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Abstract

In this study we give syntax, semantics and axiomatization for a family of
modal logics with restricted form of universal modality. The language of these
family of modal logics allows the expression of Boolean combinations of formulas
of the form ∃φ where φ is a formula of the ordinary language of modal logic and
∃ is the universal diamond. By means of a tableaux-based approach, we provide
decision procedures for their satisfiability problem.

1 Syntax and Semantics
Our language Lr(2,∃) is defined using a countable set BV of Boolean variables (
p, q, r, etc). We inductively define the set t(BV ) of terms (with typical members noted
A,B,C, etc) as follows:

A ::= p | 1 | −A | (A ∩B) | 2A.

We inductively define the set f(BV ) of formulas (with typical members noted φ, ψ, κ,
etc) as follows:

φ ::= ∃A | > | ¬φ | (φ ∧ ψ).

A frame is an ordered pair F = (W,R) whereW is a non-empty set of possible worlds
( x, y, z, etc) and R is a binary relation on W . For all x ∈ W , let R(x) be the set of
all y ∈ W such that xRy. A valuation based on F is a function V assigning to each
Boolean variable p a subset V (p) of W . V induces a function (·)V assigning to each
term A a subset (A)V of W such that (p)V = V (p), (1)V = W , (−A)V = W \ (A)V ,
(A ∩B)V = (A)V ∩ (B)V , and (2A)V = {x : R(x) ⊆ (A)V }.

A model is an ordered triple M = (W,R, V ) where F = (W,R) is a frame and V
is a valuation based on F . Let |= be the satisfiability relation defined between models
and formulas. The Boolean connectives are interpreted as usual. We define M |= ∃A
iff (A)V 6= ∅.

1



Let F be a frame. A formula φ is said to be valid in F , in symbols F |= φ, iff for
all models M based on F,M |= φ. Let C be a class of frames. A formula φ is said to
be valid in C, in symbols C |= φ, iff for all frames F in C, F |= φ.

The syntax and semantics defined as above constitute a fragment of ordinary modal
logic with the universal modality. In this fragment, one can easily translate the Contact
Logics considered by Vakarelov (2007) and Balbiani et al. (2007)

2 Tableaux Approaches, Soundness and Completeness
The language is based on two types of expressions: terms and formulas. For these
reasons, tableau nodes will be labeled by the following types of expressions: formulas,
expressions of the form x : A and expressions the form x4y, where x, y are symbols
and A is a Boolean term. Given a formula φ, its initial tableau is the labeled tree
consisting of exactly one node labelled with φ. The rules presented in Annex B are
applied in a standard way by extending branches of constructed trees.

Definition 2.1. A branch is said to be closed if and only if one of the following condi-
tions holds:

(i) it contains a node labeled with x : −1;

(ii) it contains two nodes respectively labeled with x : A, x : −A;

(iii) it contains a node labeled with ⊥.

In order to prove that the tableaux of satisfiable formulas cannot be closed, we
introduce the concept of interpretability of a branch in a model.

Definition 2.2. Let M = (W,R, V ) be a model. Let β be a branch in a tableau and
W ′ be the set of all variables occurring in β. The branch β is said to be interpretable
in M if there exists a function f : W ′ → W such that: if φ occurs in β, then M |= φ,
if x4y occurs in β, then f(x)Rf(y) and if x : A occurs in β, then f(x) ∈ V̄ (A).

Now, we show the soundness of the tableau rules for modal logics with a restricted
universal modality.

Proposition 2.3. Let M = (W,R, V ) be a model and φ be a formula. If M |= φ,
then every tableau computed from the initial tableau of φ is interpretable in M and is
therefore open.

The previous proposition shows that the tableau rules for modal logics with a re-
stricted universal modality preserves property of interpretability in general models. As
for the termination property, we need to define the following preliminary definitions.

Definition 2.4. Let β be a branch of some tableau and x be a symbol in β. Let
(A1, ..., An) be a list of all modal terms A such that x : −2A is in β. We will say
that x is successor-free in β if there exists i ∈ {1, .., n} such that for all y in β, if x4y
is in β then y : −Ai is not β. Let term(x, β) = {a : x : a occurs in β}. We will
say that x is twin-free in β if for all y in β, if terms(x, β) = terms(y, β) then for all
u1, ..., un in β, if t∆u1 is in β, ..., t∆un is in β then either u1 : −A1 is not in β, ..., or
un : −An is not in β.
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The strategy is the following: (i) Apply all rules (except the −2 rule) as much as
possible, (ii) Apply the −2 rule to x : −2A in β, when x is successor-free in β and
twin-free in β and (iii) If the −2 rule has been applied in step (ii) then go to step (i)
else halt.

Now, let us show how the termination strategy will terminate. Note that for any
symbol occurring in branches of a tableau constructed from φ’s initial tableau, term(x;β)
contains only sub-terms or complements of sub-terms of φ. There exists finitely many
sub-terms of φ. Consequently, at some point of the computation, in each branch of
the constructed tree, each successor-free symbol is not twin-free. Thus, the strategy
terminates.

Definition 2.5. Let t be a tableau obtained after applying our strategy as much as
possible. Let β be a branch in t. Suppose β is open. Let M be the model defined as
follows:

(i) W is the set of all non successor-free x in β,

(ii) R is the binary relation on W defined by xRy iff either x4y occurs in β or
there exists a symbol z in β such that z is successor free in β, term(y, β) =
term(z, β) and x4z occurs in β.

(iii) V (p) is the set of all x ∈W such that β contains the information x : p.

The following lemma is crucial for proving the completeness of our method.

Lemma 2.6. Let t be a tableau, β be a branch in t and M = (W,R, V ) be the model
defined above. We have the following:

(i) If β contains x : A and x ∈W , then x ∈ V (A),

(ii) If β contains a formula φ, then M |= φ.

Now, we are ready to present the completeness theorem

Theorem 2.7. Let φ be a formula and t a tableau obtained from the initial tableau of
¬φ by applying the tableau rules and our strategy as much as possible. If φ is valid in
the class of all models then t is closed.

3 Variant
In this section, we extend our systems with adding new tableau rule for dense models.
We give sound and complete tableaux based decision procedure for variant of our logic.
Obviously, for symmetric and reflexive models, the tableaux approaches can be easily
adapted as expected.

A modelM = (W,R, V ) is said to be dense if for all x, y ∈W , if xRy then there
exists z ∈ W such that xRz and zRy. Let us consider the class of all dense models.
In order to decide satisfiability with respect to this class, we should add the Den rule to
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our system. Obviously, Den is sound with respect to dense models, i.e. it preserves the
interpretability property of tableaux.

Now, we have to define a strategy that will guarantee the soundness, the complete-
ness and the termination of our tableaux-based system.

Let β be a branch and (x, y) be a pair of symbols occurring in β. We will say
(x, y) is intermediate-free if x∆y occurs in β and for all symbols z in β, either x∆z
does not occur in β, or z∆y does not occur in β. Let β be a branch, x be a symbol
occurring in β. We will say (x, y) is twin-free if x∆y occurs in β and for all symbols
z1, z2, z3 occurring in β, if term(x, β) = term(z1, β) and term(y, β) = term(z3, β)
then either z1∆z2 does not occur in β, or z1∆z3 does not occur in β, or z2∆z3 does
not occur in β.

Our strategy is the following: (i) Apply the formula rules and the term rules as
much as possible, (ii) Choose an intermediate-free twin-free pair (x, y) of symbols
occurring in a branch β; Apply the rule (Den) to (x, y) and go to (i) otherwise go to
(iii) and (iii) Halt.

Proposition 3.1. Let M = (W,R, V ) be a model and φ be a formula. If M |= φ,
then every tableau computed from the initial tableau of φ is interpretable in M and is
therefore open.

Proposition 3.2. Let φ be a formula. After a finite number of steps from the initial
tableau of φ, no tableau rule can be applied.

Lemma 3.3. Let t be a tableau, β be a branch in t and M be a model for β. We have
the following:

(i) If β contains x : A and x ∈W , then x ∈ V̄ (A).

(ii) If β contains a formula φ, thenM |= φ.

Theorem 3.4. Let φ be a formula and t a tableau obtained from the initial tableau
of ¬φ by applying the tableau rules augmented with (Den) and following the above
strategy. If φ is valid in the class of all dense models then t is closed.

4 Conclusion
We have given sound and complete tableaux-based decision procedures for the satis-
fiability problem in our logic. The satisfiability problem with respect to the class of
all dense models is decidable. Unfortunately, we do not know its exact computational
complexity. Note that this decidability result is new; it does not seem that it can be
easily obtained by means of an argument based on the filtration method, seeing that the
filtration construction does not preserve the elementary property of density.
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5 Annex A: Proofs
Proof of Proposition 2.3. Suppose M |= φ. Since the initial tableau of φ consists of a
single node labeled with φ, therefore the initial tableau of φ is interpretable in M . The
fact that the tableau rules preserve the interpretability property in M follows from the
strict similarity between the relational semantics and the tableau rules.

Proof of Lemma 2.7. (i) The proof is done by induction on A. We consider the case
2A, the other cases being left to the reader. Let x ∈ W . Thus, x is not successor free.
Suppose x : 2A ∈ β. We want to show that x ∈ V (2A). Let y ∈ W such that xRy.
We have to show that y : A is in β. We have to consider two cases. In the first case,
x∆y is in β. Since x : 2A is in β, therefore by the Box rule, y : A is in β. In the
second case, let z in β be such that z is successor-free in β, term(y, β) = term(z, β)
and x∆z in β. Since x : 2a is in β, therefore by the Box rule we have that z : A is in
β. Since term(y, β) = term(z, β), therefore y : A is in β.

(ii) The proof is by done induction on φ. We consider the case ∃A, the other cases
being left to the reader. Suppose β contains a formula ∃A. The rule ∃ is applied,
∃y ∈ β such that x : A occurs in β. By item (i), we have x ∈ V (A). Therefore
M |= ∃A.

Proof of Theorem 2.8. Suppose t is open. Thus, t contains an open branch β. LetM =
(W,R, V ) be the model for β. By the truth lemma, we have M |= ¬φ, contradicting
the validity of φ.

Proof of Proposition 3.1. Let us prove the soundness and the completeness of our tableau
system extended with (Den) and following the above strategy. Obviously, every tableau
constructed, by following the above strategy, from the initial tableau of a formula φ
satisfiable in a dense model will be open. Contraversely, suppose β is an open branch
obtained, by means of our strategy, at the end of the tableau computation from an initial
formula φ. Let W be the set of all x, y, etc occurring in β. As expected, we define
on W the valuation V such that for all Boolean variables p, V (p) = {x ∈ W : x : p
occurs in β}. Now, for the accessibility relation R on W , it is defined as follows: for
all x, y ∈W , xRy iff x∆y occurs in β.

Proof of Proposition 3.2. In order to show that our strategy terminate, it suffices to
follow an argument similar to the one developed in the previous section. Let us be
more precise. Firstly, remark that in any branch β of a tableau constructed from the
initial formula φ and for any x occurring in β, term(x, β) only contains sub-terms or
negation of sub-terms from φ. Seeing that there exists finitely many sub-terms from
φ, at some point of the computation, each intermediate-free pair (x, y) of symbols
occurring in a branch β is not twin-free. Therefore, our strategy terminates.

Proof of Theorem 3.3. Let φ be a formula and t be a tableau obtained from the initial
tableau of ¬φ by means of the tableau rules augmented with (Den). If φ is valid in the
class of all dense models then t is closed.
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6 Annex B: Tableaux Rules
Conjunction Rule

φ ∧ ψ
φ

ψ

Disjunction Rule
¬(φ ∧ ψ)

¬φ ¬ψ

Negation Rule
¬¬φ
φ

∃ Rule
∃A
x : A

¬∃A Rule
¬∃A
x : −A

Box Rule
x : 2A

x4y
y : A

Negation Box Rule
x : −2A
x4y
y : −A

Intersection Rule
x : A ∩B
x : A

x : B

Union Rule
x : −(A ∩B)

x : −A x : −B

Negation Rule
x : −−A
x : A

(Den)
x4y
x4z
z4y

In the ∃ Rule, x is a new symbol. In the ∃ Rule, y is a new symbol. In the Den
Rule, z is new symbol.
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