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Abstract

It is well known that the building energy use represents a significant part of the total energy
use, ca. 40% in USA according to the Building Energy Data Book. With the improvement
of new construction’s efficiency, the share of equipment’s energy use increases more and more
compared to the overall building energy use. This paper proposes to study a new approach in
building’s systems Fault Detection and Diagnosis (FDD), so as to provide an intuitive FDD
tool for every operator of the maintenance staff regardless of their qualifications. This new
approach uses a method of multivariate statistics, providing easily understandable outputs al-
lowing a quick comprehension of the equipment fault by building maintenance staff. Thereby
the number of unsolved problems can be minimized and the intervention time would be con-
siderably reduced, avoiding unexpected energy use and equipment’s premature obsolescence.

Introduction

Nowadays, thanks to more and more ambitious regulations in terms of energy efficiency for
both existing and new construction, we are required to achieve significant reduction of the en-
ergy use in the building sector. Nevertheless, the expected energy use of buildings remains under
the estimations after comparison with in situ measurements (de Wilde, 2014). One key explana-
tion for this problem is the malfunctioning of systems or their controls (Katipamula and Brambley,
2005). The reduction of these unwanted energy use can be reduced by Fault Detection and
Diagnosis (FDD) (Li and O’Neill, 2018). It aims at detecting the occurrence of malfunctions
during the equipment operation, to inform operation or maintenance staff in the shortest pos-
sible time to avoid violating indoors comfort or too high energy use. Since the creation of
the “Annex 25” (Hyvarinen et al., 1999) of the International Energy Agency (IEA), the real
implementation of this tools in buildings areas remains an open challenge. Furthermore, with
the development of smart buildings, a new challenge appears (Lazarova-Molnar et al., 2016).
There is a big amount of data to deal with and old methods are not always able to cope with it.
Indeed, even in residential area, it may produce a huge amount of data for regulation of simplest
systems, as Air Handling Unit (AHU) with numerous measured data recorded at short time
step. This context increases the computing time and makes the FDD complex or too expensive
for residential buildings.

The FDD techniques in the building sector have been widely described and classified during
the last years (Bruton et al., 2014; Kim and Katipamula, 2018). In this study we chose to
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focus on AHU and their Fault Detection and Diagnosis methods which can be divided in four
main branches (Yu et al., 2014) : analytical-based methods, knowledge-based methods, data-
driven methods, and a combination of all of those. The analytical-based methods usually
compare measured data to the output of a mathematical model (i.e. first approach) and use
the residual to detect faults in systems. The advantage of this method is that, unknown faults
may be detected without huge quantity of measured data. However, the models which gives
the required information can be complex and/or inaccurate. The knowledge-based methods use
Artificial Intelligence (AI) along with expert analysis, to extract knowledge from data to detect
a fault. These methods do not need model to detect and diagnose a fault, but have to be based
on labeled historical data (to apply the AI) and usually did not detect unknown faults. The
data-driven methods find relations among data patterns and identified faults. The key interest
of these methods is that they do not require complex model or informations to detect fault,
even unknown, but the capacity to diagnose can be reduced. Combination of these different
methods appeared in recent years to solve the inherent problems of individual techniques.

Nevertheless, it is still an open challenge for the real time FDD tools to present the results
in a satisfying and intelligible form. It is a major issue to propose a tool understandable
to all maintenance operators regardless their qualification to analyze the FDD tools outputs
(Djuric and Novakovic, 2009).

Aims

The aims of this publication are to explore a new Fault Detection and Diagnosis method
for the building area and to demonstrate the potential of MultiDimensional Scaling (MDS)
in a FDD tool. The proposed FDD tool uses a family of multivariate statistical methods
called MultiDimensional Scaling to deal with this huge amount of data such as the early work
proposed in (Torgerson, 1952). This method is for example used in the field of electrochemical
energy storage to detect faults during batteries operation and estimate their life expectancy
(Degret et al., 2014). This tool, is part of the data-driven methods, may be used to solve the
problem of under-qualified maintenance or operation staff. Indeed, thanks to its ability to
reduce high dimensional data to a two-dimensional representation space whose enhancing all
the identified faults, this tool can be easily used and understood by most of the in situ agents.
The goal of this new FDD technique is to create a user-friendly, autonomous staff oriented
tool, which provides real-time results. Furthermore, the possibility of using MDS method to
represent data according to severity indicators may suggest the opportunity of fault prediction.

The present study proposes to apply the developed tool directly on data from a real existing
tertiary building system to appreciate its capacity to detect some faults.

Method

The developed FDD method can be divided in two main steps. The first one is a pre-process
stage, where the input data are treated to detect faults. The second one is the data treatment
during which the dimensionality reduction is performed and the outputs are generated. All
these stages, presented and detailed in the following section, are performed in the MATLAB
environment because it is robust for data treatment.

Pre-process

In the first step of the method the data are treated to create the rules space, whose coordi-
nates are the evaluation of the chosen logical rules on measured parameters. These input data
are usual data type for building energy management system (BEMS), such as temperature,
power, or boolean. For the purposes of the numerical analysis of a given practical problem,
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the data are transformed into dimensionless quantities. Indeed, the floating point arithmetics
is built such as the rounding errors are minimal if the computer manipulates the numbers of
the same magnitude (Kahan and Palmer, 1979). In addition, the density of the floating point
numbers is the highest in the interval ] 0, 1 [ and it decreases when we move further from this
interval. Thus, it is always better to handle numerically the quantities of the order of O( 1 ) to
prevent serious round-off errors. The original data set is defined in the following form:

U = [Uni ] , (1)

where Uni

def
:= U i ( tn ) is a measured quantity such as the temperature or electrical consump-

tion, obtained on a time grid, i ∈ { 1 , . . . , Nm } with Nm the total number of measured
quantities and n ∈ { 1 , . . . , N t } with N t the total number of time acquisitions.

The data are then treated according to the operation rules defined by the user to detect
the faults. The operation rules represent some logical statements that must be observed in a
regular operation of the building. A rule is defined by:

Uni − Unj = U lim , (2)

where ( i , j ) ∈ { 1 , . . . , Nm } 2 and i 6= j . Here Ulim is a chosen limit value so that a fault is
detected when the difference U i − U j is above this threshold. A total of NR rules are created
and gathered in the following matrix:

ρ = [ ρnk ] , (3)

with k ∈ { 1 , . . . , NR } and n ∈ { 1 , . . . , N t } . Each element of the matrix ρ is defined by:

ρnk

def
:=

Uni k − Unj k
− U limk

β k

. (4)

where ( i k , j k ) ∈ { 1 , . . . , Nm } 2 , i k 6= j k , k ∈ { 1 , . . . , NR } and n ∈ { 1 , . . . , N t } .
The element ρnk is a so-called expert rule, where the results of logic rules are treated in a
dimensionless form thanks to the factor βk. This factor is used as a fault intensity scaling
parameter by the fault detection process. The result of the expert rules are then processed
with an hyperbolic tangent function to create the severity index SI called σnk and computed
according to:

σnk

def
:= tanh( ρnk ) . (5)

Thus, the matrix gathering the severity indexes can be defined:

σ = [ σnk ] , (6)

where k ∈ { 1 , . . . , NR } and n ∈ { 1 , . . . , N t } . It can be remarked that

σ ∈ Mat ( ]−1 , 1 [ , N t , NR )

recalling that NR is the number of rules and N t is the number of time step measurements. The
SI allows to present the results of Eq. (5) in a dimensionless form in ] − 1 , 1 [ regardless of the
physical nature of the fault. Figure 1 shows a representation of the SI and how the reading
must be interpreted.

Another indicator is created to detect the emergence of multiple faults. The total fault
severity is denoted by λ and defined as follows:

λn

def
:=

NR
∑

k=1

σ +
nk , (7)
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Figure 1: Severity index form.

where n ∈ { 1 , . . . , N t } and

σ +
nk

def
:= max ( σnk , 0 ) . (8)

Thus, σ +
nk corresponds to the positive part of the severity, meaning that a fault appeared as

illustrated in Figure 1. The last indicator corresponds to the total number of faults appearing
simultaneously:

δn

def
:=

NR
∑

k = 1

χ [ 0 , 1 ]( σnk ) , (9)

where χ [ 0 , 1 ] ( • ) denotes the indicator function of the subset [ 0 , 1 ] .

Data treatment

The data are treated by the MultiDimensional Scaling method to give information on faults
occurrences in the system. The MDS methods uses the data created in the pre-process phase
as input. The interest of multivariate statistic tools, such as MDS is to represent data of high
dimensionality in viewable form, i.e. representation in a two or three dimensional space. In this
case, the original dimension is a [Nt ×NR] matrix, where Nt is the number of measurements and
NR the number of rules. For example in our case study, this original space data is constituted
by the six rules ρk for winter operation. Then, the MultiDimensional Scaling reduces this high
dimensional dataset into a lower dimensional representation called a map. This map is the most
satisfying representation of the original set of data in the new space. To generate this map
within a shortest time, the Hastie method (Hastie et al., 2009) is used to identify the most
NH interesting points in the original space. It chooses the point in the original space which
minimizes distance to all the other points. Thus, the most representative points of the data set
dispersion in the original space are selected.

A MDSmethod derived from t distributed Stochastic Neighbour Embedding (Maaten and Hinton,
2008) is then used to generate the map, while preserving the point neighbourhood based on
the conservation of the distance among the points. So, the MultiDimensional Scaling method
is a mapping which for the matrix σ returns a new matrix σ̃ in a lower dimensionality space:
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Figure 2: Schematic representation of an AHU.

f : Mat ( ]−1 , 1 [ , Nt , NR ) → Mat (R , NH , ND ) (10)

f : σ 7−→ σ̃ , (11)

where ND is the number of dimensions chosen in the reduced space (two or three usually). So,
this method allows an easily understandable representation of the initial matrix U of [N t ×Nm ]
size by a matrix of only [NH ×ND ]. The breaking down of the final map regarding the violation
to each rule allows the identification of faulty areas and of nominal operation.

Case study

In this paper, the FDD tool is applied to a French existing building, located in the West
of the country. For confidentiality issues, this building cannot be identified in details. The
construction is a recently built waste treatment center divided in two parts. The first one is
composed of ca. 500 m2 of technical premises and will not be studied in this paper. The second
houses the part of the building where the employees work, composed of offices, lunch room,
cloakroom and sanitary, on 350 m2.

The internal conditions of the office part are maintained thanks to a heating floor, radiators
and air treatment, all powered by a geothermal heat pump and solar heating network. In
this work, the FDD tool is only tested on the air handling unit (AHU). The justification of
this restriction will be detailed more later. The AHU is a dual flow ventilation composed of a
cross flow heat exchanger (to pre-heat the air thanks to exhaust air), two fans, an heating coil
(powered by the heat pump), to regulate the air temperature, and several temperature sensors
to see the evolution in the system. Figure 2 illustrates the AHU composition and shows the
implementation of sensors.

The system data are temperature informations from the different sensors and power infor-
mation of fans and the heating coil. The equipment power was turned into boolean values to
allow their treatment by the MDS method. The temperatures recorded by different sensors will
be called as follows in the rest of the paper : Tout , the outside air temperature (read before the
heat exchanger) ; Tprh , the pre-heated air (after heat exchanger warming) ; as Tsup , the supply
air (reheated by the heating coil) ; Tint, the indoor air (measured in the extraction path) ; and
Texh , the exhaust air (at the end of the ventilation path, after the heat exchanger). As for the
temperatures, the energy use of the harvest elements will be renamed : the supply fan energy
use as Pfan and the heating coil consumption as Php . In this study case Nm = 7 . The different
temperature profiles are presented in Figures 3 to 6.
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Figure 3: Inside and outside temperature time series.
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Figure 4: Pre-heat and inlet temperature time series.
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Figure 5: Inlet and outlet temperature time series.

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2013   

0

5

10

15

20

25

30

35

40

Figure 6: Inside and outlet temperature time series.
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Table 1: Set of rules.

Season Ident. Rules

1.1 Tsup < Texh

1.2 Tout < Tint

2 Tint + 10 < Tsup [ ◦
C ]

3 0 < Tout − Tsup

4.1 Tint < 19 [ ◦
C ]

Winter 4.2 Tprh = Tsup

5.1 21 < Tint [
◦
C ]

5.2 Tprh < Tsup

6.1 Tsup < Tint − 1 [ ◦
C ]

6.2 Php = 0

1 Tprh < Tsup

2.1 Tout < Tint

Summer 2.2 Tint < 22 [ ◦
C ]

2.3 Pfan < 1

3 T i( tn+1 )− T i( tn ) < 10−6 [ ◦
C ]

In this work, since the control sequences of the system are not known, the case study is
particularly useful to explore an underrated FDD building area fault : the wrongly configured
building system (Lazarova-Molnar et al., 2016). Thus, data values validity regarding several
logical control rules will be studied and the ability of this FDD tool to detect these faults will
be used as a benchmark.

As the rules are unknown, some must be chosen to determine the nominal operation of the
system. These control rules have been selected, in order to highlight some operation faults
judged plausible from the functional analysis of the building system. The rules chosen to study
the operation of the system are derived from the AHU performance assessment rules (APAR)
(Schein et al., 2006) and summarized in Table 1.

Six rules are selected for the winter operation (Nw
R = 6) and three for the summer (N s

R = 3).
Regarding the winter rules, the first rule is composed of two sub-rules, allowing to see if the
room is overheating. The second rule shows a control problem with a useless overheating of the
air. The third one is used to detect a failure in heating components or bad sensors implantation.
The set of rules n ◦4 is used to know if the coil did not operate when it is needed. The rules 5.1
and 5.2 detect if the coil operates when not necessary. And finally the two rules n ◦6 show if
the heating pump provides energy only when it is needed. Concerning the summer season, only
three rules are proposed. The first one checks if the heating pump operates in a bad regime
(i.e. heating mode), the second one if the free-cooling is activated and the third checks if the
temperature sensors are saturated.

Then the Ulim and β values must be set regarding the goal, to allow the data treatment.
These two coefficients must be selected by the operator for each rule presented above. They are
issued from expert knowledge and their determination may be complex. The values of these
two coefficients are presented in Tables 2 and 3 for the winter and summer periods, respectively.

All this information must be detailed for the MDS treatment, since it is the basis for
the dimensionality reduction. After the selection and the code implementation of all these
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Table 2: Ulim and β values for winter.

Ident. 1.1 1.2 2 3

U lim 0 0 −5 0

β 2 5 10 5

Ident. 4.1 4.2 5.1 5.2 6.1 6.2

U lim 19 0 −21 0 −1 0

β 1 1 2 1 1 0

Table 3: Ulim and β values for summer.

Ident. 1 2.1 2.2 2.3 3

U lim −2 0 −22 0.75 10−6

β 1 1 1 1

(

T i( tn+1 ) + T i( tn )
)

2

parameters, the dimension reduction with MDS is carried out.

Results and Discussion

In this section we present the results obtained using this method, first the values generated
in the pre-process stage and then the map is obtained in the data treatment phase.
Regarding the pre-process stage, the input matrix U has a size of [ 8512 × 6 ], the ρ and σ are
matrices of size [ 4346 × 6 ] and the σ̃ matrix has a size of [ 1000 × 2 ] for the winter season.
For the results of the data treatment stage, the map generated by the reduction method reflects
the behaviour of the system regarding the operational rules described above. The preliminary
results are shown in Figure 7 for the winter period. On this representation of the system
operation faults, each point represents the state of the system at each time step. On one hand,
the color of the marker indicates the total fault intensity. The value shown on the right with the
color bar is the results of λ i.e. the sum of positive parts of the severity indicators σk above zero.
This value ranges from 0 with a black marker, meaning that the resulting value of the expert
rule are under the prescribed limit, up to 2 (white markers) indicating simultaneous faults (two
rules severity indicators reach the maximal value of one, or more faults reaching intermediate
positive values). A value of the SI of approximately 1 (orange markers) means that there is a
complete violation of one of the rules or a partial violation of at least two rules. On the other
hand, the marker shape shows how many faults are effectively appearing simultaneously. A
round marker indicates that there is no severity indicator above zero, a square marker means
that one SI is above zero, two are represented with a diamond and three with a triangle though
this case is extremely rare in the data set. So, on this map it cannot appear a round marker
with an other color than black, or a square marker with a lighter color than orange, because
the number of potential faults would not match with the λ value.

So, the analysis of the projected data shows that the nominal operation of the system is
essentially concentrated in the middle of the map. Indeed, all square and blue markers are
clustered in the central area and it is obvious that a continuum leads to different faults located
on boundary of the map. It can also be noticed that even though square and diamond markers
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Figure 7: Air Handling Unit winter operation map generated by MDS.

may be close, they are significantly clustered. These fortuitous attributes of the map generated
by the MDS method, provide a clear representation and identification of faults. Actually, since
the nominal operation is located in the center of the map, with the identified faults clustering
on the boundary, their determination is easy and quick.

The next step is the identification of the different kinds of faults. The expected result of the
method, is that all the faults are clearly clustered, and to avoid a dispersion of the same faults
across all the map. An identification of the violated expert rules leads to this new representation
of the map of the faults repartition shown in Figure 8. In this map each color as well as the
shape of the markers, represents one of the six winter rules. A point is identified as displaying
the fault ρi if it has the highest severity indicator value σi. So the representation of the point
(color or form) indicates the predominant fault. Figure 8 also represents a possible view that
may be displayed to an operator on the BEMS.

Thanks to the color code, the visualisation of the faults’ location in the reduced space is
rapidly understandable. The analysis of this map regarding the faults identification highlights
the fact that the method clusters the faults together. This capacity of the dimensionality re-
duction method is particularly appreciable for the aims of an Automated Fault Detection and
Diagnosis (AFDD) tool. Indeed, the prior data treatment coupled with the MDS reduction
method allows the generation of a new reduced space, where all the identified faults are clearly
grouped. The analysis of the Figures 7 and 8, shows that the evolution of the operation of the
system appears to be continuous. The condition of nominal operation, located in the center
of the map drifts to faulty behaviour, which are rather located on the map boundary. The
direction of the operation of the system representation indicates which fault type is overriding.
Simpler, on the reduced space, the radius length of the localisation can be understood as faults
gravity and the angle type of the occurring fault. This representation is user oriented, because
it allows a quick and easy identification of the faults.
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Figure 8: Main fault identification for the winter period.

Thanks to the two different representations of the markers in the above maps, it is straight-
forward to identify advantages of the this kind of representation for FDD application. Another
asset of this FDD tool, is that as Figure 7 already showed, it allows multiple faulty states detec-
tion (markers in diamond or triangle shapes). With Figure 9 map representation, this multiple
fault detection can be more extensively studied. In this new map, as in Figure 8, each different
marker shape stands for the principal winter fault regarding the severity indicator result. In
addition, the marker color indicates the second most significant fault, i.e. the fault with the
second most important SI value. The grey points represent the points with at most one fault.

This analysis of the map in Figure 9 reveals that the point of each time step in the new space
is also logical regarding the multiple fault occurrences. Indeed, as clearly illustrated in the top
right corner area of this map, once again the MDS allows the creation of a space continuum
between the fault evolution, in which the multiple fault appears. In this aforementioned zone,
there are two main faults which are the fault ρ2, symbolised by the diamond marker, and the
fault ρ5, represented by the apex down triangle. In Figure 8 we can only see that the boundary
of these two faults is located in a common region, with some almost overlying points. However,
thanks to Figure 9, these layering points are explained. Actually, this map shows that in the
triangle nearer part of the diamond zone a multiple fault appears, with the fault number two
as second fault (showing by the apex down triangle as marker) illustrated by the red color.
And in the same way, in the apex down triangle zone, closer area of the diamond zone, appears
triangle in cyan color. Near this overlapped zone there is an area of multiple faults and these
overlying points can be explained by the fact that in this zone the main fault changes from one
to another.

The operation map for the summer period is shown in Figure 10. As mentioned before, the
nominal operation is located in the map center. Figure 11 enables to identify the main fault
occurring. On the bottom boundaries, the three main faults occurrences are highlighted. The
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faults n ◦1 and 3 are more frequent than faults n ◦2 . It can be noted that the saturation of the
sensor of the outside temperature is well identified using fault n ◦3 . The saturation can also be
noticed in Figure 3 during the month of August. When two faults occur simultaneously, they
can be distinguished in Figure 12. By comparison between Figures 11 and 12, in the bottom
left corner, the main fault corresponds to the rule n ◦3 and the secondary to rule n ◦1 .

Regarding the Central Processing Unit (CPU) time of this method, it is relatively reasonable
comparatively to the engineering time needed to analyse all these data and to extract infor-
mation. This cost is almost entirely due to the MDS mapping construction. The elaboration
of a map of about 1000 points as presented in this study, represent around 20 min , measured
on a computer with Intel(R) Core(TM) i7 − 7820HQ and 32, 0 Go RAM and the algorithm
complexity is N2

H with NH the number of plotted points.

We highlight some further interesting and promising capacities of the developed intuitive
FDD tools. A good definition of the severity index seems to be potentially used to make some
fault prediction. This flexibility may be contained in the selection of the two crucial values of
Ulim and β. These parameters are not trivial to set, and must be chosen carefully by an expert.
The fault prediction should be studied more deeply regarding these two parameters.

Conclusion

This study shows that the MultiDimensional Scaling provides an interesting and promising
methodology for air handling unit Fault Detection and Diagnosis, but more generally for sys-
tems. Another interesting area of the research is the possibility to play with the two problems
in dimension reduction between tears and false neighbourhoods in the map. Indeed, these two
inevitable consequences of dimension reduction methods can be used to increase the efficiency
of our FDD approach and more specifically the tears. This perspective of using this inherent
simplification of the reduction method must be an asset for the usage of the multivariate statis-
tics for Fault Detection and Diagnosis.
However the study should be continued further to check the robustness of the tools with, for
example, data sets which contain even more than three simultaneous faults. Also, as the tool
is tested on real data from an anonymous building, the authors miss feed back on the actual
faults, so the tool must be evaluated on more controlled experimental data and thus estimate
precisely the probabilities of false positives or negatives. Further investigations should be also
made to allow the creation of real automated fault detection tools, as for the identification of
the faulty area definition, the faults apparition, etc. And the CPU time should be also reduced
even more to have a real-time FDD tool, so more work is needed to reach this aim.
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