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Abstract. When using the lower order Whitney elements on a simplicial complex,
the matrices describing the external derivative, namely, the differential operators
gradient, curl and divergence, are the incidence matrices between edges and vertices,
faces and edges, tetrahedra and faces. For higher order Whitney elements, if one
adopts degrees of freedom based on moments, the entries of these matrices are still
equal to 0, 1 or −1 but they are no more incidence matrices. If one uses instead
the “weights of the field on small simplices” as alternative degrees of freedom, the
matrices representative of the external derivative are incidence matrices for any
polynomial degree. 1

1 Introduction

Together with the list of nodes and of their positions, the mesh data structure
also contains incidence matrices (with entries 0, 1 or −1) saying which node
belongs to which edge, which edge bounds which face, etc., and there is a
notion of (inner) orientation of the simplices to consider. In short, an edge, a
face, is not only a two-node [ni, nj ], three-node [ni, nj , nl], subset of the set of
the mesh nodes, but such a set plus an orientation of the simplex it subtends
that is defined by the order of its vertices (e.g, [ni, nj ] is the edge oriented
from ni to nj). These matrices, besides containing all the information about
the topology of the domain, for the lowest approximation polynomial degree,
they help connecting the degrees of freedom (dofs) describing the potentials
to those describing the fields. As an example, the relation E = −gradV at
the continuous level becomes e = −Gv where G coincides with the node-to-
edge incidence matrix and e (resp. v) is the vector of edge circulations (resp.
values at nodes) of the electric field E (resp. the scalar electric potential V ),
when nodal (resp. edge) finite elements are used to approximate V (resp.
E). As pointed out in [4], nodal and edge finite element approximations,
that belong to the lowest order reconstructions by the finite element families
introduced in [6] for R3 and in [9] for R2, are Whitney differential forms [10].
We wish to investigate the block-structure of the incidence matrices, when

1 The first author thanks the Laboratoire de Mathématiques J.A. Dieudonné, Uni-
versité Côte d’Azur, Nice, France, where this work started.
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fields and potentials are approximated by high order Whitney forms [3,8],
with dofs given either by the well-known moments [6] or by the more recent
weights on the small simplices [7,8]. We do not have in mind a particular
differential equation to solve but we work on the algebraic equivalent of the
field/potential relation when they both are approximated by forms of higher
polynomial degree. We will see that the involved matrices present a structure
by blocks, each block multiplying the dofs of the potential associated to a
geometrical dimension. In the following we adopt the notation of the finite
element exterior calculus, see e.g. [2].

Let Pr(Rd) and Hr(Rd) be, respectively, the space of polynomials in n
variables of degree at most r and the space of homogenous polynomials in
n variables of degree equal to r. Then, PrΛk(Rd) = PrΛk and HrΛk(Rd) =
HrΛk denote the corresponding spaces of polynomial differential forms. The
space of trimmed polynomial differential forms P−r Λk can be defined by
involving the Koszul operator, κ : Λk+1 → Λk being Λk the space of k-
differential forms in Rd (see, e.g. [1]), that satisfies

κ(u ∧ η) = (κu) ∧ η + (−1)ku ∧ (κη) , u ∈ Λk , η ∈ Λ2.

Moreover, κ(fu) = fκu if f is a function and κ(dxi) = xi. These properties
fully determine κ and yield κ(dxi∧dxj) = xidxj−xjdxi , κ(dxi∧dxj∧dxk) =
xidxj ∧dxk−xjdxi∧dxk+xkdxi∧dxj . In particular κ : HrΛk+1 → Hr+1Λ

k

and, for d = 3, κu is equal to x · u (k = 0), x× u (k = 1), xu (k = 2), and 0
(k = 3), respectively. The space P−r Λk is intermediate between Pr−1Λk and
PrΛk as follows:

P−r Λk = Pr−1Λk + κHr−1Λk+1 = {u ∈ PrΛk : κu ∈ PrΛk−1} .

Let Ω be a bounded polyhedral domain of Rd and T a simplicial mesh of
Ω. The spaces of finite element differential forms with respect to the trian-
gulation T are denoted P−r Λk(T ). By HΛk(Ω) we denote the Sobolev space
H1(Ω) if k = 0, H(curl;Ω) if k = 1, H(div;Ω) if k = 2 and the space L2(Ω)
if k = 3. Then we define

P−r Λk(T ) = {u ∈ HΛk(Ω) : u|T ∈ P−r Λk for all T ∈ T } .

It is well known (see, for instance, [2]) that these finite element spaces are
that of the Lagrange finite elements of degree r if k = 0, the first family of
Nédélec finite elements of order r conforming in H(curl;Ω) if k = 1, the first
family of Nédélec finite elements of order r conforming in H(div;Ω) if k = 2,
and discontinuous elements of degree ≤ r − 1 if k = 3.

For 0 ≤ j ≤ d, let ∆j(T ) be the set of all j-dimensional subsimplices of
the simplex T and ∆j(T ) be the set of all j-dimensional subsimplices of the
mesh T . Let us denote by Λk(T ) the space of all smooth differential k-forms
on a tetrahedron T . The trace operator TrS : Λk(T )→ Λk(S), for S ∈ ∆j(T )
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with k ≤ j < 3, is the map defined in the following way

for j = 2 (S = f) for j = 1 (S = e) for j = 0 (S = ni)

Trfu =


u|f if k = 0,
nf × u if k = 1,
u · nf if k = 2 ;

Treu =

{
u|e if k = 0,
u · τ e if k = 1 ;

Trniu = u(ni) if k = 0.

where nf =
(vj−vi)×(vk−vi)

|(vj−vi)×(vk−vi)|
, for f = [ni, nj , nk], τ e =

vj−vi

|vj−vi|
, if e = [ni, nj ],

with vi the Cartesian coordinates of the node ni.
In the finite element exterior calculus, we adopt spaces of differential forms

u which are piecewise smooth, usually polynomials, with respect to T , i.e.,
the restriction u|T is smooth for each T ∈ T . Then, for f ∈ ∆j(T ) with j ≥ k,
the form Trfu can be multi-valued, that is, we can assign a value for each
T ∈ T containing f by restricting u to T and then taking the trace on f . If all
such traces coincide, we say that Trfu is single-valued. It is well-known that
if Trfu is single-valued for all f ∈ ∆j(T ), k ≤ j ≤ d− 1, then u ∈ HΛk(Ω)

2 Moments and potentials

The construction of dofs based on moments for the space P−r Λk(T ) requires
the use of PrΛk(f), for certain f subsimplices of T . Here, PrΛk(f) is the space
of forms obtained by restricting those of PrΛk(Rs) to f being s = dim(f) ≤ d.

Definition 1. The moments of a polynomial k-form u ∈ P−r Λk(T ) with
0 ≤ k ≤ n and r ≥ 1 are the scalar quantities∫

f

Trfu ∧ η, η ∈ Pr+k−s−1Λs−k(f), (1)

for each f ∈ ∆s(T ) and k ≤ s = dim(f) ≤ d.

The moments of a k-form u are associated to subsimplices of T of dimen-
sion equal to or greater than k. If r + k − s − 1 < 0 in (1), there are no
moments associated to subsimplices of dimension s. For r = 1, the moments
are associated only to k-subsimplices of T . The wedge product ∧ appear-
ing in (1) extends the notion of exterior product to forms. It holds that
u(k)∧v(`) = (−1)k` v(`)∧u(k), where u(k) stands for the k-form u. If k+` > d
it is zero. In details, for d = 2, 3, we have u(0) ∧ v(k) = (uv)(k) for k ≤ d,
u(1) ∧ v(1) = (u× v)(2), and, for d = 3, u(1) ∧ v(2) = u(2) ∧ v(1) = (u · v)(3).

When considering moments the main tool for the identification of the
matrix of the exterior derivative operator is the integration by parts formula∫
f

Trf du∧η =

∫
∂f

Tr∂f (Trfu∧η)+(−1)k−1
∫
f

Trfu∧dη , u ∈ Λk(T ). (2)

Another important tool is the choice of a basis of Pr+k−s−1Λs−k(f) to rep-
resent η. To this purpose, we introduce the multi-index α = (α0, . . . , αs)
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of s + 1 integers αi ≥ 0 and weight |α| =
∑s
i=1 αi. The set of multi-

indices α with s + 1 components and weight r is denoted I(s + 1, r). Any
(oriented) 3-simplex T = [ni. nj , nl, np] is associated to an increasing map
σ0
T : {0 1 2 3} → {1 2 . . . Nv} and T = [nσ0

T (0), . . . , nσ0
T (3)]. Any (oriented)

s-simplex S ∈ ∆s(T ) is associated to an increasing map σ1
S : {0 1 . . . s} →

{0 1 2 3} such that if σS = σ1
S ◦ σ0

T then S = [nσf (0), . . . , nσf (s)]. For each
S ∈ ∆s(T ) and α ∈ I(s+ 1, r) we set λα = λα0

σS(0) . . . λ
αs

σS(s). Then

Pr′Λ
0(S) = {λα : α ∈ I(s+ 1, r′)},

Pr′Λ
1(S) = {λαdλi : α ∈ I(s+ 1, r′), i ∈ {σS(1), . . . σS(s)}}

Pr′Λ
2(S) = {λαdλi ∧ dλj : α ∈ I(s+ 1, r′), i, j∈{σS(1), . . . σS(s)}, i<j} ,

Pr′Λ
3(S) = {λαdλi ∧ dλj ∧ dλ` : α∈I(s+ 1, r′), i, j, `∈{σS(1), . . . σS(s)},

i < j < `} .

We now detail (2) in the case of the divergence, the curl and the gra-
dient operators in order to better understand the structure of the matrices
representing these differential operators at the discrete level. An example of
construction of this matrix on one element T = [0, 1, 2, 3] is given for r = 2.
The missing blocks in the matrices of the Examples are full of zeros.

(i) The discrete relation between the moments of the discontinuous piecewise
polynomial function div u and those of the 2-form u. For the moments
with support on T we have α ∈ I(4, r − 1) and∫

T
div u λα =

∫
∂T

u · nT λα −
∫
T

u · gradλα

being nT the outward pointing normal to ∂T .
Example 1: For r = 2, α ∈ {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}.
Let α = (1, 0, 0, 0), then λα = λ0 and gradλ0 = −

∑
i=1,3 gradλi. Re-

marking that nT is in agreement (+) or not (−) with that defined on
each face according to its own orientation, we get∫

T
divu λ0 = −

∫
{012} u · nf λ0 +

∫
{013} u · nf λ0 −

∫
{023} u · nf λ0

+
∫
{123} u · nf 0− (−

∫
T
u · gradλ1 −

∫
T
u · gradλ2 −

∫
T
u · gradλ3) .

This explains the first line of the matrix below: the first 4 blocks of 3
entries are associated to the faces of T , with no more than one non-zero
entry in the first position (that of λ0) and the last block of 3 entries
associated to T all equal to 1 because in the volume integrals on the
right-hand side there are gradλi with i = 1, 2, 3. Same reasoning for the
other 3 choices of α which yield the other 3 lines of the matrix below.

[0, 1, 2, 3]

 −1 0 0 1 0 0 −1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0 1 0 0
0 0 −1 0 0 0 0 −1 0 0 1 0
0 0 0 0 0 1 0 0 −1 0 0 1

1 1 1
−1 0 0
0 −1 0
0 0 −1


[0, 1, 2] [0, 1, 3] [0, 2, 3] [1, 2, 3] [0, 1, 2, 3]
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(ii) The discrete relation between moments of the 2-form curl u and those
of the 1-form u. In this case, we have to consider two different types of
moments, those with support on the faces f ∈ ∂T and those with support
on T . For moments with support on a face f , we have α ∈ I(3, r − 1).
We denote by νf the in-out normal unit vector to ∂f lying on the plane
containing the face f , and τ f = nf × νf .∫

f
curl u · nf λα =

∫
f

divf (u× nf ) λα

=
∫
∂f

(u× nf ) · νf λα −
∫
f

u× nf · gradλα

=
∫
∂f

u · (nf × νf ) λα −
∫
f

u× nf · gradλα

=
∫
∂f

u · τ f λα −
∫
f

u× nf · gradλα .

For moments with support on T , i = σ0
T (l), l = 1, 2, 3 and α ∈ I(4, r−2).∫

T
curl u · λα gradλi
= −

∫
∂T

u× nT · λα gradλi +
∫
T

u · curl(λα gradλi)
= −

∫
∂T

u× nT · λα gradλi +
∫
T

u · gradλα × gradλi .

Example 2: For r = 2, the face-to-edge and face-to-face blocks in the
matrix below are similar (with f , e acting as T , f) to the corresponding
blocks in the matrix of the divergence operator. For the moments on T ,
in this case α = 0; the first line of the volume-to-face block results from∫
T

curlu · gradλ1 = −
(
−
∫
{012} u× nf · gradλ1 +

∫
{013} u× nf · gradλ1

−
∫
{023} u× nf · 0 +

∫
{123} u× nf · [− gradλ2 − gradλ3]

)
+
∫
T
u · 0× gradλ1

[0, 1, 2]

[0, 1, 3]

[0, 2, 3]

[1, 2, 3]

[0, 1, 2, 3]



1 0 −1 0 0 0 1 1
0 1 0 0 1 0 −1 0
0 0 0 −1 0 1 0 −1
1 0 −1 0 0 0 1 1
0 1 0 0 1 0 −1 0
0 0 0 −1 0 1 0 −1

1 0 −1 0 0 0 1 1
0 1 0 0 1 0 −1 0
0 0 0 −1 0 1 0 −1

1 0 −1 0 0 0 1 1
0 1 0 0 1 0 −1 0
0 0 0 −1 0 1 0 −1

1 0 −1 0 0 0 1 1
0 1 0 0 1 0 −1 0
0 0 0 −1 0 1 0 −1


[0, 1] [0, 2] [0, 3] [1, 2] [1, 3] [2, 3] [0, 1, 2] [0, 1, 3] [0, 2, 3] [1, 2, 3]

(iii) The discrete relation between moments of the 1-form gradu and those
of the 0-form u. In this case, we have to consider three different types of
moments, those with support on the edges e ∈ ∂f for the faces f ∈ ∂T ,
those with support on the faces f ∈ ∂T and those with support on T . For
moments with support on the edge e = {ninj}, we have α = I(2, r − 1).∫

e
gradu · τ e λα = (u λα)(nj)− (u λα)(ni)−

∫
e
u gradλα · τ e .
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For moments with support on the face f , we have i = σf (l), l = 1, 2, and
α = I(3, r − 2).∫

f
gradu× nf · λα gradλi = −

∫
f

gradu · (λα gradλi × nf )

= −
(∫

∂f
u (λα gradλi × nf ) · νf −

∫
f
u divf (λα gradλi × nf )

)
= −

∫
∂f
u (λα gradλi) · τ f +

∫
f
u curl(λα gradλi) · nf

= −
∫
∂f
u (λα gradλi) · τ f +

∫
f
u (gradλα × gradλi) · nf .

For the moments with support on T , we have (i, j) = σ0
T (l, k) with l, k ∈

{1, 2, 3}, l < k, and α = I(4, r − 3).∫
T

gradu · λα(gradλi × gradλj)
=
∫
∂T
u λα(gradλi × gradλj) · nT −

∫
T
u div(λα gradλi × gradλj)

=
∫
∂T
u λα(gradλi × gradλj) · nT −

∫
T
u (gradλα × gradλi) · gradλj .

Example 3: The matrix below corresponds again to the case r = 2. So
gradu has not moments with support on T , since r − 3 < 0. In the
face-to-edge block, α = 0 and the first line, for instance, follows from∫
{012} gradu× nf · gradλ1 = −

(∫
{01} u gradλ1 · τ e −

∫
{02} u 0

+
∫
{12} u (− gradλ2) · τ e

)
+
∫
{012} u(0× gradλ1) · nf .

[0, 1]

[0, 2]

[0, 3]

[1, 2]

[1, 3]

[2, 3]

[0, 1, 2]

[0, 1, 3]

[0, 2, 3]

[1, 2, 3]



−1 0 1
0 1 −1
−1 0 1
0 1 −1
−1 0 1
0 1 −1
−1 0 1
0 1 −1
−1 0 1
0 1 −1
−1 0 1
0 1 −1

−1 0 1
0 1 −1
−1 0 1
0 1 −1
−1 0 1
0 1 −1

−1 0 1
0 1 −1


[0] [1] [2] [3] [0, 1] [0, 2] [0, 3] [1, 2] [1, 3] [2, 3]

It worths noting that, with a slightly different basis of Pr′Λk(S) for r′ > 2,
the entries of these matrices remain 0, +1 or -1.

3 Weights and potentials

The notation {α, S}, firstly defined in [7], stands for a particular k-simplex,
the so-called small k-simplices, contained in the (big) tetrahedra T of the



The discrete relations between fields and potentials 7

n

n

n
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0

1

2

n

Fig. 1. Visualization (on the left) of all the small simplices associated to the prin-
cipal lattice of degree r+ 1 = 3 in the tetrahedron T = {n0 n1 n2 n3}. The same set
of small simplices in a fragmented visualization (on the right). A small tetrahedron
in blue, a small face in green, a small edge in red, and a small nodes in brown (in
black, the “twin” node of the brown one in the fragmented view).

mesh. Here α ∈ I(4, r) and S ∈ ∆k(T ). The principal lattice Lr+1(T ) of
order r + 1 > 1 in the simplex T = {nσ0

T (0) nσ0
T (1) nσ0

T (2) nσ0
T (3)} is the set

Lr+1(T ) =

{
x ∈ T : λσ0

T (i)(x) ∈ {0, 1

r + 1
,

2

r + 1
, . . . ,

r

r + 1
, 1}, 0 ≤ i ≤ 3

}
.

Let us consider the principal lattice Lr+1(T ), the multi-index α ∈ I(4, r),
and a k-subsimplex S of T . We denote by vi the (Cartesian) coordinates
of the node ni in R3. The small simplex {α, S} is the k-simplex that be-
longs to the small tetrahedron with barycenter at the point of coordinates∑3
i=0[( 1

4 + αi)vσ0
T (i)]/(r + 1), which is parallel and 1/(r + 1)-homothetic to

the (big) sub-simplex S of T . For r + 1 = 3, in Fig.1, the blue volume is
the small tetrahedron {(0, 0, 0, 2), T}, the green triangle corresponds to the
small face {(0, 1, 0, 1), {n1 n2 n3}}, the red segment indicates the small edge
{(0, 1, 1, 0), {n0 n1}} and all the nodes of L3(T ) are small nodes.

Definition 2. The weights of a polynomial k-form u ∈ P−r+1Λ
k(T ), with

0 ≤ k ≤ 3 and r ≥ 0, are the scalar quantities∫
{α,S}

u, (3)

on the small simplices {α, S} with α ∈ I(4, r) and S ∈ ∆k(T ).

The weights (3) of a Whitney k-form u ∈ P−r+1Λ
k(T ) along all the small

simplex {α, S} of a mesh T are unisolvent, as stated in [5, Proposition 3.14].
Since the result on unisolvence holds true also by replacing T with F ∈
∆n−1(T ) then TrFu ∈ P−r+1Λ

k(F ) is uniquely determined by the weights on
small simplices in F . It thus follows that a locally defined u, with u|T ∈
P−r+1Λ

k(T ) and single-valued weights, is in HΛk(Ω). We thus can use the
weights on the small simplices {α, S} as dofs for the fields in the finite el-
ement space P−r+1Λ

k(T ) being aware that their number is greater than the
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dimension of the space. These dofs have again a meaning as cochains and
this relates directly the matrix describing the exterior derivative with an in-
cidence matrix. The key point is the Stokes’ theorem

∫
C

du =
∫
∂C

u , where

u is a (k − 1)-form and C a k-chain. More precisely, if u ∈ P−r+1Λ
k(T ) then

z = du ∈ P−r+1Λ
k+1(T ) and∫

{α,S}
z =

∫
{α,S}

du =

∫
∂{α,S}

u =
∑
{β,F}

B{α,S},{β,F}

∫
{β,F}

u

being B the incidence matrix with as many rows as small simplices of dimen-
sion k and as many columns as small simplices of dimension k − 1.

The small simplices {α, S} inherit the orientation of the simplex S so the
coefficient B{α,S},{β,F} is equal to the coefficient BS,F of the incidence of
face F on simplex S if β = α and zero otherwise. This is straightforward if
dim(F ) > 0 but also when dim(F ) = 0, as illustrated in Fig.1 (right). The
brown dot (on the left) denotes the small node with barycentric coordinates
(2, 0, 1, 0) in T . In the fragmented visualization, this small node in the nota-
tion {α, n} becomes {(2, 0, 0, 0), n2} (the brown dot) in {(2, 0, 0, 0), T} and
{(1, 0, 1, 0), n0} (the black dot) in {(1, 0, 1, 0), T}.
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