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ABSTRACT

This work deals with the approximation of homogenized few-groups cross sections by kernel
methods. Different kernels types are used in conjunction with pool active learning to optimize
the cross section’s support. They are compared to multi-linear interpolation and multi-variate
splines, similar to industry [1]. A standard PWR fuel assembly is provided by the OECD-NEA
Burn-up Credit Criticality Benchmark, Phase-IID, to evaluate their performances [2].
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1. INTRODUCTION

Core calculations are performed on spatially coarse meshes and the variety of reactor states are repro-
duced by a few-group cross section model [3]. Homogenized cross sections are obtained from transport
calculations with detailed energy and geometry discretizations which are not feasible to perform on-the-
fly in the core simulator. Consequently they are calculated a priori and stored in libraries for recon-
struction on demand. This is known as the two-step calculation approach. Usually a selected amount of
specialized isotopes I are tracked by the core and macroscopic cross sections are reconstructed as

Σr,g = Σres
r,g +

I∑
i=1

σi,r,gCi, (1)

for every reaction r and group g being Ci the i-isotope’s concentration. These are the most important
fissile and absorbers while the rest are lumped together in a residual cross section Σres

r,g . As common in
LWR we use a two-energy group structure with a cutoff of 0.625 eV.

2. FEW-GROUP CROSS SECTIONS MODELS

Cross sections are considered as real valued scalar functions evaluated in a d-dimensional rectangle
domain D encompassing the wide range of possible reactor conditions. The general functionalization
is σi,r,g(x) with x = (x1, . . . , xd) ∈ D of linearly independent variables called “state-parameters”:
physical quantities showing high influence on the reaction rates. In this work we consider typical choices
for PWRs, such as the burnup (0-4.5 GWd/t), fuel temperature (500-1000 ◦C) and boron concentration
(300-800 ppm), hence d = 3. Without loss of generality this domain is mapped into a unit hyper cube
D = [0, 1]d.

Cross sections approximation consists on finding σ̂T : D → R for generally smooth functions exhibiting
locality in relatively small parts of the domain (e.g. BOC) and a low order dependence among the



variables. The approximation’s support is noted as T = {[σ(τ1), τ1], . . . , [σ(τn), τn]} of size n obtained
from sampling the state-parameter space with transport calculations. We denote as τ a point x ∈ D used
as support. Depending on the research field T may be called “support space”, “data sites”, “response
vectors” or “learning space”.

Multi-linear interpolation in full grids have been commonly used in cross section representation [4].
Though reconstruction is simple and fast, large library sizes may be needed to reach the desired accuracy
[5]. Higher order approximations such as Splines [6], usually combined with projection into dedicated
sub-libraries, mitigate this to some extent by needing a smaller support. To circumvent a Cartesian con-
struction of the domain sparse grid using Legendre polynomials with Chebyshev nodes have been used
allowing some degree of anisotropy in the sampling rules [7] as to profit from the changing cross section’s
complexity with the state-parameters. Recently, machine learning techniques have been investigated to
aid the reduction of the support size. Optimization by considering the infinite multiplication factor’s
error has been performed though restrained to a regular (Cartesian) grid [8]. Unstructured supports have
been explored as well but only in view of the microscopic cross section’s error [9].

3. POOL ACTIVE LEARNING

The transport data forms a pool P from which we extract the most informative support T † ⊂ P for the
learner, i.e. for σ̂T . This optimal data set is found by computing the extrema of an objective function f
in a process called pool active learning (AL) [10]. The function f lays at the heart of the AL process and
we consider a reduction in weighted microscopic cross section errors as presented in Algo. 1 using

wi,r,g =
Ciσi,r,g

Σr,g

, (2)

that assess each isotope’s contribution to Σr,g being wi,r,g ≤ 1. The set of such weights is noted asW .
A starter support T0 and a budget b that fixes the cardinality of T † must be provided as well. Then, in
a sequential procedure, σ̂T is computed enabling to select the best support point τ † ∈ P with respect
to f in each iteration. An optimal unstructured (or scattered) domain is thus found, without any user
intervention or expert knowledge.

4. KERNEL METHODS

Kernel methods are frequently used in machine learning problems such as regression or classification
where they are known as Support Vector Machines [11]. As the name suggests they are based on scalar
kernel function k : (x, y) ∈ R2 which are symmetric and non-negative defining a Hilbert function space
Hk called the Reproducing Kernel Hilbert Space (RKHS). The approximation σ̂T in Hk results from
minimizing

σ̂T = arg min
ϕ∈Hk

1

n

n∑
i=1

(σ(τi)− ϕ(τi))
2 + λ‖ϕ‖2

Hk
, (3)

where the regularization term is defined by the norm inHk and λ ≥ 0. The kernel trick allows to evaluate
σ̂T very easily by solving the linear system (K + λnI)α = σ, with the kernel matrix Ki,j = k(τi, τj)

and σi = σ(τi), 1 ≤ i, j ≤ n. Then σ̂T (x) =
∑n

i=1 αik(x, τi) with k(x,y) =
∏d

j=1 kj(xj, yj). We
utilize for each dimension the kernel

kj(xj, yj) =
m∑
l=0

1

(l!)2
Bl(xj)Bl(yj) +

(−1)(m+1)

(2m)!
B2m(|xj − yj|), (4)
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where Bl is the l-th Bernoulli polynomial and 1 ≤ j ≤ d. A central feature of the RKHS is that the
corresponding space HK is composed of functions in the Sobolev space that are m times differentiable,
similar to the smoothing splines [12].

Data: P ,W , T0, b
1 initialize: σ̂T0;
2 while #T ≤ b do
3 compute: f = w(σ̂T − σ), ∀, i, r, g;
4 find: τ † = arg max

x∈P\T
||f ||∞;

5 extend: T = T ∪ τ †;
6 compute: σ̂T ;
7 end

Result: An optimal T † ⊂ P with respecto toW
for the budget b that defines σ̂T † .

Algorithm 1: Pool active learning algorithm.
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Figure 1. Macroscopic error [%] for multi-linear
(ML), quadratic spline (S-2) and RKHS with ac-
tive learning.

5. VALIDATION ON A TOPICAL CASE

Lastly, we also consider more classical expansion techniques, such as the linear combination of the tensor
product of univariate basis functions

σ̂T (x) =
∑
j

αjφj(x) =

N1∑
j1=1

. . .

Nd∑
jd=1

αj1,...,jd

d∏
i=1

ψi,ji(xi), (5)

where we use B-splines as basis for φ(x) =
∏d

i=1 ψi(xi) in a full grid [13]. The coefficients αj are
obtained by imposing the interpolation condition σ̂T (τ ) = σ(τ ),∀τ ∈ T for each cross section. Multi-
linear interpolation can be considered as a Spline of degree 1.

A standard PWR fuel assembly of 17 × 17 fuel pins was used with the transport code APOLLO2 [14]
to assess the quality of the representation methods. Critical flux calculations were performed using 281-
group cross section library based on JEFF-3.1 with a B1 leakage model. In Fig. 1 the arithmetic average
of the relative macroscopic cross section error εΣ = 100|Σ̂−Σ|/Σ is presented for the fission, absorption
and scattering cross sections in D.

Multi-linear (ML), quadratic Spline (S-2) and the RKHS (with m = 2) curves are plotted in function of
the support’s size. Max. and average target errors are shown in dotted lines. A red star marks the typical
discretization used for these type of fuel assemblies with multi-linear interpolation in full grids. Relative
to the Spline, Multi-linear errors are bigger being a first order approximation. The use of AL greatly
accelerates the error’s convergence rate for RKHS when compared to a full grid discretization reducing
the required support by a significant amount. Eventually when the totality of the pool is included T † ∼ P
and the RKHS error overlaps with S-2, being both 2nd order methods.
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6. DISCUSSION

A discussion of the results obtained from the approximation methods and their applicability, scalability
with the number of dimensions and limitations will be address here. A thorough exploration of the error’s
composition will be addressed in this section with particular attention to the effect of a Σ-driven support
construction in σ representations. Other kernels will be presented discussing the benefits and drawbacks
in regards to library size and evaluation speed. It will also be address the choice of the norm in AL,
e.g. ||w∆σ||1, ||w∆σ||2, etc. exploring their effect in the selection of points. Some comments about the
implementation of the methods will be address as well.
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