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Abstract

High order Whitney finite element spaces generally lack natural choices of bases
but they do have spanning families. In these pages, we recall such a family on
simplicial meshes and we prove theoretically its effectiveness. We also comment
on some aspects of a new set of degrees of freedom, the so-called weights on the
small simplices, to represent discrete functions in these spaces.
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1. Introduction

Widely used high order finite element spaces, such as those considered in
[10], for the discretization of electromagnetic problems on simplicial meshes
are spaces of trimmed polynomial k-forms of degree r + 1 on simplices, with
r ≥ 0, generally denoted P−r+1Λk in the recent literature. These spaces, known
as discrete equivalents of minimal dimension of the H(curl), if k = 1, or of
the H(div), if k = 2, functional spaces, generally lack natural choices of bases
but they do have spanning families (see [9], [3], [13] or the more recent work
[1]). The problem of defining spanning families for finite element space fitting
some requirements is at the heart of the up-to-date literature. See for example
[15], where a partially orthonormal basis with better conditioning properties is
proposed for simplicial edge elements, or [6] for finite element complexes similar
to those described in [10] with enhanced continuity properties.

In this work, we wish to show how one can compute with one of these
spanning families. We focus on the general methodology to follow in the high
order framework rather than on the particular PDE or function in exam and
we prove theoretical results on its effectiveness. Indeed, the approximation of
a PDE problem in P−r+1Λk or the reconstruction of a discrete function uh ∈
P−r+1Λk from a given set of degrees of freedom, lead to a linear system to solve
which has the same structure in both cases.
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We consider the spanning family introduced in [13] together with a new set
of degrees of freedom to represent functions belonging to the spaces P−r+1Λk,
with r > 0 and k = 0, ..., 3. Both the definitions of the family and of the new
degrees of freedom are associated in a very natural way with a collection of par-
ticular k-simplices, the so-called small k-simplices, defined in the mesh. In each
mesh simplex, the spanning family for degree r+ 1 include all possible products
between the Whitney basis k-forms of polynomial degree 1 and homogeneous
polynomials of degree r in the barycentric coordinates of the simplex. The new
degrees of freedom are integrals (weights) of a k-form uh over these particular
small k-simplices. Note that, for r = 0, the weights coincide with the classical
moments for uh ∈ P−r+1Λk as defined in [10], since the small k-simplices con-
cide with the k-simplices of the mesh, and the spanning family reduces to the
well-known basis of Whitney k-forms of polynomial degree 1.

The advantage of the considered spanning family is the simplicity of its
explicit definition and for the weights on small k-simplices is that, for functions
in P−r+1Λk, they all are integrals over k-chains, so their physical interpretation
(as circulations, fluxes, etc.) is straightforward. In [7], these particular degrees
of freedom have been proved to be unisolvent in P−r+1Λk. However, for r > 0
and k = 1, 2, the number of small k-simplices is greater than the dimension of
the space P−r+1Λk. It can indeed be proved that the elements of the spanning
family satisfy some linear relations and some of the weights are redundant.

Here we investigate how to represent efficiently a trimmed polynomial k-
form, uh, of degree r + 1 starting from these degrees of freedom. Two different
approaches are possible for r > 0: either we keep all the weights or we eliminate
the redundancies by making a suitable selection of the weights. For the first
approach the starting point is the choice of the particular set of generators with
cardinality equal to the number of weights and the relationships between its
elements given in [13], Proposition 3.5. We thus impose some constraints, to
fix a unique representation of uh in terms of this set of generators, by means
of Lagrange multipliers getting a non symmetric square linear system to solve.
We will see that the same constraints are imposed even while seeking for the
approximated solution uh of a PDE problem that needs to be solved in the space
P−r+1Λk with this set of generators. For the second approach the key point is to

select a basis of P−r+1Λk from the proposed set of generators and to choose an
unisolvent subset of weights that allow for the determination of uh by solving
an invertible linear system whose matrix is a generalized Vandermonde one.

2. Notations

Let Pr(Rd) and Hr(Rd) be, respectively, the space of polynomials in d vari-
ables of degree at most r and the space of homogenous polynomials in d variables
of degree equal to r. Then, PrΛk(Rd) = PrΛk and HrΛk(Rd) = HrΛk denote
the corresponding spaces of polynomial differential forms. The space of trimmed
polynomial differential forms P−r Λk can be defined by involving the Koszul op-
erator, κ : Λk+1 → Λk being Λk the space of k-differential forms in Rd (see, e.g.
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[2]), that satisfies

κ(u ∧ η) = (κu) ∧ η + (−1)ku ∧ (κη) , u ∈ Λk , η ∈ Λl.

Moreover, κ(fu) = fκu if f is a function and κ(dxi) = xi. These properties
fully determine κ and yield κ(dxi ∧dxj) = xidxj −xjdxi , κ(dxi ∧dxj ∧dxk) =
xidxj ∧ dxk − xjdxi ∧ dxk + xkdxi ∧ dxj . In particular κ : HrΛk+1 → Hr+1Λk

and, for d = 3, κu is equal to x · u (k = 0), x × u (k = 1), xu (k = 2), and
0 (k = 3), respectively. The space P−r Λk is intermediate between Pr−1Λk and
PrΛk as follows:

P−r Λk = Pr−1Λk + κHr−1Λk+1 = {u ∈ PrΛk : κu ∈ PrΛk−1} .

Let Ω be a bounded polyhedral domain of Rd and Th a simplicial mesh of Ω.
The spaces of finite element differential forms with respect to the triangulation
Th are denoted P−r Λk(Th). By HΛk(Ω) we denote the Sobolev space H1(Ω) if
k = 0, H(curl ; Ω) if k = 1, H(div ; Ω) if k = 2 and the space L2(Ω) if k = 3.
Then we define

P−r Λk(Th) = {u ∈ HΛk(Ω) : u|T ∈ P−r Λk for all T ∈ Th} .

It is well known (see, for instance,[3]) that these finite element spaces are that
of the Lagrange finite elements of degree r if k = 0, the first family of Nédélec
finite elements of order r conforming in H(curl ; Ω) if k = 1, the first family
of Nédélec finite elements of order r conforming in H(div ; Ω) if k = 2, and
discontinuous elements of degree ≤ r − 1 if k = 3.

For 0 ≤ j ≤ 3, let ∆j(T ) be the set of all j-dimensional subsimplices of the

3-simplex T ∈ Th and ∆j(Th) = ∪T∈Th∆j(T ). If ∆0(Th) = {vi}NV
i=1 then each

k-simplex S ∈ ∆k(Th) has associated an increasing map

mS : {0, . . . , k} → {1, . . . , NV } .

This map induces an orientation on S. We use the same notation S to denote
the oriented k-simplex S = [vmS(0), . . . ,vmS(k)].

If S ∈ ∆k(T ) then there exists a unique increasing map mT
S : {0, . . . , k} →

{0, 1, 2, 3} such that, for each i ∈ {0, . . . , k}, mS(i) = mT (mT
S (i)).

If σ is a `-subsimplex of the k-simplex S, with 0 ≤ ` ≤ k − 1, we denote by
S − σ the oriented (k − 1 − `)-subsimplex of S with all the vertices in S that
are not in σ. The boundary of k-simplex S is the (k − 1)-chain

∂k[vmS(0), . . . ,vmS(k)] =

k∑
j=0

(−1)j [vmS(0), . . . , v̂mS(j), . . . ,vmS(k)]

=

k∑
j=0

(−1)j
(
S − [vmS(j)]

)
.
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Let T be a 3-simplex of Th. For j ∈ {0, 1, 2, 3} we denote λT,j : T → R
the baricentric coordinate with respect to vmT (j). For each i ∈ {1, . . . , NV } we

denote λi : Ω→ R

λi(x) =

{
λT,j(x) if x ∈ T and i = mT (j) for some j ∈ {0, 1, 2, 3}

0 otherwise .

Given S ∈ ∆k(Th), 0 ≤ k ≤ 3, we denote wS the k-form defined in the
following way:

• if k = 0, then S = [vi] and wS = λi,

• if k > 0, then S = [vmS(0), . . . ,vmS(k)] and

wS =

k∑
j=0

(−1)jλmS(j)
dwS−[vmS(j)] ,

being d : Pr+1Λk → PrΛk+1 the exterior derivative operator.

It is well known that P−1 Λk(Th) = Span{wS : S ∈ ∆k(Th)} .
For `, n ∈ N let us set

I(`, n+ 1) = {α = (α0, . . . αn) ∈ Nn+1 :

n∑
i=0

αi = `} .

It is easy to check that card (I(`, n+ 1)) = (n+``).
In the sequel we will use the set of pairs

Jr,k(T ) := {(α, S) : α ∈ I(r, 4) , S ∈ ∆k(T )}

whose cardinality is cardJr,k(T ) = (3+rr)(
4
k+1)

3. Generators of P−
r+1Λk(T ) and P−

r+1Λk(Th)

Let T be a 3-simplex of Th. Given α ∈ I(r, 4) we denote λαT = Π3
j=0λ

αj

mT (j).

To each pair (α, S) ∈ Jr,k(T ) we associate the k-form

ξ(α,S) = λαTwS ∈ P−r+1Λk(T ) .

It is known (see, e.g. [13]) that

P−r+1Λk(T ) = Span{ξ(α,S) = λαTwS : α ∈ I(r, 4) , S ∈ ∆k(T )} .

However (see e.g. [7])

Nr,k = dim
(
P−r+1Λk(T )

)
=

(
r + k
k

)(
4 + r
3− k

)
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≤
(
r + 3
r

)(
4

k + 1

)
= N ′r,k = cardJr,k(T ) ,

and the equality holds only if k = 3. Hence, if k = 0, 1, 2 the set

G′r,k(T ) = {ξ(α,S) = λαTwS : α ∈ I(r, 4) , S ∈ ∆k(T )}

generates P−r+1Λk(T ) but it is not a basis.

Remark 1. In [3] it is proved that the subset

Gr,k(T ) = {ξ(α,S) = λαTwS : α ∈ I(r, 4) , S ∈ ∆k(T ) and αi = 0 if i < mT
S (0)}

is a basis of P−r+1Λk(T ).

In the following we investigate how to use in an efficient way the whole set
of generators G′r,k(T ). It will be convenient to order the set of pairs Jr,k(T ) :=
{(α, S) : α ∈ I(r, 4) , S ∈ ∆k(T )} = {(α, S)` : ` = 1, . . . , N ′r,k} and to use the
index ` ∈ {1, 2, . . . , N ′r,k} to denote the functions ξ(α,S), namely, ξ` the function
corresponding to the `-pair (α, S)`.

The key point will be to identify N ′r,k − Nr,k linear combinations of el-
ements of G′r,k(T ), namely, coefficients bn,l with n = 1, . . . , N ′r,k − Nr,k and
l = 1, . . . , N ′r,k such that

N ′
r,k∑
l=1

bn,lξl = 0 for n = 1, . . . , N ′r,k

and such that the matrix BT with entries bn,l is full rank. Let su recall the
following result that is Proposition 3.5 in [13]. (It is also Proposition 3.3 in [7].)

Proposition 1. For k = 0, 1, 2 if S is a (k + 1)-subsimplex of T then

k+1∑
i=0

(−1)iλmS(i)wS−[vmS(i)] = 0 .

Clearly we have also

λβT

k+1∑
i=0

(−1)iλmS(i)wS−[vmS(i)] =

k+1∑
i=0

(−1)iλ
β+e

mT
S

(i)

T wS−[vmS(i)] = 0

for all β ∈ I(r − 1, 4) and S ∈ ∆k+1(T ). These are (r+2
3)(4k+2) equations.

However, in general, these equations are not independent. We now detail an
example.

Example 1: Let us consider T = [v0,v1,v2,v3], k = 1 and r > 2. If β0 6= 0
then β = γ + e0 for some γ ∈ I(r − 2, 4). For S = [v1,v2,v3], the equation

0 = λβT

k+1∑
i=0

(−1)iλmS(i)wS−[vmS(i)] = λγTλ0

k+1∑
i=0

(−1)iλi+1wS−[vi+1] ,
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is a consequence of the equations associated to the other three faces of the
tetrahedra.

Denoting w[jj′] = w[vj ,vj′ ]
, it is easy to check that

λγλ0[λ1w[23] − λ2w[13] + λ3w[12]] = λγλ3[λ0w[12] − λ1w[02] + λ2w[01]]
− λγλ2[λ0w[13] − λ1w[03] + λ3w[01]]
+ λγλ1[λ0w[23] − λ2w[03] + λ3w[02]] .

In fact Nk,r − N ′k,r = (r+kk+1)(3+r2−k) that for k = 0, 1, 2 is smaller than

(r+2
3)(4k+2). The set of equations to be considered is

λβT

k+1∑
i=0

(−1)iλmS(i)wS−[vmS(i)] = 0 . (1)

for all S ∈ ∆k+1(T ) and all β ∈ I(r − 1, 4) such that βj = 0 if j < mT
S (0).

Proposition 2 (Case k = 2). Let βn be the multi-index corresponding to ele-
ment number n in the set I(r− 1, 4) ordered, for instance, lexicographically and
for ` ∈ {1, . . . , N ′r,2} we consider the couple (α, S)` ∈ Jr,2(T ). We denote BT
the matrix with entries

(BT )n,` =

{
(−1)j if (α, S)` = (βn + ei, T − [vmT (i)])
0 otherwise,

being βn+ei ∈ I(r, 4) the multiindex with components (βn+ei)` = (βn)`+δi,`.
Then the matrix BT is full rank.

Proof. The number of rows of BT is

card I(r − 1, 4) =

(
r − 1 + 3

3

)
= N ′r,2 −Nr,2 .

Each row of BT has four elements different from zero, one for each face T −
[vmT (i)], i = 0, 1, 2, 3, of T . The columns of BT , that correspond to a couple
(α, S)` with S = T − [vmT (i)] and (α)i = 0 have all the entries equal to zero.
Otherwise column ` has one element different from zero in the row n with
βn = α` − ei. The submatrix obtained diregarding the zero columns has four
elements on each row and one element on each column so it is full rank and also
B is full rank.

Proposition 3 (Case k = 1). For n ∈
{

1, . . . , (r−1+3
3)
}

let βn be the multi-
index corresponding to element number n in the set I(r − 1, 4) ordered lexico-
graphically. For ` ∈ {1, . . . , N ′r,1} we consider the couple (α, S)` ∈ Jr,1(T ). For
j ∈ {0, 1, 2, 3} we denote Σj = T − [vmT (j)] ∈ ∆2(T ) and BT,j the matrix with
entries

(BT,j)n,` =

{
(−1)i+j if (α, S)` = (βn + emT

Σj
(i),Σj − [vmΣj(i)

])

0 otherwise.
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We denote B̃T,0 the submatrix of BT,0 given by its first (r−1+2
2) rows.

Then the matrix

BT =


BT,3
BT,2
BT,1
B̃T,0

 ∈ N(N ′
r,1−Nr,1) ×N ′r,1 .

is full rank.

Proof. The number of rows of BT is

3 card I(r − 1, 4) + card I(r − 1, 3) = 3

(
r − 1 + 3

3

)
+

(
r − 1 + 2

2

)
=

(
r + 1

2

)
(3 + r) = N ′r,1 −Nr,1 .

Let us denote B̂T the submatrix of BT given by the columns with S =
[vmT (1),vmT (2)], [vmT (1),vmT (3)] or [vmT (2),vmT (3)].

Each row of BT has three elements different from zero. The rows of BT,3,

BT,2 and BT,1 have one element different from zero in B̂T while the rows of

B̃T,0 have the three elements different form zero in B̂T
The columns of B̂T have exactly one element different from zero because

if α0 6= 0 then (α, S) has an entry different from zero in β = α − e0 and

Σj = [vmT (0), vmS(0), vmS(1)] but not in B̃T,0 while if α0 = 0 then (α, S) has

an entry different from zero in B̃T,0. Hence B̂T is full rank and also BT is full
rank.

Now we consider global generators, namely, generators of P−r+1Λk(Th).

Definition 1.

G′r,k(Th) = {λα0
i λα1

j λα2

` λα3
n wS : T = [vi,vj ,v`,vn] ∈ Th, S ⊂ T and α ∈ I(r, 4)}

Notice that since the elements of Th are oriented tetrahedra, from [vi,vj ,v`,vn] ∈
Th follows that 1 ≤ i < j < ` < n ≤ nV .

Definition 2.

Gr,2(Th) = {λα0
i λα1

j λα2

` λα3
n wS : T = [vi,vj ,v`,vn] ∈ Th S ⊂ T,

α ∈ I(r, 4) and α0 = 0 if i < mS(0)}

Gr,1(Th) = {λα0
i λα1

j λα2

` λα3
n wS : T = [vi,vj ,v`,vn] ∈ Th S ⊂ T,

α ∈ I(r, 4) with α0 = 0 if i < mS(0) and α1 = 0 if j < mS(0)}

Any element of G′r,k(Th) and Gr,k(Th) is a function defined in Ω. The support
of λα0

i λα1
j λα2

` λα3
n wS is contained in the union of the tetrahedra that contains S.

If the four components of α are different from zero then its support coincides
with the tetrahedra [vi,vj ,v`,vn].
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Figure 1: Adjacent tetrahedra T = [12, 21, 34, 40], T ′ = [3, 12, 34, 40], sharing a common face
f = [12, 34, 40].

Both G′r,k(Th) and Gr,k(Th) generates P−r+1Λk(Th). It is posible to use
G′r,k(Th) and to impose the relations collected in the matrices BT for all T ∈ Th
to have a unique representation of the elements of P−r+1Λk(Th). When assem-
bling the matric B that takes into account the relations between the elements
of G′r,k(T ) for all T ∈ Th we notice that some relations hold in the two elements
with a common face or, in the case k = 1, in the elements with an edge in
common.

Example 2: Let us assume to work on the simplicial mesh Th = {T, T ′}
composed of the two tetrahedra T = [v12,v21,v34,v40] and T ′ = [v3,v12,v34,v40]
presented in Figure 1. We set k = 1 and r = 1, then we have N ′1,1 = 39 and
N1,1 = 32. Hence matrix B has 7 rows. The relationship

λ12w[v34,v40] − λ34w[v12,v40] + λ12w[v40,v34] = 0

holds in the two tetrahedra.
We also observe that the relations in BT,0 that are not in B̃T,0 do not appear

in any other tetrahedra of the mesh because they involve all the four vertices of
a particular tetrahedra.

4. Solving a PDE over Th

Let us consider a bilinear form

a(·, ·) : HΛk(Ω)×HΛk(Ω)→ R

symmetric, continuous and coercive on the Sobolev space of differential forms
HΛk(Ω). Given L ∈ (HΛk(Ω)′, by the Lax-Milgram lemma, there exists a
unique u ∈ HΛk(Ω) such that

a(u, v) = L(v) ∀v ∈ HΛk(Ω) .

We want to approximate u with a function uh ∈ P−r+1Λk(Th). Recalling

that P−r+1Λk(Th) ⊂ HΛk(Ω) for a mesh Th of Ω, using again the Lax-Milgram

lemma, there exists a unique uh ∈ P−r+1Λk(Th) such that

a(uh, vh) = L(vh) ∀vh ∈ P−r+1Λk(Th) . (2)

8



The problem now is how to compute uh using the explicit set of generators
G′r,k(Th) = {ξ`}N

′

`=1 introduced in Section 2. (Notice thatN ′ > N = dimP−r+1Λk(Th)

of P−r+1Λk(Th)). In particular it holds that

a(uh, ξi) = L(ξi) for i = 1, . . . , N ′ .

We consider the matrix A ∈ RN ′×N ′
and the vector f ∈ RN ′

with entries, resp.,

Ai,j = a(ξj , ξi) , fi = L(ξi) .

Clearly A is singular but symmetric and positive semidefinite. The linear
system AU = f has a solution but it si not unique since KerA 6= {0}. For any
solution U ∈ RN ′

of AU = f , we have
∑
j=1 Ujξj = uh, being uh the unique

solution of (2).

Proposition 4. The rows of the matrix B are a basis of KerA.

Proof: We know that for each ` = 1, . . . , N ′ − N ,
∑N ′

j=1B`,jξj = 0. Then,
for any i = 1, . . . , N ′,

N ′∑
j=1

Ai,jB`,j =

N ′∑
j=1

a(ξj , ξi)B`,j = a(

N ′∑
j=1

B`,jξj , ξi) = 0 .

This means that the rows of B are in KerA. They are linear independent because
B is full rank. Moreover since RankA = N then dim(KerA) = N ′ −N so they
are a basis KerA.

Corollary 1. If f ∈ ImA then there exists a unique solution U ∈ RN ′
such

that
AU = f
BU = 0 .

Proof. It is easy to check that if AU = 0 and BU = 0 then U = 0. In fact
from the first equation U ∈ KerA. Since the rows of B are a basis of KerA,
BU = 0 means that U ∈ (KerA)⊥, then U = 0.

If we want to compute U by solving a square linear system, we have to take
into account the following considerations (see [4] for a complete presentation on
saddle point problems’ treatment).

If a matrix Q ∈ RN ′×(N ′−N) such that its columns are a basis of Ker
(
AT
)

=

(ImA)⊥ is known, then for all f ∈ RN ′
there exists a unique pair (U,Λ) ∈

RN ′ × RN ′−N such that
AU +QΛ = f
BU = 0 .

(3)

In fact, denoting by q the orthogonal projection of f in (ImA)⊥, since f − q ∈
ImA, there exists a unique U ∈ RN ′

such that

AU = f − q
BU = 0 .
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Since the columns of Q are a basis of (ImA)⊥ and q ∈ (ImA)⊥, there exists a
unique Λ ∈ RN ′−N such that q = QΛ. Clearly, if f ∈ ImA then Λ = 0. Notice
also that U is the best approximated solution of AU = f . Finally, it is clear
that, if A is symmetric, then (ImA)⊥ = Ker

(
AT
)

= Ker (A), so Q = BT .

Proposition 5. The matrix [
A BT

B

]
,

where the missing block is meant to be zero, is invertible.

Proof: This matrix is square so it is enough to prove uniqueness. We will
show that if

AU +BTΛ = 0
BU = 0 ,

then U = 0 and Λ = 0. Since BU = 0 we have 0 = UTAU + UTBTΛ =
UTAU. Being A symmetric and positive semidefinite, there exist an orthogonal
matrix P , which columns are eigenvectors of A, and a diagonal matrix D with
Di,i > 0 for i = 1, . . . , N and Di,i = 0 for i = N + 1, . . . , N ′ such that PTDP =
A. So we have

0 = UTAU = UTPTDPU =

N ′∑
i=1

Di,i(PU)2i =

N∑
i=1

Di,i(PU)2i .

It follows that (PU)i = 0 for i = 1, . . . , N hence DPU = 0.. As a consequence
U ∈ KerA because AU = PTDPU = 0. Since the rows of B are a basis of
KerA from BU = 0 follows that U ∈ (KerA)⊥ and then U = 0. Finally being,
B full rank we have dim(KerBT ) = 0 and BTΛ = 0 implies Λ = 0.

The next result follows from Corollary 1 and Proposition 5.

Corollary 2. For any f ∈ RN ′
, the linear system

AU +BTΛ = f
BU = 0 ,

has a unique solution. If f ∈ ImA, then Λ = 0.

Remark 2. The meaning of the coefficients Ui used to represent the discrete
solution uh in terms of the selected set of generators {ξi}N

′

i=1 is not relevant in
the solution procedure. See [11] (resp. [5]) for an application of the proposed
approach in the case k = 1 and r > 0, where redundancies have been eliminated
(resp. have been treated as stated in Corollary 2).

5. Small simplices and weights

For (α, S) ∈ Jr,k(T ), we denote a particular k-simplex contained in T of the
set of the so-called small k-simplices, firstly defined in [12].
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Figure 2: Visualization (on the left) of all the small simplices associated to the principal lattice
of degree r + 1 = 3 in the tetrahedron T = [v0 v1 v2 v3]. The same set of small simplices in
a fragmented visualization (on the right). A small tetrahedron in blue, a small face in green,
a small edge in red, and a small nodes in brown (in black, the “twin” node of the brown one).

Let T = [vmT (0), vmT (1), vmT (2), vmT (3)] be a 3-simplex of Th. The princi-
pal lattice Lr+1(T ) of order r + 1 in the 3-simplex T is the set

Lr+1(T ) =

{
x ∈ T : λmT (i)(x) ∈ {0, 1

r + 1
,

2

r + 1
, . . . ,

r

r + 1
, 1}, 0 ≤ i ≤ 3

}
.

Definition 3. Let T be a 3-simplex of Th and α ∈ I(r, 4).
If r = 0 and S ∈ ∆k(T ) for any k ∈ {0, 1, 2, 3} then s(α,S) = S.
If r > 0 then

• For k = 3, then S = T and s(α,S) is the (small) 3-simplex with barycenter
at the point of coordinates

1

r + 1

3∑
i=0

[(
1

4
+ αi

)
vmT (i)

]
,

and 1
r+1 -homothetic to T .

• For k = 1, 2 and S ∈ ∆k(T ), s(α,S) is the k-subsimplex of s(α,T ) which is
parallel to S.

• For k = 0 and S ∈ ∆0(T ), s(α,S) is the 0-subsimplex of s(α,T )

1

r + 1

3∑
j=0

αjvmT (j) ,

namely the vertex equivalent to S but in s(α,T ).

The orientation of the small simplex s(α,S) coincides with the one of S. See
Figure 2 for a presentation of the small k-simplices, k = 0, ..., d, in a tetrahedron
T for r + 1 = 3.
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Figure 3: From the principal lattice of degree r + 1 = 2 in a tetrahedron T , we define a
decomposition of T into 4 small tetrahedra, 1 octahedra O and 0 reversed tetrahedra ⊥ (left).
Each face on ∂T is decomposed into 3 small faces and 1 reversed triangle 5 (center). Each
reversed triangle 5 corresponds to a relation among the 3 generators ξi of P−2 Λ1 such that
si ∈ ∂5 (here ∂5 = {e1, e2, e3}). Each octahedron O corresponds to a relation among the
4 generators ξj of P−2 Λ2 such that sj ∈ {f1, f2, f3, f4} (right). Note that the 4 faces of the
octahedron O which are reversed triangles are not involved in the latter relation.

v3

v
0

v1

v2

v3

v
0

v1

v2

v3

v
0

v1

v2

Figure 4: From the principal lattice of degree r + 1 = 3 in a tetrahedron T , we define a
decomposition of T into 10 small tetrahedra, 4 octahedra O and 1 reversed tetrahedron ⊥.
Each face on ∂T is decomposed into 6 small faces and 3 reversed triangle 5, in solid red line
(left). Each reversed triangle 5 corresponds to a relation among three ξi of P−3 Λ1 such that

si ∈ ∂5. Each octahedron O corresponds to a relation among four ξj of P−3 Λ2 such that
sj ∈ ∂O, indicated in green (center). Each of the three out of four faces 5⊥ of the reversed

tetrahedron ⊥, in dashed red line (right), corresponds to a relation among three ξi of P−3 Λ1

such that si ∈ ∂5⊥.

Remark 3 (Geometrical interpretation of Proposition 1.). When connecting
the points of Lr+1(T ), for r > 0, with segments parallel to the edges of T (see
Figures 3 and 4, for r + 1 = 2 and r + 1 = 3, respectively), we obtain

• a partition of T into exactly (r+3
3) small tetrahedra (homothetic to T ),

(r+2
3) octahedra O and (r+1

3) reversed tetrahedra ⊥;

• a partition of each face F of ∂T into exactly (r+2
2) small faces (homothetic

to F ) and (r+1
2) reversed triangles 5, on F .

The resulting octahedra O, reversed tetrahedra ⊥ and reversed triangles 5
are called “holes” [13]. Each octahedron (resp. each reversed triangle) is in
correspondence with a relation stated in Proposition 1 for k = 2 (resp. k = 1).
This is due to the fact that in Proposition 1 we involve generators of the form
ξ` = λαwσ with αmT

S (i) 6= 0 and σ = S − [vmT
S (i)], and that s` = s(α,σ), with

those α and σ, are small k-simplices on the boundary of the “holes”.
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The relations for k = 2 come exclusively from the octahedra. Each octahedron
O corresponds to a relation among the four generators ξj of P−r+1Λ2 such that
sj is a small face (see right part of Figure 3 for r + 1 = 2 and of Figure 4
for r + 1 = 3). Therefore, each octahedron O contributes to one relation with
four out of the eight faces in ∂O (indeed, four of its faces are reversed triangles,
already counted out in the relations for k = 1).

The relations for k = 1 come exclusively from the reversed triangles, those
5 contained on each face F ∈ ∂T and the three 5⊥ out of four that constitute
the boundary of reversed tetrahedra ⊥ (see center part of Figure 3 for r+ 1 = 2
and left part of Figure 4 for r+1 = 3). More precisely, each reversed triangle 5
(resp. 5⊥) corresponds to a relation among the three generators ξi of P−r+1Λ1

such that si ∈ ∂5 (resp. si ∈ ∂5⊥).
For k = 0, Proposition 1 states those relations among generators ξn of

P−r+1Λ0 that correspond to say how the (twin) vertices of the small tetrahe-
dra have to be glued to pass from the fragmented configuration (as in Figure 2,
right) to the assembled one (as in Figure 2, left).

Now we introduce the notion of weight of uh ∈ P−r+1Λk(T ) on the small
simplex s(α,S) that we denote 〈uh, s(α,S)〉.

• If S is the 3-simplex T then 〈uh, s(α,S)〉 =
∫
s(α,T )

uh .

• If S ∈ ∆2(T ) then 〈uh, s(α,S)〉 =
∫
s(α,S)

uh · nS being

nS =
(vmS(1) − vmS(0))× (vmS(2) − vmS(0))

‖(vmS(1) − vmS(0))× (vmS(2) − vmS(0))‖
.

• If S ∈ ∆1(T ) then 〈uh, s(α,S)〉 =
∫
s(α,S)

uh · τS being

τS =
vmS(1) − vmS(0)

‖vmS(1) − vmS(0)‖
.

• If S ∈ ∆0(T ) then 〈uh, s(α,S)〉 = uh(s(α,S)) .

These small weights are unisolvents in P−r+1Λk(T ), namely, they identify uni-

vocally any element of P−r+1Λk(T ). In fact in [7] have been proved the following
result.

Proposition 6. Let T be a 3-simplex of Th. If uh ∈ P−r+1Λk(T ) and

〈uh, s(α,S)〉 = 0

for all α ∈ I(r, 4) and S ∈ ∆k(T ), then uh = 0.

The small weights are as many as the functions of G′r,k(T ). We have ordered
the set of pairs Jr,k(T ) = {(α, S)` : ` = 1, . . . , N ′r,k} for each ` = 1, . . . , N ′r,k so
we denote s` = s(α,S)` (as we do for the elements G′r,k(T ) where ξ` = ξ(α,S)`).
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Remark 4. As explained above, the functions of G′r,k(T ) are in a one-to-one
correspondence with the set of pairs (α, S), where the multi-index α is strictly
related to a principal lattice defined on T , namely a uniform distribution of
nodes on T , in order to have α with integer components. However, unisolvent
k-weights can be defined by relying on a set of k-chains associated with a nodal
distribution on T other than the uniform one used for the multi-indices α. In
other words, the k-chains that constitute the support of the integrals for uni-
solvent k-weights can be associated with a different (thus non-uniform) node
distribution in T . But, it will be not possible to know the entries of BT a priori
as in the uniform case, since the relations among the elements of G′r,k(T ) will
be more complicate.

We introduce also the matrix V ∈ RN
′
r,k×N

′
r,k with entries

Vi,j =

∫
si

ξj .

• If r = 0 then V = I for k = 0, 1, 2, 3.

• If r > 0 and k = 3 then V is invertible. In fact, it is easy to check that if
VU = 0 then U = 0. If VU = 0 then

∫
si

uh = 0 for all i = 1, . . . , N ′r,k

being uh =
∑N ′

r,k

j=1 Ujξj ∈ P
−
r+1Λ3(T ). Then it follows from proposition 6

that uh = 0. Since {ξj : 1 ≤ j ≤ Nr,k = N ′r,k} is a basis of P−r+1Λ3(T )
then it must be U = 0.

• If r > 0 and k < 3 the set of functions {ξj : j = 1, . . . , N ′r,k} is not linear
independent so the matrix V is singular (but k = 0 is well-known).

Proposition 7. If r > 0 and k < 3 then rankV = Nr,k < N ′r,k.

Proof. First we show that the first Nr,k columns of V are linear independent.

Given U ∈ RN
′
r,k with Uj = 0 for j = Nr,k + 1, . . . , N ′r,k and VU = 0 then∫

si
uh = 0 for all i = 1, . . . , N ′r,k being uh =

∑Nr,k

j=1 Ujξj ∈ P
−
r+1Λ3(T ). Then it

follows from proposition 6 that uh = 0. Since {ξj : 1 ≤ j ≤ Nr,k} is a basis of
P−r+1Λ3(T ) then it must be U = 0.

Now we show that there are not Nr,k + 1 columns of V linear independent.
If we choose Nr,k + 1 different columns of V , vj(1) . . . ,vj(Nr,k+1) and we con-
sider the corresponding functions ξj(1), . . . , ξj(Nr,k+1) since they are not linear
independent then we can writte

ξj(Nr,k+1) =

Nr,k∑
k=1

akξj(k) .

with a ∈ RNr,k \ 0. So for all i = 1, . . . , N ′r,k

[vj(Nr,k+1)]i =

∫
si

ξj(Nr,k+1) =

∫
si

Nr,k∑
k=1

akξj(k) =

Nr,k∑
k=1

ak

∫
si

ξj(k) =

Nr,k∑
k=1

akvj(k)


i

.
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This means that the vector vj(Nr,k+1) is linearly dependent on the vectors
{vj(1) . . . ,vj(Nr,k)}.

We thus have dim(KerV ) = N ′r,k − Nr,k, since by the rank theorem the
following identity, rank(V ) + dim(KerV ) = N ′r,k, holds.

The global matrix Vg of size N ′ × N ′ is block-diagonal with all the blocks
identical (up to a renumerotation of the local dofs) to the matrix V in one
tetrahedron. As it occurred for B, the assembling of the global matrix Vg
starting from the local ones is not done by summing up the contributions of two
adjacent tetrahedra, say T and T ′, but just over-writing those entries which
appear twice, once from T and once from T ′. The entries Vi,j of the local
matrix V for one tetrahedron T , can be computed numerically either by relying
on suitable quadrature formulas [14] or by involving a geometrical interpretation
of the weights

∫
si
ξj . Indeed, in [7] we proved that (here si = s(α′,S′) and

ξj = λαwS) ∫
s(α′,S′)

λαwS =

∫
s(α′,S′)

wS

∫
s(α′,S′)

λα/|s(α′,S′)|.

For the integral of λα on the small k-simplex s(α′,S′), we have that∫
s(α′,S′)

λα =
α0 !...αd ! k !

(r + k)!
|s(α′,S′)|

with αi! = 1 for all αi = 0 (this formula is known in the finite element context
and its proof can be written by adapting, for example, that of Proposition 3.5
in [11]) and ∫

s(α′,S′)

wS = ±|(T − S) ∨ s(α′,S′)|/|T |,

where |(T − S) ∨ s(α′,S′)| is the volume of the tetrahedron contained in T with
vertices those of T − S and those of s(α′,S′). The sign depends on whether the
orientation on this new tetrahedron coincides or not with that of T . The volume
of the d-simplex (T \S)∨s(α′,S′) can be computed by a particular determinant.

Example 3: Let us consider the 3-simplex T = [v0, v1, v2, v3] presented in
Figure 5. To treat the case k = 1, r = 1, we introduce the mid-point vij of
the edge [vi, vj ], for i, j = 0, ..., 3. In red, we have indicated two particular
tetrahedra, namely T1 = [v0, v13, v23, v3] (left) and T2 = [v0, v1, v12, v3] (right).
The thick line denotes the small edge s(α,[v1,v2]) with α′ equal either to (0, 0, 0, 1)
(left) or to (0, 1, 0, 0) (right). So∫

s((0,0,0,1),[v1,v2])

w[v1,v2] = |T1|/|T | ,
∫
s((0,1,0,0),[v1,v2])

w[v1,v2] = |T2|/|T | .

Then

|T1| = det(λvT (i)(vT1
(j))) = det

(
λ1(v13) λ2(v13)
λ1(v23) λ2(v23)

)
= 1

4
|T |,

|T2| = det(λvT (i)(vT2
(j))) = det

(
λ1(v1) λ2(v1)
λ1(v12) λ2(v12)

)
= 1

2
|T |
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Figure 5: In the tetrahedron T = [v0, v1, v2, v3], we denote by vij the mid-point of the
edge [vi, vj ]. The volume of T1 = [v0, v13, v23, v3] (left), and that of T2 = [v0, v1, v12, v3]
(right), both divided by the volume of T , give the weights 〈w[v1,v2], s((0,0,0,1),[v1,v2])〉,
〈w[v1,v2], s((0,1,0,0),[v1,v2])〉, respectively.

where λvT (i)(vT1(j)) is the d×d matrix with entries are equal to the value of the
barycentric functions associated to the vertices of T (row index i) at the vertices
of T1 (column index j), and similarly for T2. Therefore, for α equal either to
(0, 0, 0, 1) (left below) or to (0, 0, 1, 0) (right below), we have for example∫

s((0,0,0,1),[v1,v2])

λ3w[v1,v2] =
1

8
,

∫
s((0,1,0,0),[v1,v2])

λ2w[v1,v2] =
1

4
.

Thank to the volume property, it is easy to see that for example∫
s((0,0,0,1),[v1,v2])

w[v0,v2] = 0 ,

∫
s((0,1,0,0),[v1,v2])

w[v2,v3] = 0 ,

since the first is equal to the volume of [v13, v23, v2, v3] which is zero being
v2, v23, v3 aligned, and the second is equal to the volume of [v0, v1, v1, v12] which
is zero being two out of four vertices coincident.

Being the small weights unisolvent, another interesting problem is the re-
construction of zh ∈ P−r+1Λk(Th) in terms of {ξj}N

′

j=1 with assigned weights

wi(zh) =
∫
si
zh on the small simplices si with i = 1, . . . , N ′. This is clearly re-

lated with the interpolation problem on the whole mesh Th: given u ∈ HΛk(Ω)
regular enough to have the weights wi(u) =

∫
si
u well defined, we look for

zh ∈ P−r+1Λk(Th) such that wi(zh) = wi(u) for all i = 1, . . . , N ′.

In this case, the vector w ∈ RN ′
with entries wi(zh) is given and one looks

for a solution Z ∈ RN ′
of the singular non symmetric linear system

VgZ = w .

Then zh =
∑N ′

j=1 Zjξj .

As we notice before, if a matrix Q ∈ RN ′×(N ′−N) such that its columns are
a basis of Ker

(
V Tg
)

= (ImVg)
⊥ is known, then for all w ∈ RN ′

there exists a

unique pair (Z,Λ) ∈ RN ′ × RN ′−N solution of the linear system (3), namely,
such that

VgZ +QΛ = w
BZ = 0 .
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If w ∈ ImVg, then Λ = 0.

To compute Q one can use the singular value decomposition of Vg = USVT
(see [8]). Matrix Q coincides with the columns from N + 1 to N ′ of U . Indeed
the singular value decomposition is computed in the following way. Since matrix
V Tg Vg is s.s.p. there exists a basis of RN ′

composed of orthogonal eigenvectors

of V Tg Vg correspondig to the eigevalues σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
N > 0 (the last

N ′ − N eigenvalues are equal zero). The columns for V are these eigenvectors
and the last N ′ − N columns of V are a basis of KerV Tg Vg = KerVg. On the
other hand the first N columns of U are equal to (Vg[V]i)/σi, for i = 1, . . . , N .
These columns are a basis of ImVg. The remaining N ′ − N columns of U are

an orthogonal completion to a basis of RN ′
so they are an orthogonal basis of

(ImVg)
⊥. Notice that solving[

Vg Q
B

] [
Z
Λ

]
=

[
w
0

]
we compute in fact the best approximate solution of the linear system VgZ = w
that, using Matlab can be done with the command Z = pinv(Vg)* w.

Remark 5. It is not difficult to select a basis of P−r+1Λk from the set of gen-

erators {ξi}N
′

i=1. The difficult point is the selection of an unisolvent subset of
weights. In the case we start from the principal lattice Lr(T ), we propose to
hold the weights corresponding to the indices in the basis, namely {pj}Nj=1. In
all the examples we tested numerically, the generalized Vandermonde matrix
Ṽg ∈ RN×N is invertible.

Conclusions

In these pages, we have recalled and further commented on the geometrical
aspects of the adopted spanning family and set of degrees of freedom (weights)
for high order Whitney element spaces on simplicial meshes. Due to the par-
ticular generating algorithm, the spanning family requires handling the linear
relations which occur among some of its members. A way of counting out these
relations is provided (with reference to the so-called “holes”) together with the
indication about which family members are involved in them (with reference to
the boundary of the “holes”). We have also justified theoretically how it is pos-
sible to solve a PDE or reconstruct a field from its weights, using the spanning
family. Both problems can be reformulated as an algebraic linear system with
the same structure.
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