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Abstract

Upper and lower bounds on the largest number of weights in a cyclic code of

given length, dimension and alphabet are given. An application to irreducible

cyclic codes is considered. Sharper upper bounds are given for the special cyclic

codes (called here strongly cyclic), whose nonzero codewords have period equal

to the length of the code. Asymptotics are derived on the function Γ(k, q), that

is defined as the largest number of nonzero weights a cyclic code of dimension

k over Fq can have, and an algorithm to compute it is sketched. The nonzero

weights in some infinite families of Reed-Muller codes, either binary or q-ary,

as well as in the q-ary Hamming code are determined, two difficult results of

independent interest.
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1 Introduction

Recently, a series of works has been released on the study of the weight set of a

code. In [21] Shi et al. conjectured that the maximum number of nonzero weigths

that a k-dimensional block code over Fq can have is qk−1
q−1

, giving an answer only for

the case q = 2 or k = 2. The complete proof of this conjecture was given in [2]

where the two authors provided two different constructions, and independently in

[18]. Shorter codes with the maximum number of weights for a given dimension were

then discussed in [1, 7]. In the present paper we address the same type of questions

for cyclic codes. Thus, we study the function Γ(k, q), defined as the largest number

of nonzero weights a cyclic code of dimension k over Fq can have. We derive upper

bounds on that quantity by simple counting arguments bearing on the cycle structure

of the code. An alternative approach is to use weight concentration theorems, derived

first in [15] in the language of linear recurrences. In the case of cyclic codes whose

nonzero codewords have period equal to the length (called strongly cyclic codes in the

sequel) we obtain smaller upper bounds than the ones derived for the class of all cyclic

codes. This suggests to study Γ0(k, q), that is the largest number of nonzero weights

a strongly cyclic code of dimension k over Fq can have. This discrepancy in behaviour

between Γ(k, q), and Γ0(k, q), is particularly evident in the asymptotic upper bounds.

We also derive lower bounds on these two functions, using special codes, or the

covering radius of the dual code. An algorithm is given to compute Γ(k, q), for small

values of kq. A first appendix derives the number of weights in several infinite families

of q-ary Reed-Muller codes, including the extended Hamming code and some binary,

ternary and quinary Reed-Muller codes. A second appendix derives the number of

weights in the q-ary Hamming code when q > 2. These last two technical results are of

interest in their own right. While generating functions or recursions [12] are known in

these cases, they are insufficient to determine the explicit weights in general. Exact

enumeration of cyclic codes can require some deep techniques of Number Theory

[11]. In particular, the codes of Melas and Zetterberg give interesting lower bounds

for a wide range of parameters. The use of the celebrated Delsarte bound on the

covering radius of codes [6], leads us to define a new combinatorial function (T [n, k])

of independent interest.

The material is organized as follows. The next section collects some background

material on linear codes and cyclic codes. Section 3 is dedicated to upper bounds

and Section 4 to lower bounds. Section 5 derives the asymptotic version of some
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of the preceding bounds. Section 6 gives an algorithm to compute Γ(k, q). Section

7 concludes the paper and mentions some challenging open problems. Appendix I

derives the weight spectrum of some families of q-ary Reed-Muller codes. Appendix

II determines the weights in the q-ary Hamming code for q ≥ 3.

2 Definitions and Notation

2.1 Linear codes

A (linear) code C of length n over a finite field Fq is a Fq vector subspace of F
n
q .

The dimension of the code is its dimension as a Fq vector space, and is denoted by k.

The elements of C are called codewords.

The dual C⊥ of a code C is understood with respect to the standard inner product.

The (Hamming) weight of x ∈ F
N
q is the number of indices i where xi 6= 0, and

it is denoted by wH(x). The minimum nonzero weight d of a linear code is called the

minimum distance. The dual distance of a code is the minimum distance of its

dual. Every linear code satisfies the Singleton bound [16, Th 11, Chap. 1] on its

parameters

d ≤ n− k + 1.

A code meeting that bound is called maximum distance separable (MDS). See

[16, Chap. 11] for general knowledge on this family of codes.

2.2 Cyclic codes

A cyclic code of length n over a finite field Fq is a Fq linear code of length n

invariant under the coordinate shift. Under the polynomial correspondence such a

code can be regarded as an ideal in the ring Fq[x]/(x
n − 1). It can be shown that

this ideal is principal, with a unique monic generator g(x), called the generator

polynomial of the code. The check polynomial h(x) is then defined as the quotient

(xn − 1)/g(x). A well-known fact is that the codewords satisfy a linear recurrence of

characteristic polynomial the reciprocal polynomial of h(x) [16, p. 195]. Thus any

codeword c can be continued by repetition into a bi-infinite periodic sequence ĉ which

is periodic of least period a divisor of n. The period of a codeword c is understood to

be the smallest integer T0 such ĉi+T0
= ĉi for all integers i. Thus, the period is always
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a divisor of n. A cyclic code is irreducible over Fq if its check polynomial h(x) is

irreducible over Fq[x]. The period of a polynomial h(x) ∈ Fq[x], such that h(0) 6= 0

is the smallest integer t such that h(x) divides xT −1 over Fq[x]. If C is a cyclic code,

its codewords are partitioned into orbits under the action of the shift. We call these

orbits the cyclic classes of C.

2.3 Combinatorial functions

Here we introduce the combinatorial functions we are going to study in this work.

Let q be a prime power, 0 ≤ k ≤ n be non negative integers. We define Γ(k, q)

as the largest number of nonzero weights of a cyclic code of dimension k over Fq.

Moreover, we define Γ(n, k, q) as the largest number of nonzero weights of a cyclic

code of fixed length n and dimension k over Fq, if such a code exists, and by zero

otherwise. The same functions for strongly cyclic codes (to be defined below) are

denoted by Γ0(k, q), and Γ0(n, k, q), respectively. Recall also the functions L(k, q)

and L(n, k, q) introduced in [21], that represent respectively the maximum number of

nonzero weights that a linear code of dimension k over Fq, and the maximum number

of nonzero weights for linear codes with a fixed length n. The function L(k, q) was

completely determined and shown to be equal to qk−1
q−1

in [2], while for L(n, k, q) some

partial answers were given in [1, 21].

3 Upper bounds

3.1 Cycle structure

Let ρ : Fn
q −→ F

n
q denote the cyclic shift operator.

Lemma 1. Let C be an [n, k]q cyclic code and c ∈ C be a codeword of period t. Let

moreover α ∈ F
∗
q and i ∈ {0, . . . , n− 1} such that

αc = ρi(c).

Then, αr = 1, where r = t
gcd(t,i)

. Moreover, α belongs to the unique cyclic subgroup

of F∗
q of order gcd(t, q − 1).

Proof. Let c be a codeword of period t and suppose αc = ρi(c). Then c = ρri(c) =

αrc, and this implies αr = 1. Let now H be the unique subgroup of F∗
q of order
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gcd(t, q − 1). Since by definition r|t and also αq−1 = 1, we get αgcd(t,q−1) = 1, i.e.

α ∈ H .

If C is a cyclic code, denote by Bt the number of nonzero codewords of period t

it contains. A cyclic code such that Bt = 0 for 1 ≤ t < n shall be called strongly

cyclic.

Lemma 2. If C is an [n, k]q cyclic code with s nonzero weights, then

s ≤
∑

t|n

Bt

lcm(t, q − 1)
≤ 1 +

∑

1<t|n

Bt

lcm(t, q − 1)
.

Proof. The number of cyclic classes of codewords of period t is at most Bt

t
. All code-

words in the same class share the same weight. Then, we use the Lemma above. Let

c be a codeword and H be the unique subgroup of F∗
q of order gcd(t, q− 1). Now, for

every representative α of F∗
q/H , the codeword αc gives a different class that obviously

shares the same weight of the one of c. Hence, there are at most Bt gcd(t,q−1)
t(q−1)

= Bt

lcm(t,q−1)

distinct weights among these codewords, and this shows the first inequality. The sec-

ond directly follows from the fact that if a codeword has period 1 then it is necessarily

a multiple of the vector of all ones, and therefore B1 ∈ {0, q − 1}.

Example. Consider the code of dimension 2 over F5, with length 20 and check

polynomial x2 + x − 1. This code contains the Fibonacci numbers read mod 5 [22,

A082116]. It can be checked to contain 4 codewords of period 4 (namely 1, 3, 4, 2,

repeated five times) and 20 codewords of period 20.

This simple counting lemma has two important applications. First, we improve

the upper bound on L(k, q) of [21, Prop. 2] by a factor of at least n
q−1

for some large

class of cyclic codes, up to a factor n for another subclass.

Theorem 1. If C is a [n, k]q strongly cyclic code with s nonzero weights, then

s ≤ qk − 1

lcm(q − 1, n)
.

Thus Γ0(n, k, q) ≤ qk−1
lcm(q−1,n)

.

Proof. We apply Lemma 2 when Bt = 0 for t < n, so that the sum in the right

handside contains only one summand.
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One can observe that the function Γ0(n, k, q) has an intrisecly different behaviour

than the one of L(n, k, q). Indeed, it was proved in [1] L(n, k, q) = qk−1
q−1

for n ≥
q3k−4, while it is easy to see that a strongly cyclic code with that restriction on

n can not exist, i.e. Γ0(n, k, q) = 0 for n ≥ q3k−4 (it is actually already true for

n ≥ qk by Theorem 1). This also implies that limn→∞ Γ0(n, k, q) = 0, and this is in

contrast to the behaviour of the function L(n, k, q) that is non decreasing in n and

limn→∞ L(n, k, q) = L(k, q), As a second implication of Lemma 2, in the general case

when many of the Bt’s are nonzero, we can prove the following result.

Theorem 2. If C is an [n, k]q cyclic code with s nonzero weights, then

s ≤ 1 + (qk − 1)

( ∑

1<t|n

1

lcm(t, q − 1)2

) 1

2

.

Proof. From the second inequality in Lemma 2, we get

s− 1 ≤
∑

1<t|n

Bt

lcm(t, q − 1)
.

Squaring both sides of this inequality and applying Cauchy-Schwarz inequality we

obtain

(s− 1)2 ≤
( ∑

1<t|n

B2
t

)( ∑

1<t|n

1

lcm(t, q − 1)2

)
.

By definition of the Bt’s note that
∑

t|n Bt = qk − 1, implying
∑

t|n B
2
t ≤ (qk − 1)2.

The result follows by taking the square root of both sides.

3.2 Character sums

The following result can be derived by using the character sums techniques of [15,

Chapt. 8].

Theorem 3. If C is an [n, k]q strongly cyclic code with s nonzero weights, then

s ≤ 2

(
1− 1

q

)
qk/2.

Thus

Γ0(n, k, q) ≤ 2

(
1− 1

q

)
qk/2.
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Proof. By [15, Cor. 8.83] we know that the weights w of C lie in the range

∣∣∣∣n
(
1− 1

q

)
− w

∣∣∣∣ ≤
(
1− 1

q

)
qk/2.

The result follows by computing the length of that interval.

3.3 Irreducible cyclic codes

The weight structure of irreducible cyclic codes has been a research topic since

the first works of McEliece and others [15, 17, 8] due to their connection to Gauss

sums and L-functions, and its intrinsic complexity.

Theorem 4. If C is an [n = qk−1
N

, k]q irreducible cyclic code with a check polynomial

of period n, and s nonzero weights, then s ≤ N.

Proof. Since the check polynomial h(x) is irreducible, it generates the annihilating

ideal of each sequence attached to a codeword. If the period of such a sequence were

T < n, then h(x) would divide xT − 1, contradicting the hypothesis on the period of

h(x). Hence C is strongly cyclic, and we can apply Theorem 1. The result follows.

Example. Consider the case of N = 2, and q = p an odd prime. Such a code is

well-known to be a two-weight code [17].

A slightly sharper bound can be derived using the results in [8].

Theorem 5. If C is an [n = qk−1
N

, k]q irreducible cyclic code with a check polynomial

of period n, and s nonzero weights then

s ≤ Nk = gcd

(
N,

qk − 1

q − 1

)
.

Proof. Follows by [8, (12)] which involves Gaussian periods of order Nk.

This shows that Theorem 4 can only be tight when N = Nk, or, equivalently, N

divides qk−1
q−1

. Using Theorem 3, another bound can be derived.

Theorem 6. If C is an [n = qk−1
N

, k]q irreducible cyclic code with a check polynomial

of period n, and s nonzero weights then s ≤ 2(1− 1
q
)
√
1 + nN.
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Proof. As explained in the proof of Theorem 4 we know that all nonzero codewords

have period n. Thus the code C is strongly cyclic, and we can apply Theorem 3. We

get rid of k in Theorem 3 by writing qk = 1 + nN.

Remark. Depending on the relative values of n andN, either Theorem 6, or Theorem

5 is sharper than the other.

A slight improvement on Theorem 6 can be derived for irreducible cyclic codes.

Theorem 7. If C is an [n = qk−1
N

, k]q irreducible cyclic code with a check polynomial

of period n, and s nonzero weights then

s ≤ 2

(
1− 1

q

)(
n

h
− 1

N

)√
1 + nN,

where h = lcm(n, q − 1).

Proof. The proof follows the lines of Theorem 6 with [15, Th. 8.84, (8.37)] replacing

[15, Cor. 8.83]. We get rid of k by writing qk = 1 + nN.

4 Lower bounds

4.1 Special values

We begin with an easy bound.

Proposition 1. For all prime powers q, we have Γ(k, q) ≥ k.

Proof. The universe code, the cyclic [k, k]q code with generator the constant poly-

nomial g(x) = 1, has k nonzero weights. This shows that Γ(k, k, q) ≥ k. The result

follows by Γ(k, k, q) ≤ Γ(k, q).

The following result is immediate by [20]. The proof is omitted.

Proposition 2. For all prime powers q, we have Γ(2, q) = 2.

We recall now some classical cyclic codes. The repetition code R(n, q) is the

ideal of Fq[x]/(x
n−1) with generator xn−1

x−1
. Its dual is P (n, q) = 〈(x−1)〉. The binary

Hamming code Hm is the binary cyclic code of length n = 2m − 1 with generator

any primitive irreducible polynomial of F2[x] of degree m. Its dual the simplex code

Sm is a one-weight code.
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Theorem 8. For all integers n ≥ 1 and all prime powers q with (n, q) = 1, we have

that Γ(n, 1, q) = 1, and that Γ(n, n−1, q) is the number of nonzero weights in P (n, q).

For all primes m ≥ 2, we have Γ(n, n − m, 2) = n − 4, and Γ(n,m, 2) = 1, where

n = 2m − 1.

Proof. The first statement follows by the unicity of cyclic codes with dimension (resp.

codimension) one. These are the repetition codes (resp. their duals). Their number

of weights are easy to compute. To prove the second statement, observe that x2m −x

is the product of all monic irreducible polynomials whose degree divides m [16, Chap.

4, Th. 11]. If m is a prime number, any divisor of x2m−1 − 1 of degree m will have

then to be irreducible. Thus, cyclic codes of dimension (resp. codimension) m will

have to be Sm (resp. Hm) or replicated versions of Sm′ (resp. Hm′) for m a proper

divisor of m′. The result follows on observing that the number of nonzero weights of

Hm is 2m − 5 ([16, Chap. 6, Ex. (E2)]), and the fact that Sm is a one-weight code

[16, Chap.1 §9 , Ex].

Remark. The fact that the number of nonzero weights of Hm is 2m − 5 can also be

derived applying part (1) of Theorem 16 of the Appendix if we notice that Hm is a

punctured R(m− 2, m).

Theorem 9. Let q > 2 be a prime power and r ≥ 2 such that gcd(r, q − 1) = 1. We

have the bound

Γ

(
qr − 1

q − 1
,
qr − 1

q − 1
− r, q

)
≥ qr − 1

q − 1
− 2.

Proof. Note that the q-ary Hamming code of length qr−1
q−1

is equivalent to a cyclic code

iff gcd(r, q − 1) = 1 [10]. The result follows then by Theorem 19 of Appendix II.

The next result also uses Reed-Muller codes. We will need some generalization of

the binomial coefficients given by the following generating function

(1 + z + . . .+ zq−1)m =

m(q−1)∑

ℓ=0

B(q,m, ℓ)zℓ.
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Theorem 10. With the notations above, we have the following results.

Γ

(
2m − 1,

m−3∑

i=0

(
m

i

)
, 2

)
≥ 2m−1 − 9 for m ≥ 6,

Γ

(
3m − 1,

2m−2∑

i=0

B(3, m, i), 3

)
≥ 3m − 3 for m ≥ 1,

Γ

(
3m − 1,

2m−3∑

i=0

B(3, m, i), 3

)
≥ 3m − 7 for m ≥ 3,

Γ

(
5m − 1,

4m−3∑

i=0

B(5, m, i), 5

)
≥ 5m − 4 for m ≥ 1.

Γ

(
qm − 1,

(q−1)m−r−1∑

i=0

B(q,m, i), q

)
≥ qm − r − 2 for 0 ≤ r ≤ q − 3

2
.

Proof. The result combines Appendix I with the fact that punctured Reed Muller

codes are cyclic [3, p.1312]. Note that the dimensions are not affected by puncturing

due to the large minimum weights. The number of weights can decrease by at most

1 by transitivity of the automorphism group.

The next two theorems rely on some deep algebraic geometric enumeration of

cyclic codes [14, 19, 24]. See [11] for a survey.

Theorem 11. For all integers m ≥ 3, we have

Γ(2m − 1, 2m, 2) ≥ ⌈2m/2⌉,

and

Γ(2m + 1, 2m, 2) ≥ ⌈2m/2⌉.

Proof. The dual of the binary Melas code is cyclic of parameters [2m − 1, 2m]. It is

proved in [14, Th. 6.3] that its nonzero weights are all the even integers w in the

range ∣∣∣∣w − 2m − 1

2

∣∣∣∣ ≤ 2m/2.

Similarly, the dual of the Zetterberg code is an irreducible cyclic code of parameters

[2m + 1, 2m]. It is proved in [14, Th. 6.6] that its nonzero weights are all the even

integers w in the range ∣∣∣∣w − 2m + 1

2

∣∣∣∣ ≤ 2m/2.

The result follows after elementary calculations.

10



A ternary analogue is as follows.

Theorem 12. For all integers m ≥ 2 we have Γ(3m − 1, 2m, 3) ≥ ⌈2× 3
m−2

2 ⌉.

Proof. The dual of the ternary Melas code is cyclic of parameters [3m − 1, 3m]. It is

proved in [24] that its nonzero weights are of the form 3m−1+t
3

with t ∈ Z, satisfying

t ≡ 1 (mod 3), and t2 < 3m. The result follows after elementary calculations.

It is remarkable that the last two theorems imply lower bounds on Γ(k, q), that

are exponential in the dimension. It would be desirable to extend these results to

Γ(k, q) with q a prime power > 3.

4.2 Covering radius

Recall that the covering radius ρ(C) of a code C is the smallest integer t such

that every point in F
n
q is at distance at most t from some codeword of C. A combina-

torial function that is, as far as we know, new, is T [n, k, q], the largest covering radius

of a cyclic code of length n and dimension k over Fq. Note that the closest classical

function in that context is, for q = 2, the quantity t[n, k], the smallest covering radius

of a binary linear code of length n and dimension k [6]. Trivially t[n, k] ≤ T [n, k, 2].

The Delsarte bound [16], stated for the dual of a linear code C, is ρ(C⊥) ≤ s(C) [16,

Chap. 6, Th. 21]. With the above definitions, we can state the following result.

Proposition 3. For all integers n, k with 1 ≤ k ≤ n, we have

Γ(n, k, q) ≥ T [n, n− k, q].

Proof. Upon using Delsarte bound for the dual of an [n, k]q code with Γ(n, k, q)

nonzero weights, which is, in particular, an [n, n − k]q code we see that Γ(n, k, q) ≥
T [n, n− k, q].

5 Asymptotics

To consider the number of weights of long codes of given rate, we study the

behavior of γq(R) defined for 0 < R < 1 as

γq(R) = lim sup
n→∞

1

n
logq(Γ(n, ⌊Rn⌋, q)).

11



Theorem 13. For all rates R ∈ (0, 1) we have

γq(R) ≤ R.

In particular, γq(R) ≤ t(q), the unique solution in (0, q−1
q
) of the equation Hq(x) = x.

Proof. The bound comes from the immediate inequalities Γ(n, k, q) ≤ Γ(k, q) ≤ qk −
1.

Similarly for strongly cyclic codes we define

γ0
q (R) = lim sup

n→∞

1

n
logq(Γ

0(n, ⌊Rn⌋, q)).

We obtain a different upper bound.

Theorem 14. For all rates R ∈ (0, 1) we have

γ0
q (R) ≤ R

2
.

In particular, γq(R) ≤ t0(q), the unique solution in (0, q−1
q
) of the equation Hq(x) =

x
2
.

Proof. The bound comes from the immediate inequalities Γ0(n, k, q) ≤ Γ0(k, q) and

Theorem 3.

6 Numerics

We conjecture, but cannot prove, based on the figures of Table 1, that some local

maxima of n 7→ Γ(n, k, 2), for fixed k of the form k = s(s+1)
2

are met for codes with

check polynomials of the form
∏s

i=1 hi(x), where hi is irreducible of degree i. Another

motivation for the conjecture is that cyclic codes with irreducible check polynomials

are one-weight codes in primitive length.

Table 1: lower bounds on Γ(k, q)

Γ(k, q) ≥ q k n h(x)

8 2 6 21 (1 + x)(1 + x+ x2)(1 + x+ x3)

15 2 10 105 (1 + x)(1 + x+ x2)(1 + x+ x3)(1 + x+ x4)

11 3 6 104 (x+ 1)(x2 + 1)(x3 + 2x+ 1)

20 3 10 1040 (x+ 1)(x2 + 1)(x3 + 2x+ 1)(x4 + x+ 2)

11 4 6 315 (x+ 1)(x2 + x+ w)(x3 + x+ 1)

18 4 8 315 (x+ 1)(x2 + x+w)(x2 + x+ w2)(x3 + x+ 1)

12



What can be noted from Table 1 is that the bound Γ(k, q) ≥ k of Proposition 1 is

weak.

A systematic algorithm to compute Γ(k, q) can be sketched as follows.

(i) Find all polynomials h of degree k of Fq[x], such that h(0) 6= 0;

(ii) For each h compute its period Th;

(iii) Count the number sh of nonzero weights of the cyclic code of length Th and

check polynomial h;

(iv) Maximize sh over all h’s in Step (i).

We justify this algorithm as follows.

Proof. View h as the check polynomial of an [n, k] cyclic code C. If h(x) = xaH(x),

with a ≥ 1, and H(0) 6= 0, then gcd(xn − 1, h) = H(x) and C has for dimension the

degree of H < k. Contradiction. Since h(0) 6= 0, the period of h is well-defined. All

cyclic codes with check polynomial h will have lengths a multiple of Th, and will be

repetitions of the code of length Th, with the same number of weights.

We illustrate this algorithm by the special case k = 3, q = 2. The polynomials h

can take the following values

(i) x3 + x+ 1, x3 + x2 + 1, when T = 7 and s = 1 (Simplex code)

(ii) x3 + 1 when T = 3 and s = 3 (Universe code)

(iii) x3 + x2 + x+ 1 = x4+1
x+1

when T = 4 and s = 2 (Even weight code)

We conclude that Γ(3, 2) = 3. More generally, we have the following results for

q = 2 and q = 3. If the number sh of nonzero weight of the cyclic code of check

polynomial h(x) meets Γ(k, q), we call h(x) the optimal polynomial. We list some

optimal polynomials h(x) as follows. The coefficients of the polynomial h(x) are

written in increasing powers of x, for example for k = 3, the entry 1001 means 1+x3.

Table 2: exact values of Γ(k, 2)
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k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

q = 2 3 4 5 8 9 12 16

h(x) (1001)
(11011)

(10001)
(100001) (1110011) (11100111) (111101111)

(1100100001)

(1000010011)

Table 3: exact values of Γ(k, 3)

k = 3 k = 4 k = 5 k = 6

q = 3 3 5 8 12

h(x)

(2211)

(2121)

(2101)

(2021)

(2001)

(1221)

(1111)

(1101)

(1011)

(1001)

(20221)

(22011)

(21021)

(21011)

(12111)

(11121)

(10201)

(10101)

(222021)

(211101)

(210111)

(202221)

(121011)

(112101)

(110121)

(101211)

(1201101)

(1102101)

(1012011)

(1011021)

7 Conclusion and open problems

In this paper, we have studied the largest number of distinct nonzero weights a

cyclic code of given length and dimension could have. We have derived some upper

bounds on that quantity that seem especially sharp for irreducible cyclic codes. Lower

bounds appear weak so far, being mostly linear in k, when the upper bounds are

exponential. The Melas and Zetterberg codes provided lower bounds exponential in

the dimension and it is worth extending these bounds to other range of parameters.

The results on the weights of q-ary Reed-Muller and Hamming codes, while of interest

in their own right only provide lower bounds that are polynomial in the dimension.

So sharpening the lower bounds is the main open problem. Finding a pattern in

the local maxima of n 7→ Γ(n, k, q) by running extensively the algorithm of the last

section for large n’s might help. This programming effort could lead to a table of the

function Γ(k, q) for modest values of kq, let us say kq ≤ 100 for instance.

Acknowledgements. The paper is dedicated to the memory of our friend and

mentor G.D. Cohen (1951–2018). The authors wish to thank Professor C. Ding for

helpful discussions.
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8 Appendix I: Reed-Muller codes

In both the appendices, the symbol wt(C) denotes the set of weights of the code

C, i.e.

wt(C) = {i ∈ N | ∃ c ∈ C s.t. wH(c) = i}.

Moreover, let t be a positive integer. Given t sets of integers A1, . . . , At we define the

set of sums
t⊕

i=1

Ai := {a1 + a2 + . . .+ at | ai ∈ Ai} .

Let m be a positive integer and Fq be a finite field. Consider Rm := Fq[x1, . . . , xm]

the ring of polynomials in m variables over Fq. Moreover, list all the points of Fm
q as

P1, . . . ,Pn, where n = qm, and consider the evaluation map

evm : Rm −→ F
n
q

f 7−→ (f(P1), . . . , f(Pn)).

Definition 1. Let r,m be positive integers such that 0 ≤ r ≤ (q − 1)m. The q-ary

Reed-Muller code of order r in m variables is defined by

RMq(r,m) := {evm(f) | f ∈ Rm, deg(f) ≤ r} .

Observe that the choice of the order of the points Pi of Fm
q does not matter.

Indeed, different choices lead to equivalent codes. However, it is possible to define

the order in a smart way, such that we have an inductive construction of the q-ary

Reed-Muller codes. Let γ be a primitive element of Fq. For m = 1 we consider P1 = 0

and Pi = γi−1 for i = 2, . . . , q. Inductively, if {P1, . . . ,Pn} is the set of points chosen

for n = qm, then for m+ 1 we choose {P′
1, . . . ,P

′
N}, where N = qm+1, as follows.

P′
i = (Pi, 0) for 1 ≤ i ≤ n.

P′
nj+i = (Pi, γ

j) for 1 ≤ i ≤ n, 1 ≤ j ≤ q − 1.

With this choice of the order of the points, one can prove the following result

whose proof is omitted since it can be found in [4]. For the rest of this section, for

any integers s, t, we denote by Gq(s, t) a generator matrix for the q-ary-Reed Muller

code of order s in t variables.
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Proposition 4. There exist λi,j ∈ Fq for 1 ≤ i < j ≤ q such that

Gq(r,m+1) =




Gq(r,m) λ1,2Gq(r,m) . . . λ1,qGq(r,m)

0
. . .

...
... Gq(r − q + 2, m) λq−1,qGq(r − q + 2, m)

0 0 Gq(r − q + 1, m)




.

Remark 1. Observe that, in the case m = 1, the Reed-Muller code RMq(r, 1) is

simply the extended Reed-Solomon code of length q and dimension r + 1. It is well-

known that in this case wt(RMq(r, 1)) = {q − r, q − r + 1, . . . , q} (see [9, Theorem

6]).

Let now denote by nq(r,m), kq(r,m) and dq(r,m) respectively the length, dimen-

sion and minimum distance of the Reed-Muller code Rq(r,m). The following result

can be found in [4], and explains more about the structure of this family of codes.

Proposition 5. Let r,m be integers such that 0 ≤ r ≤ (q − 1)m. Then

(1) n(r,m) = qm.

(2) k(r,m) =
∑r

i=0B(q,m, i), where B(q,m, i) denotes the coefficient of zi in the

polynomial (1 + z + . . .+ zq−1)m.

(3) d(r,m) = (q − S)qm−1−Q, where r = Q(q − 1) + S with 0 ≤ S ≤ q − 2.

(4) RMq(r,m)⊥ = RMq(m(q − 1)− r − 1, m), and therefore Gq(r,m) is a parity

check matrix for the code RMq(m(q − 1)− r − 1, m).

Corollary 1. Let r,m be integers such that m ≥ 1 and 0 ≤ r ≤ m(q − 1). Let

blueu1, . . . ,uq ∈ RMq((m − 1)(q − 1) − r − 1, m − 1). Then (u1 | . . . | uq) ∈
RMq(m(q − 1)− r − 1, m).

Proof. Let u1, . . . ,uq ∈ RMq((m − 1)(q − 1) − r − 1, m − 1). By Proposition 5 we

know that RMq((m − 1)(q − 1) − r − 1, m − 1)⊥ = RMq(r,m − 1), and therefore,

Gq(r,m− 1)ui
T = 0 for i = 1, . . . , q. Moreover, for every s ≤ r we have RMq(r,m−

1) ⊇ RMq(s,m − 1). This implies, by part (4) of Proposition 5, that RMq((m −
1)(q− 1)− r− 1, m− 1) ⊆ RMq((m− 1)(q− 1)− s− 1, m− 1). Hence, we also have

that Gq(s,m− 1)ui
T = 0. Using the characterization given in Proposition 4, we get

that Gq(r,m)(u1 | . . . | uq)
T = 0 and this completes the proof.
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As a direct consequence of Corollary 1, we get the following result.

Corollary 2. Let r,m be integers such that m ≥ 1 and 0 ≤ r ≤ m(q − 1). Then

wt(RMq(m(q − 1)− r − 1, m)) ⊇
q⊕

i=1

wt(RMq((m− 1)(q − 1)− r − 1, m− 1)).

We can finally give a general statement on the set of weights for some classes of

q-ary Reed-Muller codes.

Theorem 15. For every positive integer m and every integer r such that 0 ≤ r ≤ q−3
2
,

it holds that

wt(RMq(m(q − 1)− r − 1, m)) = {0, r + 2, r + 3, . . . , qm}.

Proof. We proceed by induction on m. For m = 1 we get that RMq(q − r − 2, 1) is

the Reed-Solomon code of length q and dimension q− r−1. Therefore, wt(RMq(q−
r − 2, 1)) = {r + 2, r + 3, . . . , q} by [9, Theorem 6].

Suppose now it is true for m− 1 and we want to prove the statement for m. Let

n = qm−1 and N = qm = qn. We already know by part (3) of Proposition 5, that

the minimum distance is equal to r + 2. Moreover, by Corollary 2 and inductive

hypothesis, we have that

wt(RMq(m(q − 1)− r − 1, m)) ⊇
q⊕

i=1

{0, r + 2, . . . , n}.

Let x ∈ {0, r + 2, . . . , qn}, we need to prove that we can write x = x0+x1+ · · ·+xq−1

with xi ∈ {0, r+2, . . . , n}. By Euclidean division, we have x = an+b, with 0 ≤ a < q

and 0 ≤ b < n. At this point we distinguish two cases.

Case 1: If b ∈ {0, r + 2, . . . , n− 1}, then we choose x0 = b, x1 = · · · = xa = n and

xa+1 = · · · = xq−1 = 0.

Case 2: If b ∈ {1, . . . , r + 1}, then, necessarily a ≥ 1. By hypothesis we have n ≥
q ≥ 2r + 3. Therefore, n − r − 2 + b ∈ {0, r + 2, . . . , n} and we choose x0 = r + 2,

x1 = n− r− 2 + b, x2 = · · · = xa = n and xa+1 = · · · = xq−1 = 0. This concludes the

proof.

8.1 Binary Reed-Muller codes

Here we provide an additional result not covered by Theorem 15 for binary Reed-

Muller codes.
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Theorem 16. Let m be a positive integer, then we have

(1) If m ≥ 3, then wt(RM2(m− 2, m)) = {0, 2, 4, . . . , 2m} \ {2, 2m − 2}.

(2) If m ≥ 6, then wt(RM2(m−3, m)) ⊇ {0, 2, 4, . . . , 2m}\{2, 4, 6, 10, 2m−2, 2m−
4, 2m − 6, 2m − 10}.

Proof. (1) We prove it by induction on m. In the case m = 3, a Magma [5] com-

putation shows that wt(RM2(1, 3)) = {0, 2, 4, 6, 8} \ {2, 6}, wt(RM2(2, 4)) =

{0, 2, 4, 6, 8, 10, 12, 14, 16} \ {2, 14} and wt(RM2(3, 5)) = {0, 2, 4, 6, . . . , 32} \
{2, 30}. Now, suppose that the claim is true for m ≥ 3, by Corollary 2, we have

wt(RM2(m − 1, m + 1)) ⊇ A, where A = {i + j|i, j ∈ wt(RM2(m − 2, m))}.
It is easy to check that A = {0, 2, 4, . . . , 2m+1} \ {2, 2m+1 − 2}. We know,

by minimum distance arguments in Proposition 5, that the integer 2 is not in

wt(RM2(m−1, m+1)). Moreover, since the all ones vector is a codeword, also

2m − 2 can not be a weight. This completes the proof.

(2) We also prove it by induction onm. In the casem = 6, a Magma [5] computation

shows that wt(RM2(3, 6)) = {0, 2, 4, 6, 8, . . . , 64} \ {2, 4, 6, 10, 54, 58, 60, 62}.
Now, suppose that the claim is true for m ≥ 6, then B = {i + j|i, j ∈
wt(RM2(m − 3, m))}. It is also easy to check that B = {0, 2, 4, . . . , 2m+1} \
{2, 4, 6, 10, 2m − 2, 2m − 4, 2m − 6, 2m − 10}. We know, by minimum distance

arguments in Proposition 5, that the integers 2, 4 and 6 are not in wt(RM2(m−
1, m+1)). However, we don’t know whether 10 belongs to wt(RM2(m−1, m+

1)). Thus from Corollary 2, we have wt(RM2(m− 1, m+ 1)) ⊇ B.

This completes the proof.

8.2 Ternary Reed-Muller codes

In this subsection we give an additional result not covered by Theorem 15 for

ternary Reed-Muller codes.

Theorem 17. Let m be a positive integer, then we have

(1) If m ≥ 1, then wt(RM3(2m− 2, m)) = {0, 3, 4, 5, . . . , 3m}.

(2) If m ≥ 3, then wt(RM3(2m− 3, m)) ⊇ {0, 6, 8, 9, . . . , 3m}.
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Proof. (1) We prove it by induction on m. The cases m = 1, 2, 3 can be checked in

Magma [5] to be wt(RM3(0, 1)) = {0, 3}, wt(RM3(2, 2)) = {0, 3, 4, 5, 6, 7, 8, 9}
and wt(RM3(4, 3)) = {0, 3, 4, . . . , 27}. Now, suppose that the claim is true for

m ≥ 4, from Corollary 2, we have wt(RM3(2m,m+1)) ⊇ A = {i+j+l|i, j, l ∈
wt(RM3(2m−2, m))}. It is easy to check A = {i+j+ l|i, j, l ∈ wt(RM3(2m−
2, m))} = {0, 3, 4, 5, . . . , 3m+1}. According to part (3) of Proposition 5, d(2m−
2, m) = 3. This completes the proof.

(2) We also prove it by induction on m. The cases m = 3, 4 can be checked

in Magma [5] to be wt(RM3(3, 3)) = {0, 6, 8, 9, . . . , 27}, wt(RM3(5, 4)) =

{0, 6, 8, 9, . . . , 81}. Now, suppose that the claim is true for m ≥ 5, then B =

{i + j + l|i, j, l ∈ wt(RM3(2m − 3, m))} = {0, 6, 8, 9, . . . , 3m+1}. However, we

don’t know whether 7 belongs to wt(RM3(2m−1, m+1)). Thus, from Corollary

2, we have wt(RM3(2m− 1, m+1)) ⊇ {0, 6, 8, 9, . . . , 3m+1}. According to part

(3) of Proposition 5, d(2m− 3, m) = 6. This completes the proof.

8.3 Reed-Muller codes over the field F5

Here we provide an additional result not covered by Theorem 15 for Reed-Muller

codes over the field F5.

Theorem 18. Let m be a positive integer, then we have

wt(RM5(4m− 3, m)) = {0, 4, 5, 6, . . . , 5m} for m ≥ 1.

Proof. We also prove it by induction onm. The casesm = 1, 2 can be checked with the

aid of the software Magma [5] to be wt(RM5(1, 1)) = {0, 4, 5} and wt(RM5(5, 2)) =

{0, 4, 5, 6, . . . , 25}. Now, suppose that the claim is true for m ≥ 3, then B = {i+ j +

l + s + t|i, j, l, s, t ∈ wt(RM5(4m − 3, m))} = {0, 4, 5, 6, . . . , 5m+1}. From Corollary

2, we have wt(RM5(4m + 1, m + 1)) ⊇ {0, 4, 5, 6, . . . , 5m+1}. Finally, from part (3)

of Proposition 5, we have d(4m− 3, m) = 4. This completes the proof.

9 Appendix II: q-ary Hamming codes

9.1 Block Codes and Hamming Codes

Let q be a prime power, and let Fq denote the finite field with q elements. We

denote by F
∗
q = Fq \ {0} the multiplicative group of Fq. It is well-known that F∗

q is a
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cyclic group, i.e. there always exists a generator γ such that

Fq = {γi | 1 ≤ i ≤ q − 1} ∪ {0}.

For u = (u1, . . . , un),v = (v1, . . . , vn) ∈ F
n
q we denote by 〈u,v〉 the standard inner

product between u and v, i.e.

〈u,v〉 :=
n∑

i=1

uivi.

Moreover, given two vectors u ∈ F
n1

q , v ∈ F
n2

q we will use the notation (u | v) to
indicate the vector in F

n1+n2

q obtained by concatenating u and v, i.e.

(u | v) = (u1, . . . , un1
, v1, . . . , vn2

),

where u = (u1, . . . , un1
) and v = (v1, . . . , vn2

). With this notation, given ui,vi ∈ F
ni
q

for i = 1, . . . , m, it trivally holds that

wH(u1 | . . . | um) =
m∑

i=1

wH(ui), and (1)

〈(u1 | . . . | um), (v1 | . . . | vm)〉 =
m∑

i=1

〈ui,vi〉. (2)

Suppose r is a positive integer. On the set Fr
q \ {0} we can consider the following

equivalence relation:

u ∼ v ⇐⇒ ∃λ ∈ F
∗
q such that u = λv.

The projective geometry of order q and dimension r is defined as

PG(r − 1, q) = (Fr
q \ {0})/∼.

A set of representatives for PG(r − 1, q) is given by the set of all nonzero vectors

of length r whose first nonzero entries is equal to 1. For this reason, the space

PG(r − 1, q) can be embedded in F
r
q. The image of this embedding will be denoted

by Pr(q). We will use this different notations in order not to confuse it with the space

PG(r−1, q), since we will often use the elements of Pr(q) as elements of Fr
q, where the

notion of sum is well-defined. Since the cardinality of Pr(q) is equal to the cardinality

of PG(r − 1, q), we have that

θq(r − 1) :=
qr − 1

q − 1
= |Pr(q)|.
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Definition 2. Let q be a prime power, and let r ≥ 2 be a positive integer. We

define the q-ary Hamming code Hr(q) as the [θq(r − 1), θq(r − 1)− r] linear code

over Fq whose parity check matrix Hr is obtained by choosing all the vectors of Pr(q)

(without repetitions) as columns.

Observe that in Definition 2 the order of the choice of the columns does not really

matter. Indeed, permuting the columns of the parity check matrix of a code gives

rise to an equivalent code. All the parameters of a code, such that length, dimension

and weight distribution are invariant under equivalence of codes. Therefore, for our

purpose of studying the weight set of an Hamming code, we are free to choose the

order of the columns of Hr in the way we prefer by Definition 2.

Lemma 3. Let Hr−1 be the parity check matrix for the Hamming code Hr−1(q) as

described in Definition 2. Then we can obtain a parity check matrix for Hr(q) as

Hr =




0 · · · 0 1 · · · 1 1 · · · 1 · · · 1 · · · 1 1

0

Hr−1 γHr−1 γ2Hr−1 · · · γq−1Hr−1
...

0




,

where γ is a primitive element of Fq and H1 = (1).

9.2 The Main Theorem

Hamming codes have been deeply studied in the theory of error correcting codes,

since they represent the only existing infinite family of perfect codes. Indeed, in

addition to Hamming codes, the only perfect linear codes that are non-trivial, are the

binary Golay code and the ternary Golay code [10, 16, 23].

It is a well-known fact that q-ary Hamming codes always have minimum distance

equal to 3. Moreover, a recursive formula for the weight distribution of a q-ary

Hamming code Hr(q) is known, and it can be found in [12]. Anyway, from that

recursion, it is not immediate how to deduce wether the number of codewords of

weight i in Hr(q) is greater than zero or not. In the particular case that r = 2 we

know more about the structure of H2(q).

Lemma 4. For r = 2 the Hamming code H2(q) is an MDS code of parameters

[q+1, q−1, 3]. In particular, wt(H2(3)) = {0, 3} and wt(H2(q)) = {0, 3, 4, . . . , q+1}
for every q > 3.
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Proof. The parameters of H2(q) are well-known to be [q+ 1, q− 1, 3]. From there we

see that this code is MDS. The explicit determination of the weights follows then by

[9, Theorem 10].

The above result represents, except for the case q = 3, the base step of our proof

for induction. Now, we give some auxiliary tools that will enable us to prove our

main results in this section.

Lemma 5. Let q > 2 be a prime power, and let r ≥ 1 be a positive integer. Then

∑

v∈Fr
q

v = 0 and
∑

u∈Pr(q)

u = er,

where er = (0, 0, . . . , 0, 1)T .

Proof. For the first equality, we prove it by induction. Let r = 1, q ≥ 3, and γ be a

primitive element of Fq. Then

∑

v∈Fq

v =

q−2∑

i=0

γi =
γq−1 − 1

γ − 1
,

since γ 6= 1. Moreover, γq−1 = 1 and then we get the result.

For r > 1, we can write F
r
q =

⋃
α∈Fq

Tα, where

Tα :=
{
(α,v′) | v′ ∈ F

r−1
q

}
,

and the union is clearly disjoint. Therefore,

∑

v∈Fr
q

v =
∑

α∈Fq

∑

v′∈Fr−1
q

(α,v′) =
∑

α∈Fq

(qr−1α, 0) = 0,

where qr−1α denotes (with a slight abuse of notation)

α + . . .+ α︸ ︷︷ ︸
qr−1 times

,

and the second equality holds for inductive hypothesis.

Concerning the second statement, we proceed again by induction. For r = 1 the

statement is clearly true, since P1(q) is the set with the only element e1 = (1).
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Suppose now r > 1. Then we can write

Pr(q) = {(0,u′) | u′ ∈ Pr−1(q)} ∪
{
(1,v′) | v′ ∈ F

r−1
q

}
.

Therefore,

∑

u∈Pr(q)

u =
∑

u′∈Pr−1(q)

(0,u′) +
∑

v′∈Fr−1
q

(1,v′) = er + 0 = er,

where the second equality comes from inductive hypothesis and from the first part of

this lemma.

Proposition 6. For every q > 2, and every integer r ≥ 2, there exists a codeword

c ∈ Hr(q) of full weight, i.e., such that wH(c) = θq(r − 1), except for the case

(q, r) = (3, 2).

Proof. For r = 2 the statement trivially follows from Lemma 4. Suppose now r ≥ 3,

and let γ be a primitive element of Fq. Consider the set

D = {w0,w1, . . . ,wq−1},

where w0 = e1 = (1, 0, . . . , 0) and wi = (1, γi, γi, . . . , γi) for i = 1, 2, . . . , q − 2 and

wq−1 = (1, 1, . . . , 1, 0). It is easy to see that with this choice of D, we have

q−1∑

i=0

wi + er = 0.

Let α ∈ Fq. We consider the sum

∑

u∈Pr(q)
u/∈D∪{er}

u+ (1 + α)

q−1∑

i=0

wi + αer =
∑

u∈Pr(q)
u6=er

u+ α

q−1∑

i=0

wi + αer

= α

(
q−1∑

i=0

wi + er

)
= 0.

Choosing α ∈ Fq \ {0,−1}, we have a linear combination of the columns of Hr that

gives the zero vector, and in which every column is multiplied by a nonzero coefficient.

This gives a codeword that has all nonzero entries.

Proposition 6 proves the existence of a codeword of maximum weight in every

Hamming code, with the exception of H2(3). For all the remaining weights we will

use an induction argument based on the following two results.
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Lemma 6. If ui ∈ Hr−1(q) for i = 0, 1, . . . , q − 1, then

(u0 | u1 | . . . | uq−1 | α) ∈ Hr(q),

where

α = −
q−1∑

i=1

〈ui, e〉,

and e denotes the vector with all entries equal to 1.

Proof. According to Lemma 3, it is straightforward to see that the vector (u0 | u1 |
. . . | uq−1 | α) satisfies the check equations given by the rows i = 2, . . . , r of the

parity check matrix. Moreover, the condition on α ensures that it also satisfies the

first check equation.

Let q be a prime power, n be a positive integer. Consider the space

(Fn
q )

q = F
n
q × . . .× F

n
q︸ ︷︷ ︸

q times

.

Let Sq denote the symmetric group on the set {0, 1, . . . , q − 1}, id denote identical

permutation and consider the action of the group (F∗
q)

q
⋊ Sq on (Fn

q )
q defined as

ϕ : ((F∗
q)

q
⋊ Sq)× (Fn

q )
q −→ (Fn

q )
q

((β, σ), (u0 | . . . | uq−1)) 7−→ (β0uσ(0) | . . . | βq−1uσ(q−1)).

It is straightforward to see that the same group acts on (Hr−1(q))
q. In order to

simplify the notation, for (β, σ) ∈ ((F∗
q)

q
⋊ Sq), u ∈ (Fn

q )
q, we will write

(β, σ) · u := ϕ((β, σ),u).

Proposition 7. Let q > 2 be a prime power and let (u0 | . . . | uq−1) ∈ (Hr−1(q))
q.

Then there exists (β, σ) ∈ (F∗
q)

q
⋊ Sq such that

(β0uσ(0) | . . . | βq−1uσ(q−1) | 0) ∈ Hr(q).

Proof. Let u0,u1, . . . ,uq−1 ∈ Hr−1(q). By Lemma 6 we have that (u0 | u1 | . . . |
uq−1 | α) ∈ Hr(q), where α = −

∑q−1
i=1 〈ui, e〉. If α = 0 we are done. Therefore,

suppose α 6= 0, and consider the set

T := {i ∈ {1, . . . , q − 1} | 〈ui, e〉 6= 0} .
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Since α 6= 0, then |T | ≥ 1. We distinguish two cases.

Case 1: |T | ≥ 2. Let r, s ∈ T be two distinct elements. Consider a generic vector

β = (β0, . . . , βq−1) whose entries are βi = 1 for i 6= r, s, and consider the elment

(β, id) · (u0 | . . . | uq−1). By Lemma 6, the vector

((β, id) · (u0 | . . . | uq−1) | α̃) ,

belongs to Hr(q), where

α̃ = −
q−1∑

i=1

〈βiui, e〉

= −
q−1∑

i=1

〈ui, e〉+ (1− βr)〈ur, e〉+ (1− βs)〈us, e〉

= α+ (1− βr)〈ur, e〉+ (1− βs)〈us, e〉.

Imposing the condition α̃ = 0 we get

(1− βs) = −α + (1− βr)〈ur, e〉
〈us, e〉

. (3)

Since q > 2, there exists (βr, βs) ∈ F
∗
q × F

∗
q satisfying Equation (3), and we can

conlcude.

Case 2: |T | = 1. Let r be the only element in T . We divide this case into two

subcases:

(i) If 〈u0, e〉 = 0, then consider the transposition σ = (0, r) ∈ Sq. Consider the

element

(e, σ) · (u0 | . . . | uq−1) = (v0 | . . . |vq−1).

By Lemma 6, we have

(v0 | . . . | vq−1 | α) ∈ Hr(q),

where

α = −
q−1∑

i=1

〈vi, e〉 = −
q−1∑

i=0
i 6=r

〈ui, e〉 = −
q−1∑

i=0
i 6=r

0 = 0,

and we are done.
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(ii) Suppose now that 〈u0, e〉 6= 0. Then there exists s ∈ {1, 2, . . . , q− 1} such that

s /∈ T . We now consider the transposition σ = (0, s) and the corresponding

vector

(e, σ) · (u0 | . . . | uq−1).

For this new vector we have now |T | = 2 and we can conclude by Case 1.

This completes the proof.

As a direct consequence, we immediately get the following result.

Corollary 3. Let q > 2 be a prime power, and let r ≥ 3 be a positive integer. Then

wt(Hr(q)) ⊇
q−1⊕

i=0

wt(Hr−1(q)).

We are now ready to prove the main result.

Theorem 19. Let q > 2 be a prime power, and let r ≥ 2 be an integer. Then

wt(Hr(q)) = {0, 3, . . . , N},

where N := θq(r − 1), except when (q, r) = (3, 2), in which case wt(H2(3)) = {0, 3}.

Proof. We prove it by induction. The base step is divided in two cases

Case 1: (q, 2) with q > 3. It follows from Lemma 4.

Case 2: (q, r) = (3, 3). We computed it with the aid of the software Magma [5].

Now, suppose that the claim is true for (q, r−1) and we want to prove it for (q, r).

By hypothesis we know that

wt(Hr−1(q)) = {0, 3, . . . , n}

where n = θq(r − 2), and observe that N = qn+ 1. By Corollary 3, we know that

wt(Hr(q)) ⊇
q−1⊕

i=0

wt(Hr−1(q)) =

q−1⊕

i=0

{0, 3, . . . , n} .

Moreover, since (q, r − 1) 6= (3, 2), we have that n ≥ 5. By Proposition 6 we already

know that N ∈ wt(Hr(q)). Therefore it is enough to show that

q−1⊕

i=0

{0, 3, . . . , n} = {0, 3, . . . , qn} .
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It is clear that N − 1 = qn belongs to our set, since n ∈ wt(Hr−1(q)). Let x ∈
{0, 3, . . . , qn− 1}, we need to prove that we can write x = x0 + x1 + · · ·+ xq−1 with

xi ∈ {0, 3, . . . , n}. By Euclidean division, we have x = an + b, with 0 ≤ a < q and

0 ≤ b < n. At this point we distinguish two cases.

Case 1: b ∈ {0, 3, . . . , n− 1}. We choose x0 = b, x1 = · · · = xa = n and xa+1 =

· · · = xq−1 = 0.

Case 2: b ∈ {1, 2}. Then, necessarily a ≥ 1. Moreover, we already observed that

n ≥ 5. Therefore, n − 3 + b ∈ {0, 3, . . . , n} and we choose x0 = 3, x1 = n − 3 + b,

x2 = · · · = xa = n and xa+1 = · · · = xq−1 = 0. This concludes the proof.
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