
HAL Id: hal-02411254
https://hal.science/hal-02411254

Submitted on 14 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stratified evidence logics
Philippe Balbiani, David Fernández-Duque, Andreas Herzig, Emiliano Lorini

To cite this version:
Philippe Balbiani, David Fernández-Duque, Andreas Herzig, Emiliano Lorini. Stratified evidence
logics. 28th International Joint Conference on Artificial Intelligence (IJCAI 2019), Aug 2019, Macao,
China. pp.1523-1529, �10.24963/ijcai.2019/211�. �hal-02411254�

https://hal.science/hal-02411254
https://hal.archives-ouvertes.fr


Stratified evidence logics

Philippe Balbiani1 , David Fernández-Duque2 , Andreas Herzig1 and Emiliano Lorini1
1Institut de Recherche en Informatique de Toulouse, Toulouse University 2Ghent University
{philippe.balbiani,andreas.herzig,emiliano.lorini}@irit.fr, david.fernandezduque@ugent.be

Abstract
Evidence logics model agents’ belief revision pro-
cess as they incorporate and aggregate informa-
tion obtained from multiple sources. This infor-
mation is captured using neighbourhood structures,
where individual neighbourhoods represent pieces
of evidence. Nevertheless, these formalisms rep-
resent evidence aggregation qualitatively, and do
not allow one to quantify the amount of resources
(i.e., pieces of evidence) required to reach a spe-
cific belief. In this paper we propose an extended
framework which allows such information to be
recorded, provide a complete deductive calculus
and a proof of decidability, and show how existing
frameworks can be embedded into ours.

1 Introduction
Evidence logics were first proposed by van Benthem and
Pacuit [van Benthem and Pacuit, 2011a; van Benthem and
Pacuit, 2011b] and then further developed by van Benthem
et al. [van Benthem et al., 2012; van Benthem et al., 2014]
and Baltag et al. [Baltag et al., 2016a; Baltag and Occhip-
inti Liberman, 2017]. More recently, they were extended to
the multi-agent setting by [Liu and Lorini, 2017]. They aim
to model belief formation in settings where an agent has ac-
cess to different pieces of evidence. Evidence is modelled
as a family of sets of possible states of the world, which the
agent must then combine in various ways in order to form
her beliefs. This is similar to the conception of evidence
held by Shafer’s theory of uncertainty [Shafer, 1976] as well
as by theories of information fusion [Benferhat et al., 1993;
Benferhat et al., 1995; Dubois et al., 2016] that conceive be-
lief as the result of aggregating incomplete or uncertain in-
formation coming from various sources of evidence. It is
also connected with justification logic by [Artemov, 2008;
Fitting, 2005] in which evidence is expressed as a term, and
possible manipulations of evidence are conceived as opera-
tions over terms.

Evidence logics can be applied both to situations where an
agent receives information from possibly fallible sources such
as news outlets, as well as to situations where an agent per-
forms experiments to obtain data of varying precision about
the state of the world, as in e.g. physics. Their semantics

exploit neighbourhood models that have also been used to
model explicit, as opposed to implicit, belief [Balbiani et al.,
2016; Balbiani et al., 2018; Velázquez-Quesada, 2013].

The logics considered so far provide a qualitative account
of belief formation: either an agent has evidence for a certain
fact, or she does not. Our aim is to introduce a quantitative el-
ement to these frameworks resulting in a new family of logics
called stratified evidence logics. This may be used to mea-
sure the number of distinct sources needed to pool enough
evidence to justify a certain belief, or else be interpreted as
a measure of effort, say in performing precise measurements.
As we want to allow for the possibility of considering arbi-
trary but finite amount of data (or, perhaps, countably many
pieces of information), we will model this effort using car-
dinal numbers: [1]ϕ means that the belief ϕ can be justified
using up to one piece of evidence, [2]ϕ that ϕ can be justi-
fied using up to two pieces of evidence, and [ω]ϕ that ϕ can
be justified using some finite (but arbitrarily large) amount of
pieces of evidence. The idea of adding a quantitative param-
eter to epistemic modalities goes back to [van der Hoek and
Meyer, 1991] in which graded epistemic logics are studied.
More recently, it was further developed by [Naumov and Tao,
2015] who introduce modal operators capturing the “cost” for
an agent of justifying a certain conclusion.

We believe that stratified evidence logics provide a power-
ful and useful alternative to existing logics of evidence suit-
able for applications in artificial intelligence (AI), where an
artificial agent such as a chatbot or a conversational agent is
expected to gather information, to filter it and to transfer the
selected information to the human user. Such agents may be
endowed with the capability of forming beliefs on the basis
of the collected evidences. By way of example, consider a
chatbot connected to the Internet who has to provide informa-
tion to the human user about the quality of a certain movie.
The chatbot has access to different recommendation systems
about movies (e.g., Netflix, Rotten Tomatoes, IMDb). Strat-
ified evidence logics allow us to identify the number of rec-
ommendations that are sufficient for the chatbot to form an
opinion about the quality of the movie and to be able to in-
form the human about this.

As we will show, existing frameworks naturally embed into
our own (with some exceptions). Moreover we show that
stratified evidence logic has a natural axiomatization and is
decidable.



2 Preliminaries
We will need a few basic facts from cardinal arithmetic,
which we briefly review. The cardinality of a set X is de-
noted |X|, and recall that cardinal addition is defined so that
|X| + |Y | = |X ∪ Y | whenever X,Y are disjoint; + will
always denote cardinal addition. Cardinal addition is asso-
ciative and commutative, and coincides with standard addi-
tion on natural numbers; on the other hand, if either α or β
is infinite, then α + β = max{α, β}. We use ω to denote
the cardinality of N (i.e., of the set of natural numbers), and
ω1 to denote the first uncountable cardinal. We also use ∞
as a formal symbol which is decreed to be greater than any
cardinal (and hence not itself an actual cardinal).

Given a set A and a cardinal λ, we use the notation
(
A
λ

)
for the set of subsets of A with cardinality λ (for example,(
A
0

)
= {∅},

(
A
1

)
is the set containing all singletons {a} with

a ∈ A,
(
A
ω

)
is the set of countably infinite subsets of A). A

cardinal degree set is a set Ω whose elements are all cardinals
and such that 0 ∈ Ω. We assume that Ω is countable and
comes equipped with a computable notation system such that
the relation α+β ≤ γ is decidable.1 Typically we take Ω = N
or Ω = N ∪ {ω}.

3 Syntax and axiomatics
Our formal language will be parametrized by a cardinal de-
gree set, Ω. Fix a countably infinite set P of propositional
variables. We define a language LΩ by the following gram-
mar:

ϕ,ψ ::= > | p | (ϕ ∧ ψ) | ¬ϕ | [α]ϕ,

where p ∈ P and α ∈ Ω. Other Boolean connectives are de-
fined by the usual abbreviations, 〈α〉ϕ is defined by ¬[α]¬ϕ,
and we follow the standard rules for elimination of parenthe-
ses. We read [α]ϕ as “ϕ can be justified using α pieces of
evidence” and 〈α〉ϕ as “ϕ cannot be refuted using α pieces
of evidence”.

We define the stratified evidence logic SELΩ by the fol-
lowing axioms and rules, where the nomenclature follows the
modal logic literature.

(Taut) : All classical propositional tautologies

(Mon) : [α]ϕ→ [β]ϕ (if α < β)

(Dist+) : [α]ϕ ∧ [β]ψ → [γ](ϕ ∧ ψ) (if α+ β ≤ γ)

(T) : [α]ϕ→ ϕ

(4) : [α]ϕ→ [α][α]ϕ

(50) : 〈0〉ϕ→ [0]〈0〉ϕ

(MP) :
ϕ ϕ→ ψ

ψ

(N0) :
ϕ

[0]ϕ

(RM) :
ϕ→ ψ

[α]ϕ→ [α]ψ

1For example, one can enumerate cardinals using a standard or-
dinal notation system [Miller, 1976].

As we will see, these axioms and rules are sound and com-
plete for the class of evidence models, defined in the follow-
ing section. First let us exhibit a useful family of derivable
formulas.
Lemma 3.1. If α + β ≤ γ ∈ Ω, then [α]ϕ ∧ [β]ψ →
[γ]([α]ϕ ∧ [β]ψ) is derivable. More generally, if α1 + . . . +
αn ≤ α ∈ Ω, then

([α1]ϕ1 ∧ . . . ∧ [αn]ϕn)→ [α]([α1]ϕ1 ∧ . . . ∧ [αn]ϕn)

is derivable.

Proof. By 4 we have that ` [α]ϕ ∧ [β]ψ → [α][α]ϕ ∧
[β][β]ψ, while by Dist+ we have that ` [α][α]ϕ∧ [β][β]ψ →
[γ]([α]ϕ∧ [β]ψ). The second claim follows from similar rea-
soning by induction on n.

4 Evidence semantics
Our models are based on evidence models as in e.g. [van Ben-
them et al., 2012]. However, since our language allows us
to represent quantitative, as well as qualitative, information
about evidence, it is convenient to encode such information
into our models. Thus we arrive at the notion of stratified
evidence frames.

Definition 4.1. Fix a cardinal degree set Ω. A stratified ev-
idence pre-frame is a tuple F = (W, E), where W is a non-
empty set of worlds and E ⊆ Ω× (2W \ {∅}). We call E an
evidence hierarchy. For α ∈ Ω andH ⊆ E , we write

Hα = {X ⊆W : (α,X) ∈ H}.

We say that F is a stratified evidence frame if E0 = {W}
and, whenever (α1, X1), . . . , (αn, Xn) ∈ E , γ ≥ α1 + . . .+
αn and X := X1 ∩ . . . ∩Xn 6= ∅, we have (γ,X) ∈ E .

We say that F is a strict stratified evidence frame if it is a
stratified evidence frame and for all X ⊆ W and cardinals
α, X ∈ Eα if and only ifX 6= ∅ and there are β < α+1 and
X ∈

(E1
β

)
such that X =

⋂
X . In this case, we will identify

F with (W, E1).
As usual, (strict) stratified evidence models are frames with

a valuation V : P→ 2W .

The inequality β < α+ 1 is a succinct way of writing β ≤
α if α is finite, β < α otherwise. The reason for this choice
is that, in a strict evidence frame, for n < ω we want X ∈ En
to mean ‘there are n basic evidence sets whose intersection is
X .’ We also want X ∈ Eω to mean ‘there are finitely many
evidence sets whose intersection is X’: as we will see, this
coincides with the interpretation of 2 of Baltag et al. (note
that ω + 1 = ω by the definition of cardinal addition). If we
want to consider countable intersections, we write [ω1]ϕ. We
remark that, by set-theoretic convention,

⋂
∅ = W , which

is the reason that we stipulate E0 = {W}. Note that our
definitions then imply that W ∈ Eα for all α ∈ Ω.

Definition 4.2. Let Ω be a cardinal degree set and M =
(W, E , V ) a stratified evidence model. The truth set of ϕ is
defined as follows:



• JpK = V (p);
• J¬ϕK = W \ JϕK;
• Jϕ ∧ ψK = JϕK ∩ JψK;

• w ∈ J[α]ϕK iff there
is X ∈ Eα such that
w ∈ X ⊆ JϕK.

We may also write M, w |= ϕ if w ∈ JϕK. The logical
notions of satisfiability and validity are defined as usual.

Theorem 4.3. Given a degree set Ω, the logic SELΩ is sound
for the class of stratified evidence models.

Proof. LetM = (W, E , V ) be an arbitrary stratified evidence
model; the proof proceeds by checking that axioms are valid
on M and rules preserve validity. We consider only a few
examples.

For Mon, suppose that α < β and w ∈ J[α]ϕK. Then, there
is X ∈ Eα such that w ∈ X ⊆ JϕK, so that α =: α1 ≤ β
(seen as a one-element sum) and thus X ∈ Eβ (seen as a
one-element intersection). Thus X ∈ Eβ is such that w ∈
X ⊆ JϕK, hence w ∈ J[β]ϕK. The argument for Dist+ is
essentially the same, except that now we have X ∈ Eα such
that w ∈ X ⊆ JϕK and Y ∈ Eβ such that w ∈ Y ⊆ JψK,
so that if α + β ≤ γ then X ∩ Y ∈ Eγ and w ∈ X ∩ Y ⊆
Jϕ∧ψK. Axiom T holds becausew ∈ J[α]ϕK means that there
is X ∈ Eα with w ∈ X ⊆ JϕK, which yields w ∈ JϕK. For
4 we note that if w ∈ J[α]ϕK then there is X ∈ Eα such that
w ∈ X ⊆ JϕK. Choose v ∈ X; then v ∈ X ⊆ JϕK, which
means that v ∈ J[α]ϕK. Since v was arbitrary, X ⊆ J[α]ϕK,
thus witnessing that w ∈ J[α][α]ϕK. Other axioms are fairly
standard.

5 Motivating examples
Hamiltonian cycles. Suppose we are given a graph G =
(X,E) with |X| = n, and we want to know if G contains a
Hamiltonian cycle. Since this problem is NP-complete, there
is no known method that is substantially better than guess-
ing a sequence of nodes and checking whether it is indeed a
Hamiltonian cycle.

To model this, let W be the set of all graphs with ver-
tices X . Let V be a valuation such that V (h) is the set
of all graphs of W that contain a Hamiltonian cycle, and
Perm(X) be the set of permutations of X . To each per-
mutation v = (v1, . . . , vn) ∈ Perm(X), let us assign two
evidence sets: Hv , the set of G ∈ W such that v is a Hamil-
tonian cycle of G, and Nv , the set of G ∈ W such that v is
not a Hamiltonian cycle of G. We let E1 be the family of sets
of the formsHv orNv with v ∈ Perm(V ). Finally, we define
the strict evidence modelM = (W, E1, V ).

We claim that M |= h → [1]h. Indeed, if G ∈ JhK
then G has a Hamiltonian cycle given by some permutation
v. We then note that G ∈ Hv ⊆ JhK, which witnesses that
G ∈ J[1]pK. On the other hand, M 6|= ¬h → [1]¬h, as if
v is any permutation of X , we have that there is G ∈ Nv
which has a Hamiltonian cycle (just choose G′ to have a
Hamiltonian cycle different from v) and thus Nv 6⊆ J¬hK.
However, we do have that M |= ¬h → [ω]¬h, since
J¬hK =

⋂
v∈Perm(X)Nv .

The halting problem. Now let us consider the halting
problem, where we are given a Turing machine T (where we
assume that the input is hard-wired into T ) and we want to
know whether T halts. As before, the best that one can do in
general is to simulate T and wait for it to halt.

LetW be the set of all Turing machines, and for each natu-
ral number n let En = {Hn, Nn}, where Hn is the set of ma-
chines that halt in at most n steps andNn its complement. Let
V (h) be the set of all Turing machines that halt, and define
a non-strict evidence model M = (W, E , V ). Then, M |=
h → [ω]h, since if T ∈ JhK it follows that T halts after n
steps for some n and thus T ∈ Hn ⊆ JhK. On the other hand,
everyNn contains a Turing machine that halts (just chooseM
to halt after n + 1 steps), so thatM, T 6|= ¬h → [ω]¬h. On
the other hand,

⋂
n<ω Nn = J¬hK, which is a countably infi-

nite intersection and thus witnesses thatM |= ¬h→ [ω1]¬h.

6 Comparison to existing frameworks
Our framework is meant to be an extension of existing evi-
dence logics, so it will be convenient to review such logics.
For convenience we consider the following language, Lev of
evidence logic:

ϕ,ψ ::= p | > | (ϕ ∧ ψ) | ¬ϕ | Eϕ | Bϕ | 20ϕ | 2ϕ | ∀ϕ.

The intention is for Lev to include the languages of both [Bal-
tag et al., 2016a] and [van Benthem et al., 2012]. If we in-
dicate sublanguages of Lev by displaying the allowed modal-
ities as subindexes, van Benthem et al. consider Lev

EB∀ and
Baltag et al. consider Lev

202∀ (in both cases, additional de-
finable operators are also considered, as well as some proper
extensions). Models are defined over evidence frames, which
are pairs (W, E) where E ⊆ 2W ; such frames can be seen as a
special case of stratified evidence frames where Ω = {0, 1},
and viewing E1 as the set of neighbourhoods.

Semantics are given as in Definition 4.2, with the new
clauses

• w ∈ JEϕK iff there is X ∈ E such that X ⊆ JϕK;

• w ∈ J20ϕK iff there is X ∈ E such that w ∈ X ⊆ JϕK;

• w ∈ J2ϕK iff there is finiteX ⊆ E such thatw ∈
⋂
X ⊆

JϕK;

• w ∈ J∀ϕK iff JϕK = W .

The semantics forBϕ are somewhat more elaborate. Say that
S ⊆ E is consistent if any finite intersection of elements of S
is non-empty, and maximal consistent if no proper extension
of S is consistent. Then, w ∈ JBϕK if and only if for every
maximal consistent family S we have that

⋂
S ⊆ JϕK.

We do not claim that Bϕ is definable in our language in
general, but as pointed out in [Baltag et al., 2016a], E is de-
finable in Lev

202∀ by Eϕ↔ ∃2ϕ and B is also definable over
the class of finite structures by Bϕ ↔ ∀32ϕ. Thus we will
focus on comparing LΩ and Lev

202∀.

Theorem 6.1. Over the class of strict stratified evidence
models, L{0,1,ω} is expressively equivalent to Lev

202∀.

Proof. By induction we show that for every ϕ ∈ Lev
202∀ there

is ϕ′ ∈ L{0,1,ω} equivalent to ϕ. Let M = (W, E , V ) be a



strict evidence model. If ϕ = ∀ψ, by induction hypothesis
there is ψ′ ∈ L{0,1,ω} equivalent to ψ. Then [0]ψ′ holds if
and only if Jψ′K = W , i.e. if and only if ∀ψ holds, and we
may thus set ϕ′ = [0]ψ′. Similarly, [1]ψ′ holds if and only
if 20ψ does (as the semantics are identical), and inspection
on the semantics of [ω]ψ′ shows that it is equivalent to 2ψ,
as both require that x ∈

⋂
X ⊆ JψK IH

= Jψ′K for some finite
X ⊆ E1. Note that the translation ϕ 7→ ϕ′ is invertible, so the
two languages are expressively equivalent.

On the other hand, Lev
202∀ cannot express [2]ϕ, although

we leave a proof of this fact for future work. Thus our frame-
work naturally embeds the framework of Baltag et al., and in
the case of finite structures also that of van Benthem et al.

There are other frameworks which consider quantitative
notions of knowledge or belief, although these typically
model trust rather than effort [Baltag et al., 2016b; Falappa et
al., 2013]. Topological semantics for epistemic logic [Baltag
et al., 2017; Moss and Parikh, 1992] also takes the notion of
“effort” to form a new belief into consideration, although the
approach is qualitative rather than quantitative.

7 Completeness for stratified evidence models
The main result of this paper is that SELΩ is complete for the
class of strict stratified evidence models. As an intermediate
step, we first show that it is complete for the class of all strat-
ified evidence models. This intermediate result is interesting
since SELΩ has the finite model property for this class, even
when Ω contains uncountable cardinals. Thus we immedi-
ately obtain the decidability of SELΩ.

Theorem 7.1. Given a cardinal degree set Ω, the logic SELΩ

is sound and strongly complete for the class of stratified evi-
dence models and sound and (weakly) complete for the class
of finite, stratified evidence models.

We prove this by a standard canonical model construction.
Let Ω be a cardinal degree set. First let us define the set of
worlds of our models. Say that a set Σ of formulas is ad-
missible if it closed under subformulas, single negations and
[0]> ∈ Σ.

Definition 7.2. Let Ω be a cardinal degree set, Σ ⊆ LΩ

be admissible, and let MC be the set of all maximal SELΩ-
consistent subsets of Σ. For w ∈ MC, let MCw be the set
of all v ∈ MC such that, for all ϕ, [0]ϕ ∈ v if and only if
[0]ϕ ∈ w.

In order to interpret [0] correctly, we need all of the worlds
in a model to satisfy the same formulas of the form [0]ϕ. Thus
we will not work with all of MC, but rather with subsets of
the form MCw, and these will be the possible worlds in a
model.

Next we define the evidence sets in our canonical model.

Definition 7.3. Fix a degree set Ω, an admissible set Σ ⊆ LΩ

and w ∈ MC. For α ∈ Ω and ϕ ∈ Σ, define

Xϕ
α = {v ∈ MCw : [α]ϕ ∈ v}.

Then, let Eα be the set of all non-empty sets of the form

Xϕ1
α1
∩ . . . ∩Xϕn

αn

such that α1 + . . .+ αn ≤ α and ϕj ∈ Σ for each j ≤ n.
With this we define the structure Mw = (MCw, E , V )

where u ∈ V (p) if and only if p ∈ u.

Lemma 7.4. Givenw ∈ MC, the structureMw is a stratified
evidence model.

Proof. First we check that E0 = {MCw}; that MCw ∈ E0
follows from the fact that [0]> ∈ v for all v ∈ MCw, hence
X>0 = MCw. On the other hand, if X ∈ E0, it follows that
X = Xϕ1

0 ∩ . . . ∩ X
ϕn
0 for some formulas ϕ1, . . . , ϕn. For

each i ≤ n, either [0]ϕi ∈ w and hence [0]ϕi ∈ v for all
v ∈ MCw, or else [0]ϕi 6∈ w and hence [0]ϕi 6∈ v for all
v ∈ MCw. In other words, Xϕi

0 ∈ {∅,MCw}. But the
empty set is excluded from E0 by definition, which means
that X = MCw, as needed.

Now, if α + β ≤ γ and X ∈ Eα, Y ∈ Eβ , we have that
X = Xϕ1

α1
∩ . . . ∩ Xϕn

αn and Y = X
ϕn+1
αn+1 ∩ . . . ∩ X

ϕn+m
αn+m

for some sequence of formulas ϕ1, . . . , ϕn+m ∈ Σ and
α1, . . . , αn+m ∈ Ω such that α1 + . . . + αn ≤ α and
αn+1 + . . . + αn+m ≤ β. But then, α1 + . . . + αn+m ≤
α+ β ≤ γ, hence X ∩ Y = Xϕ1

α1
∩ . . . ∩Xϕn+m

αn+m ∈ Eγ .

Lemma 7.5. Fix w0 ∈ MC. Then, for all w ∈ MCw0
and all

formulas ϕ, ϕ ∈ w if and only ifMw0
, w |= ϕ.

Proof. A standard induction on formulas, of which only the
case [α]ϕ is interesting. Suppose [α]ϕ ∈ w; then, Xϕ

α 6= ∅,
hence w ∈ Xϕ

α ∈ Eα. By the truth axiom, for all v ∈ Xϕ
α we

have that ϕ ∈ v, hence by the induction hypothesis, Xϕ
α ⊆

JϕK, which means thatMw0
, w |= [α]ϕ.

Conversely, if Mw0 , w |= [α]ϕ, then there are formulas
[β1]ψ1, . . . , [βn]ψn ∈ Σ such that β1 + . . .+βn ≤ α, Xψi

βi
6=

∅, and
X := Xψ1

β1
∩ . . . ∩Xψn

βn
⊆ JϕK. (1)

Define ψ = [β1]ψ1 ∧ . . . ∧ [βn]ψn.
Let us use the notation wα to denote the set of θ ∈ wα

of the forms [α]θ′ or ¬[α]θ′. We claim that there exists a
finite Θ ⊆ (w0)0 such that Θ ` ψ → ϕ; otherwise (w0)0 ∪
{ψ,¬ϕ} would be consistent, hence extendible to a maximal
consistent v ⊆ Σ, and then we would have that v ∈ X \ JϕK,
contrary to (1).

Let θ =
∧

Θ; observe that

` θ ↔ [0]θ (2)

by axioms T 4 and N0, and thus ` ([0]θ ∧ ψ) → ϕ. By the
monotonicity rule, it follows that

` [α]([0]θ ∧ ψ)→ [α]ϕ. (3)

On the other hand, since β1 + . . . + βn ≤ α, by Lemma 3.1
we obtain

` [0]θ ∧ ψ → [α]([0]θ ∧ ψ),

and by (2) and (3), we see that ` (θ ∧ ψ)→ [α]ϕ.
But,

Θ ∪ {[β1]ψ1, . . . , [βn]ψn} ⊆ w,
and hence w ` [α]ϕ; since [α]ϕ ∈ Σ by assumption, it fol-
lows that [α]ϕ ∈ w, as needed.



From this, Theorem 7.1 immediately follows.

Proof of Theorem 7.1. For strong completeness, let Φ be a
consistent set of formulas and Σ = LΩ. Then, Φ can be
extended to a maximal consistent set w∗. The modelMw∗ is
a stratified evidence model and for any ϕ ∈ Φ, from ϕ ∈ w∗
and Lemma 7.5 we obtainMw∗ , w∗ |= ϕ, as needed.

For weak completeness, let ϕ be a consistent formula and
let Σ be the least admissible set with ϕ ∈ Σ. Clearly MC is
finite and since ϕ is consistent, ϕ ∈ w∗ for some w∗ ∈ MC.
ThusMw∗ is a finite stratified evidence model satisfying ϕ.

8 Ranks and decidability
Note that Ω may be infinite, and as such, in a stratified ev-
idence frame F = (W, E) the hierarchy E is technically an
infinite object, even when W is finite. However, E may admit
a finite representation using ranks.

Definition 8.1. Given a stratified evidence frame F =
(W, E) and X ∈ 2W , we define rk(X) = α if α ∈ Ω is
least such that X ∈ Eα, rk(X) =∞ if there is no such α.

Recall that∞ is a symbol that is decreed to be larger than
all cardinals. Some properties of the rank function are as fol-
lows:

Lemma 8.2. Let F = (W, E) be a stratified evidence frame.
Then:

1. If X ∈ Eα for some α ∈ Ω then rk(X) <∞.

2. If α ≥ rk(X) then X ∈ Eα.

Thus the frame (W, E) gives rise to a structure (W, rk).
Moreover rk(X) = 0 iff X = W and rk(X ∩Y ) ≤ rk(X) +
rk(Y ). Similarly, we can reconstruct (W, E) from (W, rk).

Lemma 8.3. Let W be a set and r : 2W → Ω a function such
that r(X) = 0 iff X ∈ {∅,W} and for all X,Y ∈ 2W ,
r(X ∩ Y ) ≤ r(X) + r(Y ). Define Er by (α,X) ∈ Er if
and only if rk(X) ≤ α. Then, (W, Er) is a stratified evidence
frame with rank function r.

Moreover, if (W, E) is any evidence frame with rank func-
tion rk then E = Erk.

The upshot is that (W, rk) is a finite object (since 2W is fi-
nite, as is each of its elements) and we can computably check
if rk satisfies the required properties, provided that the rele-
vant operations on Ω are computable.

Theorem 8.4. Given a cardinal degree set Ω, the set of theo-
rems of SELΩ is decidable.

Proof. This is an immediate consequence of Theorems 4.3
and 7.1, since any formula ϕ is either derivable or refutable in
a finite model (W, E). Note that E may be infinite even if W
is finite; however in view of Lemma 8.3 we may represent it
in the form (W, rk), which is finite since rk has finite domain.

9 The representation theorem
Now we show that SELΩ is also complete for the class of
strict stratified models. In this case we will rely on finite mod-
els given by Theorem 7.1, so we will no longer obtain strong
completeness. Moreover, the finite model property will in-
evitably be lost if Ω contains any uncountable cardinals; note
however that this is not an issue in the ‘intended’ case where
Ω = N ∪ {ω}.

The idea is to start with a finite stratified model and use
that to construct a new strict stratified model. The relation
between the two models will be witnessed by an honest map,
as defined below.

Definition 9.1. Let A = (WA, EA, V A) and B =
(WB, EB, V B) be stratified evidence models. Let Ξ be a set
of cardinals. A map π : WA → WB is reliable (for Ξ) if,
whenever ξ ∈ Ξ andX ∈ EAξ , it follows that π[X] ∈ EBξ . It is
forthright (for Ξ) if, whenever ξ ∈ Ξ, Y ∈ EBξ , π−1[Y ] ∈ EAξ .
A map that is reliable and forthright is honest (for Ξ).

Note that honest maps are automatically surjective pro-
vided 0 ∈ Ξ, since from π[WA] ∈ EB0 we obtain π[WA] =
WB. Honest maps are useful because they preserve the truth
of formulas. The following is easily verified by a standard
induction on formulas.

Lemma 9.2. Let A = (WA, EA, V A) and B =
(WB, EB, V B) be stratified evidence models and π : WA →
WB be an honest map such that for all w ∈ WA and p ∈ P,
π−1[V B(p)] = V A(p). Let ϕ be any formula and Ξ a set con-
taining all cardinals that appear in ϕ. Then for any w ∈WA
we have that A, w |= ϕ if and only if B, π(w) |= ϕ.

Thus if given a finite stratified evidence modelM we can
obtain a strict stratified evidence model A and an honest map
π : WA →WM, we will immediately obtain a completeness
result for the class of strict stratified models. The following
proposition shows that this is indeed the case.

Proposition 9.3. LetM = (WM, EM) be a finite stratified
evidence frame and Ξ be a finite set of cardinals. Then, there
exists a stratified evidence model A = (WA, EA1 , V A) and
an honest map π : WA →WM.

Proof. Define EMΞ := EM ∩ (Ξ × 2W
M

) and let H ⊆ EMΞ
be maximal with the property that there exists a stratified ev-
idence frame A = (WA, EA1 ) and a reliable map π : WA →
WM with π−1[X] ∈ EAξ whenever X ∈ Hξ.

We claim that H = EMΞ . If not, let (α,N) ∈ EMΞ \ H.
Since Ξ is finite, choose β < α + 1 such that if β < α′ + 1
and α′ ∈ Ξ it follows that α ≤ α′. Define a new model B
and a map σ : WB → WA as follows. Let Iβ be a set with
cardinality β and set B = WA × Iβ , and σ(w, i) = w. Then,
set ρ = πσ : WB → WM. For elements of B, we will write
Xi instead of X × {i}.

As B is a strict stratified evidence model, we only need to
define EB1 . We will define EB1 = N ∪O (for ‘new’ and ‘old’)
as follows. We set N = {Ni : i ∈ Iβ}, where

Ni = ρ−1[N ] ∪
⋃

j∈Iβ\{i}

WAj ,



and we set O = {σ−1[A] : A ∈ EA1 }.
We have that ρ−1[Y ] ∈ EBγ whenever Y ∈ Hγ , since

π−1[Y ] ∈ EAγ and thus there are ζ < γ + 1, a set Iζ with
cardinality ζ and a collection {Ai : i ∈ Iζ} ⊆ EA1 so that
π−1[Y ] =

⋂
i∈Iζ Ai, and therefore ρ−1[Y ] = σ−1π−1[Y ] =

σ−1[
⋂
i∈Iζ Ai] =

⋂
i∈Iζ σ

−1[Ai] ∈ EBγ , where the last step
holds because σ−1[Ai] ∈ O and B is a strict stratified evi-
dence frame and |Iζ | = ζ < γ + 1. Moreover,

ρ−1[N ] =
⋂
i∈Iβ

Ni ∈ EBα .

We conclude that ρ−1[Y ] ∈ Hγ whenever (γ, Y ) ∈ Hγ ∪
{(α,N)}.

Next we check that π is reliable. Let X ∈
(EB1
γ

)
. We need

to check that ρ
[⋂
X
]
∈ EMδ whenever γ < δ + 1. Let J =

{j ∈ Iβ : Nj ∈ X} andY = X∩O. By definition ofO, there
is Z ⊆ EA1 such that |Z| = |Y| and Y = {σ−1[Z] : Z ∈ Z}.

Consider two cases. If J = Iβ , then⋂
i∈J

Ni = N × Iβ = ρ−1[N ]

and hence

ρ
[⋂
X
]

= ρ
[ ⋂
i∈Iβ

Ni ∩
⋂
Y
]

= ρ
[
ρ−1[N ] ∩

⋂
Y
]

= N ∩ ρ
[⋂
Y
]

= N ∩ πσ
[⋂
Y
]

= N ∩ πσ
[ ⋂
Z∈Z

σ−1[Z]
]

= N ∩ πσσ−1
[⋂
Z
]

= N ∩ π
[⋂
Z
]
,

the last equality being because σ is surjective. Now, note that
π[
⋂
Z] ∈ EM|Y| since π is reliable, and β + |Y| = γ < δ + 1,

hence ρ[
⋂
X ] ∈ EMδ , as needed.

Otherwise, there is some j < β such that Nj 6∈ X . Here,
we claim that

ρ
[⋂
X
]

= ρ
[
WAj ∩

⋂
Y
]
. (4)

To see this, note that clearly ρ[
⋂
X ] ⊇ ρ[WAj ∩

⋂
Y], since

WAj ⊆
⋂
i∈J Ni. For the other direction, take w ∈ ρ[

⋂
X ].

Then, w = ρ(w, i) for some (w, i) ∈
⋂
X . But, for any

i ∈ J , (w, i) ∈ Nj , and for any Y = σ−1[Z] ∈ Y , since
(w, i) ∈ Y it follows that w ∈ Z and hence (w, j) ∈ σ−1[Z].
Thus w = ρ(w, j) ∈ ρ[WAj ∩

⋂
Y], and (4) holds as claimed.

From this, we see that

ρ
[⋂
X
]

= ρ
[
WAj ∩

⋂
Y
]

= πσ
[
WAj ∩

⋂
Y
]

= πσ
[
WAj ∩

⋂
Z∈Z

σ−1[Z]
]

= πσ
[
WAj ∩ σ−1[

⋂
Z]
]

= π
[
σ[WAj ] ∩

⋂
Z
]

= π
[
WA ∩

⋂
Z
]

= π
[⋂
Z
]
,

which is an element of EMδ by our assumption on A and the
fact that |Z| ≤ |X | < δ + 1.

Thus B is a stratified evidence model and ρ−1[Y ] ∈ EB
whenever Y ∈ Hγ ∪ {(α,N)}, contradicting the maximality
of H. Hence we conclude that H = EAΞ , and π is honest, as
needed.

In view of Theorem 7.1, we obtain:

Theorem 9.4. The logic SELΩ is sound and (weakly) com-
plete for the class of strict stratified evidence models.

Proof. If ϕ is consistent then it is satisfiable on some finite
stratified evidence modelM on some world w∗. Let Ξ be a
finite set containing 0 and all cardinals appearing in ϕ. Then
by Proposition 9.3 there is a strict stratified evidence model
A and an honest map π : WA → WM. Since 0 ∈ Ξ, π is
surjective, so for v∗ with π(v∗) = w∗ we have thatM, v∗ |=
ϕ, as needed.

10 Concluding remarks
We have presented a new family of logics called stratified ev-
idence logics. In contrast to traditional evidence logics that
only account for the qualitative aspects of the connection be-
tween evidence and belief, our logics focus on the quanti-
tative aspects. In particular, they allow us to represent the
amount of pieces of evidence that are sufficient for an agent
to form a certain belief. We have studied the mathematical
and computational properties of our framework by providing
a complete deductive calculus and proving that its satisfia-
bility problem is decidable. Moreover, we have shown that
existing evidence logics can be embedded in our framework.

There are at least three directions that we plan to explore in
future work. First of all, we plan to study complexity of the
satisfiability problem of our stratified evidence logic and to
provide a decision procedure for it based on tableaux. The lat-
ter will make it exploitable in the context of AI applications,
such as the one briefly described in Section 5. Secondly, we
plan to move from a static to a dynamic perspective by adapt-
ing the “model update” approach of dynamic epistemic logic
[van Ditmarsch et al., 2007] to our setting. The idea is to
formalize two basic operations on evidence, conceived as up-
date operations on strict stratified evidence models: evidence
expansion and evidence contraction. The former consists in
adding a new piece of evidence to the agent’s evidence set
E1, while the latter consists in removing a piece of evidence
from it. Thirdly, we plan to generalize our framework to the
multi-agent setting in which different agents may have dif-
ferent evidence sets and exchange pieces of evidence through
communication.
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