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Abstract

Introduced by Solomon in his 1976 paper, the descent algebra of a finite Coxeter
group received significant attention over the past decades. As proved by Gessel,
in the case of the symmetric group its structure constants give the comultipli-
cation table for the fundamental basis of quasisymmetric functions. We show
that this latter property actually implies several well known relations linked to
the Robinson-Schensted-Knuth correspondence and some of its generalisations.
This provides a new link between these results and the theory of quasisymmet-
ric functions and allows to derive more advanced formulas involving Kronecker
coefficients. Using the theory of type B quasisymmetric functions introduced by
Chow, we extend this connection to the hyperoctahedral group and derive new
formulas relating the structure constants of the descent algebra of type B, the
numbers of domino tableaux of given descent set and the Kronecker coefficients
of the hyperoctahedral group.

Keywords: descent algebra, type B quasisymmetric functions, Kronecker
coefficients, RSK-correspondence, hyperoctahedral group, domino tableaux.

1. Introduction

For any positive integer n write [n] = {1, · · · , n}, Sn the symmetric group
on [n] and idn the identity permutation of Sn. A composition α � n is a
sequence of positive integers α = (α1, · · · , αp) such that α1 + α2 + · · · = n. A
composition λ of n with its parts sorted in decreasing order is called a partition
and denoted λ ` n or |λ| = n. A partition λ is usually represented as a Young
diagram of n = |λ| boxes arranged in `(λ) left justified rows so that the i-th row
from the top contains λi boxes. A standard Young tableau T is a Young
diagram whose boxes are filled with the elements of [n] such that the entries are
strictly increasing along the rows and down the columns. The partition given
by the number of boxes in each row is its shape and denoted shape(T ).
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Example 1.1. The following diagrams are standard Young tableaux of shape
λ = (6, 4, 2, 1, 1).

T1 =

1

2

3 4

5

6 7

8 9

10

11

12

13

14

T2 =

1

2

3 4

5

6 12 14

7

13

10

8

11

9

Compositions of n are in natural bijection with subsets of [n − 1]. For
α � n and I = {i1, i2, · · · , im} a subset of [n − 1] such that i1 < i2 < · · · im,
we denote Des(α) = {α1, α1 + α2, · · · , α1 + α2 + · · ·αp−1} and comp(I) =
(i1, i2− i1, · · · , im− im−1, n− im) this bijection and its inverse. As a result the
number of compositions of n is 2n−1.

One important feature of a permutation π of Sn is its descent set Des(π) =
{1 ≤ i ≤ n − 1 | π(i) > π(i + 1)}. Similarly define the descent set of a
standard Young tableau T as the subset of [n−1] defined by Des(T ) = {1 ≤
i ≤ n− 1 | i is in a strictly higher row than i+ 1}. For instance the descent set
of the tableaux in Example 1.1 is {1, 4, 9, 10, 12}. We denote dλI the number of
standard Young tableaux of shape λ and descent set I.
Let DI (resp. BI) be the element of the algebra CSn defined as the formal sum
of all the permutations π such that Des(π) = I (resp. Des(π) ⊆ I). In the more
general context of finite Coxeter groups, Solomon showed in [19] that the DI ’s
(resp. BI ’s) generate a subalgebra of CSn of dimension 2n−1 usually referred to
as the Solomon’s descent algebra. More specifically, he showed that there
exist (non negative integer valued) structure constants (aKIJ)I,J,K⊆[n−1] and
(bKIJ)I,J,K⊆[n−1] that verify:

DIDJ =
∑

K⊆[n−1]

aKIJDK , BIBJ =
∑

K⊆[n−1]

bKIJBK .

As a result the number of ways to write a fixed permutation π of DK as the
ordered product of two permutations π = στ such that σ ∈ DI and τ ∈ DJ

depends only on Des(π) = K and is equal to aKIJ . If we require instead σ
and τ to be respectively in BI and BJ then the number of such products is∑
K′⊇K b

K′

IJ .

Remark 1.2. The two families of structure constants are linked through the
formulas ∑

I′⊆I,J′⊆J

aKI′J′ =
∑
K′⊇K

bK
′

IJ . (1)

Because of its important combinatorial and algebraic properties the de-
scent algebra received significant attention afterwards. In particular, Garsia
and Reutenauer in [11] provide a decomposition of its multiplicative structure
and a new combinatorial interpretation of the coefficients bKIJ in terms of the
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number of non-negative integer matrices with specified constraints. Bergeron
and Bergeron give analogous results in [4] when the symmetric group is re-
placed by the hyperoctahedral group (Coxeter group of type B). As shown by
Norton in [16], the descent algebra of a finite Coxeter group is also strongly
related to its 0 -Hecke algebra. In particular, she proves that the dimension of
each left principal indecomposable module of the 0-Hecke algebra is equal to
the cardinality of the analogue of one the DI ’s. She further shows that the
analogues of the a∅IJ are the entries of the Cartan matrix giving the number
of times each irreducible module is a composition factor of each indecompos-
able module. In the specific case of the symmetric group Sn, Carter in [6] uses
the celebrated Robison-Schensted (RS) correspondence to explain the following
relation obtained by computation of the Cartan matrix

a∅IJ =
∑
λ`n

dλIdλJ . (2)

Finally, Solomon’s descent algebra is dual to the Hopf algebra of quasisymmetric
functions (see Section 2) introduced by Gessel in [12]. In particular, he shows
that the comultiplication table for their fundamental basis is given by the aKIJ ’s.
In Section 2, we show that Equation (2) and its generalisations are a direct
consequence of Gessel’s result. Then we use the theory of quasisymmetric func-
tions of type B introduced by Chow ([7]) in Section 3 to provide new analogous
formulas in the case of the hyperoctahedral group. Section 4 provides additional
results involving more general coefficients.

2. Descent algebra of the symmetric group

2.1. Quasisymmetric functions
Let X = {x1, x2, · · · } be an alphabet of commutative indeterminates and

I ⊆ [n−1]. A quasisymmetric function is a bounded degree formal power series
in C[X] such that for any composition (α1, · · ·αp) and any strictly increasing
sequence of distinct indices i1 < i2 < · · · < ip the coefficient of xα1

1 xα2
2 · · ·x

αp
p is

equal to the coefficient of xα1
i1
xα2
i2
· · ·xαp

ip
. Quasisymmetric functions admit the

monomial and fundamental quasisymmetric functions as classical bases:

MI(X) =
∑

i1≤···≤in
k∈I⇔ik<ik+1

xi1xi2 · · ·xin , FI(X) =
∑

i1≤···≤in
k∈I⇒ik<ik+1

xi1xi2 · · ·xin .

These two bases are related through

FI(X) =
∑

I⊆J⊆[n−1]

MJ(X). (3)

Remark 2.1. In Gessel’s paper [12], quasisymmetric functions are indexed
by compositions and not subsets. However, the bijection between subsets and
compositions given in Section 1 makes the definition equivalent.
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For λ ` n denote also pλ(X) and sλ(X) the power sum and Schur symmetric
functions in the alphabet X indexed by λ. In what follows, we may remove the
reference to X when there is no confusion.

A semistandard Young tableau is a Young diagram whose entries are
strictly increasing down the column and non-decreasing along the rows. A
tableau has weight µ = (µ1, µ2, · · · ) if it has µi entries equal to i. Denote
Kλµ the number of semistandard Young tableaux of shape λ and weight µ.
The decomposition of Schur symmetric functions in the fundamental (e.g. [20,
7.19.7]) and the monomial bases is

sλ(X) =
∑

I⊆[n−1]

dλIFI(X) (4)

=
∑

I⊆[n−1]

Kλ comp(I)MI(X). (5)

2.2. Gessel’s relation and its consequences
For two commutative sets of variables X = {x1, x2, · · · , xi, · · · } and Y =

{y1, y2, · · · , yi, · · · }, we denote XY the set of indeterminates {xiyj ;xi ∈ X, yj ∈
Y } ordered by the lexicographical order. Gessel shows in [12, Thm. 11] that for
any subset K ⊆ [n− 1]

FK(XY ) =
∑

I,J⊆[n−1]

aKIJFI(X)FJ(Y ). (6)

We can say that FK(XY ) is the generating series for the coefficients aKIJ . As
stated in introduction, Equation (2) and some of its generalisations are a direct
consequence of Equation (6). More precisely, denote by χλ the irreducible char-
acter of Sn indexed by partition λ and for any λ, µ, ν ` n define the Kronecker
coefficients g(λ, µ, ν) = 1/n!

∑
ω∈Sn

χλ(ω)χµ(ω)χν(ω). We have the following
theorem.

Theorem 2.2. For I, J,K ⊂ [n − 1] let a∅I,J be the structure constant defined
in introduction and let a∅I,J,K = [D∅]DIDJDK be the number of triples of per-
mutations σ1, σ2, σ3 of Sn such that Des(σ1) = I, Des(σ2) = J , Des(σ3) = K
and σ1σ2σ3 = idn. Equation (6) directly implies

a∅IJ =
∑
λ`n

dλIdλJ , (7)

a∅I,J,K =
∑

λ,µ,ν`n

g(λ, µ, ν)dλIdµJdνK . (8)

Proof. According to Equation (4) F∅ = s(n). Then using the Cauchy identity
for Schur functions

s(n)(XY ) =
∑
λ`n

sλ(X)sλ(Y ) (9)
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and applying Equation (4) once again one gets:∑
I,J⊆[n−1]

a∅IJFI(X)FJ(Y ) = F∅(XY ) = s(n)(XY )

=
∑
λ`n

sλ(X)sλ(Y )

=
∑
λ`n

I,J⊆[n−1]

dλIdλJFI(X)FJ(Y ).

This can be generalised to prove Equation (8) by noticing that the structure
constants verify a∅I,J,K =

∑
L a
∅
I,La

L
J,K . As a result, Equation (6) extends to

F∅(XY Z) =
∑
I,J,K

a∅I,J,KFI(X)FJ(Y )FK(Z).

Finally use the generalised version of Equation (9)

sν(XY ) =
∑
λ,µ

g(λ, µ, ν)sλ(X)sµ(Y ) (10)

to decompose s(n)(XY Z) = F∅(XY Z).

Remark 2.3. Denote λ′ the partition corresponding to the transposed Young
diagram of λ. For I, J ⊆ [n− 1], the numbers a[n−1]IJ are given by

a
[n−1]
IJ =

∑
λ`n

dλIdλ′J . (11)

Proof. According to Equation (4) F[n−1] = s(1n). Then use the identity for
Schur functions

s(1n)(XY ) =
∑
λ`n

sλ(X)sλ′(Y )

and apply Equation (4) to sλ and sλ′ .

2.3. Extension to the RSK-correspondence
Generalising the RS-correspondence to matrices with non-negative integral

entries, Knuth ([14]) proved that for r, c � n the number mr,c of such matrices
with row and column sums equal respectively to r and c is given by

mr,c =
∑
λ`n

KλrKλc. (12)

We have the following corollary to Theorem 2.2.
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Corollary 2.4. Equation (12) is also a consequence of Equation (6). Further-
more let p, q and r be three compositions of n and denote mp,q,r the number of
three-dimensional arrays M = (Mi,j,k) with non-negative integer entries such
that pk =

∑
i,jMi,j,k, qj =

∑
i,kMi,j,k and ri =

∑
j,kMi,j,k. Equation (6)

implies
mp,q,r =

∑
λ,µ,ν`n

g(λ, µ, ν)KλpKµqKνr. (13)

Proof. We proceed with the proof of Equation (12).
Denote AKI,J =

∑
I′⊆I,J′⊆J a

K
I′,J′ . According to Equation (3)∑

I′,J′⊆[n−1]

aKI′J′FI′(X)FJ′(Y ) =
∑

I′,J′⊆[n−1]

aKI′J′
∑

I⊇I′,J⊇J′
MI(X)MJ(Y )

=
∑

I,J⊆[n−1]

MI(X)MJ(Y )
∑

I′⊆I,J′⊆J

aKI′J′

=
∑

I,J⊆[n−1]

AKI,JMI(X)MJ(Y ).

As a result, A∅I,J is the coefficient in MI(X)MJ(Y ) of F∅(XY ) which we know
is equal to

∑
λ`n sλ(X)sλ(Y ) (see above). Finally use Equation (5) to get

A∅I,J =
∑
λ`n

Kλ comp(I)Kλ comp(J). (14)

It remains to prove that A∅I,J = mcomp(I),comp(J). The combinatorial interpre-
tation of [11] states that bKIJ is the number of non-negative integer matrices
M with row and column sums equal to comp(I) and comp(J) respectively and
with the word obtained by reading the entries of M row by row from top to
bottom equal to K (zero entries being omitted). But according to Equation (1)
A∅I,J =

∑
K⊆[n−1] b

K
IJ . We get Equation (12).

In order to prove Equation (13), it suffices to notice that the interpretation of
[11] generalises well to three dimensional arrays.

A bijective proof of Equation (13) is provided in [2]. The proof involves semi-
standard Young tableaux and Littlewood-Richardson tableaux. Our approach
allows us to recover these results immediately.

3. Descent algebra of the hyperoctahedral group

3.1. Signed permutations and domino tableaux
Let Bn be the hyperoctahedral group of order n. Bn is composed of

all permutations π on the set {-n, · · · , -2, -1, 0, 1, 2, · · · , n} such that for all i in
{0}∪[n], π(−i) = −π(i) (in particular π(0) = 0). As a result, such permutations
usually referred to as signed permutations are entirely described by their
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restriction to [n]. The descent set of π is the subset of {0}∪ [n− 1] defined by
Des(π) = {0 ≤ i ≤ n−1 | π(i) > π(i+1)}. The main difference with respect to
the case of the symmetric group is the possible descent in position 0 when π(1)
is a negative integer. We denote DB

I (resp. BBI ) the formal sum in CBn of the
signed permutations π with Des(π) = I (resp. Des(π) ⊆ I). Let cKI1,I2,··· ,Ip =

[DB
K ]
∏p
j=1D

B
Ij

(resp. eKI1,I2,··· ,Ip = [BBK ]
∏p
j=1B

B
Ij
) be the structure constants

of Solomon’s descent algebra of type B for I1, · · · , Ip,K ⊆ {0} ∪ [n− 1].

Remark 3.1. These constants verify∑
I′⊆I,J′⊆J

cKI′J′ =
∑
K′⊇K

eK
′

IJ . (15)

For λ ` 2n, a standard domino tableau T of shape λ is a Young diagram
of shape λ tiled by dominoes, i.e. 2 × 1 or 1 × 2 rectangles filled with the
elements of [n] such that the entries are strictly increasing along the rows and
down the columns. Denote SDT (λ) the set of standard domino tableaux of
shape λ. We denote P0(n) the set of partitions λ ` 2n whose associated Young
diagram may be fully tiled by dominoes. Such partitions are usually called
empty 2-core partitions. A standard domino tableau T has a descent in position
i > 0 if i+1 lies strictly below i in T and has descent in position 0 if the domino
filled with 1 is vertical. We denote Des(T ) the set of all its descents. For λ
in P0(n) and I ⊆ {0} ∪ [n − 1], denote dBλI the number of standard domino
tableaux of shape λ and descent set I.

Example 3.2. The following standard domino tableaux have shape (5, 5, 4, 1, 1)
and descent set {0,3,5,6}.

T1 =

1 2 3

4

5

6

7

8 T2 =

1 2
3

4
5

6

7

8

There is a natural analogue of the RSK-correspondence for signed permuta-
tions involving domino tableaux. Barbash and Vogan ([3]) built a bijection
between signed permutations of Bn and pairs of standard domino tableaux of
equal shape in P0(n). An independent development on the subject is due to
Garfinkle in [8, 9, 10]. Van Leeuwen shows in [23] that the two approaches
are actually equivalent. See also Stanton and White in [21] for a more gen-
eral treatment of rim hook tableaux. Taşkin ([22, Prop. 26]) showed that the
two standard domino tableaux associated to a signed permutation π by the algo-
rithm of Barbash and Vogan have respective descent sets Des(π−1) and Des(π).
As a result of this descent preserving property, we have the following analogue
to Equation (2).

c∅IJ =
∑

λ∈P0(n)

dBλId
B
λJ . (16)
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3.2. Quasisymmetric functions of type B and main results
Chow defines in [7] an analogue of Gessel’s algebra of quasisymmetric func-

tions that is dual to the Solomon’s descent algebra of type B.
Let X = {· · · , x−i, · · · , x−1, x0, x1, · · · , xi, · · · } be an alphabet of commutative
indeterminates with x−i = xi and I be a subset of {0} ∪ [n− 1], he defines:

MB
I (X) =

∑
0≤i1≤i2≤...≤in
j∈I⇔ij<ij+1

xi1xi2 . . . xin , FBI (X) =
∑

0≤i1≤i2≤...≤in
j∈I⇒ij<ij+1

xi1xi2 . . . xin .

where i0 = 0. Note the particular role played by variable x0.

Example 3.3. Let n = 2 and X = {x−2, x−1, x0, x1, x2} then F∅ = x20 + x21 +
x22 + x0x1 + x0x2 + x1x2, F{1} = x0x1 + x0x2 + x1x2, F{0} = x21 + x22 + x1x2
and F{0,1} = x1x2.

Remark 3.4. Prior to Chow, Poirier ([18]) introduced an alternative type B
analogue of the quasisymmetric functions used for example in [1]. However
Poirier’s quasisymmetric functions are dual to the Mantaci-Reutenauer algebra
and not Solomon’s descent algebra of type B. See [17] for further details. The
question of finding a similar development as in the present paper for Poirier’s
quasisymmetric functions and the Mantaci-Reutenauer algebra remains open.

Let Y be a second copy of X. Chow uses the theory of P -partitions of type
B to show in [7, Thm. 2.3.4] that for K ⊆ {0} ∪ [n− 1]

FBK (XY ) =
∑

I,J⊆{0}∪[n−1]

cKI,JF
B
I (X)FBJ (Y ). (17)

Theorem 3.5. Equation (16) is a consequence of Equation (17).

The irreducible characters of Bn are naturally indexed by partitions of
P0(n) (see e.g. [15, I, Appendix B]). Denote ψλ the character indexed by
λ ∈ P0(n) and define the Kronecker coefficients of Bn, gB(λ, µ, ν) =
1/|Bn|

∑
ω∈Bn

ψλ(ω)ψµ(ω)ψν(ω). A more general form of Theorem 3.5 can
be stated as follows.

Theorem 3.6. Let I, J and K ⊆ {0} ∪ [n− 1]. The following formula holds

c∅I,J,K =
∑

λ,µ,ν∈P0(n)

gB(λ, µ, ν)dBλId
B
µJd

B
νK . (18)

The proof of Theorems 3.5 and 3.6 uses Equation (17) and generating func-
tions for domino tableaux. We detail it in the two following sections.

3.3. Domino functions
3.3.1. Definition

Generating functions for domino tableaux sometimes called domino func-
tions are well studied objects (see e.g. [13]). We introduce a modified definition
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to get an analogue of Schur functions verifying Equations (20) and (22) that
we need to prove Theorem 3.6. Our development differs by the addition of "0"
entries to the domino tableaux in some cases.

A semistandard domino tableau T of shape λ ∈ P0(n) and weight
w(T ) = µ = (µ0, µ1, µ2, · · · ) with µi ≥ 0 and

∑
i µi = n is a tiling of the

Young diagram of shape λ with horizontal and vertical dominoes labelled with
integers in {0, 1, 2, · · · } such that labels are non decreasing along the rows,
strictly increasing down the columns and exactly µi dominoes are labelled with
i. If the top leftmost domino is vertical, it cannot be labelled 0 (we leave it to
the reader to check that the only possible sub-pattern of dominos with label 0
in a semistandard domino tableau is a row composed of horizontal dominos).
Denote SSDT (λ) the set of semistandard domino tableaux of shape λ and KB

λµ

the number of semistandard domino tableaux of shape λ and weight µ.
The standardisation T st of a semistandard domino tableau T of weight µ is
the standard domino tableau obtained by relabelling the dominoes of T with
1, 2, · · · , n such that the dominoes labelled with im = min{i | µi > 0} are
relabelled with 1, 2, · · · , µim from left to right and so on.

Example 3.7. Figure 5 shows a semistandard domino tableau of weight µ =
(2, 0, 2, 0, 0, 4, 0, 1) and its standardisation.

T =

0 0

2
2

5

5
5

5

7

−−−→ T st =

1 2

3
4

5

6
7

8

9

Figure 1: A semistandard domino tableau and its standardisation.

Definition 3.8. Given alphabet X and a semistandard domino tableau T of
weight µ, denote XT the monomial xµ0

0 xµ1

1 xµ2

2 · · · . For λ ∈ P0(n) we call the
domino function indexed by λ the function defined in the alphabet X by

Gλ(X) =
∑

T∈SSDT (λ)

XT . (19)

3.3.2. Expansion into Chow’s fundamental and monomial bases
We have the following proposition.

Proposition 3.9. Domino functions admit the following expansion into Chow’s
fundamental and monomial bases.

Gλ =
∑

I⊆{0}∪[n−1]

dBλIF
B
I =

∑
I⊆{0}∪[n−1]

KB
λ comp(I)M

B
I . (20)
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In order to prove Proposition 3.9 we need the following lemma.

Lemma 3.10. Let T0 be a standard domino tableau. Then the fundamental
quasisymmetric function FBDes(T0)

is the generating function for semistandard
domino tableaux T such that T st = T0, i.e.

FBDes(T0)
=

∑
T st=T0

XT . (21)

Proof. Given a fixed standard domino tableau T0, we reverse the standardis-
ation operation to obtain the set of semistandard domino tableaux with stan-
dardisation T0. Since the standardisation operation is shape and domino tiling
preserving, any such semistandard tableau T may be identified by the sequence
of its entries i1, i2, . . . in.

T0 =

1 2

3
4

5

−−−−−−→
relabeling

T =

i1 i2

i3

i4

i5

Figure 2: A standard domino tableau T0 and the template for its semistandard preimages.

Relabel the entries of T0 with the sequence i1, i2, . . . , in such that k is mapped
to ik, as depicted on Figure 2. According to the standardisation procedure, we
have 0 ≤ i1 ≤ i2 ≤ . . . ≤ in and 0 < i1 if the top leftmost domino is
vertical. Furthermore such a sequence needs to verify additional conditions to
give a valid semistandard domino tableau with standardisation equal to T0.
Consider each constraint ik ≤ ik+1 separately. If ik < ik+1 then locally the
sequence gives a valid semistandard domino tableau (entries are increasing along
the row and down the columns) and the standardisation process provides the
expected result.
We look at the case ik = ik+1 and show two properties.

• First, if ik = ik+1 then k /∈ Des(T0). Indeed assume k ∈ Des(T0). Domino
k has to lay in a higher row than k + 1 as in Figure 3.
But domino ik+1 may not be outside the green area defined in Figure 3
as the entries in the tableau are strictly increasing down the columns. As
a consequence, domino ik+1 has to be on the left of and below domino
ik, as in Figure 3, picture (c). This is a contradiction since according
to the definition of the standardisation operation, we should relabel the
domino ik+1 before the domino ik with such a pattern and T0 is not
the standardisation of such a tableau. As a result k ∈ Des(T0) implies
ik < ik+1.

• Secondly, when k /∈ Des(T0) any sequence with ik = ik+1 locally gives a
valid semistandard tableau whose standardisation is equal to T0. Indeed,
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ik

ik+1

(a)

ik

ik+1

(b)

ik

ik+1

(c)

Figure 3: Layouts with a descent in position k. Green area corresponds to positions of
domino ik+1 which do not violate the property of increasing entries along the rows and down
the columns when ik = ii+1. In pictures (a) and (b) domino ik+1 lays outside the green area.
Picture (c) shows a valid layout of dominoes ik and ik+1.

if k /∈ Des(T0), domino k does not lay in a higher row than k + 1.
As a result, domino ik+1 cannot be outside the green area defined in
Figure 4 as entries are increasing along the rows and down the columns,
i.e. ik+1 is to the right of and above domino ik. This makes sure that ik
is relabelled before ik+1 in the standardisation procedure.

ik

ik+1

(a)

ik

ik+1

(b)

ik

ik+1

(c)

Figure 4: Layouts with no descent in position k. Green area corresponds to positions of
domino ik+1 which do not violate the property of increasing entries along the rows and down
the columns when ik = ii+1. In pictures (a) and (b) domino ik+1 lays outside the green area.
Picture (c) shows a valid layout of dominoes ik and ik+1.

As a consequence the preimages of T0 can be identified as the sequences
0 ≤ i1 ≤ i2 ≤ . . . ≤ in such that k ∈ Des(T0)⇒ ik < ik+1 for k ≥ 0 and i0 = 0.
Consider the constraints all together to ensure that such a sequence globally
gives a valid semistandard tableau whose standardisation is equal to T0.

We are now ready to prove Proposition 3.9.

Proof of Proposition 3.9. Classify the set of semistandard domino tableaux ac-
cording to their standardisation and add the monomials corresponding to the

11



tableaux in the same class. Using Lemma 3.10 we obtain the first part of the
Proposition.

Gλ(X) =
∑

T∈SSDT (λ)

XT

=
∑

T0∈SDT (λ)

∑
T∈SSDT (λ), T st=T0

XT

(21)
=

∑
T0∈SDT (λ)

FBDes(T0)
(X)

=
∑

I⊆{0}∪[n−1]

dBλIF
B
I (X).

To get the second part of the proposition, relabel the entries of a semis-
tandard tableau T with successive integers 0, 1, 2, . . . such that inequalities and
equalities between entries in T are preserved after relabelling. If the top left-
most domino is vertical skip 0. This operation removes the zeros in the weight
of the tableau except, possibly, the first one. Denote T̃ the resulting tableau
and for λ ∈ P0(n), S̃SDT (λ) the set of semistandard domino tableaux of shape
λ such that T̃ = T . The second part of the statement is a consequence of the
fact that the monomial quasisymmetric functionMB

set(w(T0))
is precisely the gen-

erating function for all semistandard domino tableaux T mapped to the same
T0 ∈ S̃SDT (λ) by this operation.

Gλ(X) =
∑

T∈SSDT (λ)

XT

=
∑

T0∈S̃SDT (λ)

∑
T∈SSDT (λ), T̃=T0

XT

=
∑

T0∈S̃SDT (λ)

MB
set(w(T0))

=
∑

I⊆{0}∪[n−1]

KB
λ comp(I)M

B
I (X).

Equation (20) is fully proven.

3.3.3. Cauchy identities
There is a well known (not descent preserving) bijection between semistan-

dard domino tableaux of weight µ and bi-tableaux, i.e. pairs of semistandard
Young tableaux of respective weights µ− and µ+ such that µ+

i + µ−i = µi for
all i (see e.g. [5, Algorithm 6.1]). The respective shapes of the two Young
tableaux depend only on the shape of the initial semistandard domino tableau.
Denote (T−, T+) the bi-tableau associated to a semistandard domino tableau

12



T of shape λ and (λ−, λ+) their respective shapes. (T−, T+) (resp. (λ−, λ+))
is the 2-quotient of T (resp. λ). Semistandard Young tableaux T− and T+

are built by filling each box of T (a domino is composed of two boxes) by a ’–’
or a ’+’ sign such that the top leftmost box is filled with ’–’ and two adjacent
boxes have opposite signs. T− (resp. T+) is obtained from the sub tableau of
T composed of the dominoes with top rightmost box filled with ’–’ (resp. ’+’).

Remark 3.11. If the top leftmost domino of a semistandard domino tableau T
is vertical (resp. horizontal), its label is used for T− (resp. T+). Therefore not
labelling the top leftmost domino with 0 if it is vertical is sufficient to ensure
that only T+ may have entries equal to 0 and any bi-tableau with T+ containing
entries equal to 0 gives a valid semistandard domino tableau according to our
constraints. As a result, in our setup, the bijection is actually between semistan-
dard domino tableaux indexed by labels in {0, 1, 2, · · · } and pairs of semistandard
Young tableaux indexed respectively by {1, 2, · · · } and {0, 1, 2, · · · }.

Example 3.12. Figure 5 shows a semistandard domino tableau of weight µ =
(2, 0, 2, 0, 0, 4, 0, 1) and its 2-quotient.

T =

– 0 + – 0 +

+
2
–

– 2 +

+
5
–

+ 5 –

–
5
+

–
5
+

– 7 +

−−−→

T− = 5 5 5 , T+ =

0 0

2 2

5 7



Figure 5: A semistandard domino tableau and its 2-quotient.

Denote X− = {x−i}i>0 and X+ = {xi}i≥0 (note that X− = X+ \ {x0} as
x−i = xi).

Proposition 3.13. For λ ∈ P0(n), the domino function Gλ and the Schur
symmetric functions are related through

Gλ(X) = sλ−(X
−)sλ+(X+). (22)

Proof. According to the definition of the 2-quotient above and Remark 3.11,
one can get

Gλ(X) =
∑

shape(T−)=λ−

shape(T+)=λ+

X−
T−

X+T
+

,

where the sum is on all pairs of semistandard Young tableau T− and T+ of
shape λ− and λ+ such that no entry of T− is equal to 0.
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Finally we provide analogues of the Cauchy identities for domino functions.

Proposition 3.14. The domino functions Gλ(XY ) verify the following identi-
ties

G(2n)(XY ) =
∑

λ∈P0(n)

Gλ(X)Gλ(Y ),

Gλ(XY ) =
∑

µ,ν∈P0(n)

gB(λ, µ, ν)Gµ(X)Gν(Y ).

Proof. Note that

(XY )+ = {xiyj}(i,j)≥(0,0) = {x0yj}j≥0 ∪ {xiyj}i>0,j∈Z = X+Y + ∪X−Y −.

Using Proposition 3.13 we get the first identity.

G(2n)(XY ) = s(n)((XY )+)

= s(n)(X
−Y − ∪X+Y +)

=

n∑
k=0

s(k)(X
−Y −)s(n−k)(X

+Y +)

=

n∑
k=0

∑
λ−`k

sλ−(X
−)sλ−(Y

−)
∑

λ+`n−k

sλ+(X+)sλ+(Y +)

=
∑

λ∈P0(n)

sλ−(X
−)sλ+(X+)sλ−(Y

−)sλ+(Y +)

=
∑

λ∈P0(n)

Gλ(X)Gλ(Y ).

Using Proposition 3.13 and the theory of symmetric functions on wreath prod-
ucts we prove the second identity. Define as in [1] for any set of indeterminates
U and V and any partition λ of n:

p+λ (U, V ) =
∏
i

[pλi(U) + pλi(V )] , p−λ (U, V ) =
∏
i

[pλi(U)− pλi(V )] .

Note that if U ∩ V = ∅, p+λ (U, V ) = pλ(U ∪ V ) and if V ⊆ U , p−λ (U, V ) =
pλ(U \V ). Then for partitions λ ∈ P0(n) and µ ∈ P0(n) of 2-quotient (µ−, µ+),
denote ψλµ the common value of character ψλ on all signed permutations of cycle
type (µ−, µ+). According to [15, I, Appendix B],

p−µ−(U, V )p+µ+(U, V ) =
∑

λ∈P0(n)

ψλµsλ−(V )sλ+(U).

Set U = X+ and V = X− and use Proposition 3.13 to get for any µ ∈ P0(n)

pµ+(X)(x0)
n−|µ+| =

∑
λ∈P0(n)

ψλµGλ(X).
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But pµ+(XY )(x0y0)
n−|µ+| = pµ+(X)(x0)

n−|µ+|pµ+(Y )(y0)
n−|µ+|. We get∑

λ∈P0(n)

ψλGλ(XY ) =
∑

µ,ν∈P0(n)

ψµψνGµ(X)Gν(Y ).

That yields the second identity.

3.4. Proof of Theorems 3.5 and 3.6
Both Theorem 3.5 and Theorem 3.6 are consequences of Equation (17) and

Proposition 3.14.

Proof of Theorem 3.5. Decompose the domino functions G(2n)(XY ) in two ways.

G(2n)(XY ) = FB∅ (XY ) =
∑
I,J

c∅I,JFI(X)FJ(Y )

G(2n)(XY ) =
∑

λ∈P0(n)

Gλ(X)Gλ(Y ) =
∑
I,J

∑
λ`n

dBλId
B
λJF

B
I (X)FBJ (Y ).

Proof of Theorem 3.6. Similarly,

G(2n)(XY Z) = FB∅ (XY Z) =
∑
I,J,K

c∅I,J,KF
B
I (X)FBJ (Y )FBK (Z)

G(2n)(XY Z) =
∑

ν∈P0(n)

Gν(XY )Gν(Z)

=
∑

λ,µ,ν∈P0(n)

gB(λ, µ, ν)Gλ(X)Gµ(Y )Gν(Z)

=
∑
I,J,K

∑
λ,µ,ν∈P0(n)

gB(λ, µ, ν)dBλId
B
µJd

B
νKF

B
I (X)FBJ (Y )FBK (Z).

Remark 3.15. Theorem 3.5 is a special case of Theorem 3.6. However, we felt
that an independent proof that does not use Kronecker coefficients but only the
elementary first identity of Proposition 3.14 was of interest.

3.5. A corollary to Theorem 3.6
For I ⊆ {0} ∪ [n− 1], denote |I| the number of elements in I. The structure

constants eKIJ also count templates M with non-negative integer entries of the
following type.

M = (mi,j) =



a0,0 a0,1 . . . a0,|I|
b1,1 . . . b1,|I|

a1,0 a1,1 . . . a1,|I|
...

...
b|J|,1 . . . b|J|,|I|

a|J|,0 a|J|,1 . . . a|J|,|I|


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Given qs = as,0 +
∑
k(as,k + bs,k) and q0 = a0,0 +

∑
k a0,k we denote q(M) =

(q0, q1, . . . q|I|) the row sums. The column sums p(M) = (p0, p1, . . . p|J|)
verify pj = a0,j+

∑
k(ak,s+ bk,s) and p0 = a0,0+

∑
k ak,0. Successive reading of

a-lines from left to right, and b-lines from right to left yields the reading word.
Denote nKI,J the number of such templates with row sums I, column sums J and
reading word K and nI,J =

∑
K n

K
I,J . Bergeron and Bergeron in [4] prove that

nKI,J = eKIJ . We get as a corollary to Theorem 3.6:

Corollary 3.16. Let I, J and K ⊆ {0} ∪ [n − 1]. The numbers nI,J and nKI,J
verify

nI,J =
∑
λ

KB
λ comp(I)K

B
λ comp(J)∑

R,D⊆{0}∪[n−1]

nDI,Jn
R
D,K =

∑
λ,µ,ν`n

gB(λ, µ, ν)KB
λ comp(I)K

B
µ comp(J)K

B
ν comp(K).

Proof. Considering relations (16) and (18) in the monomial basis one gets∑
I,J,

∑
I′⊆I,J′⊆J

c∅I′,J′M
B
I (X)MB

J (Y ) =

∑
I,J

∑
λ`n

KB
λ comp(I)K

B
λ comp(J)M

B
I (X)MB

J (Y ),

and∑
I,J,K

∑
I′⊆I,J′⊆J,K′⊆K

c∅I′,J′,K′M
B
I (X)MB

J (Y )MB
K (Z) =

∑
I,J,K

∑
λ,µ,ν`n

gB(λ, µ, ν)KB
λ comp(I)K

B
µ comp(J)K

B
ν comp(K)M

B
I (X)MB

J (Y )MB
K (Z).

The first equation of the statement is a consequence of the result of Bergeron
and Bergeron and Equation (15).

nI,J =
∑
K

eKIJ =
∑

I′⊆I,J′⊆J

c∅I′J′ =
∑
λ`n

KB
λ comp(I)K

B
λ comp(J).

To get the second identity compute∑
R,D

nDI,Jn
R
D,K =

∑
R,D

eDI,Je
R
D,K

=
∑
R

eRI,J,K

=
∑

I′⊆I,J′⊆J,K′⊆K

c∅I′,J′,K′

=
∑

λ,µ,ν`n

gB(λ, µ, ν)KB
λ comp(I)K

B
µ comp(J)K

B
ν comp(K).
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4. Skew shape partitions

4.1. Type A
Let n be a non-negative integer and λ and µ, two integer partitions such

that the diagram of µ is included in the diagram of λ and |λ| − |µ| = n. A
standard (resp. semistandard) skew Young tableau of shape λ/µ is a
Young diagram of skew shape λ/µ whose boxes are filled with the elements of [n]
(resp. with positive integers) such that the entries are strictly increasing down
the columns and along the rows (resp. strictly increasing down the columns and
non decreasing along the rows). The descent set of a standard Young tableau is
defined similarly as in the case of classical shapes. The skew Schur function
sλ/µ is the generating function for semistandard skew Young tableaux of shape
λ/µ

sλ/µ(X) =
∑

shape(T )=λ/µ

XT ,

where the sum is on all semistandard skew Young tableaux of shape λ/µ. Given a
skew shape λ/µ denote kλµν the Littlewood-Richardson coefficients i.e. the
structure constants of the algebra of symmetric functions in the Schur basis.
They also appear in the decomposition of skew Schur functions in terms of
non-skew Schur functions

sλsµ =
∑
ν

kνλµsν , sλ/µ =
∑
ν

kλµνsν . (23)

Let I and J be two subsets of [n − 1]. Gessel focuses in [12, Thm. 14] on
the number aλ/µIJ of couples of permutations α, β such that α has descent set I,
β has descent set J and αβ is compatible with the skew shape λ/µ (i.e. αβ is
a correct reading word for the skew shape λ/µ). We need some more notions
introduced in [12] to define this properly.

Given any partial order P on [n], denote L(P ) the set of permutations π ∈
Sn, such that the corresponding linear order π(1) < π(2) < · · · < π(n) is a
linearisation of P . To obtain a partial order Pλ/µ from the skew shape |λ/µ| = n
we fill the corresponding skew Young diagram by integers [n] from bottom to
top and from left to right and then consider relations i > k if k lay directly
below or to the left of i. These relations generate the corresponding partial
order Pλ/µ.

Example 4.1. Let λ/µ = (4, 4, 3)/(2, 1). Figure 6 shows the corresponding
partial order. Firstly fill the corresponding skew Young diagram by integers
[7] from bottom to top and from left to right and then rotate it by 135 degrees
counterclockwise and take its vertical mirror image to get the plane presentation
of the ordering P(4,4,3)/(2,1).

Due to Gessel [12, p. 295], L(Pλ/µ) may be identified with Young tableaux of
shape λ/µ. Given π ∈ L(Pλ/µ) construct the corresponding skew Young tableau
by filling the skew shape λ/µ with the letters of the word π−1 from bottom to
top and from left to right, as in Example 4.2. The permutations from L(Pλ/µ)
are called compatible with the skew shape λ/µ.
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fill−−−−−→
7 8

4 5 6

1 2 3

rotate/mirror−−−−−−−−−−→

3 6

2 5 8

1 4 7

Figure 6: A partial order P(4,4,3)/(2,1) obtained from the skew shape (4, 4, 3)/(2, 1).

Example 4.2.

π = 74581263
(π−1 = 56823714)

fill with π−1

−−−−−−−−−→
1 4

2 3 7

5 6 8

Using the bijection above, one can notice that

a
λ/µ
IJ =

∑
K⊆[|λ|−|µ|−1]

dλ/µKa
K
IJ

where dλ/µK is the number of standard Young tableaux of skew shape λ/µ and
descent set K.

Proposition 4.3. Let λ and µ two integer partitions such that λ/µ is a skew
shape and I, J ⊆ [|λ|−|µ|−1]. The coefficients aλ/µIJ verify the following equality
involving the Littlewood-Richardson coefficients, the Kronecker coefficients of
the symmetric group and the numbers of standard Young tableaux of given shape
and descent

a
λ/µ
IJ =

∑
ν,ρ,ε

kλµνg(ν, ρ, ε)dρIdεJ .

Proof. Gessel showed in [12, Thm. 14] that

sλ/µ(XY ) =
∑
I,J

a
λ/µ
IJ FI(X)FJ(Y ). (24)

Use Equation (23) to decompose skew Schur function sλ/µ(XY ) using Littlewood-
Richardson coefficients. Then use the generalised Cauchy identity (10) and
decomposition (4) to prove the proposition.

sλ/µ(XY ) =
∑
ν

kλµνsν(XY )

=
∑
ν,ρ,ε

kλµνg(ν, ρ, ε)sρ(X)sε(Y )

=
∑
I,J

∑
ν,ρ,ε

kλµνg(ν, ρ, ε)dρIdεJFI(X)FJ(Y ).

In the following section, we prove that there is a similar formula for the
hyperoctahedral group provided some constraints on the skew-shapes.
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4.2. Type B
4.2.1. Skew domino tableaux

Let λ and µ be two integer partitions such that λ/µ is a skew shape, |λ|−|µ| =
2n and such that the Young diagrams of shape µ and λ/µ (and by extension
λ) may be tiled by horizontal and vertical dominoes. By abuse of notation,
we also write λ/µ ∈ P0(n) when all these conditions are fulfilled. A standard
skew domino tableau is a tiling of the skew Young diagram of shape λ/µ with
horizontal and vertical dominoes labelled with integers of [n] such that labels
are strictly increasing along the rows and down the columns.

The bijection described in Carre and Leclerc [5] extends to the case of skew
shapes. As a result, there is a bijection between standard skew domino tableaux
of shape λ/µ and standard skew bi-tableaux of shape (λ−/µ−, λ+/µ+). As
noticed in Section 3.3.3, µ− and µ+ depends only on µ. One may apply the
algorithm of Carre and Leclerc with an arbitrary tiling of the deleted part of
shape µ. Note that the bijection is not descent preserving as in the case of
non-skew shapes.

Example 4.4. Decompose the following standard skew domino tableau T .

T =

–

+

+

–

–

+

+ –

– +

+

–

– 2 +

+
3
–

–
1
+

– 4 +

+
6
–

+ 5 –

–
7
+

–
9
+

– 8 +

−−−−→

T− = 1 7 9

5

, T+ =

2 3 8

4

6



Given a standard skew domino tableau T , we call in the sequel negative
(resp. positive) domino, a domino that goes to T− (resp. T+) according to
the bijection above. We have the following definition.

Definition 4.5 (Descent set of a standard skew domino tableau). A standard
skew domino tableau T has a descent in position i > 0 if i+1 lies strictly below i
in T and has descent in position 0 if the domino filled with 1 is negative. Denote
Des(T ) the set of all the descents of T . For λ/µ ∈ P0(n) and I ⊆ {0} ∪ [n− 1]
denote also dBλ/µ I the number of standard skew domino tableaux of shape λ/µ
and descent set I.

Example 4.6. In Example 4.4 we have Des(T ) = {0, 3, 4, 8}.

A semistandard skew domino tableau is a tiling of the skew Young dia-
gram of shape λ/µ with horizontal and vertical dominoes labelled with integers
in {0, 1, 2, · · · } such that labels are non decreasing along the rows, strictly in-
creasing down the columns, and negative dominoes cannot be labelled 0. The bi-
jection of Carre and Leclerc [5] also generalises to semistandard domino tableaux
and pairs of semistandard Young tableaux such that dominoes labelled 0 may
appear only in T+.
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Example 4.7. Decompose the following semistandard skew domino tableau.

T =

–

+

+

–

–

+

+ –

– +

+

–

– 0 +

+
0
–

–
3
+

– 3 +

+
6
–

+ 6 –

–
7
+

–
9
+

– 1 +

−−−−→

T− = 3 7 9

6

, T+ =

0 0 1

3

6



The standardisation of a semistandard skew domino tableau is defined in the
same way as for non-skew shapes. We provide the following example in lieu of
a formal definition.

Example 4.8. The following picture shows a semistandard skew domino tableau
T and its standardisation T st.

T =

1
1

1

4

6

6

6

10

8

−−−−→ T st =

2
3

1

4

6

5

7

9

8

4.2.2. Skew domino functions
For λ/µ ∈ P0(n) define the skew domino function Gλ/µ as the generating

function for the semistandard skew domino tableaux of shape λ/µ. Proposi-
tion 3.13 generalises well to the case of skew shapes.

Proposition 4.9. For λ/µ ∈ P0(n), the domino function Gλ/µ and the Schur
symmetric functions are related through

Gλ/µ(X) = sλ−/µ−(X
−)sλ+/µ+(X+).

Proof. This identity is a direct consequence of the bijection between semistan-
dard skew domino tableaux of shape λ/µ and semistandard skew bi-tableaux of
shape (λ−/µ−, λ+/µ+) and the fact that only positive dominoes may be labelled
0.

Furthermore, we have the following proposition involving some type B ana-
logue of the Littlewood-Richardson coefficients.

Proposition 4.10. For λ/µ ∈ P0(n), µ ∈ P0(m) and ν ∈ P0(n), denote lλµν
the type B analogues of the Littlewood-Richardson coefficients that we
define as lλµν = kλ

−

µ−ν−k
λ+

µ+ν+ . Domino functions verify

GµGν =
∑

λ∈P0(n+m)

lλµνGλ, Gλ/µ =
∑

ν∈P0(n)

lλµνGν .
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Proof. Use Propositions 3.13 and 4.9 to show

Gµ(X)Gν(X) = sµ−(X
−)sµ+(X+)sν−(X

−)sν+(X+)

=
∑

λ−`|µ−|+|ν−|

kλ
−

µ−ν−sλ−(X
−)

∑
λ+`|µ+|+|ν+|

kλ
+

µ+ν+sλ+(X+)

=
∑

λ∈P0(n+m)

(
kλ
−

µ−ν−k
λ+

µ+ν+

)
Gλ(X),

and

Gλ/µ(X) = sλ−/µ−(X
−)sλ+/µ+(X+)

=

 ∑
ν−`|λ−|−|µ−|

kλ
−

µ−ν−sν−(X
−)

 ∑
ν+`|λ+|−|µ+|

kλ
+

µ+ν+sν+(X+)


=

∑
ν∈P0(n)

(
kλ
−

µ−ν−k
λ+

µ+ν+

)
Gν(X).

In order to get an analogue of Proposition 3.9, the skew shapes have to verify
some additional constraints. As noticed in Remark 3.11 for non-skew shapes, the
constraints of not labelling the vertical top leftmost domino of a semistandard
domino tableau T with 0 and the constraint that no negative domino may be
labelled with 0 are equivalent. With skew shapes there is no analogue to this
equivalence in the general case and we need to restrict the set of considered
shapes. We proceed with the following definitions.

Definition 4.11 (Top domino). Given a (semi-)standard domino tableau T , we
say that domino d is a top domino of T if

(i) there is no adjacent domino on the top of d,
(ii) there is no non-top adjacent domino to the left of d.

We further say that a top domino d is minimum positive if d is the leftmost
downmost positive top domino of T such that there is no adjacent (negative top)
domino to the left of d.

Example 4.12. In Example 4.4, dominoes labelled with 1, 2, 3 and 8 are top
dominoes and 2 is the minimum positive one.

We look at the following subset of P0(n).

Definition 4.13 (Admissible skew shapes). An admissible skew shape is
a skew shape λ/µ ∈ P0(n) that cannot be tiled with horizontal and vertical
dominoes in a way that

(i) there is a minimum positive domino,
(ii) a negative top domino is placed to the right and above the minimum positive

domino.
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Denote P̃0(n) the set of admissible skew shapes λ/µ such that |λ| − |µ| = n.

Example 4.14. The shape of the standard skew domino tableau in Example 4.4
is admissible as well as the following shapes.

– + – + – +

+ – + –

– + – +

+ –

– + – + –

+ – + – +

– + –

+ – +

– + – + –

+ – + – +

– + –

+ – +

– + – + – +

+ – + – +

– + – + –

+ –

– +

These ones are not admissible.

– + – + –

+ – + – +

– + –

+ – +

– + – + –

+ – + – +

– + –

+ – +

– + – + –

+ – + – +

– + – +

+

–

– + – + –

+ – + – +

– + – +

+

–

Proposition 4.15. For λ/µ ∈ P̃0(n), the skew domino function Gλ/µ verify

Gλ/µ =
∑

I⊆{0}∪[n−1]

dBλ/µ IF
B
I .

Proof. The proof is adapted from the one of Proposition 3.9. The first step is
to show the analogue of Lemma 3.10, i.e. that for any standard skew domino
tableau T0 of shape λ/µ,

FBDes(T0)
=

∑
T st=T0

XT .

To this end one needs to show that any sequence of relabelling of the dominoes
1, 2, · · · , n in T0 by i1 ≤ i2,≤ · · · ,≤ in such that k ∈ Des(T0)⇒ ik < ik+1 with
k ≥ 0 and i0 = 0 gives a valid semistandard skew domino tableau T such that
T st = T0. If the domino labelled 1 in T0 is positive, i.e. min(Des(T0)) = k > 0,
then any subsequence 0 = i1 = i2 = · · · = il (l ≤ k) gives a valid semistandard
skew domino tableau. Indeed, since λ/µ is admissible, none of the dominoes
2, 3, · · · , k are negative. As a result, no negative domino is labelled with 0 (a
restriction in our definition of semistandard skew domino tableaux required to
get Proposition 4.9). Other cases are similar to the proof of Lemma 3.10 and
not detailed here.

Remark 4.16. The proof of Proposition 4.15 makes it clear that admissibility is
required to get at the same time Proposition 4.15 and Proposition 4.9. Indeed the
later requires that only positive dominoes of a semistandard skew domino tableau
may be labelled with 0. The former assumes that any sequence of dominoes
labelled 1, 2, · · · ,min(Des(T0)) in a standard skew domino tableau T may be
relabelled with 0 to get a valid preimage of T by standardisation. Only admissible
shapes fulfil both conditions.
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Define for I, J ⊆ 0 ∪ [n − 1] the coefficients cλ/µIJ =
∑
K∈0∪[n−1] d

B
λ/µKc

K
IJ .

Formula (24) admits the following type B analogue.

Proposition 4.17. For λ/µ ∈ P̃0(n) and I, J ⊆ 0 ∪ [n − 1], the coefficients
c
λ/µ
IJ verify

Gλ/µ(XY ) =
∑

I,J⊆0∪[n−1]

c
λ/µ
IJ FBI (X)FBJ (Y ). (25)

Proof. Apply Proposition 4.15 and then decompose Chow’s fundamental qua-
sisymmetric function FBK (XY ) into FBI (X) and FBJ (Y ) to prove the statement.

Gλ/µ(XY ) =
∑

K⊆{0}∪[n−1]

dBλ/µKF
B
K (XY )

=
∑
I,J

(∑
K

dBλ/µKc
K
IJ

)
FBI (X)FBJ (Y )

=
∑
I,J

c
λ/µ
IJ FBI (X)FBJ (Y ).

4.2.3. A type B analogue of Proposition 4.3
We are now ready to state the main result of this section.

Theorem 4.18. For λ/µ ∈ P̃0(n) and ν ∈ P0(n) denote lλµν the type B analogue
of the Littlewood-Richardson coefficients defined as in Proposition 4.10 by lλµν =

kλ
−

µ−ν−k
λ+

µ+ν+ . Then, for I, J ⊆ 0 ∪ [n− 1], the coefficient cλ/µIJ is given by

c
λ/µ
IJ =

∑
ν,ρ,ε∈P0(n)

lλµνg
B(ν, ρ, ε)dBρId

B
εJ . (26)

Proof. On the one hand expand Gλ/µ(XY ) using Proposition 4.17. On the other
hand expand the same skew domino function using Proposition 4.10, Proposition
3.14 and Proposition 3.9. Namely∑
I,J⊆0∪[n−1]

c
λ/µ
I,J F

B
I (X)FBJ (Y ) = Gλ/µ(XY )

=
∑

ν∈P0(n)

lλµνGν(XY )

=
∑

ν∈P0(n)

lλµν
∑

ρ,ε∈P0(n)

gB(ν, ρ, ε)Gρ(X)Gε(Y )

=
∑

I,J⊆0∪[n−1]
ν,ρ,ε∈P0(n)

lλµνg
B(ν, ρ, ε)dBρId

B
εJF

B
I (X)FBJ (Y ).
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