(
q+−q−

))
· ñi j

− 1
2
Vi j
(
q+−q−

)
,

(207)

with the same notation of Section 6.1.2. We can also follow
the same reasoning of Section 6.1.2 regarding the well bal-
ancing in the angular direction and Sections 5.4 - 6.1.2 for
the Osher-Romberg viscosity term. So the missing ingredi-
ents for the first order scheme are the well balanced path and
the definition of Bi j(q+−q−).

Here we propose a family of paths that is connected to
the known equilibrium profiles for the free surface η and the
angular velocity uϕ , whereas for the other variables the seg-
ment path is sufficient (because they assume simple profiles
at the equilibrium). Let ΦE(s;q−E ,q

+
E ) be a reparametriza-

tion of a stationary solution given by (206) that connects the
two equilibrium states q−E with q+

E , then we define Φ(s;q−,q+)

as follows

Φ(s;q−,q+) = Φ
E(s;q−E ,q

+
E )+Φ

f (s;q−f ,q
+
f ), (208)

where q−f = q−−q−E and q+
f = q+−q+

E and

Φ
f (s;q−f ,q

+
f ) = q−f + s(q+

f −q−f ). (209)

That is Φ f is a segment path on the fluctuations with respect
to a stationary solution. With this choice, it is clear that if q−
and q+ lie on the same stationary solution satisfying (206),
then q−f = q+

f = 0 and Φ , reduces to ΦE . In such situation
we have that f(q+) = f(q−) = 0 and

Bi j(q+−q−)=
∫ 1

0
B1(Φ(s;q−,q+)) ñr

∂ΦE

∂ s
(s;q−,q+)ds

= 0.

(210)

Therefore f(q+)− f(q−)+Bi j (q+−q−) = 0.
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Fig. 37: Kelvin-Helmholtz instabilities II. Method comparison at time t = 25 (first row) and at time t = 40 (second row). The
first images are obtained with our code and 100× 200 elements. The second and the third ones with PLUTO, 100× 200
elements and using respectively a second order (mc lim) and a third order (minmod lim) scheme. The last images are
obtained with PLUTO using a third order scheme (mc lim) and 200× 400 elements. All images are drawn with the same
color map. The vortices have a similar resolution in the leftmost and rightmost images.

Let us now define Bi j (q+−q−) in the general case,
where q+ and q− do not lie on a stationary solution. In such
case we have that

Bi j
(
q+−q−

)
=
(

bi j
1 , bi j

2 , bi j
3 , bi j

4 , bi j
5

)T
. (211)

It is clear from the definition of B that bi j
1 = bi j

4 = bi j
5 = 0.

What is interesting is the discretization of the second term
that can be rewritten as(

grh
∂η

∂ r
−hu2

ϕ

∂ r
∂ r

)
ñr

=

(
grh

∂η

∂ r
−grh

[∫ u2
ϕ

rg
dr±

∫ u2
ϕ,E

rg
dr

]
r

)
ñr,

(212)

where uϕ,E is any known profile for the angular velocity at

the equilibrium; moreover call ζ (r) a primitive of
u2

ϕ,E
rg , i.e.

ζ (r) =
∫ u2

ϕ,E
rg dr . In this way we obtain that

bi j
2 =
∫ 1

0

(
gΦrh(s)

∂Φη(s)
∂ s

−gΦrh(s)
ΦA(s)

rg
∂Φr(s)

∂ s

)
ñr ds,

(213)

where for variables r and rh we can employ a standard seg-
ment path to connect the left and the right states

Φr(s) = Φr(s;r−,r+) = r−+ s(r+− r−),

Φrh(s)=Φrh(s;(rh)−,(rh)+)=(rh)−+s((rh)+−(rh)−).
(214)

Instead, following the idea in (208) and considering the terms
in (212) we define

ΦA(s) = ΦA(s;u−ϕ ,u
+
ϕ ) = Φ

E
ζr
(s)+

Φ
f

uϕ
(s)

rg
(215)

which exploits the reparametrization of ζ (r) at the equilib-
rium and approximates with a segment path the fluctuations
of the angular velocity

Φ
f

uϕ
(s)=Φ

f
uϕ
(s;u−

ϕ, f ,u
+
ϕ, f )=

1
rg

(
u−

ϕ, f + s(u+
ϕ, f −u−

ϕ, f )
)
.

(216)

A similar approach is used for Φη(s) defined as

Φη(s) = Φη(s;η
−,η+) = Φ

E
η (s)+Φ

f
η(s). (217)

Taking into account that∫ 1

0

(
gΦrh(s)

∂ΦE
η (s)

∂ s
−gΦrh(s)

ΦE
ζr
(s)

rg
∂Φr(s)

∂ s

)
ñr ds = 0,

(218)

bi j
2 could be rewritten as follows

bi j
2 =
∫ 1

0

(
gΦrh(s)

∂Φ
f

η(s)
∂ s

−gΦrh(s)
Φ

f
uϕ
(s)

rg
∂Φr(s)

∂ s

)
ñr ds.

(219)

Note that ∂Φ
f

η (s)
∂ s = η

+
f −η

−
f = ∆η f and ∂Φr(s)

∂ s = r+−r−=
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∆r, therefore bi j
2 reduces to

bi j
2 =

g(rh)i j ∆η f−g(rh)i j

(
u2

ϕ − (uE
ϕ)

2

rg

)
i j

∆r

ñr (220)

where we have employed the mid point rule to approxi-
mate the integrals and the following notation holds (·)i j =

(·i + · j)/2. Finally, term bi j
3 could be approximated in the

same way. Nevertheless, as this terms explicitly depends on
uρ and we are interested to preserve equilibria with uρ = 0,
a more simple approach could be used. Thus, bi j

3 could be
defined as

bi j
3 =

((
rhuρ

)
i j

(
uϕ

)
i j ∆r

)
ñr , (221)

which vanishes when uρ = 0. For any other detail of the
scheme one can refer to the previous Sections and adapt the
method introduced for the Euler equations to this new con-
text. Indeed the method is very general and easy to be gen-
eralized to different sets of equations and equilibria.

6.4 Numerical results

In this Section, first we want to show that the well balanced
method works in general situations and not only close to the
equilibria of the system. In this way, it will be clear that it
can be applied in any context without corrupting the stan-
dard characteristics of the scheme, and it will perform bet-
ter than classical schemes when near to a prescribed equi-
librium. Then, we will see that the coupling between our
nonconforming techniques with the well balanced strategy
allow us to study the vortex flow of Section 3.6.5 even for
longer periods of time.

6.4.1 Riemann problem

To show the correctness of our method in the presence of
shocks we solve a classical Riemann problem with our well
balanced Osher-Romberg ALE scheme. We consider the sys-
tem of equation in (69), and as computational domain [r,ϕ] =
[1,5]× [0,2π]. We impose the following initial conditions{

h = 1, if r < rm, h = 0.125, if r ≥ rm,

uρ = uϕ = 0
(222)

with rm = 3. The results at the final computational time t f =

0.4 are shown in Figure 38, where we report a cut along
ϕ = π/4. The method, even if it is set up to preserve the
smooth stationary profile described in Section 3.6.5, con-
verges properly to the reference solution of this problem,
despite the presence of discontinuities.

6.4.2 Steady vortex in equilibrium

Test A. Let us consider again the test case of Section 3.6.5,
with the initial condition of (79). The coupling between our
novel nonconforming ALE scheme together with the well
balanced techniques gives us, even after a very long com-
putational time, a good mesh quality (see Figure 39) and a
numerical solution equal to the exact one up to machine pre-
cision (refer to Table 12).

Note that we have employed a mesh of squares with the
constraints that interfaces lie over straight lines with con-
stant radius. This automatically implies that each square of
the mesh has two edges parallel to the ϕ−axis: over this
kind of edges the g component of the flux does not play any
role, and so the method is well balanced simply because the
f component of the flux is zero for stationary vortex-type so-
lutions and (211) has been proved to be discretized in the
correct way. The other two edges are parallel between them,
so at the equilibrium, fluxes through them cancel.

Test B. Moreover, to show that the method is able to pre-
serve any known stationary solution that satisfies the con-
straint in (206), we have performed a similar test but starting
from a different stationary condition

h(r,ϕ,0) =
r2

2g
, uρ(r,ϕ,0) = 0, uϕ(r,ϕ,0) = r, (223)

over the same computational domain Ω(r,ϕ) = [0.2,2]×
[0,2π]. Even in this case the numerical solution remains
close to the exact one up to machine precision for very long
times, as also shown in Table 12.
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Fig. 38: Comparison between the exact and the numerical solution for the Riemann problem. The numerical solution is
obtained with the well balanced scheme of order one with two different meshes (a coarser and a finer one). On the left we
show the water level h and on the right the radial velocity ur for r ∈ [1,5] at a fixed angle ϕ = π
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Fig. 39: Stationary vortex in equilibrium obtained with well-balanced ALE schemes on moving nonconforming meshes. The
mesh is shown at time t = 200. On the left we report the grid in polar coordinates where the shear discontinuities lie over
straight lines. On the right the corresponding grid is shown in Cartesian coordinates.

Table 12: Stationary vortex in equilibrium. Maximum error on the water level h between the exact and the numerical solution
obtained with the first order well balanced nonconforming ALE method. In the left column we show the error for Test A with
finer and finer meshes with a fixed final time, in the central column we choose a coarse mesh and show the error for longer
and longer times. In the right column, the results for Test B are shown.

Test A Test B
tend = 10 points 16×8 points 16×8

points error time error time error
12×6 1.42E-14 10 1.28E-14 10 2.11E-13
16×8 1.28E-14 50 3.74E-14 100 4.84E-13
24×12 3.04E-14 150 4.02E-14 150 3.25E-13
36×18 6.68E-14 200 4.88E-14 200 2.62E-13
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7 High order of accuracy on Voronoi tessellations with
topology changes

In this Section we come back to the complete arbitrary high
order FV-DG framework introduced in Section 2. We first
briefly explain in Section 7.1 the CWENO reconstruction
procedure that we use to obtain the high order in space, and
in Section 7.2 we clarify how we move the mesh. Then, we
concentrate on the Voronoi tessellation that we regenerate
at any time step and to which we confer the adjoin free-
dom of a mesh topology that can continuously change, i.e
the shape of each element and its neighbors can be different
at any time. Thus, we explain how to connect meshes with
different typologies in space–time and the kind of degener-
ate space–time elements that this connection originates in
Section 7.3; we then extend the predictor-corrector ADER
paradigm even to these degenerate elements in Sections 7.4
and 7.5 . Finally, in Section 7.6 we show some numerical
results that prove the robustness of our new algorithm in the
case of vortical problem and shock waves and its order of
accuracy.

This completely new approach in the framework of di-
rect ALE FV-DG schemes was first presented [77].

7.1 CWENO reconstruction

For finite volume schemes (N = 0) the reconstruction pro-
cedure allows us to compute a high order non-oscillatory
polynomial representation wn

h(x, t
n) of the solution Q(x, tn)

for each Voronoi polygon Pn
i , starting from the values of

un
h(x, t

n) in Pn
i and its neighbors.

In order to fulfill the requirement of non-oscillatory be-
havior and the necessity of using a large stencil centered in
Pn

i for achieving high accuracy, in contrast with each other
due to the well-known Godunov theorem [83], we adopt a
nonlinear reconstruction operator. Any ENO [88], WENO
[64,65], HWENO [134], strategy could in principle be used.
Here we rely on the CWENO reconstruction strategy first
introduced in [105,106,107], and which can be cast in the
general framework described in [44]. We closely follow the
work outlined in [60] for unstructured triangular and tetra-
hedral meshes.

The reconstruction starts from the computation of a so-
called central polynomial Popt of degree M. In order to de-
fine Popt in a robust manner, following [60,4,98,142], we
consider a stencil S 0

i which is filled with a total number of
ne = f ·M = f ·L (M,d) elements, containing cell Pn

i and
its neighbors

S 0
i =

ne⋃
k=1

Pn
ik , (224)

with the safety factor f ≥ 1.5. Stencil S0
i includes the cur-

rent Voronoi polygon Pn
i , the first layer of Voronoi neigh-

bors (node neighbors of Pn
i ) denoted by V (Pn

i ), and is filled
by recursively adding neighbors of elements that have been
already selected, until the desired number ne is reached. The
polynomial Popt(x, tn) is then defined by imposing that its
average on each cell Pn

ik
matches the known cell average

ûn
0,ik

. Since ne > M , this of course leads to an overdeter-
mined linear system, which is solved using a constrained
least-squares technique (CLSQ) [62].

To stabilize the reconstruction operator, the CWENO al-
gorithm makes use of other polynomials of lower degree.
Given a Voronoi polygon Pn

i with Nn
Vi

Voronoi neighbors
V (Pn

i ), we construct Nn
Vi

interpolating polynomials of de-
gree Ms = 1 referred to as sectorial polynomials. More pre-
cisely, we consider Nn

Vi
stencils Ss

i with s ∈ [1,Nn
Vi
], each

of them containing exactly n̂e = L (Ms,d) = (d + 1) cells.
Each Ss

i includes always the central cell Pn
i and two consec-

utive neighbors belonging to V (Pn
i ).

For each stencil Ss
i we compute a linear polynomial Ps(x, tn)

by solving the reconstruction systems

Ps(x, tn) ∈ P1 s.t. ∀Pn
ik ∈ Ss

i :
1
|Pn

ik
|

∫
Pn

ik

Ps(x, tn)dx = ûn
0,ik ,

(225)

which are not overdetermined and therefore have a unique
solution for non-degenerate locations of the Voronoi barycen-
ters. Following the general framework introduced in [44],
we select a set of positive coefficients λ0, . . . ,λNp such that

Nn
Vi

∑
s=0

λs = 1 (226)

and we define a new polynomial

P0(x, tn) =
1
λ0

(
Popt(x, tn)−

Np

∑
s=1

λsPs(x, tn)

)
∈ PM, (227)

so that the linear combination of the polynomials P0, . . . ,PNn
Vi

with the coefficients λ0, . . . ,λNp is equal to Popt and conser-
vation is ensured. We consider the linear weights used in
[63], namely λ0 = 105 for S 0

i and λs = 1 for the sectorial
stencils. These weights are then normalized in order to sum
to unity, according to the requirement (226).

Finally, the sectorial polynomials Ps with s ∈ [1,Nn
Vi
] are

nonlinearly hybridized with P0. We thus obtain wh(x, tn) in
Pn

i as

wh(x, tn) =
Np

∑
s=0

ωsPs(x, tn), x ∈ Pn
i , (228)

where the normalized nonlinear weights ωs are given by

ωs =
ω̃s

Nn
Vi

∑
m=0

ω̃m

, with ω̃s =
λs

(σ s + ε)r . (229)
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In the above expression the weights are chosen according to
[62].

7.2 Evolution of the Voronoi tessellation

At this point we have a high order spatial representation of
the solution Q(x, tn) at the current time tn given by the poly-
nomial wn

h = wh(x, tn) of degree M given or by the previ-
ous reconstruction procedure if N = M > 0 (FV case) or by
wn

h = un
h if N = M > 0.

By evaluating wn
h at the generator points xn

c , i.e. wn
h(x

n
c , t

n)

with (8), we recover the local fluid velocity v(xn
c), that can

be used to compute the new coordinates of the generator
points simply as

xn+1
ci

= xn
ci
+∆ t v(xn

ci
). (230)

The Delaunay triangulation connecting the new coordinates
of the generator points xn+1

c is now recomputed, as well as
the corresponding updated Voronoi tessellation. Note that
the only connection between the tessellations at time tn and
tn+1 is the number NP of generator points (i.e. of Voronoi
polygons) and their global numbering. Instead, the shape of
each polygon is allowed to change, i.e. Nn

Vi
6=Nn+1

Vi
, and con-

sequently also the connectivities, i.e. for example V (Pn
i ) 6=

V (Pn+1
i ).

This change of the grid topology is actually the strength
of the present algorithm, since it allows us to maintain a high
mesh quality without distorted elements, as depicted in Fig-
ures 43 and 44, where we show a comparison between the
results obtained by allowing topology changes and by im-
posing a fixed connectivity, respectively.

Note that in our ALE formalism, the mesh can be moved
with any velocity, hence it is not necessary to integrate the
above relation (230) with high order of accuracy. Neverthe-
less, (230) can be solved at the aid of a high order Taylor
method [20,25,146], leading to high order approximation
of the Lagrangian trajectories of the generators points.

In particular, the Taylor expansion of a generator ci at
time tn+1 with respect to its position at time tn can be written
as

xn+1
ci

= xn
ci
+∆ t

dx
dt

+
∆ t2

2
d2x
dt2 +

∆ t3

6
d3x
dt3 +

∆ t4

24
d4x
dt4 +O(5),

(231)

which achieve fourth order of accuracy in time.
Now, the high order time derivatives in (231) are re-

placed by high order spatial derivatives, via the Cauchy-
Kovalevskaya procedure, using the trajectory equation

dx
dt

= v(x(t)), (232)

and assuming a stationary velocity field (i.e. ∂v
∂ t = 0).

Now, the partial derivatives of v are recovered from the
local fluid velocities u through the high order polynomials
wh (8) which represent with high order of accuracy the con-
served variables inside each cells.

7.3 Space–time control volumes - topology changes

As said in Section 2.4, if there are no topology changes be-
tween tn and tn+1, i.e. Nn

Vi
= Nn+1

Vi
and V (Pn

i ) = V (Pn+1
i ),

the space–time control volume Cn
i is easily obtained by con-

necting each node of the polygon Pn
i via straight line seg-

ments with the corresponding node of Pn+1
i (see Figure 40),

and each sub–triangle T n
i j
∈ T (Pn

i ) is connected with the

corresponding T n+1
i j
∈T (Pn+1

i ) obtaining a sub–space–time
control volume, denoted by sCn

i j
.

We recall that the node numbering (i.e. the numbering of
the blue points in Figure 40) could be in principle different at
the two time levels so the correspondence between the nodes
at time level tn and tn+1 is not obvious. Nevertheless, it can
be recovered from the numbering of the Voronoi neighbors
V (Pn/n+1

i ) that on the contrary remains the same.
Let us now consider Pn

i and Pn+1
i in the case Nn

Vi
6= Nn+1

Vi
,

as in first panel of Figure 41). The space–time connection
between them induces the appearance of degenerate elements
of two types: (i) degenerate sub–space–time control volumes
sCn

i j
, where either their top or bottom faces are degenerate

triangles that are collapsed just to a line, see Figures 41b-
41c; (ii) and also sliver space–time elements, see Figure 41d.
Technical details on their construction can be found in [77].

The degenerate sub–space–time control volumes of type
(i) do not pose particular problems because they are part of
a standard control volume, so everything is naturally well
defined on them (basis functions, quadrature points, values
of the numerical solution un

h, of the reconstruction polyno-
mials wn

h, and of the space–time predictor qn
h defined below

in (11)).
On the contrary, the space–time sliver element in Fig-

ure 41d is a completely new control volume which does
neither exist at time tn, nor at time tn+1, since it coincides
with an edge of the tessellation at the old and at the new
time levels, and, as such, has zero area in space at tn and
tn+1. We denote this kind of element with Sn

i , its total lat-
eral surface with ∂Sn

i and each of the four lateral faces with
∂Sn

i j
, j = 1, . . . ,4. Space–time sliver elements always have

four neighbors, namely the two Voronoi polygons that share
their degenerate bottom face (edge) and the two Voronoi
polygons that share their degenerate top face (edge).

Two problems can arise while assembling the space–
time connectivity: V (Cn

i ) could be not sortable respecting
both the order of V (Pn

i ) and V (Pn+1
i ), or more than three

sliver elements could be necessary to complete the connec-
tion path. In this case we adopt a MOOD type [23,22] proce-
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Fig. 40: Space time connectivity without topology changes. (a) The tessellation at time tn and time tn+1. (b) Pn
i is connected

with Pn+1
i to construct the space–time control volume Cn

i . (c) The sub-triangle T n
i j

is connected with T n+1
i j

to construct the
sub–space–time control volume sCn

i j
.

dure, i.e. we restart the current time step with a smaller time
step size ∆ t (reduced by a factor of 2 for example). Eventu-
ally, more restarts are needed, until the connection between
the two meshes is coherent. Since the mesh generation and
the connectivity construction are not expensive, the perfor-
mances of the algorithm are not negatively influenced by this
additional MOOD-type procedure (which applies before the
evolution in time). We emphasize that such problems are en-
countered very rarely, see Tables 16 for some statistics.

However, notice that the presence of degenerate elements
is strictly unavoidable in order to connect meshes in space
and time that include topology changes. They are also needed
to collect enough geometrical information for ensuring high
order of accuracy in a direct ALE framework. For compar-
ison purposes, let us consider the work presented in [135],
where the authors, in order to connect meshes with topology
changes (within a different framework w.r.t. this work), have
introduced some pyramidal degenerate elements instead of
our sliver elements. The strategy proposed in the aforemen-
tioned reference is indeed interesting and could in principle
be applied also to the framework of our explicit high order
direct ALE schemes. However, besides the same complexi-
ties described for our sliver elements, an additional difficulty
would arise, since a degeneracy would occur at the midpoint
of the time step.

Finally, we remark here the difficulties related to this
kind of elements: i) the fact that they coincide with an edge
at time tn makes it difficult to fix a valid initial condition in
the predictor step necessary for the high order of accuracy
in time, and ii) the fact that they coincide with an edge at
time tn+1 could prevent conservation in an explicit scheme.
Nevertheless, with the strategy that will be outlined in Sec-
tions 7.4 and 7.5, no space-time contributions are lost while
advancing the numerical solution in time, i.e. our proposed

ADER ALE FV-DG schemes are fully conservative and keep
their formal high order of accuracy even in the presence of
space–time sliver elements.

7.4 Space–time predictor on sliver elements

The predictor procedure on space–time sliver elements, as
those shown in Figures 41d needs particular care, because
their bottom face is degenerate and consists only in a line
segment, hence the spatial integral over Pn

i vanishes, i.e.
there is no possibility to introduce the initial condition of
the local Cauchy problem at time tn into the predictor for
space–time sliver elements.

Furthermore, the degenerate bottom faces are the edges
of the Voronoi tesselation at tn and are thus at the interface
between two adjacent elements, which have in principle a
discontinuous solution wn

h. Therefore, an initial value for a
sliver element is in general not easy to define. Thus, in order
to couple (13) with some known data from the past we have
to slightly modify the algorithm detailed previously.

In particular, the upwinding in time approach is not only
used for the surface Pn

i , as done in (15), but we actually use
the jump terms on the entire part of the space–time surface
∂Cn

i that closes a sliver control volume. As already stated
in the previous section, the information needed to feed the
predictor is allowed to come only from the past, i.e. only
from those space–time neighbors Cn

j whose common sur-
face ∂Cn

i j = Cn
i ∩Cn

j exhibits a negative time component of
the outward pointing space–time normal vector (ñ−t < 0).
In this way, we can introduce information from the past into
the space–time sliver elements by considering also its neigh-
bor elements, but respecting at the same time the causality
principle in time, hence using again upwinding for the flux
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Fig. 41: Space time connectivity with topology changes, degenerate sub–space–time control volumes and sliver element.
Panel (a): at time tn the polygons Pn

2 and Pn
3 are neighbors and share the highlighted edge, instead at time tn+1 they do not

touch each other; the opposite situation occurs for polygons Pn
1 and Pn

4 . This change of topology causes the appearance of
degenerate elements of different types. The first type is given by degenerate sub–space–time control volumes colored in
violet in Panels (b) and (c). The second type of degenerate elements are called space–time sliver elements, an example is
colored in magenta in Panel (d). The sub–space–time control volumes of Panels (b) and (c) are triangular prisms with one of
their faces collapsed to just a line: they do not pose particular problems because they are part of a standard control volume,
so everything is naturally well defined on them (basis functions, quadrature points, values of un

h,w
n
h,q

n
h). On the contrary, the

sliver element in panel (d) is a completely new control volume which does neither exist at time tn, nor at time tn+1, since it
coincides with an edge of the tessellation and, as such, has zero areas in space. However, it has a non-negligible volume in
space–time. The difficulties associated to this kind of element are due to the fact that wh is not clearly defined for it at time
tn and that contributions across it should not be lost at time tn+1 in order to guarantee conservation.

tn

tn+1

(a)

Fig. 42: Quadrature points for the computation of volume in-
tegrals and the space–time predictor on sliver elements (with
M = 2).

evaluation of the jump term in (14). As a consequence, the
predictor solution qn

h is again obtained by means of (13), but
treating the entire space–time surface ∂Cn

i with the upwind

in time approach, hence leading to

(K∗1−F∗1)q̂
n
i

=−∑
j

F∗j q̂n
j −K∗x f(q̂n

i )−K∗y g(q̂n
i )+M∗S(q̂n

i ),

(233)

where the following definitions for the sliver element hold

K∗1 =
∫

Cn
i \∂Cn

i

θk
∂θ`

∂ t
dxdt, K∗x =

∫
Cn

i

θk
∂θ`

∂x
dxdt,

K∗y =
∫

Cn
i

θk
∂θ`

∂y
dxdt, M∗ =

∫
Sn

i

θkθ` dxdt,

F∗1 =
∫

∂Cn
i

θkθ` ñ−t dS, F∗j =
∫

∂Cn
i j

θkθ` ñ−t dS.

(234)

This is slightly different from what is done for standard
elements in (18), where only the space–time surface at time
tn, i.e. Pn

i , is considered for introducing the initial condi-
tion wn

h. Here, the information from the past comes through
the upwind fluxes contained in the term F∗j q̂n

j in (233) and
thus requires the knowledge of the predictor solution q̂n

j in
the neighbor Cn

j . This is the reason why the predictor step
must first be performed over all the standard elements us-
ing (18), so that the predictor solution qn

h is always available
to feed the temporal fluxes with the quantities q̂n

j that are
needed for solving (233) in the case of the space–time sliver
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elements. We underline again that a space–time sliver ele-
ment has always four standard Voronoi elements as neigh-
bors This closes the description of the predictor step for the
space–time sliver elements.

7.5 Corrector step on sliver elements

Let us now consider the numerical scheme given by (30) in
the case of a sliver element Cn

i = Sn
i :

0` ûn+1
` =0`ŵn

` −
4

∑
j=1

∫
∂Sn

i j

ϕ̃kF (qn,−
h ,qn,+

h ) · ñdS

+
∫

Sn
i

∇̃ϕ̃k · F̃(qn
h)dxdt +

∫
Sn

i

ϕ̃kS(qn
h)dxdt,

(235)

Since for sliver elements |Pn
i | = |P

n+1
i | = 0, the first two

terms vanish. However, since the method is explicit and qn
h

only depends on information coming from the past, the re-
maining terms in (235) are in general not equal to zero, i.e.

−
4

∑
j=1

∫
∂Sn

i j

ϕ̃kF (qn,−
h ,qn,+

h ) · ñdS

+
∫

Sn
i

∇̃ϕ̃k · F̃(qn
h)dxdt +

∫
Sn

i

ϕ̃kS(qn
h)dxdt 6= 0.

(236)

We underline that computing these quantities does not pose
any problem, since qn

h on Sn
i is well defined, and the shape

of a space–time sliver element is that of a tetrahedron in
space–time, hence allowing standard quadrature rules to be
used for integral evaluations (see also Figure 42).

The problem here arises from the fact that, using (235),
the non-null quantity (236) will be lost at time tn+1 because
it plays a role only in the evolution of Sn

i , which exists be-
tween tn and tn+1, but is null at tn+1. In order to be con-
servative, we must avoid losing any contribution from the
sliver elements. We therefore couple the weak formulation
on Sn

i with the weak form of one of its standard space–
time neighbors. Here, we always choose the one with the
biggest space–time volume, referred to as Cbig. The choice
of the biggest volume is not mandatory, it only represents
our way to uniquely fix the choice of a particular neighbor
of the sliver element. The test function ϕ̃k of (235) is then re-
ferred to the barycenter of Cbig. Conservation is guaranteed
by adding the contribution (236) of the sliver element Sn

i to

the neighbor Cbig, hence(∫
Pn+1

big

ϕ̃kϕ` dx

)
ûn+1
` =

(∫
Pn

big

ϕ̃kψ` dx

)
ŵn
`

−
Nn,st

Cbig

∑
j=1

∫
∂Cn

big j

ϕ̃kF (qn,−
h ,qn,+

h ) · ñdS

+
∫

Cn
big

∇̃ϕ̃k · F̃(qn
h)dxdt +

∫
Cn

big

ϕ̃kS(qn
h)dxdt

+
4

∑
j=1

∫
∂Sn

i j

ϕ̃kF (qn,−
h ,qn,+

h ) · ñdS

+
∫

Sn
i

∇̃ϕ̃k · F̃(qn
h)dxdt +

∫
Sn

i

ϕ̃kS(qn
h)dxdt.

(237)

7.6 Numerical results

The numerical results presented in this section comes from
applications to the Euler equations of gas dynamics and to
the magnetohydrodynamics (MHD) system.

With these results we want to demonstrate the capabil-
ity of our scheme in maintaining a high quality mesh for
very long computational times, even in the case of strong
shear flows and vortices, and the achieved order of conver-
gence for both Finite Volume and Discontinuous Galerkin
schemes, see Tables 13, 14, 18 and 19.

Moreover, for all the presented test cases we have nu-
merically verified that mass and volume conservation is re-
spected up to machine precision at any time step, and that
the same holds true for the GCL condition on each element,
even when topology changes occur. In addition, to be more
convincing on the fact that our schemes always satisfy the
GCL condition by construction, we refer to the set of test
cases of Section 7.6.2, where constant states are preserved
up to machine precision for very long computational times
over moving meshes where topology changes regularly oc-
cur.

Finally, a more complicated test problem (Section 7.6.3)
aims at showing the robustness of our method, concerning
both the mesh quality in presence of arbitrary and strong ve-
locity fields as well as the consistency/stability of our high
order schemes. In particular, we test the a posteriori sub–cell
finite volume limiter used to stabilize the DG scheme that in-
deed avoids undesirable oscillations by activating only where
needed (see Figure 47).

7.6.1 Isentropic vortex

To verify the order of convergence of the proposed ALE FV-
DG scheme we consider a smooth isentropic vortex flow
according to [91]. The initial computational domain is the
square Ω = [0;10]× [0;10] with wall boundary conditions
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Fig. 43: Stationary rotating vortex solved with our fourth order P3P3 ALE-DG scheme on a moving Voronoi mesh of 2116
elements with dynamical change of connectivity. Density contours (first and last image) and the position of a bunch of
highlighted elements are provided at different times. The mesh is regenerated at every time step and connected in space time
to reach high order of accuracy on a moving domain: this makes it possible to substantially improve the mesh quality w.r.t.
standard conforming ALE schemes without topology change, for which mesh tangling would occur leading to a stop of the
simulation.

Fig. 44: Stationary rotating vortex solved with a fourth order P3P3 ALE-DG scheme on a moving Voronoi mesh of 2116 ele-
ments with fixed connectivity. Density contours (top) and position of a bunch of highlighted elements (bottom) are provided
at different times. The mesh quality is deteriorating already at time t ' 4 and the simulation ultimately stops at t ' 5.25 due
to tangling elements.
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Table 13: Isentropic vortex. Numerical convergence results for the finite volume algorithm on moving meshes with topology
changes. The error norms refer to the variable ρ at time t = 0.5 in L1 norm.

P0P1→ O2 P0P2→ O3 P0P3→ O4 P0P4→ O5
h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1)
3.8E-01 3.1E-02 - 3.8E-01 2.9E-02 - 1.9E-01 1.6E-03 - 4.7E-01 4.0e-02 -
2.0E-01 6.2E-03 2.4 1.9E-01 4.6E-03 2.8 1.3E-01 4.1E-04 3.4 3.8E-01 1.4e-02 4.8
1.3E-01 2.4E-03 2.4 1.3E-01 1.4E-03 2.9 9.9E-02 1.4E-04 3.8 1.3E-01 2.5e-04 3.8
9.9E-02 1.3E-03 2.3 9.9E-02 6.1E-04 3.0 7.9E-02 6.0E-05 3.9 9.9E-02 6.7e-05 4.6
8.0E-02 7.8E-04 2.2 7.9E-02 3.1E-04 2.0 6.7E-03 3.0E-05 3.8 7.9E-02 2.4e-05 4.7

Table 14: Isentropic vortex. Numerical convergence results for the discontinuous Galerkin algorithm on moving meshes with
topology changes. The error norms refer to the variable ρ at time t = 0.5 in L1 norm.

P1P1→ O2 P2P2→ O3 P3P3→ O4 P4P4→ O5
h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1)
7.5E-01 6.3E-03 - 7.5E-01 1.4E-02 - 6.1E-01 1.4E-03 - 1.4E-00 1.1e-02 -
6.1E-01 4.2E-04 1.9 6.1E-01 7.2E-03 3.4 5.2E-01 7.4E-04 3.7 1.0E-00 2.0e-03 5.9
3.2E-01 9.9E-04 2.2 3.2E-01 9.3E-04 3.2 4.7E-01 4.1E-04 5.9 9.8E-01 1.6e-03 4.7
2.2E-01 4.4E-04 2.0 2.2E-01 2.8E-04 3.0 3.2E-01 7.7E-05 4.4 8.9E-01 9.0e-04 5.9
1.6E-01 2.5E-05 2.0 1.6E-01 1.2E-04 3.0 2.2E-01 1.6E-05 4.0 8.5E-01 7.0e-04 5.1

Table 15: Isentropic vortex. Numerical convergence results for the third order P2P2 discontinuous Galerkin algorithm on
moving meshes with topology changes. The error norms refer to the variable ρ at time t = 0.5 in L2 norm. The three groups
of results refer to three different ways of ordering the space–time neighbors of each element. The fact that the errors are
exactly the same up to machine precision proves that the algorithm is independent of the neighbor ordering used in the
construction of the space–time elements.

ordering from 1st common neighbor
h(Ω(t f )) ε(ρ)L2 O(L2)

0.319411631217116 9.2414523328907E-04 -
0.242212163540348 3.9353901580992E-04 3.1
0.194949032600822 2.0616099552666E-04 3.0
0.163155447483668 1.1964571728528E-04 3.1
0.122985013713313 5.1270456290057E-05 3.0

ordering from 2nd common neighbor
h(Ω(t f )) ε(ρ)L2 O(L2)

0.319411631217114 9.2414523328982E-04 -
0.242212163540348 3.9353901581037E-04 3.1
0.194949032600822 2.0616099552752E-04 3.0
0.163155447483668 1.1964571728459E-04 3.1
0.122985013713313 5.1270456288495E-05 3.0

ordering from 3rd common neighbor
h(Ω(t f )) ε(ρ)L2 O(L2)

0.319411631217116 9.2414523328907E-04 -
0.242212163540348 3.9353901580992E-04 3.1
0.194949032600822 2.0616099552666E-04 3.0
0.163155447483668 1.1964571728400E-04 3.1
0.122985013713313 5.1270456291299E-05 3.0
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set everywhere. The initial condition is given by some per-
turbations δ that are superimposed onto a homogeneous back-
ground field Q0 = (ρ,u,v, p) = (1,0,0,1), assuming that the
entropy perturbation is zero, i.e. δS = 0. The perturbations
for density and pressure are

δρ = (1+δT )
1

γ−1 −1, δ p = (1+δT )
γ

γ−1 −1, (238)

with the temperature fluctuation δT = − (γ−1)ε2

8γπ2 e1−r2
and

the vortex strength is ε = 5. The velocity field is affected by
the following perturbations(

δu
δv

)
=

ε

2π
e

1−r2
2

(
−(y−5)
(x−5)

)
. (239)

This is a stationary equilibrium of the system so the exact
solution coincides with the initial condition at any time.

Convergence. Tables 13 and 14 report the convergence rates
from second up to fifth order of accuracy for the vortex test
problem run on a sequence of successively refined meshes.
For each element, its characteristic size hn

i at time tn is given
by the diameter of the circumcircle and we denote with
h(Ω(t f )) the average of hn

i at the final time of the simula-
tion t f = 0.5. Thus, h(Ω(t f )) represents the characteristic
mesh size of our mesh. The optimal order of accuracy is
achieved both in space and time for the FV schemes as well
as for the DG schemes. We would like to underline that this
is not trivial for moving Voronoi meshes, because the chang-
ing characteristic mesh sizes could affect the convergence
results (the mesh is not stationary at all).

Quality. In Figure 43 we plot the density contours and the
two-dimensional mesh configuration at various output times
obtained with our fourth order ALE-DG scheme. We would
like to attract the attention on the endurance of the simula-
tion and on the high quality of the density profile obtained
even after very long simulation times. The correct density
profile and a high quality mesh are conserved for at least
sixty times longer with respect to standard conforming ALE
schemes, where mesh tangling would occur and stop the
simulation much earlier (see Figure 44). The obtained re-
sults are also superior with respect to existing ReALE codes,
which are usually of very low order of accuracy in space and
time and are therefore affected by a much higher numerical
dissipation.

The position of a bunch of elements is also highlighted
at different times: this makes clear how strong the rotation
is to which the mesh elements are subject. It also highlights
the importance of allowing topology changes in the com-
putational grid, which needs to provide enough topological
flexibility in order to preserve a high quality mesh over long
computational times. Indeed, if the preservation of the con-
nectivity had been imposed, the elements would have been
quite distorted after only rather short times (see Figure 44).

Independence of the neighbor numbering.To prove that our
algorithm is also completely independent of the space–time
neighbor numbering chosen when connecting the old mesh
to the new one, we have carried out the following test. In
the framework of a third order P2P2 DG scheme we have
simulated the isentropic vortex up to a final time of t =
0.5 on a series of meshes, namely composed by 961, 1681,
2601, 3721 and 6561 Voronoi elements moving with the ex-
act velocity computed at the generator point of each element.
Then, we have run the algorithm for each mesh configura-
tion by ordering the space–time neighbors in three different
ways, namely starting first with the first common neighbor,
next with the second common neighbor and last with the
third common neighbor (if existing, otherwise we have used
the first one again).

Table 15 shows that not only the order of the algorithm
does not depend on the neighbor numbering, but also that
the final errors are the same up to machine precision.

7.6.2 Numerical study of GCL property satisfaction

In order to verify that our schemes satisfy the GCL property
up to machine precision we consider the following standard
test case for the ReALE community, see for example [115].

The initial condition of this test are given by constant
states, namely Q0 = (ρ,u,v, p) = (1,0,0,1) that should stay
constant even with moving meshes if the GCL condition
is satisfied. The initial computational domain is the square
Ω = [0;10]× [0;10] covered with a mesh of 1979 Voronoi
elements and wall boundary conditions are set everywhere.

Then, in agreement with the ALE framework, the mesh
is moved with a completely arbitrary velocity field (thus not
with the fluid velocity which would be zero in this test case).
In particular, we have chosen a vortical velocity field varying
in a sinusoidal fashion, given in the form

v(x,y)=
(
−sin

(
2π

`
(y− y0)

)
cos
(

π

`
(x− x0)

)
exp(−kr),

cos
(

π

`
(y− y0)

)
sin
(

2π

`
(x− x0)

)
exp(−kr)

)
,

(240)

where x0 = (x0,y0) = 5, `= 10,k = 0.1 and
r =

√
(x− x0)2 +(y− y0)2.

In Figure 45 we show the error between our numerical
results for density and velocity, with respect to the exact
constant solution, obtained with our FV and DG schemes
of order three and four, namely the P0P2, P0P3, P2P2 and
P3P3 schemes. We emphasize that these results are obtained
over long computational times (60 seconds, and three com-
plete turns of a reference point), thus after thousands of time
steps. Moreover topology changes regularly occurs during
the mesh motion: the number of sliver elements generated
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Table 16: In this Table we report the number of total time
steps needed to reach the final computational time t f = 60
with four different methods. We report also the number of
sliver elements that have been originated along the simula-
tions due to the occurred topology changes and the number
of time steps that have been repeated through the MOOD
loop.

Method time steps slivers restarts
FV O(3) 5524 21930 5
FV O(4) 4896 19819 4
DG O(3) 33019 19392 0
DG O(4) 55496 18995 2

per simulation over the total number of time steps is reported
in Table 16, and a bunch of initially neighbors elements is
plotted in Figure 46 at different times, in order to make clear
that elements really change their topology and connectivity
during the simulation.

This test case proves numerically that GCL property is
satisfied by our scheme even when topology changes occur
and sliver elements appear, which is indeed a property that
our schemes satisfy by construction, since PDE integration
is always performed over close control volumes [15].

Finally, in Table 17 we report the percentage of compu-
tational times employed by i) all the the procedures neces-
sary to rebuild a new mesh at each time step, namely the
mesh regeneration, and the construction of the space–time
connectivity; ii) the predictor-corrector step performed on
standard elements; iii) the predictor-corrector step performed
on sliver elements. We remark that step i) actually consists in
a complete rebuild of a new configuration without exploiting
the previous one, which would decrease the computational
cost of the geometric part of the code. Nevertheless, we em-
phasize that the computational cost of the geometric part of
our scheme is minimal and does not affect the final cost of
the entire algorithm.

7.6.3 Sedov problem

This test problem is widespread in the literature [113] and it
describes the evolution of a blast wave that is generated at
the origin O = (x,y) = (0,0) of the computational domain
Ω(0) = [0;1.2]× [0;1.2]. An exact solution based on self-
similarity arguments is available from [141] and the fluid is
assumed to be an ideal gas with γ = 1.4, which is initially at
rest and assigned with a uniform density ρ0 = 1. The initial
pressure is p0 everywhere (with p0 = 10−6 or p0 = 10−10)
except in the cell Vor containing the origin O where it is
given by

por = (γ−1)ρ0
Etot

|Vor|
, with Etot = 0.979264, (241)

Table 17: In this Table we report some statistics on the
computational cost of reaching the final computational time
t f = 60 with four different schemes. In the second column
we report the percentage of computational time employed by
mesh regeneration and space time connectivity generation,
in the third column there is the percentage of time needed
for the predictor-corrector step on standard elements, and in
the last column the percentage of time spent on sliver ele-
ments. It is evident that the cost due to mesh rearrangement
and sliver computations is minimal. (For what concern FV
schemes, the time for spatial reconstruction is not included
in the third column, in order to facilitate the comparison be-
tween the cost on standard elements and sliver elements, for
which spatial reconstruction is not performed.)

Method Mesh % PNPM standard % PNPM sliver %
FV O(3) 0.31 56.03 0.01
FV O(4) 0.31 56.00 0.01
DG O(3) 1.29 91.07 0.004
DG O(4) 0.25 96.31 0.001

being Etot the total energy concentrated at x = 0. We solve
this numerical test with a second order P1P1 DG scheme for
p0 = 10−6 and a third order DG scheme for p0 = 10−10;
we employ a mesh of 7234 Voronoi elements. The density
profiles are shown in Figure 47 for various output times t =
0,0.2,0.5,0.8,1.0. The obtained results are in good agree-
ment with the literature. Moreover, one can refer to Figure
48 for a comparison between our numerical solution (scatter
plot) and the reference one: the position of the shock wave
and the density high peak are perfectly captured. We remark
that this is quite a challenging benchmark because of the low
pressure and the strong shock.

Finally, we refer to the last panel of Figure 47 for the
behavior of our a posteriori sub–cell finite volume limiter,
which activates only and exactly where the shock wave is
located.

7.6.4 Ideal MHD equations

We also consider the equations of ideal classical magnetohy-
drodynamics (MHD) that result in a more complicated sys-
tem of hyperbolic conservation laws. The state vector Q and
the flux tensor F for the MHD equations in the general form
(1) are

Q =


ρ

ρv
ρE
B
ψ

 , F(Q) =


ρv

ρv⊗v+ ptI− 1
4π

B⊗B
v(ρE + pt)− 1

4π
B(v ·B)

v⊗B−B⊗v+ψI
c2

hB

 .

(242)
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Fig. 45: In this Figure we report the error in L−infinity norm of the error between our numerical results and the exact
constant solution for the density ρ (left) and the velocity U =

√
u2 + v2 (right) for four different methods, namely a third and

fourth order Finite Volume scheme and a third and fourth order Discontinuous Galerkin scheme. We underline that the final
computational time of t f = 60 is reached after thousands of time steps and involves the generations of thousands of sliver
elements, as reported in Table 16.

Fig. 46: In this Figure we report the position of a bunch of elements initially neighbors subjected to the velocity field (240)
at different computational times. The Voronoi tassellation is regenerated at any of the 33019 timesteps of the employed third
order P2P2 DG schemes. In total 19392 sliver element have been treated during this simulation (and the MOOD procedure
has never been activated).

Here, B= (Bx,By,Bz) represents the magnetic field and pt =

p+ 1
8π

B2 is the total pressure. The hydrodynamic pressure
is given by the equation of state used to close the system,
thus

p = (γ−1)
(

ρE− 1
2

v2− B2

8π

)
. (243)

System (242) requires an additional constraint on the diver-
gence of the magnetic field to be satisfied, that is

∇ ·B = 0. (244)

Here, (242) includes one additional scalar PDE for the evo-
lution of the variable ψ , which is needed to transport diver-

gence errors outside the computational domain with an arti-
ficial divergence cleaning speed ch, see [49]. A more recent
and more sophisticated methodology to fulfill this condition
exactly on the discrete level also in the context of high or-
der ADER WENO finite volume schemes on unstructured
simplex meshes can be found in [2]. A similar approach is
adopted in [72,18,11].

7.6.5 MHD vortex

For the numerical convergence studies, we solve the vortex
test problem proposed by Balsara in [1]. The computational
domain is given by the box Ω = [0;10]× [0;10] with wall
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Fig. 47: Sedov problem solved with our P2P2 scheme on a moving Voronoi mesh of 7234 elements. We depict the density
profile and the mesh configuration at times t = 0,0.2,0.5,0.8,1 and in the last images we show in red the cells on which the
limiter is activated.

P0P1→ O2 P0P2→ O3 P0P3→ O4 P0P4→ O5
h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1)
4.6E-01 3.3E-02 - 3.2E-01 1.0E-02 - 4.7E-01 2.1E-02 - 6.0E-01 3.6e-0.2 -
3.9E-01 1.6E-02 1.8 2.4E-01 5.5E-03 2.3 3.2E-01 6.0E-03 3.2 5.8E-01 3.0e-0.2 5.8
2.4E-01 8.9E-03 2.3 1.9E-01 2.7E-03 3.3 2.4E-01 2.0E-03 3.9 5.6E-01 2.7e-0.2 3.6
1.9E-01 5.3E-03 2.4 1.6E-01 1.5E-03 3.1 2.2E-01 1.3E-03 3.6 5.5E-01 2.3e-0.2 5.9
1.6E-01 3.4E-03 2.5 1.4E-01 1.0E-03 2.9 1.9E-01 8.1E-04 4.8 5.2E-01 1.8e-0.2 4.8

Table 18: MHD vortex. Numerical convergence results for the finite volume algorithm on moving meshes with topology
changes. The error norms refer to the variable ρ at time t = 1.0 in L1 norm.

P1P1→ O2 P2P2→ O3 P3P3→ O4 P4P4→ O5
h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1)

4.7E-01 8.5E-03 - 6.1E-01 2.8E-03 - 8.8E-01 1.1E-03 - 1.6E-00 6.9e-0.3 -
3.2E-01 3.2E-04 2.5 4.7E-01 1.3E-03 2.8 7.5E-01 6.2E-04 3.5 6.1E-01 1.3e-0.4 4.1
2.8E-01 2.1E-04 2.9 3.8E-01 7.3E-04 2.7 6.1E-01 3.1E-04 3.4 5.2E-01 4.7e-0.5 5.8
2.4E-01 1.6E-04 2.0 3.5E-01 5.6E-04 3.6 5.5E-01 1.9E-04 4.3 4.9E-01 3.1e-0.5 8.1
1.9E-01 9.7E-05 2.4 3.2E-01 4.1E-04 3.0 3.2E-01 2.3E-05 3.9 4.7E-01 2.4e-0.5 5.3

Table 19: MHD vortex. Numerical convergence results for the discontinuous Galerkin algorithm on moving meshes with
topology changes. The error norms refer to the variable ρ at time t = 1.0 in L1 norm.
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Fig. 48: Scatter plot of density values (blue dots) for the Sedov problem compared with the reference solution (line). Left:
the initial setting is with outer pressure equal to p0 = 10−6 and it is solved with our DG scheme of order 2. Right: the initial
setting is with outer pressure equal to p0 = 10−10 and it is solved with our DG scheme of order 3. In the two cases the mesh
moves with the fluid flow and topology changes occur.

Table 20: In this Table we report the number of total time steps needed to reach the final computational time t f = 70 with
our P3P33 DG scheme, the number of sliver elements that have been originated along the simulations due to the occurred
topology changes and the number of time steps that have been repeated through the MOOD loop. Moreover, we report the
percentage of computational time employed by mesh regeneration and space time connectivity generation, by the predictor-
corrector step on standard elements and on sliver elements. It is evident that the cost due to mesh rearrangement and sliver
computations is minimal, that MOOD restart activates very rarely and that sliver elements are an essential ingredient of our
scheme.

Method time steps slivers restarts Mesh % PNPM standard % PNPM sliver %
DG O(4) 62741 21369 3 0.17 97.39 7.5E-4

boundary conditions imposed everywhere. The initial con-
dition is given in terms of the vector of primitive variables
V = (ρ,u,v,w, p,Bx,By,Bz,Ψ)T as

V(x,0) = (1,δu,δv,0,1+δ p,δBx,δBy,0,0)T , (245)

with δv = (δu,δv,0)T , δB = (δBx,δBy,0)T and

δv =
κ

2π
eq(1−r2)ez× r

δB =
µ

2π
eq(1−r2)ez× r,

δ p =
1

64qπ3

(
µ

2(1−2qr2)−4κ
2
π
)

e2q(1−r2).

(246)

We have ez = (0,0,1), r = (x− 5,y− 5,0) and r = ‖r‖ =√
(x−5)2 +(y−5)2. The divergence cleaning speed is cho-

sen as ch = 3. The other parameters are q = 1
2 , κ = 1 and

µ =
√

4π , according to [1].

Convergence. Tables 18 and 19 report the convergence rates
from second up to fifth order of accuracy for the MHD vor-
tex test problem run on a sequence of successively refined
meshes up to the final time t = 1.0. The optimal order of ac-
curacy is achieved both in space and time for the FV schemes
as well as for the DG schemes.

Quality. In Figure 49 we show the pressure profile and the
magnetic field obtained with our fourth order P3P3 DG scheme
at the initial time and after a long simulation with t f = 65.
Once again, the profile of the vortex is simulated and con-
served for a longer computational time with respect to stan-
dard conforming ALE scheme, for which mesh tangling would
occur and stop the simulation earlier. Moreover, a scatter
plot of the constant density profile and of the pressure pro-
file are reported in Figure 51: the fact that the ρ value is only
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Fig. 49: MHD vortex solved with our P3P3 DG scheme on a moving Voronoi mesh of 1900 elements: we depict, from left
to right, the pressure profile, the x− and y− components of the magnetic field, and the value of M =

√
B2

x +B2
y at the initial

time t = 0, at an intermediate time t = 34 and at the final time of t f = 70, corresponding to 2 complete loops of the elements
located at r = 1. The connectivity changes (see also Figure 50) together with the high order methods allow to preserve the
stationary MHD vortex for long times.

perturbed by standard numerical errors is another proof that
our scheme satisfies the CGL condition.

In Figure 50 we report the position of a bunch of initially
neighbors elements at different times: this makes it clear
how strong the rotation is to which the mesh elements are
subjected and the freedom that should be allowed to them in
order to preserve a high quality mesh.

Finally in Table 20, we report some statistic on the num-
ber of sliver elements created over the total number of time
steps, and on the percentage of computational times required
both for the geometrical part of the code and for the PNPM
predictor-corrector algorithm.

8 Conclusion

To conclude, I would like to underline that the research pre-
sented in this article is based on three powerful founding
concepts. First the space time conservation formulation of
the governing PDEs which naturally applies to the novel
moving ALE framework even with topology changes as it is
based on the integration on arbitrarily shaped closed control
volumes; second, the ADER predictor-corrector paradigm
that allows to obtain high order of accuracy both in space
and in time in one single step procedure; and third, the idea
to treat the nonconservative products in a well balanced way
by directly employing the steady equilibrium in the path
construction. These original ideas have been applied in dif-
ferent contexts and coupled together obtaining promising re-
sults that justify further research in many directions.
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Fig. 50: MHD vortex solved with our P3P3 DG scheme on a moving Voronoi mesh of 1900 elements. In this Figure we show
the position of a bunch of initially neighbors elements at different times, namely at t = 70. In this way one can notice the
evolution of the grid topology during time and the necessity of allowing the mesh changing its topology in order to correctly
follow the fluid velocities without distortion.
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Fig. 51: MHD vortex solved with our P3P3 DG scheme on a moving Voronoi mesh of 1900 elements. We report the scatter
plot of the constant density profile (left) and of the pressure profile (right) at the final time t f = 70.

With this work we can benefit simultaneously of very
high order methods, high quality grids and substantially re-
duced numerical dissipation, and we would like to empha-
size that usually at least one of the previous ingredients is
missing. Lagrangian methods, which almost cancel advec-
tion errors, are usually affected by dangerous mesh distor-
tions, and available algorithms which are able to avoid it
are only low order accurate; Eulerian methods are in gen-
eral high order accurate, but limited by dissipation errors
due to the advective terms; well balancing techniques are
rarely coupled with unstructured moving meshes.

The results on vortical flows give evidence of the ad-
vantages conveyed by the proposed algorithms, and a large
set of different numerical tests shows their robustness and
efficiency. In particular, the introduced techniques enables
the resolution even of complex shear flows with differen-
tial rotations in an effective and accurate way. It is notewor-
thy to stress again that standard conforming or topology-
fixed Lagrangian schemes will crash after finite times for
any vortex flow with differential rotation due to mesh tan-
gling. Moreover the reduced dissipation characterizing the
Lagrangian methods, together with the high mesh quality
provided by the nonconforming treatment of sliding lines,
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and the increased accuracy near the equilibria given by the
well balanced techniques, allow us to obtain significant im-
provements compared to the existing state of the art. The
major benefits are achieved with our new class of schemes
when studying physical phenomena that arise close to sta-
tionary solutions, where standard discretizations would hide
the flow physics with spurious oscillations and excessive nu-
merical dissipation.

Future research will consider an extension to three space
dimensions as well as to more general classes of stationary
solutions and an automatic detector of the equilibrium pro-
files in order to extend our method to situations in which the
equilibrium is not known exactly a priori.

Furthermore, based on the high order path-conservative
methods introduced in [71] we intend to use the algorithms
developed in this paper in order to design exactly well bal-
anced schemes for gravity driven equilibrium flows in gen-
eral relativity, where the use of well balanced methods ap-
pears to be still rather unknown.
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97. Käppeli, R., Mishra, S.: A well-balanced finite volume scheme
for the euler equations with gravitation. Astronomy and Astro-
physics 587, A94 (2016)
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