

DE LA RECHERCHE À L'INDUSTRIE

<u>Ceaden</u>

The REPUTER project for Ni-MH battery recycling

Eugen Andreiadis

Project Coordinator

CEA, Atomic Energy and Alternative Energies Commission, Research Department on Mining and Fuel Recycling Processes, Marcoule, France

eugen.andreiadis @ cea.fr

Cea

Critical supply of (some) rare earth elements

Source: EU report 2017

Possible ways to alleviate REE supply risk

- Reducing consumption (shift in technology)
- > Substitution by other non-critical metals (La, Ce)
- Diversifying supply
 - Primary and secondary sources (new mines, tailings...)
 - Recycling (scraps, urban mine)

- > **Demand growing**, especially for magnets (> 7% per year for Nd)
- Accelerated growth of HEV/EV market (+30% in 2017)
- Market driven by Nd and Dy demand
- Global REO production in 2018 estimated at 175 kT/yr
- Production chain concentrated in China (mining, separation, downstream manufacturing, R&D capacity): 80% world REO supply
- Significant price volatility during the last 10 years
- Currently no European mine in operation

References: Roskill 2015, IMCOA 2017

RI RI

REE recycling: closing the materials loop

Advantages of recycling

- > Target only the **most critical** rare earths (balance problem)
- \succ No issues with **radioactive elements** (²³⁵U, ²³⁸U, ²³²Th)
- Lower environmental footprint (public acceptance)

*very disparate values in the REE series Source: JRC, EC Report on CRM 2018

ANR REPUTER

Challenges

- Insufficient and untargeted collection of waste sources
- Difficult recovery of REE-containing fractions
- Difficult separation of individual REE in pure form
- > Low economic interest in line with current market prices

Opportunities

- Competences and expertise of the European recycling industry
- Development of a circular economy
- Positive economic and environmental impact

Recovering REE from Ni-MH batteries

- > **Battery** recycling is an obligation
- Immediate availability of the supply
- Battery recycling processes already implemented

DE LA RECHERCHE À L'INDUSTR

ANR REPUTER

Ni-MH battery composition

Interest for the integration of a REE recovery step in the process of Ni-MH battery recycling

The REPUTER project

"Recovery, purification and elaboration of rare earth elements for Ni-MH battery recycling"

Overall project goal:

Develop an efficient, eco-conceived rare earth recovery and separation process flowsheet from used Ni-MH batteries, starting from collection down to the formulation of REE as pure metals or oxide materials ready to be used in various applications

Objectives:

- Reinforce through common goals the expertise and competences gained in France in hydrometallurgy and in pyrometallurgy;
- Remove some of the **scientific and technical barriers** currently affecting the REE recycling
- Evaluate different flowsheets for producing recycled rare earths in the form of oxides or purified metals for industrial applications (catalytic materials, battery grade alloys, etc.);
- Evaluate the **impact** of the recycling process using a **technical-economic and life cycle analysis**.

The REPUTER project

- SNAM Physical and mechanical battery treatment
- CEA DRT (LITEN) Leaching and precipitation, TE+LCA
- CEA DEN coordination, extraction, cermet conversion, molten salt electrolysis, TE+LCA
- LGC molten salt electrolysis
- ICMPE metal alloy purification (vacuum fusion)
- Total budget 2 M€ (ANR funding: 750 k€)
- Start 2016 pour 49 months (\rightarrow end 2019)
- Labelling by 3 competitive poles:

REPUTER

DE LA RECHERCHE À L'INDUSTR

Cea

ANR REPUTER

Various flowsheets for REE recycling

Recovery of REE-rich fractions

Physical and mechanical treatment of batteries

ANR REPUTER

- Adapting the existing NiMH recycling process for the recovery of RE-rich fractions:
 - Selection of battery cell types (origin, condition, composition...)
 - Optimization of crushing and sieving operations
 - Choosing the ideal conditions for a size based separation REE/Fe

Cea Hydrometallurgical treatment of the black mass

Total digestion (REE + Ni, Co...)

Choice of acids and leaching conditions compatible with an industrial approach

- Excellent yield for HNO₃ and HCI acid solutions at controlled pH
- Optimization of S/L ratio
- Scale-up to a 5 L reactor

REPUTER

Lixiviation solution composition (g/L) HNO₃ 1 M (pH = 0), rt, S/L = 10%

La	4.6
Ce	7.7
Pr	0.5
Nd	2.0
Ni	40.0
Со	5.2
Mn	2.1
Fe	3.3

Cea Hydrometallurgical treatment of the black mass

Selective leaching

REPUTER

AGENCE NATIONALE DE LA REOLEGIE

- Precipitation of REE in sulfuric acid solution as double sulfate
- Optimization of REE precipitation by Na⁺ addition
- Redissolution of double sulfate precipitate (HCI, HNO₃) and conversion to oxide

PROMETIA Scientific Seminar, 13-14 December 2018, Berlin

PAGE 10

Cea Hydrometallurgical treatment of the black mass

Implementation of a hydrometallurgical pilot unit

- Integrated to the SNAM site in Viviez (France): logistics, SEVESO environment, QA...
- Dissolution / precipitation / filtration / calcination units
- Scalable towards an increased capacity production

10 L reactor

ANR REPUTER

Integrated approach to SX process development

ANR REPUTER

C22 Selection and evaluation of a REE extractant system

- Goal: extract the REE from the leaching solutions while allowing the recovery of pure Ni and Co
- Challenge: Need an extractant with excellent affinity and selectivity for REE in the presence of Fe³⁺
- Screening of several commercially-available extracting molecules
- Selection of **diglycolamides** (TODGA) class of solvating extractants

Extraction capacity inversely proportional to REE³⁺ ionic radius

R REPUTER

- Preference for heavy RE and good intra-REE separation factors in nitric acid media
- Excellent selectivity with respect to transition metals (Fe³⁺, Ni²⁺, Co²⁺)

- Tested TODGA on simulated and real solutions in HNO₃ and HCI media
 - Optimisation of extraction and stripping conditions

REE extraction function of TODGA concentration

REPUTER

Composition of aqueous and organic phases

Element	Initial aqueous phase (ppm)	Aqueous phase after extraction (ppm)	Organic phase after extraction (ppm)	Mass balance (%)	D
La	7 159	167,0	6608,6	94,6	40
Ce	9 180	80,6	8707,4	95,7	108
Pr	1 385	2,0	1357,6	98,2	679
Nd	2 768	2,4	2760,0	99,8	1150
Ni	62 622	63761,8	1,2	101,8	0,00
Со	8 136	8508,6	3,0	104,6	0,00
Mn	3 421	3498,0	24,4	103,0	0,01
Fe	4 358	4423,4	105,0	103,9	0,02

- Excellent extraction of light REE upon increasing TODGA concentration
- Very high selectivity (Ni, Co, Mn, Fe not extracted)
- Very high REE purity in the extract >99% (1 contact, before scrubbing and stripping)

ANR REPUTER

REE separation by solvent extraction

- Tested TODGA on simulated and real solutions in HNO₃ and HCl media
 Optimization of extraction and stripping conditions
 - Optimisation of extraction and stripping conditions

Near-quantitative stripping of REE in 2 contacts with dilute acid at room temperature (HNO₃ 0.01M or HCI 0.1M)

DE LA RECHERCHE À L'INDUSTRI

Process Modelling

- Elaboration of a phenomenological model from experimental batch data
- Representation of distribution equilibria
- HNO_3 -Oct, HNO_3 -TODGA, $Ln-NO_3$ -TODGA
 - (HNO₃)(octanol)₂
 - $(HNO_3)_m(TODGA)$ with m = 1 to 3
 - $M(NO_3)_3(TODGA)_n$ with n = 1 to 3 for La, Nd, Ni, Fe

$$K'_{n} = \frac{\left[\overline{\{TR(NO_{3})_{3}, TODGA_{n}\}}\right]}{\gamma_{TR(NO_{3})_{3}} \cdot [TR(NO_{3})_{3}] \cdot [TODGA]^{n}}$$

- Activity coefficients taken into account in aqueous phase
- Implementation of the model in the CEA PAREX+ simulation code and calculation of flowsheets
- Pilot demonstration on real solutions

REPUTER

Objectives:

- Improving the extraction of light REE
- Reducing the extractant concentration in the organic phase (OPEX)
- > Increasing the **selectivity** towards transition metals (*e.g.* Fe, Ni, Co)
- > Improving the REE extraction in **sulfuric** and **hydrochloric** acid media

TODGA

REPUTER

Increase the amphiphilic character

- □ Short (hydrophilic) alkyl chains: R₁
- Long (lipophilic) alkyl chains: R₂

Solvent extraction by DGA in nitric acid solution

- Increased extraction (x 15) of light REE for N,N-Ethyl compared to TODGA
- Excellent selectivity REE / impurities (Fe, Co, Ni)

REPUTER

Working on understanding the influence of minor chain variations on the extraction properties

Andreiadis, patent FR1853263

Conversion of REE into oxides

Conversion of purified REE into a oxides

- Production of a highly homogeneous powder by **oxalic precipitation**
- Thermal treatment by calcination leading to oxides

Robust process exploited for Pu conversion

ANR REPUTER

Affords supplemental purification with respect to other metal impurities

Conversion of REE into cermets

Conversion of Ni and REE into cermets Ni-Ce(Ln)O₂ (WAR process)

- CERMET = porous microspheres of cerium oxide incorporating other REO and metallic Ni
- Numerous applications replacing PGM in **catalysis** (steam methane reforming, hydrogenation)
- No need for SX purification of input leaching solutions

Straight-forward synthetic process (CEA patent)

Fixation : $(2x + 3y)RNH_4 + xNi^{2+} + yCe^{3+} \rightarrow (R_3Ce)_y(R_2Ni)_x$ Minéralisation : $(R_3Ce)_y(R_2Ni)_x \xrightarrow{\Delta} (CeO_2)_y(NiO)_x$ Réduction : $(CeO_2)_y(NiO)_x \xrightarrow{H_2} (CeO_2)_y/Ni_x$

CERMET particles with controlled parameters (size, porosity, exchange area)

Caisso, JACS **2017** Caravaca, *Catalysts, 2017, 7(12), 368* T. Delahaye, patent EP3034209

ANR REPUTER

Molten salt electroreduction for metal elaboration

Electroreduction in molten chloride of Nd suffers from **low faradic yields** (<40%) due to the presence of M²⁺ species (disproportionation reaction Nd⁰ + Nd³⁺ \rightarrow Nd²⁺)

Use of **transient electroanalytical techniques** (voltammetry reversal chronopotentiometry, chronoamperometry...)

to optimize the experimental conditions:

- Salt composition (chloride / fluoride)
- Temperature
- RE concentration
- Current and current density

Metal deposition tests to evaluate

the process efficiency:

- Faradic yield, product purity, cell materials compatibility
- Operating conditions:
 - 500 g salt bath
 - Constant current electrolysis
 - 4 wt% < TR³⁺ < 7 wt%
 - 0.1 A/cm² < Cathodic current density < 0.3 A/cm²
 - 2000 s < Electrolysis time < 10000 s for 1 g RE metal</p>

Cez

Molten salt electroreduction for metal elaboration

Rare earth (RE) chloride electrolysis in LiCl-KCI (450-500°C)

- La deposition : dendritic deposit with high current efficiency (CE)
- Nd deposition : powder deposition with low CE 40%
- Grouped La, Ce, Pr, Nd electrolysis according to black mass composition
- Co-deposition allows the quantitative recovery of Nd (stabilisation effect)
- ➔ Reproducible results
- Composition stable on 6 successive deposits

REPUTER

➔ La recovery is more difficult (the lowest reduction potential)

Neodymium electrochemichal behaviour in LiCI-LiF (550°C-650°C)

Addition of LiF in LiCl stabilizes Nd³⁺

ANR REPUTER

- Nd²⁺/Nd⁰ transition tends to disappear (not completely)
- Electrolysis tests show that Nd deposition in LiCI-LiF give dendritic deposition with higher CE than LiCI-KCI (70< CE <90)</p>
- Best CE are obtained at 550°C (4wt%<Nd³⁺<6 wt%)

Nd deposit

DE LA RECHERCHE À L'INDUSTRI

ANR REPUTER

Innovative solutions for REE recycling from Ni-MH batteries

Integration of the REE recovery step in the global battery recycling process Simple, compact flowsheets producing value-added products (cermet, mischmetal...)

PROMETIA Scientific Seminar, 13-14 December 2018, Berlin | PAGE 24

Acknowledgments

CEA / DEN D. Rinsant G. Mossand M-T. Duchesne S. Gracia V. Pacary M. Miguirditchian D. Hartmann L. Diaz G. Serve J. Serp A. Caravaca S. Picart T. Delahausse

CEA / DRT

P. Feydi R. Laucournet M. Chapuis

SNAM

N. Coppey G. Garin

LGC P. Chamelot

ICMPE J-M. Joubert

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Nuclear Energy Division Research Department on Mining and Fuel Recycling Processes Centre de Marcoule | BP17171 | 30207 Bagnols-sur-Cèze Cedex

eugen.andreiadis @ cea.fr

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019