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ScienceDirect
Behavioural resistance to insecticides may be an important

factor restraining the efficacy of vector control against

mosquito-transmitted diseases. However, our understanding

of the mechanisms underlying such behavioural resistance

remains sparse. In this review, we focus on the behavioural

adaptations of mosquito vectors in response to the use of

insecticides and provide a general framework for guiding future

investigations. We present our review of vector behaviour in the

field and a conceptual classification of behavioural adaptations

to insecticides. We emphasise that behavioural adaptations

can result from constitutive or induced (i.e. phenotypically

plastic) traits. Lastly, we identify gaps in knowledge limiting a

better understanding of how mosquito behavioural adaptations

may affect the fight against vector-borne diseases.
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Introduction
Control of mosquito-borne diseases mainly relies on the

use of insecticide-based tools. The increased coverage in

the use of insecticide-treated nets (ITNs) in sub-Saharan

Africa since the year 2000 is an example of a massive and

efficient intervention against malaria [1]. Arboviruses

outbreaks can also be controlled through insecticide

use [2]. However, using such vector control methods

reduces mosquito fitness, and in response, mosquitoes

have evolved resistance mechanisms threatening the

continued efficacy of insecticide-based strategies.

Understanding the mechanisms of insecticide resistance

is key to predicting how resistance may emerge, spread
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and hinder control interventions. To date, several physi-

ological resistance mechanisms to insecticides, including

biochemical (e.g. target site modifications and metabolic

resistance) and morphological (e.g. cuticular thickness)

have been described, discoveries aiding the design of

resistance management strategies [3,4]. Behavioural resis-

tance is also emerging as an important topic of research [5,6]

due to its potentially detrimental effect on the efficacy of

insecticides in vector control [7–9,10�] and the resulting

increase in residual transmission it would induce [5].

In this review, we focus on the behavioural adaptations of

mosquitoes in response to insecticide-based vector con-

trol tools. We first propose a framework for organising and

investigating such behaviours and review the supporting

evidence. Secondly, we highlight that resistance beha-

viours may be constitutive or phenotypically plastic

inducible changes in behaviour, and identify clues for

distinguishing between them. Finally, we discuss

research perspectives to decipher among behavioural

defences in mosquito vectors.

Classification of behavioural adaptations to
insecticides
There is a wide range of behaviours that mosquitos could

adopt to prevent or reduce the negative consequences of

insecticides. We propose a conceptual classification of

these behavioural adaptations inspired by the classifica-

tion of insect responses to natural enemies [11��] (Box 1).

The first line of defence is qualitative behavioural resistance
whereby mosquitoes avoid (either temporally, spatially or

trophically) contact with insecticides. In areas with exten-

sive use of ITNs or indoor residual spraying (IRS),

selection may favour foraging earlier in the evening or

later in the morning, times when the human hosts are not

protected by bednets or indoor treatments [7]. Increased

outdoor host-seeking and/or zoophagy are also consistent

with mosquito behavioural adaptation to the use of ITNs

and IRS.

Behavioural observations in the field following imple-

mentation of ITNs and IRS have provided support for

the existence of such behavioural modifications [5]. Tem-

poral avoidance in the form of a behavioural shift from

night to evening aggressiveness has been observed in

Anopheles farauti on the Solomon Islands [12] and Papua

New Guinea [13], Anopheles funestus in Tanzania [14], and

both An. funestus and Anopheles arabiensis in Kenya [15]. In
www.sciencedirect.com

mailto:anna.cohuet@ird.fr
http://www.sciencedirect.com/science/journal/22145745/34
https://doi.org/10.1016/j.cois.2019.08.007
https://doi.org/10.1016/j.cois.2019.03.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cois.2019.03.005&domain=pdf
http://www.sciencedirect.com/science/journal/aip/22145745


Behavioural resistances in mosquito vectors Carrasco et al. 49

Box 1 Expanding the field of mosquito insecticide resistance

Evolution of
resistance / tolerance

mechanisms

Costs

BEHAVIOURAL
MORPHOLOGICAL
e.g. cuticular resistance

BIOCHEMICAL
e.g. target-site,

metabolic resistance

Mosquito
population

Selection on
mosquitoes

Insecticides

Temporal avoidance: mosquitoes can reduce their risk of 
exposure by changing their activity to mismatch the timing of 
insecticide use. For example, in areas of extensive ITN coverage,
early or late mosquito biters can be favoured over night mosquito
biters.

Spatial avoidance: mosquitoes can reduce their risk of exposure
by avoiding habitats where insecticides are predictably found. For
example, in areas of extensive indoor insecticide use, outdoor-
feeding mosquitoes can be favoured over indoor-feeding
counteparts. Spatial avoidance could also occur through
increased dispersion to untreated areas. 
Trophic avoidance: mosquitoes can decerase the probability of
contact with the insecticide by avoiding feeding on hosts in close
association with insecticide use. For example, in areas of
extensive human protection (IRS, ITNs), more zoophagic
mosquitoes can be favoured over anthropophagic counterparts.  

Escaping: Once exposed, could mosquitoes limit their contact
time with the insecticide contacted by quickly escaping, and thus
reduce the contacted dose?
Behavioural thermoregulation: Once exposed, could mosquitoes
limit or reduce insecticide activity by behaviourally changing their
body temperature?

Curative self-medication: Once exposed, could mosquitoes
consume food or other compounds to reduce insecticide activity?

Fecundity compensation: Could mosquitoes increase their
current reproductive effort when insecticide exposure decreases
their chances of future reproduction?
Tolerance thermoregulation: Once exposed, could mosquitoes
behaviourally change their body temperature to increase tolerance
to the insecticide? (Tolerance, here and below, is defences that
reduce fitness loss not by limiting insecticide activity, but by
compensating for the fitness reductions). 

Tolerance self-medication: Could mosquitoes use food or
compounds to increase tolerance to insecticide?

In mosquitoes with effective defences against
insecticides, the costs of exposure are reduced and
recognition of insecticide uses could even become
exploited to the benefit of the mosquito if it is reliably
associated with the presence of hosts (e.g. blood meal
proxy). For example, indirect evidence suggest that
some washed ITNs can become attractive compared to
control untreated bednets.
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Insecticides reduce mosquito fitness, and in response, selection has favoured genotypes with effective defence mechanisms, including both

resistance and tolerance to insecticides. Much work has focused on understanding physiological (biochemical and morphological) defences, but

mosquitoes can also express behaviours that protect against insecticides. These ‘anti-insecticide’ behaviours can be categorised into three

possible mechanisms: (1) qualitative resistance which prevents or limits the probability of contact with the insecticide; (2) quantitative resistance,

which stops, limits or reduces insecticide action once contact has occurred; and (3) tolerance, which does not prevent per se the insecticide

exposure or limit its action, but instead alleviates fitness reductions caused by the insecticide. A fourth category of adaptive behavioural response

to insecticide use, coined ‘behavioural exploitation,’ is proposed. This is not a defence mechanism. Instead, behavioural exploitation is envisioned

as a secondary behavioural adaptation following the evolution of physiological (i.e. biochemical and morphological) resistance (grey dashed lines)

whereby mosquitoes exploit recognition of the insecticide to their benefit. This schematic representation also highlights that the costs of resistance

mechanisms (defined as the negative fitness effect of resistance in the absence of the insecticide) should not only focus on biochemical resistance

but should also include other defence mechanisms, such as morphological and behavioural defences. The costs qualitative behavioural resistance,

for instance, remain currently unquantified. Finally, blue arrows show possible associations between phenotypic defences. For example, if defence

is costly, trade-offs between physiological and behavioural defences are expected. For example, individuals with highly efficient behavioural

defences may not need physiological resistance, and vice versa. ‘�’ indicates the existence of field studies providing some, more or less

convincing, support to these hypotheses; whereas ‘?’ indicates undescribed cases.
Benin, peak biting time in An. funestus was delayed to the

early morning [16]. Examples of spatial avoidance come

from Anopheles gambiae s.l. in Bioko Island [17] and An.
funestus in Tanzania [14], which displayed increased out-

door host-seeking following implementation of IRS and

ITNs respectively. Finally, trophic avoidance with a shift

towards increased zoophilic behaviours was reported in

Culex quinquefasciatus, An. funestus [18] and in An. gambiae
www.sciencedirect.com 
s.s. in areas of high bednet coverage in Kenya [18,19] and in

Anopheles fluviatilis and Anopheles culicifacies in India where

IRS had been implemented [20].

As insecticides become more widely implemented, it is

likely that mosquitoes may not be able to avoid contact.

In this scenario, if mosquitoes are not immediately killed

after insecticide exposure (e.g. sublethal doses or
Current Opinion in Insect Science 2019, 34:48–54
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physiologically resistant genotypes), then they could

theoretically evolve quantitative behavioural resistance
(Box 1). As shown in diverse insect species, behavioural

quantitative resistance may include escape reactions that

reduce contact duration with the insecticide [21], resis-

tance-promoting behavioural thermoregulation [22,23],

and/or curative self-medication [24,25] (Box 1). Similar

to biochemical metabolic resistance, which lowers the

amount of insecticide reaching target sites, these beha-

viours could limit the insecticide’s direct adverse effects

following non-lethal exposures.

If mosquitoes cannot avoid exposure (qualitative resis-

tance) or reduce the direct effects of the insecticide when

exposure does occur (quantitative resistance), then they

could still limit their fitness loss through behavioural
tolerance (Box 1). This could occur by altering behaviours

associated with offspring production that increase their

current reproductive effort, such as i) maximising nutrient

intake quality (e.g. blood feeding choice), ii) minimising

energy expenditure (e.g. feeding rates and resting times),

or iii) adjusting egg production and allocation patterns

[26]. Similar to quantitative behavioural resistance, toler-

ance could also occur through behavioural thermoregula-

tion if mosquitoes rest at some specific temperatures

[22,23] or by self-medication if mosquitoes feed on spe-

cific diets (e.g. nectars) [24,25] that allow them to main-

tain health despite insecticide exposure.

While we fully concede that the two post-exposure lines

of defence (i.e. quantitative behavioural resistance and

tolerance to insecticides) have yet to be observed in

mosquitoes, they fully deserve to be considered as some

evidence has been found in other insect species

[11��,24,25].

Given the widespread occurrence of physiological resis-

tance in mosquito populations, the study of behavioural

defences should not be considered independently. In this

context, a fourth category of behavioural adaptation can be

introduced: behavioural exploitation (Box 1), whereby physi-

ologically resistant mosquitoes may use the recognition of

insecticide-based control tools as a proxy for host presence.

Some experiments and field observations are consistent

with such behavioural exploitation of ITNs by physiologi-

cally resistant mosquitos. In a laboratory study, physiologi-

cally resistant mosquitoes were preferentially attracted to

hosts under permethrin-treated nets compared to those

under untreated nets [27]. Additionally, a retrospective

analysis of experimental hut trial studies found evidence

that two WHO-recommended ITNs are attractive to wild

An. gambiae s.l. after multiple washings [28��]. Similarly, a

review on the efficacy of ITNs reported 55 deterrence

values (defined as the reduction of entry into experimental

huts in the presence of an ITN relative to control huts with

untreated nets) from 17 articles. Thirteen (24%) of the

deterrence values (from seven articles) were negative,
Current Opinion in Insect Science 2019, 34:48–54 
suggesting the possibility of attractiveness [29]. Negative

deterrence valueshave been reportedmore recently [30,31]

suggesting that behavioural exploitation may be associated

with different types of ITNs.

Constitutive versus inducible behavioural
resistance traits to insecticide
Provided there is sufficient genetic variation in constitutive
behavioural resistance traits and/or inducible behavioural
resistance traits, they can adaptively evolve in response

to selection pressures imposed by insecticide tool use.

Constitutive resistance traits occur when genetic variants

spread through the population over generations, whereas

induced resistance traits (aka plastic traits) occur within a

generation. Phenotypic plasticity, the ability of a given

genotype to produce different phenotypes in response to

different environmental conditions, can indeed allow

organisms to quickly respond to environmental changes

by producing better matching phenotypes. Theoretical

and experimental studies suggest that when environmen-

tal conditions are variable (e.g. the risk of contacting the

insecticide is unpredictable or variable, perhaps because

of heterogeneous ITN coverage, etc.), the evolution of

phenotypic plasticity (here inducible behavioural resis-

tance) is expected; whereas in constant conditions (e.g.

high overall risk of contact with an insecticide, wide-

spread ITN coverage, etc.), constitutive traits (here con-

stitutive behavioural resistance) will be favoured [32,33].

Nonetheless, constitutive and induced resistance traits

are not mutually exclusive; they can co-exist in a given

population. In other words, at the individual level, some

behavioural resistance traits can be fixed (e.g. early biting)

while others plastic (e.g. zoophagy); and at the population

level, some individuals may display constitutive resis-

tance traits while others display plastic resistance traits.

The potential behavioural responses presented above for

qualitative and quantitative resistance, behavioural toler-

ance and exploitation can result from the expression of

either constitutive or induced behavioural traits. In Fig-

ure 1 we illustrate the constitutive versus induced nature

of these behavioural traits in the presence of insecticide-

based vector control measures implemented in the field

(Figure 1). Most of the behavioural resistance phenotypes

thus far observed in the field fall into the category of

qualitative behavioural resistance (shifts in biting time/

site, shifts of bitten hosts), although some observations

are consistent with potential behavioural exploitation of

insecticides (cases of negative deterrence of ITNs).

While some studies are directly or indirectly informative

about the potential constitutive or inducible nature of the

resistance traits (see below), in many cases it remains

difficult to distinguish the origin of the observed beha-

vioural phenotypes.

Behavioural shifts observed in the field can be grouped in

relation to i) changes in spatiotemporal biting behaviour,
www.sciencedirect.com
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Figure 1
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Genotypic variability
within a population

Genotype Phenotype

No resistance
Physiological resistance

Constitutive behavioural resistance
Induced behavioural resistance

(2)

(5)

(4a)

(4b)

(4c)

(3a)

(3b)

(3c)

(1)

Schematic representation of the observed mosquito phenotypic responses against insecticides in the field.

Given a genetically variable mosquito population, host-seeking individuals may express different phenotypes when facing insecticides (red halo)

depending on their genetic background and their behavioural plasticity. (1) Mosquitoes sensitive to the insecticide will be killed after exposure/

contact. (2) Physiologically resistant mosquitoes will encounter insecticides, but their behaviour will be relatively unaffected, being eventually able

to blood feed (red drop). (3) Constitutive behavioural resistance mechanisms will favour individuals with genetically determined behaviours that

reduce or eliminate contact with control tools. For instance, a shift in biting time (3a; clock), exophagy (3b; sun/cloud) or preferential zoophagy (3c;

cow). (4) Individuals with induced behavioural resistance mechanisms must first recognize (!!) control tools, triggering a deterrence reaction, which

is followed by adaptive behavioural modification, for example by modulation of biting time (4a; clock), increased exophagy (4b; sun/cloud) or

increased zoophagy (4c; cow). When mosquitos possess physiological resistance to the insecticide, recognition could trigger an attractive effect,

(5) if mosquitos learn (hat) the presence of the insecticide tool is a reliable indicator of host presence.
ii) changes in host preference, and iii) the sensory detec-

tion of the control tools implemented.

The first group (i) refers to changes in biting rhythms and

the degree of exophagy or endophagy. These spatiotem-

poral shifts in biting behaviour are generally observed

together because of the confounding effect that humans

are usually outdoors in evenings and mornings whereas

they are indoors at night, making difficult to distinguish

the underlying cause of the behavioural shift. Circadian
www.sciencedirect.com 
activity in mosquito vectors is known to be under genetic

regulation [34–36] with olfactory functions, essential for

host seeking, being adjusted by daily rhythms [37,38].

These facts provide a plausible scenario for the possible

selection of constitutive behavioural resistance traits

related to biting-time. However, specific variants associ-

ated with biting time have not yet been identified [39],

and a potential biting time shift resulting from beha-

vioural plasticity (induced resistance) cannot be

excluded. The genetic determinants possibly regulating
Current Opinion in Insect Science 2019, 34:48–54
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shifts from endophagy to exophagy are even less under-

stood and as is the potential role of phenotypic plasticity

in spatial behaviour in mosquitoes [40�].

The second group of responses expected to be favoured

by insecticides (ii) refers to the shifts in host preference.

Mosquito species are often described as being either

generalists or specialists depending on the fidelity of their

host preference [41]. The preference of mosquitos for one

particular host over another may be regulated by genes

involved in the chemosensory detection of hosts

[40�,42,43]. Thus, between-species differences in host

preference are genetically based. However, the presence

of within-population genetic variation is required for the

evolution of potential host shifts following the implemen-

tation of insecticides as control measures. It is reasonable

to expect that highly specialised anthropophilic individ-

uals will be more exposed to insecticides than individuals

searching for animals outdoors. Genetic selection of

anthropophilic preference [44] and identification of

genetic variants for host preferences [45] provide support

for the idea that selection in the context of vector control

through insecticides could cause the evolution of a beha-

vioural shift for preference of alternative hosts in natural

mosquito populations (i.e. constitutive behavioural resis-

tance). In contrast, there are also studies showing host

preference modulation due to changes in environmental

conditions (e.g. host availability) [46] and past experi-

ences [47]. The formation of memory as a consequence of

past experiences may create a more durable shift in the

individual as long as the behaviour is reinforced [48].

Indeed, it has been shown that mosquitoes can modify

their behavioural responses to visual and olfactory stimuli

thanks to both appetitive and aversive associative learn-

ing [49–51,52��,53]. If so, associative learning, a form of

phenotypic plasticity, could play an important role in

restructuring host choice preferences in response to insec-

ticide exposure.

Lastly (iii), the existence in the population of variation in

the ability of individuals to detect and perceive insecti-

cides as noxious will determine their level of exposure.

Thus, the adaptive evolution of neurophysiological abili-

ties to detect insecticides, either upon contact or from a

certain distance, would significantly reduce the impact of

insecticides through qualitative or quantitative beha-

vioural resistance or even behavioural exploitation, and

provide a means for the expression of both constitutive (e.

g. escaping) and induced behavioural responses (e.g.

alternative host choice, etc.) (Box 1, Figure 1). It has

been suggested that the olfactory system is capable of

detecting some of the most commonly used pyrethroid

insecticides used on ITNs from a distance [54–56]

although this assertion remains controversial because of

the non-volatility of the molecules and the divergence of

results depending on the experimental design [57]. If

mosquitos are truly capable of smelling insecticides, it is
Current Opinion in Insect Science 2019, 34:48–54 
possible that physiologically resistant individuals may

become attracted to insecticides either through learning

[53] or through genetic changes of insecticides hedonic

sensory valence [58] because of the association with host

presence. In contrast, detection of insecticides upon

contact is commonly observed through measures of irri-

tancy [59]. Mosquitoes able to escape a treated surface

before acquiring a lethal dose are expected to be favoured

over counterparts expressing a slower escape reaction.

While there are to date no field observations of such

quantitative resistance, experimental evolution of quick

escapers [21] suggests its potential existance.

Conclusions and perspectives
This review updates our current understanding of beha-

vioural resistance to insecticides in mosquito vectors. The

mechanisms underlying the observed behavioural shifts

and the extent of their costs remain poorly known.

Because behavioural resistance in mosquito vectors

may have important and potentially severe epidemiologi-

cal consequences, it is worth shedding light on these

phenotypes and initiating studies deciphering their

underlying mechanisms and quantifying their fitness

benefits and costs. The proposed theoretical classification

of behavioural adaptations offers a framework for inves-

tigations. For instance, we list several possible beha-

vioural adaptations that may be expressed in mosquito

populations in response to insecticide pressure. While

some of these behavioural resistance traits may appear

speculative (e.g. quantitative resistance and tolerance),

examples have been described in other biological systems

and hence may represent promising future research ave-

nues. Moreover, behavioural exploitation could have a

potentially dramatic impact on the efficacy of vector

control if mosquitoes become able to use insecticides

as a proxy for bloodmeal source, resulting in the control

intervention having the unintended consequence of

heightening contact with vectors.

Behavioural adaptations may result from constitutive or

inducible traits and their selection will depend on the

constancy and intensity of insecticide use in a given

mosquito population. In order to identify the genetic

determinants of these traits, genomic analysis searching

for signatures of selection in the genomes of mosquito

vectors and their sibling species sequenced in the last few

years [60��] may become valuable. Regarding the interest

of entomologist/epidemiologist community in beha-

vioural resistance, we are optimistic that future research

will rapidly provide meaningful insight on the beha-

vioural adaptations of mosquitoes to vector control tools

and that these insights will help to adapt control strategies

in the fight against vector-borne diseases. Finally, physi-

ological and behavioural resistance may likely coexist in

natural mosquito populations and it will be important to

study the possible trade-offs and associations between

these different protective strategies.
www.sciencedirect.com
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Chandre F, Djègbé I, Guis H, Corbel V: Changes in Anopheles
funestus biting behavior following universal coverage of long-
lasting insecticidal nets in Benin. J Infect Dis 2012, 206:1622-
1629 http://dx.doi.org/10.1093/infdis/jis565.

17. Meyers JI, Pathikonda S, Popkin-Hall ZR, Medeiros MC, Fuseini G,
Matias A, Garcia G, Overgaard HJ, Kulkarni V, Reddy VP et al.:
Increasing outdoor host-seeking in Anopheles gambiae over
6 years of vector control on Bioko Island. Malar J 2016, 15:1-13
http://dx.doi.org/10.1186/s12936-016-1286-6.

18. Bøgh C, Pedersen EM, Mukoko DA, Ouma JH: Permethrin-
impregnated bednet effects on resting and feeding behaviour
of lymphatic filariasis vector mosquitoes in Kenya. Med Vet
Entomol 1998, 12:52-59.

19. Ndenga BA, Mulaya NL, Musaki SK, Shiroko JN, Dongus S,
Fillinger U: Malaria vectors and their blood-meal sources in an
area of high bed net ownership in the western Kenya
highlands. Malar J 2016, 15:1-10 http://dx.doi.org/10.1186/
s12936-016-1115-y.

20. Waite JL, Swain S, Lynch PA, Sharma SK, Haque MA,
Montgomery J, Thomas MB: Increasing the potential for malaria
elimination by targeting zoophilic vectors. Sci Rep 2017, 7:1-10
http://dx.doi.org/10.1038/srep40551.

21. Gerold J, Laarman J: Selection of some strains of Anopheles
atroparvus with different behavioural responses to contacts
with DDT. Nature 1964, 4957:500-501.

22. Maliszewska J, Te?gowska E: A comparison of the
effectiveness of insecticides in constant and variable thermal
conditions. Int J Pest Manag 2017, 63:331-340.

23. Abram PK, Boivin G, Moiroux J, Brodeur J: Behavioural effects of
temperature on ectothermic animals: unifying thermal physiology
and behavioural plasticity. Biol Rev 2017, 92:1859-1876.

24. De Roode JC, Hunter MD: Self-medication in insects: when
altered behaviors of infected insects are a defense instead of a
parasite manipulation. Curr Opin Insect Sci 2018, 33:1-6.
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Artemov G et al.: Highly evolvable malaria vectors: the
genomes of 16 Anopheles mosquitoes. Science (80-) 2015, 347.

In this highly collaborative study, the authors sequenced and assembled
the genomes and transcriptomes of 16 Anopheles mosquitoes from
around the world. Data, from this study can be used to, compare the
different species and elucidate the genetic characteristics associated
with vector capacity.
www.sciencedirect.com

http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0145
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0145
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0145
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0145
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0150
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0150
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0150
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0150
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0155
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0155
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0155
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0155
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0155
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0155
http://dx.doi.org/10.1111/evo.13676
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0165
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0165
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0165
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0170
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0170
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0170
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0175
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0175
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0175
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0175
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0180
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0180
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0180
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0180
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0185
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0185
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0185
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0185
http://dx.doi.org/10.3390/insects9040147
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0195
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0195
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0195
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0195
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0195
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0195
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0195
http://dx.doi.org/10.1371/journal.pgen.1006303
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0205
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0205
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0205
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0210
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0210
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0210
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0215
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0215
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0215
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0215
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0220
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0220
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0225
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0225
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0225
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0225
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0230
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0230
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0230
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0230
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0230
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0235
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0235
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0235
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0240
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0240
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0240
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0245
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0245
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0245
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0250
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0250
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0250
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0255
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0255
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0255
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0255
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0255
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0260
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0260
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0260
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0265
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0265
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0265
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0270
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0270
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0270
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0270
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0275
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0275
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0275
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0280
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0280
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0280
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0280
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0285
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0285
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0285
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0285
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0290
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0290
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0290
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0295
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0295
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0295
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0295
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0300
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0300
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0300
http://refhub.elsevier.com/S2214-5745(18)30146-9/sbref0300

	Behavioural adaptations of mosquito vectors to insecticide control
	Introduction
	Classification of behavioural adaptations to insecticides
	Constitutive versus inducible behavioural resistance traits to insecticide
	Conclusions and perspectives
	Funding
	Conflict of interest statement
	References and recommended reading


