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in flat space and explain how 2D S-matrix bootstrap results can be derived from the 1D
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capturing non-trivial solutions of CFT crossing.

Keywords: Conformal Field Theory, Scattering Amplitudes

ArXiv ePrint: 1803.10233

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP02(2019)162

mailto:dalimil.mazac@stonybrook.edu
mailto:miguel.paulos@lpt.ens.fr
https://arxiv.org/abs/1803.10233
https://doi.org/10.1007/JHEP02(2019)162


J
H
E
P
0
2
(
2
0
1
9
)
1
6
2

Contents

1 Introduction 2

2 Review of 1D CFTs and bootstrap functionals 5

2.1 1D CFTs 5

2.2 Crossing equations and linear functionals 6

2.3 Optimization and bounds 8

3 General functionals 10

3.1 Functionals as contour integrals 10

3.2 Simplifying the functional action 15

4 Functionals for the generalized free fermion 17

4.1 General remarks 17

4.2 Constructing the normal functionals 20

4.3 Constructing the logarithmic functionals 22

5 OPE maximization at large ∆ 24

5.1 The problem 24

5.2 The solution 26

5.3 Holographic scattering interpretation 30

5.4 S-matrix bootstrap from the conformal bootstrap 31

6 Conclusions and outlook 36

A Details on the free functionals 37

A.1 A lower bound 37

A.2 Mellin inversion 38

A.3 A differential equation for f(z) 39

B Details on the OPE maximization 41

B.1 The functional for ∆ > 2∆φ 41

B.2 The functional for ∆ = ∆b 42

B.3 Action on identity 43

B.4 Optimizing f(z) 44

C Fall-off conditions 46

– 1 –



J
H
E
P
0
2
(
2
0
1
9
)
1
6
2

1 Introduction

The wonderful fact that highly non-trivial bounds on general conformal field theories

(CFTs) can arise from mere unitarity and crossing symmetry of four-point correlators

was first established in the ground-breaking work of [1]. Since then the conformal boot-

strap philosophy [2] has proved to be a powerful principle, capable of producing qualitative

and quantitative insights into the physics of strongly-coupled CFTs, such as in the context

of critical phenomena and holographic dualities.1

The conformal bootstrap is the program of extracting information from CFT crossing

equations. Based on the physical picture of [8], an exact analysis of these equations at

large spin has led to a number of important results, starting with the pioneering works

of [9, 10], finding an elegant systematization in [11–13] and culminating in Caron-Huot’s

OPE inversion formula [14]. However, the task of determining optimal bounds on the

CFT data of operators with low dimension and spin has remained mostly in the realm of

numerical algorithms (implemented for example in [15, 16]).

The initial steps towards an analytic understanding of the bootstrap bounds were

undertaken in [17], where an optimal bound on the gap in 1D CFTs was shown to be

saturated by a free fermion. The main goal of the present work is to extract the essential

features of that construction and use them to start a systematic exploration of analytic

bootstrap bounds. Most importantly, we will demonstrate that this approach is general

enough to describe interacting solutions to CFT crossing.

In the first paper of this series, we will focus on the comparatively simpler but still

highly non-trivial case of one-dimensional CFTs. We would like to emphasize that even

here, our understanding of unitary solutions to crossing symmetry is severely limited.

This is partly because the 1D bootstrap equations do not admit an expansion which is

under control simultaneously in both channels, as opposed to the situation in higher D.

At the same time, in a sense all local operators in 1D are scalars and thus understanding

1D crossing illuminates precisely the aspects of higher-D crossing not addressed by the

light-cone bootstrap. Our approach can therefore be thought of as complementary to the

existing work on the analytic bootstrap. However, we will make the case in subsequent

work [18] that functional-based methods have the potential to subsume and generalize

existing approaches, be that the light-cone bootstrap or the Polyakov-style bootstrap of [4,

19, 20].

Let us explain our approach in more detail. A conformal bootstrap equation arises by

matching different OPE expansions of correlation functions. It is parametrized by a set of

cross-ratios and thus implies a continuously infinite set of constraints on the CFT data.

These equations take the form of sum rules where each primary operator in the spectrum

contributes additively. Hence the equations naturally live in a certain infinite-dimensional

vector space of functions of the cross-ratios. It is useful to parametrize the constraints by

the elements of the dual space, which are usually called functionals. The simplest example

of a functional is the evaluation of the bootstrap equation at any point in the cross-ratio

1See [3–5] for early formulations of the conformal bootstrap and [6, 7] for pedagogical reviews of the

modern developments.
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space where both OPE expansions can be trusted. Bounds on the CFT data arise from

functionals with specific positivity properties, with optimal bounds corresponding to dis-

tinguished elements of the dual space, called extremal functionals [21]. In principle a

bound can only be optimal if there is a solution to crossing which saturates it, and there-

fore extremal functionals typically contain enough information to reconstruct this solution

uniquely. For example, the operators exchanged in the OPE of the extremal solution must

correspond to zeros of the extremal functional. To analytically obtain a conformal boot-

strap bound means to analytically construct the appropriate extremal functional. Our

approach in this series of works is to understand the physics and the construction of these

functionals, and how they determine the properties of CFTs.

The first analytic examples of extremal functionals were constructed in [17]. The

specific functionals prove that the optimal upper bound on the scaling dimension of the

leading operator above identity in the OPE of identical primaries φ in unitary 1D CFTs

is ∆gap = 2∆φ + 1. The unique solution to crossing saturating this bound is the four-

point function of the generalized free fermion,2 the leading non-identity operator in the

OPE being the bilinear operator φ
←→
∂φ. The functionals were constructed for ∆φ a positive

integer or half-integer and take the form of contour integrals in complexified cross-ratio

space against a carefully chosen weight function. It was checked that the functionals

coming from the numerical bootstrap seem to converge to the analytic expressions when

the dimension of the numerical search space is increased towards infinity.

An important obstacle to generalizations of this construction to more interesting situ-

ations has been the fact that in that work the knowledge of the exchanged spectrum in the

extremal theory was used to constrain the functionals. In principle, we would like to do

the opposite: derive the spectrum of an interacting CFT from the functional arising as the

solution of an optimization problem. In this paper, we abstract the main features of the

construction in [17] without relying on a specific spectrum. We work with a broad class

of functionals parametrized by a weight function which is holomorphic in an appropriate

region of the complexified cross-ratio space. The action of the functional on the vectors

corresponding to varying conformal families becomes a certain integral transform of the

weight function. The search for an optimal bootstrap bound boils down to the search for

the optimal weight function subject to constraints on its integral transform.

We will find the optimal weight function in two regimes. Firstly, we construct func-

tionals that annihilate the spectrum of the generalized free fermion for general ∆φ > 0.

In this way, we demonstrate that the generalized free fermion maximizes the gap above

identity for any ∆φ > 0. In this context, we also construct a related family of functionals

which provide upper bounds on the OPE coefficient of a primary of dimension 2∆φ+1 and

where the bounds are again saturated by the free fermion theory. The upper bound ceases

to exist unless we impose a minimal gap on the spectrum that can be determined exactly

for any ∆φ. This is a toy example of how our methods can predict nontrivial features in

conformal bootstrap bounds.

More importantly, we study the scaling limit of the 1D bootstrap equations where the

dimensions of the external and exchanged operators become large with fixed ratios. This

2Equivalently, this theory describes boundary correlators of a free massive fermion in AdS2.
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limit is relevant because it is equivalent to the large-radius limit of massive theories in AdS,

as discussed in [22]. Since AdS in the limit of infinitely large radius becomes flat space,

we expect that the corresponding limit of the 1D bootstrap equations should be related to

the flat-space S-matrix bootstrap. We use the technique of analytic functionals to explain

exactly how this happens.

Specifically, we consider the problem of finding the optimal upper bound on the OPE

coefficient squared c2
φφO of a primary operator O whose dimension satisfies 0 < ∆O < 2∆φ

provided all other primary operators in the φ×φ OPE have dimensions at least 2∆φ. In the

scaling limit, we take ∆φ,∆O → ∞ with m = ∆O/∆φ fixed. In the context of a massive

field theory in AdS2, this problem corresponds to bounding the coupling of a bound state O
to its constituent φ-particles, assuming this is the unique bound state that two φ-particles

form. The parameter m has the meaning of the mass of O in units of the mass of φ. This

question has been solved analytically in flat space [23] (see also [24]), the optimal answer

being given by an exact S-matrix in the sine-Gordon theory, with φ and O the lightest

and second-lightest breathers respectively. The corresponding 1D conformal bootstrap

problem was studied numerically in [22], where substantial evidence was presented that

the optimal solution to crossing in the ∆φ →∞ limit coincides with the boundary dual of

the sine-Gordon theory in large AdS2.

We use our construction of bootstrap functionals to prove this statement analytically

on the 1D CFT side (without assuming any underlying AdS description). The reason this is

technically possible is that in the ∆φ →∞ limit, the action of our functionals localizes to a

saddle point, revealing a direct relation between the conformal cross-ratio and the flat-space

Mandelstam variable. Optimizing the weight function then leads to an extremal functional

whose double zeros approach the operators corresponding to two-particle states of the

sine-Gordon theory placed in large AdS2. Indeed, the limiting optimal weight function is

essentially the inverse of the sine-Gordon S-matrix. The extremal functional leads to the

following upper bound on the OPE coefficient:

c2
φφO ≤

√
64π∆φ

m3/2
√

2−m
|m2 − 2|

√
2 +m

[
22(m+2)

(2−m)2−m (2 +m)2+m

]−∆φ

(1.1)

valid asymptotically in the limit ∆φ → ∞. The right-hand side agrees with the OPE

coefficient squared in the holographic dual of the sine-Gordon theory in large AdS2, further

confirming our proposal. We also show how these results generalize to situations with

multiple bound states.

The outline for the rest of this paper is as follows. In the next section, we describe

the theories to which our results apply and review the general mechanism of how func-

tionals lead to bounds on the CFT data. In section 3, we motivate and define the class

of functionals that we will be working with, spelling out the constraints that the weight

function should satisfy. In section 4, we explicitly solve these constraints in the case of

the generalized free fermion, proving that this theory maximizes the gap above identity

for any value of the external dimension ∆φ. We also find the same theory saturates an

upper bound on the OPE coefficient of an operator of dimension 2∆φ + 1, and construct

– 4 –
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the associated functionals. Section 5 considers OPE maximization in the large-radius limit.

We show that the resulting extremal functionals have spectra determined by S-matrices

of two-dimensional theories with no particle production. We finish with conclusions and

future prospects. Several appendices complement results in the main text.

2 Review of 1D CFTs and bootstrap functionals

2.1 1D CFTs

We consider unitary theories invariant under SO(1, 2) realized as the 1D conformal group.

Note that these are in general very different from one-dimensional Weyl-invariant theories

(such as the ones studied in [25]), which are necessarily topological. The Lie algebra of

SO(1, 2) is generated by operators P , D and K corresponding to an infinitesimal transla-

tion, dilatation and special conformal transformation respectively. The space of states of

the radially-quantized theory carries a positive scalar product such that D† = D, P † = K.

We assume this Hilbert space contains a vacuum state invariant under all three generators.3

The standard state-operator map provides an isomorphism between this Hilbert space

and the space of local operators that can be inserted on the line. Primary operators

O(x) satisfy [K,O(0)] = 0. The eigenvalue under the action of dilatations is the scaling

dimension, denoted ∆: [D,O(0)] = ∆O(0). An important constraint that follows from

the positivity of the scalar product is that all dimensions should be non-negative. For

our purposes, a 1D CFT is a set of correlation functions of local operators on the line

satisfying reflection positivity and the global Ward identities following from D,K,P and

the existence of an invariant vacuum.

The set-up just described finds numerous interesting realizations in physics. A large

class of such models consists of conformal boundaries and interfaces in 2D CFTs, or more

generally conformal line defects in higher-D CFTs. Examples studied recently from the

point of view of conformal field theory include the monodromy line defect in the 3D Ising

model [27, 28], Wilson lines in four-dimensional N = 4 SYM [29–31] and Wilson lines in the

ABJM theory [32, 33]. A special case of this scenario is the trivial defect, where we simply

restrict the operators of a higher-D CFT to lie on a line. The resulting 1D correlation

functions satisfy all our assumptions. While we do not expect our bounds to be optimal

in this case since they do not use the full conformal invariance, it is useful to keep in mind

they are still valid.

Another set of examples particularly relevant for our analysis comes from a “rigid”

(non-gravitational) version of AdS2 holography, formulated in detail in [22]. Consider any

unitary UV-complete (1+1)D quantum field theory. We expect it is generally possible to

place the theory in a non-dynamical AdS2 background while preserving the SO(1, 2) group

of isometries of AdS2. In the process, we need to choose an SO(1, 2)-invariant boundary

condition on the bulk fields. The standard holographic dictionary [34, 35] then gives a set

of 1D correlation functions satisfying all global conformal Ward identities. The radially

quantized Hilbert space of the boundary theory coincides with that of the bulk using equal-

3In particular, this assumption excludes standard conformal quantum mechanics studied in [26].
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time slicing in global AdS2. The existence of a finite AdS radius R gives us the possiblity to

make various dimensionless couplings in the bulk Lagrangian into functions of MR, where

M is the mass-scale of the theory. In order to obtain a well-defined flat-space limit, we

should restrict to situations where the couplings approach finite values as R → ∞. We

refer the reader to [22] for more details on this version of the holographic correspondence.

Last but not least, there are genuinely 1D, intrinsically defined, non-trivial conformal-

invariant theories. One example is the 1D long-range Ising model which can have a second

order phase transition described by a non-trivial CFT [36–38]. Another example which

has recently received considerable attention is the SYK model [39, 40]. While conformal

invariance is explicitly broken in the original model, it is possible to modify the UV kinetic

term to produce a (non-local) model with exact conformal invariance such that it coincides

with the SYK model at strong coupling [41].4

2.2 Crossing equations and linear functionals

Having listed the kinds of theories to which our results will apply, let us describe the

set-up for our analysis. We consider the OPE of a self-conjugate primary operator φ

with itself. We make no a priori assumptions on the statistics of the field. The self-

conjugate property implies the OPE contains the identity operator. The CFT data of the

operators exchanged in the OPE is constrained by the crossing symmetry of the four-point

function 〈φ(x1)φ(x2)φ(x3)φ(x4)〉. Without loss of generality, we can order the positions as

x1 < x2 < x3 < x4. Conformal invariance ensures that the correlator can be written as

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1

|x12x34|2∆φ
G(z) , (2.1)

where xij = xi − xj and G(z) depends only on the cross-ratio

z =
x12x34

x13x24
. (2.2)

In the chosen ordering of positions we have z ∈ (0, 1). In this region, there are two

convergent OPEs, namely the s-channel x2 → x1 and the t-channel x2 → x3, giving rise to

the expansions

G(z)
s-channel

=
∑
O∈φ×φ

c2
φφOG∆O(z)

G(z)
t-channel

=

(
z

1− z

)2∆φ ∑
O∈φ×φ

c2
φφOG∆O(1− z) ,

(2.3)

where the sums run over the primary operators exchanged in the φ×φ OPE, cφφO are the

OPE coefficients and G∆(z) the 1D conformal blocks

G∆(z) = z∆
2F1(∆,∆; 2∆; z) . (2.4)

4Theories with SO(1, 2) invariance can also arise from non-relativistic theories with Schrödinger symme-

try [42].
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z = 0 z = 1

Figure 1. The physical region where the 1D crossing equation holds is z ∈ (0, 1). Allowing complex

z shows the full domain of validity of the equation is the entire blue region R ≡ C\((−∞, 0]∪[1,∞)).

The equation stops holding after an analytic continuation from this region through one of the

branch cuts.

In unitary theories, cφφO are real so that c2
φφO ≥ 0. The equality of the two expansions

above is a necessary and sufficient condition for the full crossing symmetry of the four-point

function. It is convenient to rewrite the equality as∑
O∈φ×φ

c2
φφOF

∆φ

∆ (z) = 0 , (2.5)

by defining

F
∆φ

∆ (z) = z−2∆φG∆(z)− (1− z)−2∆φG∆(1− z) . (2.6)

The variable z is real and between 0 and 1 in the physical regime, but the region of

validity of (2.5) is greater. Indeed, one can use the ρ variable introduced in [43] to show

the s-channel expansion converges in the whole complex z-plane except for z ∈ [1,∞).5

Correspondingly, the t-channel expansion converges in the complex z-plane except for z ∈
(−∞, 0]. Therefore, equation (2.5) is valid for z ∈ R ≡ C\((−∞, 0]∪ [1,∞)). In particular,

this means we are not allowed to analytically continue the equation through either of the

branch cuts, and have to stay on the first sheet. Region R is shown in figure 1.

The bootstrap equation (2.5) naturally lives in a vector space of functions of variable

z, antisymmetric under z 7→ 1 − z and analytic in R. It is thus useful to parametrize the

bootstrap constraints by elements of the dual space, usually called functionals. Given one

such functional, denoted ω, we can apply it to (2.5) and get a sum rule constraining the

CFT data ∑
O∈φ×φ

c2
φφO ω(∆O) = 0 , (2.7)

where the function ω(∆) is defined as the action of ω on the vectors F
∆φ

∆ (z)

ω(∆) ≡ ω
[
F

∆φ

∆

]
. (2.8)

5We should keep in mind that the 1D s-channel conformal blocks have a branch cut starting at z = 0.

The more precise statement then is that the s-channel OPE expansion converges on a multi-sheet cover

of C\[1,∞).
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The dependence on ∆φ is supressed for simplicity in this notation. The simplest exam-

ples of functionals are evaluations of a function or its derivatives at a point in R. The

numerical bootstrap typically uses odd-order derivatives evaluated at z = 1/2 as a basis

for functionals. Any sum rule of the form (2.7) which is valid on any physical solution to

crossing should arise as an action of some functional supported in R.

It is important to note that not every functional which is linear when acting on finite

linear combinations of functions can be used to infer the sum rule (2.7). The reason is

that in deriving (2.7) from (2.5), we have to exchange the action of ω with an infinite sum

over operators appearing in the OPE. Reference [44] formulated necessary and sufficient

conditions that a functional ω should satisfy in order for equation (2.7) to be valid for

any physical solution to crossing (2.5). This property, called the swapping condition, is

automatic if the functional only depends on values of test functions at a finite distance away

from the boundary of R, thanks to the exponentially fast convergence of the OPE [45].

However, it turns out that the analytic functionals constructed in [17] and later in this

work necessarily depend on values of test functions arbitrarily close to the boundary of

R. Therefore, the conditions spelled out in [44] will play an important role here. For

completeness, we review the implications of the swapping condition in appendix C.

2.3 Optimization and bounds

A bootstrap question that is particularly natural from the functional perspective is the

problem of gap maximization : we would like to know what is the maximal allowed value

for the dimension of the first, non-identity operator in the OPE φ × φ, among unitary

solutions to (2.5). The key idea of [1] is that we get an upper bound on this gap value by

constructing a linear functional satisfying

ω(0) > 0 , ∀∆ ≥ ∆∗ : ω(∆) ≥ 0. (2.9)

It follows from applying this functional to the crossing equation (2.5) that the gap is at

most ∆∗. The maximal value of the gap allowed by crossing symmetry and unitarity is

the infimum of values of ∆∗ for which such a functional exists. Accordingly, the limiting

functional is called the optimal or extremal functional [21]. It is generically unique (up to

rescaling) and has the following properties

ω(0) = 0 , ω(∆n) = 0 , ω′(∆n) ∝ δn,0 , (2.10)

where {∆n : n ∈ Z≥0} is a discrete, increasing set of scaling dimensions such that ∆0 = ∆∗.

This set is expected to gives rise to a solution to crossing maximizing the gap,6 i.e. there

exist c2
n ≥ 0 such that

F
∆φ

0 (z) +
∞∑
n=0

c2
nF

∆φ

∆n
(z) = 0. (2.11)

6Strictly speaking, to our knowledge this has only been proved fully rigorously (see e.g. [46]) for trun-

cations of the problem we are considering here, where the continous set of crossing constraints are reduced

to a finite dimensional set. However, this does not have any effect on the validity of our arguments in this

paper.
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In section 4, we will construct the extremal functionals for the gap maximization problem

in 1D analytically.

Another interesting bootstrap question readily addressed using functionals is OPE

maximization [47]. In this case we fix ∆b of an exchanged operator Ob whose OPE coeffi-

cient we want to bound, and assume the rest of the spectrum besides identity lies in some

set S. The crossing sum rule is then

F
∆φ

0 (z) + c2
b F

∆φ

∆b
(z) +

∑
∆∈S

c2
∆F

∆φ

∆ (z) = 0 , (2.12)

for some real valued7 c∆. We can obtain an upper bound on c2
b by constructing a functional

satisfying

ω(∆b) > 0, ∀∆ ∈ S : ω(∆) ≥ 0. (2.14)

Indeed, applying such a functional to the sum rule we obtain

c2
b ≤ −

ω(0)

ω(∆b)
. (2.15)

In the extremal case, this inequality is saturated and the extremal functional satisfies

c2
b,max = − ω(0)

ω(∆b)
, ∀n ≥ 0 : ω(∆n) = 0, ∀n ≥ 1 : ∂∆ω(∆n) = 0 , (2.16)

where again ∆n is an increasing sequence of scaling dimensions forming the spectrum of

the extremal solution, i.e. there exist c2
n > 0 so that

F
∆φ

0 (z) + c2
b,max F

∆φ

∆b
(z) +

∞∑
n=0

c2
nF

∆φ

∆n
(z) = 0 . (2.17)

In general, both the bound and the solution will depend on the original choice of set S.

The main lesson is that in both the gap and OPE maximization problems, the knowl-

edge of the extremal functional immediately gives us the spectrum of the extremal solution

to crossing. It is clear then that it is crucial to understand the exact form taken by ex-

tremal functionals. In numerical bootstrap studies, one truncates the space of functionals

to that generated by finitely many derivatives with respect to cross-ratios evaluated at the

crossing-symmetric point. As the number of derivatives is increased, the bounds mono-

tonically improve and converge to the optimal ones. The action of the optimal numerical

functionals on F
∆φ

∆ , i.e. ω(∆) also converges as the number of derivatives increases, giving

us better and better approximations to the exact spectrum. However, the coefficients of

7The summation notation is schematic. It should be replaced by an integral, with c∆ a real-valued

distribution with support in S satisfying∫ ∆+ε

∆−ε
d∆′ c2∆′ ≥ 0 for all ε > 0,∆ ∈ S. (2.13)

That is, our results will apply to general solutions to crossing including those involving a continuum of

operators in the OPE.
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z = 0 z = 1

f(z)

g(z)

Figure 2. The representation of a general functional in terms of a pair of weight functions f(z)

and g(z). The branch cuts of f(z) are shown in green. The branch cuts of g(z) coincide with

those of the bootstrap vectors F
∆φ

∆ (z) and are shown in red. The integration contours approach

the boundary of R at z = ∞ and z = 1, and consequently f(z) and g(z) respectively must have

appropriate fall-off there.

the z-derivatives generically do not converge, indicating that the exact extremal functionals

themselves may not be expressible in terms of z-derivatives.

In the following section, we discuss a very general class of functionals taking the form of

a contour integral in complexified cross-ratio space against a holomorphic weight function.

In this language, we will be able to fix various extremal functionals analytically and use

them to derive non-trivial spectra of extremal solutions to crossing.

3 General functionals

3.1 Functionals as contour integrals

As discussed in the previous sections, bootstrap functionals act on functions analytic in

R = C\(−∞, 0] ∪ [1,∞) and satisfying F(z) = −F(1− z). The functionals must be linear

when acting on finite linear combinations of test functions. The functionals must also

take finite values on all bootstrap vectors F
∆φ

∆ (z) with ∆ ≥ 0. Finally, the action of the

functionals must be interchangeable with the infinite sum over primary operators in any

unitary solution to crossing. Following [44], we will refer to the last two conditions as

finiteness and swapping.

Let us begin by stating the form of functionals that we will consider. Later in this

section, we will explain why this is a useful way to write a very general functional for the

1D crossing equation, although this is probably not apparent at first sight.

ω[F ] =
1

2

1
2

+i∞∫
1
2

dz f(z)F(z) +

1∫
1
2

dz g(z)F(z) . (3.1)

The functional takes the form of a pair of contour integrals inside R, specified by

weight functions f(z) and g(z). The contour integral prescription is illustrated in figure 2.
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The factor of 1/2 is inserted in the first integral for future convenience. To ensure the

reality of the functional action on the bootstrap vectors, f(z) and g(z) should be real on

the respective integration contours. We will assume f(z) is complex-analytic in the upper-

half plane, and that its only singularities on the real axis can be located at z = 0, 1. We

will take g(z) to be complex-analytic in R. Furthermore, as we review in appendix C, the

functional only satisfies the finiteness and swapping conditions if the weight functions have

the following fall-off properties in the region where the integration contours approach the

boundary of R

∃ ε > 0 : f(z)
|z|→∞∼ o(z−1−ε), g(z)

z→1∼ o
(
(1− z)2∆φ−1+ε

)
, (3.2)

where the first condition applies for Im(z) > 0. It will be convenient to define f(z) in the

lower half plane in terms of its values in the upper half plane by setting f(z) = f(1 − z).

Note that this implies such f(z) may have a discontinuity on the real axis. When referring

to f(z) for z ∈ R, we will always mean the value of limε→0+ f(z + iε). As we will see

shortly, f(z) and g(z) both arise from the same complex-analytic function. The existence

of this underlying analytic function guarantees the validity of our final constraint, which

we will call the gluing condition

Re[f(z)] + g(z) + g(1− z) = 0 for z ∈ (0, 1) . (3.3)

In the rest of this section, we will explain in detail why this particular ansatz is a well-

motivated starting point. The reader who is only interested in applications may however

now safely skip ahead to later sections, where we will construct pairs of kernels f, g which

correspond to various interesting extremal functionals.

The proposal (3.1) naturally arises from a description of functionals introduced in [17],

which takes the following form:

ω[F ] =
1

2πi

∞∫
1

dz h(z) Disc[F(z)] , (3.4)

where

Disc[F(z)] = lim
ε→0+

[F(z + iε)−F(z − iε)] . (3.5)

Let us first demonstrate that this prescription efficiently encodes a very broad class of

functionals. We will start with the simplest functional, namely the evaluation at a fixed

point w ∈ R:

Ew[F ] = F(w) . (3.6)

It is clear that Ew satisfies the finiteness and swapping condition, the latter by virtue of

the (exponentially fast) convergence of both the s- and t-channel OPEs at w. In order to

rewrite Ew as (3.4), we first write it as a contour integral

Ew[F ] =
1

2πi

∮
C

dz
F(z)

z − w
, (3.7)
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where C is a small circle around w. We can now pull the contour away from w and wrap

it around the branch cuts. When acting on the bootstrap vectors, there is no contribution

from the arcs at infinity since

F
∆φ

∆ (z) = O(z−2∆φ log z) as z →∞ . (3.8)

and ∆φ > 0 by unitarity. Using the antisymmetry of F under crossing, we can combine

the contribution from the two branch cuts and write the action of Ew on all functions of

interest as (3.4) with

h(z) =
2w − 1

(z − w)(z − 1 + w)
. (3.9)

We should now clarify a subtlety in the prescription (3.4). When acting on the bootstrap

vectors F
∆φ

∆ with sufficiently small ∆, there can be a divergence in the integral in (3.4)

coming from z → 1, seemingly violating the finiteness condition. With h(z) given by (3.9)

this happens for ∆ < 2∆φ− 1. However, we can pull the contour of integration away from

the branch cut around z = 1 to manifest finiteness. For general h(z) we should demand

that a similar contour deformation should be possible in order to make the result manifestly

finite. The precise condition will be explained below.

Having seen how to express the evaluation functionals as (3.4), let us write the most

general functional as an integral of Ew against a distribution ρ(w, w̄)

ω =

∫
R

d2w ρ(w, w̄)Ew , (3.10)

However, not every ρ(w, w̄) leads to a functional satisfying finiteness and swapping. The

simplest way to ensure that (3.10) does satisfy finiteness and swapping is by restricting ω

to only involve derivatives of a bounded order, integrated over a compact region in R. We

will refer to these as functionals of the first kind. Functionals of the first kind are always

consistent thanks again to the exponentially fast convergence of both OPEs in any compact

subregion of R. The functionals used in the numerical bootstrap are linear combinations

of derivatives of bounded order evaluated at z = 1/2, and are therefore of the first kind.

Every functional of the first kind can be expressed as (3.4) for a suitable h(z). To see

that, we use (3.9) to write the action of ω on a test function F(z) as

ω[F ] =
1

2πi

∫
R

d2w ρ(w, w̄)

∞∫
1

dz
2w − 1

(z − w)(z − 1 + w)
Disc[F(z)] . (3.11)

For functionals of the first kind, the two integrations can be swapped. This is because the

support of ρ(w, w̄) stays away from the singularities of the kernel (3.9), and is bounded

from w =∞. Therefore, ω is of the form (3.4) with

h(z) =

∫
R

d2w
2w − 1

(z − w)(z − 1 + w)
ρ(w, w̄) . (3.12)

Note that with h(z) given by this formula, the form h(z)dz is holomorphic in an open

neighbourhood U of ∂R including z = ∞. Furthermore, h(z) = h(1 − z) in U . If we
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wish, we can use this symmetry to double the contour in (3.4) on the other branch cut

and then deform it to the interior of R, obtaining a functional that manifestly satisfies

finiteness and swapping. In summary, we see that there is a one-to-one correspondence

between functionals of the first kind and functions h(z) satisfying the properties stated

after (3.12).8 For example, when ω is a finite linear combination of derivatives at z = 1/2

ω[F ] =

N∑
j=1

αj
(2j − 1)!

∂2j−1F(w)|w= 1
2
, (3.13)

the corresponding weight function becomes

h(z) = 2
N∑
j=1

αj(
z − 1

2

)2j . (3.14)

It turns out that there are interesting consistent functionals which are not of the first

kind. Such functionals either involve taking derivatives of arbitrarily high order, or such

that the support of ρ(w, w̄) reaches all the way to the boundary ∂R.9 We will refer to

all consistent functionals which are not of the first kind as functionals of the second kind.

Functionals of the second kind are of fundamental importance for the conformal bootstrap.

The extremal functionals for the gap and OPE maximization problems constructed in [17]

and in the following sections of this article are all of the second kind. There is also some

evidence that the extremal functionals in higher dimensions probe the light-cone limit and

are therefore of the second kind too [48].

The key point is that the prescription (3.4) also includes numerous functionals of the

second kind. In light of the preceding discussion, they correspond to h(z) not analytic in

any open neighbourhood of ∂R. While it would be interesting to see if every consistent

functional of the second kind can be represented by (3.4) for suitable h(z), this question is

beyond the scope of this work. In a general functional, the analytic structure of h(z) can

be very complicated. However, we will see that in order to describe the extremal functional

of interest, it will be enough to focus on h(z) with nice analytic properties. We will first

postulate these properties and later see why they make sense. These properties are:

1. h(z) is analytic away from possible poles or branch points at z = 0, 1 and ∞.

2. h(z) is bounded by A1|z|−1−ε1 for some A1, ε1 > 0 as z →∞.

3. The discontinuity of h(z) around z = 1 is bounded by A2|z − 1|2∆φ−1+ε2 for

some A2, ε2 > 0 as z → 1.

(3.15)

Property 1 in particular means that h(z) can be analytically continued through possible

branch cuts stretching between z = 0, 1 and ∞ without encountering any other non-

8Strictly speaking, we did not demonstrate that the map from functions h(z) with the required properties

to functionals is injective, but this seems to be the case.
9In fact, there is no clear distinction between these two cases since the test functions are holomorphic,

and so their behaviour on ∂R is encoded in their derivatives at an interior point.
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z = 0 z = 1 z = 0 z = 1

Figure 3. The contour deformation we can use to go from the representation of a general func-

tional (3.4) in terms of h(z) to the more convenient representation (3.1) in terms of f(z) and g(z).

The branch cuts of F
∆φ

∆ (z) are shown in red and the branch cuts of h(z) are shown in green. When-

ever we have two integration contours running in opposite directions above and below a branch cut,

we are really integrating the discontinuity across the branch cut.

analyticities.10 Our first order of business is to show that a functional with the above

properties satisfies finiteness and swapping. Let us first deform the contour in (3.4) into

the interior of R as shown in figure 3.

In this way we arrive back at our original representation (3.1), which we repeat here

for convenience:

ω[F ] =
1

2

1
2

+i∞∫
1
2

dz f(z)F(z) +

1∫
1
2

dz g(z)F(z) . (3.16)

The weight functions f(z) and g(z) are now determined in terms of h(z)

f(z) =
h(z)− h(1− z)

πi
for Im(z) > 0

g(z) = −Disc[h(z)]

2πi
for z ∈ (0, 1) .

(3.17)

Without loss of generality, we can assume h(z) is real for z ∈ (1,∞), so that the functional

takes real values on the bootstrap vectors.11 It follows that h(z̄) = h(z). This in turn

implies

f(z) = f(1− z̄) for Im(z) > 0 and g(z) ∈ R for z ∈ (0, 1) . (3.18)

It will be convenient for future calculations to extend the definition of f(z) to Im(z) < 0 via

f(z) ≡ f(1− z) for Im(z) < 0 . (3.19)

At the same time, we will define g(z) for z ∈ R by the analytic continuation from z ∈ (0, 1).

The reality conditions on f(z) and g(z) then read

f(z̄) = f(z) and g(z̄) = g(z) . (3.20)

10It is easy to see that every h(z) with these properties describes a functional of the second kind. Property

2 implies h(z) cannot be an entire function. Property 1 then implies either z = 1 or z = ∞ is a singular

point of h(z), and hence the functional cannot be of the first kind.
11A complex-valued h(z) can be written as h1(z) + ih2(z), where h1(z) = [h(z) + h(z̄)]/2, h2(z) =

[h(z)− h(z̄)]/(2i). h1,2(z) are real for z ∈ (1,∞) and separately satisfy properties (3.15).
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In particular, Re[f(z)] is continuous across the real axis. As a result of (3.17), f(z) and

g(z) are constrained by the gluing condition mentioned previously,

Re[f(z)] + g(z) + g(1− z) = 0 for z ∈ (0, 1) . (3.21)

It is manifest from the form of the functional action (3.1) that the only potential

sources of violation of finiteness and swapping are z → ∞ in the first integral and z → 1

in the second integral. |f(z)| is bounded by A1|z|−1−ε1 for some A1, ε1 > 0 as z → ∞
by property 2, which is sufficient (and necessary) for finiteness and swapping of the first

integral. Similarly, |g(z)| is bounded by A2|z − 1|2∆φ−1+ε2 for some A2, ε2 > 0 as z → 1

by property 3, which is sufficient (and necessary) for finiteness and swapping of the second

integral. Both these statements were demonstrated by [44] and are reviewed in appendix C.

We conclude that both (3.1) and equivalently (3.4) with the above mentioned conditions

define consistent bootstrap functionals.

To close this section, let us mention that given f(z) and g(z) satisfying the mentioned

constraints, we may easily recover the associated h(z) from (3.12), finding

h(z) =
1

2

1
2

+i∞∫
1
2

dw
2w − 1

(z − w)(z − 1 + w)
f(w) +

1∫
1
2

dw
2w − 1

(z − w)(z − 1 + w)
g(w) . (3.22)

More precisely, this equation defines h(z) in the region Re(z) > 1/2, z /∈ (1/2, 1). Analyt-

ically continuing this function to the rest of the upper and lower half plane, we find h(z)

satisfying properties (3.15). Notice that the gluing condition is equivalent to the statement

that h(z) has no discontinuity around z = 1/2, i.e. property 1 holds.

3.2 Simplifying the functional action

Having seen that the class of functionals defined by (3.1), or equivalently (3.4), are con-

sistent bootstrap functionals under suitable conditions on f(z), g(z) or h(z), let us explain

why it is also naturally adapted to tackle bootstrap problems. To do this, we need to

understand the action of (3.4) on the bootstrap vectors F
∆φ

∆ (z). We start with the repre-

sentation (3.4) and change variables in the term involving the direct-channel block (recall

that ω(∆) ≡ ω(F
∆φ

∆ ))

ω(∆) =
1

2πi

∞∫
1

dz h(z) Disc

[
G∆(z)

z2∆φ
− G∆(1− z)

(1− z)2∆φ

]
=

= − 1

2πi

0∫
−∞

dz h(1− z) Disc

[
G∆(1− z)

(1− z)2∆φ

]
− 1

2πi

∞∫
1

dz h(z) Disc

[
G∆(1− z)

(1− z)2∆φ

]
.

(3.23)

Note that Disc generates a minus sign under this change of variables. Our goal will be to

bring all integrals to the region z ∈ (1,∞). The second term is already in this form. In
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the first term, we can first rotate the contours to the region z ∈ (0,∞) to find

− 1

2πi

0∫
−∞

dz h(1−z) Disc

[
G∆(1−z)

(1−z)2∆φ

]
=

1∫
0

dz g(1−z)
G∆(1−z)

(1−z)2∆φ
+

1

2πi

∞∫
1

dz
[
e−iπ(∆−2∆φ)h(1−z−iε)−eiπ(∆−2∆φ)h(1−z+iε)

] Ĝ∆(1−z)

(z−1)2∆φ
,

(3.24)

where g(z) is defined in (3.17), and

Ĝ∆(z) = (−z)∆
2F1(∆,∆; 2∆; z) . (3.25)

In order to transform the first integral on the r.h.s. of (3.24) to the region z ∈ (1,∞),

we perform the change of variables z 7→ 1/z and use the following transformation of the

conformal blocks

G∆(z) = Ĝ∆

(
z

z − 1

)
. (3.26)

We find
1∫

0

dz g(1− z)
G∆(1− z)

(1− z)2∆φ
=

∞∫
1

dz z2∆φ−2 g

(
z − 1

z

)
Ĝ∆(1− z)

(z − 1)2∆φ
. (3.27)

Combining the steps, we arrive at the result

ω(∆) =

∞∫
1

dz

[
z2∆φ−2 g

(
z − 1

z

)
− e−iπ(∆−2∆φ)f(z) + eiπ(∆−2∆φ)f(z)

2

]
Ĝ∆(1− z)

(z − 1)2∆φ
, (3.28)

with f(z) and g(z) defined in (3.17). The values of f(z) on the branch cut (1,∞) are

obtained as the limit from Im(z) > 0 and the reality property (3.20) was used to get the

last term in the square bracket. We can see the r.h.s. of (3.28) is manifesly real.

It is now natural to define integral transforms of f(z) and g(z) taking them to functions

of ∆ as follows12

f(∆) ≡
∞∫

1

dz f(z)
Ĝ∆(1− z)

(z − 1)2∆φ
,

g(∆) ≡
∞∫

1

dz z2∆φ−2g

(
z − 1

z

)
Ĝ∆(1− z)

(z − 1)2∆φ
=

1∫
0

dz g(z)
G∆(z)

z2∆φ
.

(3.29)

The action of the functional (3.28) can now be written compactly as

ω(∆) = g(∆)− Re
[
e−iπ(∆−2∆φ)f(∆)

]
. (3.30)

12A similar integral transform has been introduced in [49]. It would be interesting to explore possible

connections between that work and our approach.
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It is important to keep in mind that although ω(∆) is finite for any ∆ ≥ 0, the integral

in (3.28) generally converges only for ∆ larger than some ∆0. For 0 ≤ ∆ ≤ ∆0, we

must in priniciple resort to (3.1) which is valid for any ∆ ≥ 0. In practice however, this

is equal to the analytic continuation of (3.28) in ∆. We will see that in the extremal

functionals constructed using our prescription, ∆0 will coincide with the value of the gap

we are maximizing or the scaling dimension of the operator whose OPE coefficient we are

maximizing.

Since both z2∆φg(1−1/z) and the kernel of the second integral transform in (3.29) are

real for z ∈ (1,∞), also g(∆) is real. In all cases of interest, g(z) will in fact be positive for

0 < z < 1. Since the kernel is also positive, g(∆) is positive too whenever ∆ is sufficiently

large so that the integral in (3.29) converges. On the other hand, f(∆) may not be real, so

let us write

f(∆) = r(∆)e−iπδ(∆) with r(∆) ∈ R≥0 and δ(∆) ∈ R . (3.31)

The functional action becomes

ω(∆) = g(∆)− cos{π[∆− 2∆φ + δ(∆)]}r(∆) . (3.32)

If g(∆), r(∆) and δ(∆) are slowly varying, the local minima of ω(∆) are near the maxima

of the cosine, namely at

∆n ≈ 2∆φ + 2n− δ(∆n) , n = 0, 1, . . . (3.33)

Moreover, provided g(∆) ≥ r(∆), the functional is non-negative. If ω is an extremal

functional, the local minima become double zeros at the locations of the extremal spectrum,

in which case we obtain

g(∆) ≈ r(∆) . (3.34)

In the following two sections, we will analyze examples where the approximate equalities

in (3.33) and (3.34) become exact, namely the theory of a generalized free fermion, and

the scaling limit corresponding to gapped theories in large AdS2.

4 Functionals for the generalized free fermion

4.1 General remarks

Reference [28] provided numerical evidence that the unitary 1D four-point function of

identical operators with maximal gap above identity arises in the theory of the generalized

free fermion, or equivalently the massive free fermion in AdS2. The optimal four-point

function in the region 0 < z < 1 reads

G(z) = 1 +

(
z

1− z

)2∆φ

− z2∆φ . (4.1)

The spectrum exchanged in the OPE consists of the identity and operators with dimension

∆n = 2∆φ + 2n+ 1 , n = 0, 1, . . . (4.2)

– 17 –



J
H
E
P
0
2
(
2
0
1
9
)
1
6
2

The bootstrap sum rule (2.5) reads

F
∆φ

0 (z) +

∞∑
n=0

c2
nF

∆φ

∆n
(z) = 0 , (4.3)

where

c2
n =

2(2∆φ)2
2n+1

(2n+ 1)!(4∆φ + 2n)2n+1
. (4.4)

The extremality of this solution to crossing was demonstrated for ∆φ ∈ N/2 in [17] by

analytically constructing the corresponding extremal functionals. We will now use the

formalism of the previous section to construct the extremal functionals for any ∆φ > 0 and

thus prove the extremality in general.

The simplest way to ensure that the functional (3.30) has local minima at ∆n is to

require that f(z) is real and negative for z ∈ (1,∞). If that is the case, δ(∆) = −1 for

all ∆ for which the defining integral of f(∆) converges. In order to make the minima into

double zeros, we also require g(∆) = −f(∆), which is equivalent to

g(z) = −(1− z)2∆φ−2f

(
1

1− z

)
. (4.5)

Under these constraints, the action of the functional (3.28) reads

ω(∆) = 2 cos2
[π

2
(∆− 2∆φ)

] ∞∫
1

dz[−f(z)]
Ĝ∆(1− z)

(z − 1)2∆φ
for ∆ > ∆0 , (4.6)

where ∆0 is such that the integral converges. Very importantly, we must remember that

f(z) and g(z) are also tied by the gluing condition (3.3). Using (4.5), the gluing condition

gives us the fundamental relation satisfied by f(z) for the generalized free fermion

Re[f(z)] = z2∆φ−2f

(
1

z

)
+ (1− z)2∆φ−2f

(
1

1− z

)
for z ∈ (0, 1) . (4.7)

Recall that f(z) in the lower half-plane is defined by f(z) = f(1− z). Since f(z) is real for

z ∈ (1,∞), it follows that f(z) is analytic in C\[0, 1] and therefore has a series expansion

around z =∞,

f(z) =
∞∑
j=0

ajw
−j−1 , (4.8)

where w = z(z − 1). We will see shortly that analyticity away from z ∈ [0, 1], together

with the fundamental relation written above, allow us to fix f(z).

The first step is to understand the boundary conditions. Notice that the integral

in (4.6) diverges for sufficiently small ∆. The precise value of ∆ where this happens

depends on the behaviour of f(z) as z → 1. However, we can be sure that the true value of

the functional ω(∆) is finite for all ∆ ≥ 0, as manifested by (3.4) or (3.1). Therefore, the

integral can only diverge at ∆ ≥ 0 if the divergence is cancelled by a zero of the prefactor.
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The prefactor has double zeros at ∆n = 2∆φ + 2n + 1, which means f(z) is restricted to

behave as

f(z)
z→1+

=
a log(z − 1) + b

(z − 1)2n+2
+ subleading for some n ∈ Z . (4.9)

When a vanishes, the singularity of the integral is a simple pole in ∆ at ∆n, combining

with the double zero of the prefactor to give a simple zero of ω(∆). For a non-zero, the

singularity is a double pole at ∆n, leading to a finite nonzero ω(∆n). It follows from the

analytic properties of f(z) and (4.7) that necessarily n ≥ 0, see appendix A.1 for details.

Since for f(z) negative in the z > 1 region we are guaranteed positivity of the functional

beyond ∆n, and we would like the functionals to be positive in as wide as region as possible,

we will set n = 0.13

We see that for fixed ∆φ and n = 0 there are essentially two distinct functionals,

labeled by their behaviour near z = 1. As we will see shortly, they correspond to gap

maximization and OPE maximization functionals. In the first case we set a = 0, call

the resulting functional the normal functional and denote it by β. The normal functional

vanishes on all ∆n, with ∆0 being a simple zero and ∆n for n > 0 being double zeros.

Therefore, by virtue of the crossing equation (4.3) and the swapping condition, it also

vanishes at ∆ = 0. We will normalize β by requiring

∂∆β(∆0) = 1 ⇔ f(z)
z→1∼ − 2

π2(z − 1)2
. (4.10)

Similarly, we can construct the logarithmic functional, for which a 6= 0, and which we will

denote by α. The dimensions ∆n for n ≥ 1 are again double zeros of α(∆), but now

α(∆0) 6= 0. We will normalize α so that

α(∆0) = 1 ⇔ f(z)
z→1∼ 2 log(z − 1)

π2(z − 1)2
. (4.11)

We have a freedom to add a multiple of the normal functional to the logarithmic functional

since this will not modify the logarithmic asymptotic behaviour as z → 1. We will fix this

ambiguity by requiring ∂∆α(∆0) = 0, which is equivalent to the absence of the (z − 1)−2

term in the expansion of f(z) as z → 1. The swapping condition together with the crossing

equation (4.3) imply that the OPE coefficient squared c2
0 can be read off from the action

of α on the identity,

α(0) = −c2
0 . (4.12)

Given these functionals, let us now discuss how they may be used to derive bounds on

possible solutions to crossing. We begin with gap maximization. Consider the functional

ωgapmax = β − ε α (4.13)

for ε > 0. The action on identity is positive

ωgapmax(0) = ε c2
0 > 0 . (4.14)

13The full set of solutions with arbitrary n will be explored in detail in the next paper of this series [18].
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For ε� 1, the simple zero of β(∆) at ∆ = ∆0 gives rise to a simple zero of ωgapmax(∆) at

∆̃0 = ∆0 + ε+O(ε2) . (4.15)

Moreover, we will be able to show from the explicit form of α and β given in the following

section that for sufficiently small ε, ωgapmax(∆) is non-negative to the right of ∆̃0

ωgapmax(∆) ≥ 0 for ∆ ≥ ∆̃0 . (4.16)

Following the discussion in section 2.3, this functional shows that there must be at least

one primary operator with 0 < ∆ < ∆̃0. Taking the ε → 0 limit demonstrates that the

optimal gap above identity is ∆0 = 2∆φ + 1, with corresponding extremal functional given

by β, and with associated extremal solution to crossing the generalized free fermion.

Similarly, we can use α and β to derive upper bounds on OPE coefficients. Consider

ωtopemax = α+ t β (4.17)

for t ∈ R. We have

ωtopemax(∆) ≥ 0 for ∆ ∈ S(t)

ωtopemax(∆0) = 1, ωtopemax(0) = −c2
0 ,

(4.18)

where the first line should be viewed as a definition of the set S(t). As reviewed in section 2,

for each t, this functional provides an upper bound on the OPE coefficient of an operator

of dimension ∆0 provided all other operators are within S(t). The precise form of S(t)

depends on the details of α(∆) and β(∆) and we will comment on it more in the next section

armed with the explicit formulas given there. The upper bound on the OPE coefficient

is independent of t and equal to c2
0. The bound is optimal since again the GFF solution

saturates it.14

Before we move on, let us summarize our findings. The claim is that extremal func-

tionals associated to the generalized free fermion are obtained from a function f(z) with

certain properties. It should be analytic in C\[0, 1] and satisfy f(z) = f(1 − z). The

boundary conditions are such that f(z) must decay at least as z−2 as z → ∞, and

f(z) = [a log(z− 1) + b](z− 1)−2 + subleading as z → 1+. Crucially, f(z) is constrained by

the fundamental relation (4.7), which is the only place where the external dimension ∆φ

enters the problem. Finally, we must check whether appropriate choices of a and b can be

made such that f(z) ≤ 0 for z ∈ (1,∞), thus guaranteeing the positivity of the functional

action above 2∆φ + 1.

4.2 Constructing the normal functionals

We will proceed by finding f(z) corresponding to the normal functionals β for any ∆φ > 0.

Let us first find f(z) for ∆φ ∈ N − 1/2. From the results of [17], we can read off f(z) for

14We should note that ωtopemax provides an upper bound for the OPE coefficient of an operator of arbitrary

dimension ∆∗, as long as ωtopemax(∆∗) > 0, but this bound will only be optimal for ∆∗ = ∆0.
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∆φ = 1/2, 3/2 and 5/2:

∆φ = 1/2: f(z) = −5w + 2

π2w2

∆φ = 3/2: f(z) = −7w + 2

π2w2

∆φ = 5/2: f(z) =

[
6w2(w − 2)(2z − 1) log

(
z−1
z

)
+ (w + 1)(12w2 − 35w − 10)

]
5π2w2

,

(4.19)

where w = z(z − 1). All the required properties of f(z) hold in these examples. This

suggests the following general ansatz for f(z) when ∆φ ∈ N− 1/2:

f(z) =
1

w2

[(
K∑
k=0

akw
k

)
(2z − 1) log

(
z − 1

z

)
+

K∑
k=0

bkw
k

]
, (4.20)

for some integer K, with ak and bk to be determined. The fundamental relation (4.7),

together with the asymptotic conditions as z → 1+ and z → ∞ lead to a unique solution

for ak, bk. The solution for general ∆φ ∈ N − 1/2 is not particularly enlightening in the

z-variable. However, it becomes much more elegant after performing a version of the Mellin

transform. Let us define the following Mellin-like transform of f(z)

M(s) = − 1

2 cos(πs)

1∫
0

dz [z(1− z)]sRe[f(z)] , (4.21)

where the prefactor is inserted for later convenience. As we discuss in appendix A.2, the

only poles of M(s) for Re(s) > 0 are a simple pole at s = 1 and the poles of the prefactor

at s = 1/2+n, n = 0, 1, . . . . We also show there that the transform can be inverted to give

f(z) =
2z − 1

z(z − 1)

∫
Γ

ds

2πi
[z(z − 1)]−sM(s) , (4.22)

where the contour Γ goes from s = −i∞ to s = i∞ to the left of the poles at s = 1/2 + n,

n = 0, 1, . . . , but to the right of the pole at s = 1.

Computing M(s) for ∆φ ∈ N− 1/2 from (4.20) with ak, bk fixed by the constraints on

f(z), we found the general formula

Mβ(s) =
(2∆φ + 3s)Γ

(
∆φ + 3

2

)
Γ
(

1
2 − s

)
Γ(s− 1)Γ(s+ 1)Γ(2∆φ + s+ 1)

4∆φ+sπ2Γ(∆φ + 1)Γ
(
∆φ + s+ 1

2

)
Γ
(
∆φ + s+ 3

2

) . (4.23)

Note that Mβ(s) is an analytic function of ∆φ for ∆φ ≥ 0. It is therefore natural to expect

that Mβ(s) is the transform of the correct f(z) not just for ∆φ ∈ N− 1/2 but for general

∆φ > 0. We can now use the Mellin inversion formula (4.22) to find fβ(z) in general:

fβ(z) = −κ(∆φ)
2z − 1

w3/2

[
3F̃2

(
−1

2
,

3

2
, 2∆φ +

3

2
; ∆φ + 1,∆φ + 2;− 1

4w

)
+

+
9

16w
3F̃2

(
1

2
,

5

2
, 2∆φ +

5

2
; ∆φ + 2,∆φ + 3;− 1

4w

)]
,

(4.24)
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where 3F̃2 stands for the regularized hypergeometric function, w = z(z − 1) and the nor-

malization factor reads

κ(∆φ) =
Γ(4∆φ + 4)

28∆φ+5Γ(∆φ + 1)2
. (4.25)

Although we have only derived (4.24) for certain ∆φ ∈ N− 1/2, we can now check whether

it satisfies all the requirements for any ∆φ > 0. Note that the prefactor (2z − 1)w−3/2

is symmetric15 under z → 1 − z, so that fβ(z) = fβ(1 − z). We can check exactly that

the asymptotic behaviour fβ(z)
z→1∼ −2π−2(z − 1)−2 holds for all ∆φ ≥ 0. We have also

checked numerically to high accuracy that the fundamental relation (4.7) is satisfied. The

validity of the fundamental relation for general ∆φ can in fact be proven analytically using

a certain third-order ODE satisfied by fβ(z), as explained in appendix A.3. In order to

test the condition fβ(z) ≤ 0 for z ∈ (1,∞), we can study the series expansion of fβ(z)

around z =∞. Since the only non-analyticity of fβ(z) is the branch cut at z ∈ [0, 1], this

expansion must be convergent for all z ∈ (1,∞). The first few terms of the expansion read

fβ(z)
z→∞∼ −

2κ(∆φ)

Γ(∆φ + 1)Γ(∆φ + 2)

[
1

z2
+

1

z3
+

3 (2∆φ + 3) (6∆φ + 11)

32 (∆φ + 1) (∆φ + 2) z4
+O(z−5)

]
.

(4.26)

We can see that fβ(z) enjoys the correct supression at z = ∞ and that the terms in

the expansion are negative for ∆φ > 0. We verified the negativity of the coefficients up to

O(z−150), providing strong evidence that indeed f(z) < 0 for z ∈ (1,∞).16 This completes

the necessary checks that (4.24) defines the normal functional for the generalized free

fermion with all the required properties.

It is interesting to note that while the general formula for fβ(z) is rather complicated,

it simplifies greatly in the ∆φ →∞ limit

fβ(z)
∆φ→∞∼ −

√
2∆φ

π3

2z − 1

[z(z − 1)]3/2
. (4.27)

The double poles at z = 0, 1 are subleading in this limit.

Last but not least, we can compare the action of our analytic functional with the

results of the numerical bootstrap. Figure 4 provides this comparison for the transcendental

value17 ∆φ = 1/π, showing excellent agreement.

4.3 Constructing the logarithmic functionals

In order to find the logarithmic functionals α, characterized by (4.11) and the condition

∂∆α(∆0) = 0, we can repeat the steps we used for the normal functionals. The ansatz (4.20)

15To be precise, the analytic continuation of the function that for z > 1 is given by (2z−1)[z(z−1)]−3/2,

is symmetric under z → 1− z.
16For z > 2 we can prove fβ(z) is manifestly negative by means of the transformation:

3F2

(
a, 1−a, b; b+a+1

2
, 1+

b−a
2

; y

)
= (1−4y)−b 3F2

(
b

3
,
b+1

3
,
b+2

3
;
b+a+1

2
, 1+

b−a
2
,− 27y

(1−4y)3

)
,

valid for −1/8 < y < 1/4. Unfortunately we are not aware of a similar transformation for y < −1/8.
17Because why not?
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Figure 4. Gap maximization functional at ∆φ = 1/π. The three dashed curves are numerical

results obtained using JuliBootS and the flow method [15, 50] with N = 104, 184 and 264 deriva-

tives. As the number of components is increased, the functional action converges to the red curve,

with a simple zero at ∆ = 2π−1 + 1 and double zeros for ∆ = 2π−1 + 2n+ 1 with n ≥ 1. The red

curve in turn was obtained by acting with the analytic normal functional (4.24) on the F
∆φ

∆ vectors

as in (3.1).

still works for ∆φ ∈ N − 1/2, and we get a logarithmic functional precisely when a0 6= 0,

b0 = 0. The fundamental relation together with asymptotic conditions at z = 1,∞ again

fix ak and bk uniquely. Computing the Mellin transform (4.21), we find it only differs

slightly from the Mellin transform of the normal functionals

Mα(s) =

[
1

s− 1
+

1

s
− 1

2s+ 2∆φ + 1
+

3H
(
∆φ + 1

2

)
2

−
H(∆φ)

2
− log(2)

]
Mβ(s) , (4.28)

where H(s) is the harmonic number. fα(z) is given by the Mellin inversion formula (4.22).

We will find it convenient to separate the last three terms in the square bracket as follows

fα(z) = f̃α(z) +

[
3

2
H

(
∆φ +

1

2

)
− 1

2
H(∆φ)− log(2)

]
fβ(z) , (4.29)

where

f̃α(z) = κ(∆φ)
2(z − 2)(z + 1)

(2z − 1)w3/2

[
3F̃2

(
−1

2
,−1

2
, 2∆φ +

3

2
; ∆φ + 2,∆φ + 2;− 1

4w

)
+

+
(2∆φ + 3)(2∆φ + 5)

16w
3F̃2

(
1

2
,

1

2
, 2∆φ +

5

2
; ∆φ + 3,∆φ + 3;− 1

4w

)
−

−
3(4∆φ + 5)

256w2 3F̃2

(
3

2
,

3

2
, 2∆φ +

7

2
; ∆φ + 4,∆φ + 4;− 1

4w

)]
.

(4.30)

Setting the question of positivity aside for now, we checked that the functional specified

by fα(z) has all the other necessary properties. In particular, the second term in (4.29)

ensures that ∂∆α(∆0) = 0.
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We would now like to understand better the general OPE maximization functional

ωtopemax = α̃+ t β , (4.31)

where α̃ is the functional arising from f̃α, and we made a different choice for the origin

t = 0 with respect to (4.17). The first thing to notice is that f̃α(z) cannot be negative for

all z > 1 because of the prefactor z− 2. In fact, one can check that the sum of generalized

hypergeometrics in the square bracket is positive for z > 1 so that f̃α(z) < 0 for 1 < z < 2

and f̃α(z) > 0 for z > 2. α̃(∆) with ∆ � 1 probes f̃α(z) for large values of z and thus

α̃(∆) has a negative region for sufficiently large ∆.

On the other hand, expanding f̃α(z) at large z, we find that only the coefficient of

z−2 + z−3 is positive and all the higher ones are negative. We can make the coefficient of

z−2 + z−3 in f̃α(z) + tfβ(z) also negative by requiring

t ≥ tc ≡
1

2(∆φ + 1)
. (4.32)

It follows that ωtopemax(∆) is nonnegative for all ∆ ≥ 2∆φ + 1 if and only if t ≥ tc. When

the inequality is saturated, the resulting f(z) has a z−4 falloff as z →∞.

Therefore, provided t ≥ tc, ω
t
opemax(∆) is the extremal functional for the problem of

maximizing the OPE coefficient of an operator with ∆ = 2∆φ + 1 such that all other

primaries in the OPE have ∆ ≥ ∆∗, where ∆∗ is the largest simple zero of ωtopemax(∆).

In order for ωtopemax(∆) to be maximally constraining, we should choose t such that ∆∗ is

minimal. It is possible to convince oneself that this happens precisely for the minimal t,

i.e. t = tc. We will denote the largest simple zero of ωtcopemax(∆) by ∆∗c .

In the end, we have arrived at the following non-trivial prediction. Consider the upper

bound on the OPE coefficient at ∆ = 2∆φ+1 as a function of the lower bound ∆∗ we impose

on the scaling dimension of all other operators in the OPE. As long as ∆∗ ≥ ∆∗c , the upper

bound is given by the constant value c2
0 in the generalized free fermion theory. For ∆∗ < ∆∗c

however, the generalized free fermion stops being the extremal solution and the character

of the bound must change. The value of ∆∗c can be derived from our explicit formulas in

principle to any precision. For example, for a = 1/2 we find ∆∗c = 0.6770671915683 . . . .

This completes an analytic explanation of a toy mechanism leading to a sharp feature in a

conformal bootstrap bound at a nontrivial location.

Numerical bootstrap confirms our prediction. Specifically, it appears that the ope

maximization problem is unbounded for 0 < ∆∗ < ∆∗c . On the other hand, for any

∆∗ ≥ ∆∗c , the numerical bootstrap algorithm tends to reconstruct precisely the functional

with z−4 fall-off. Figure 5 contains a comparison of the numerical functionals and the

analytic functional (4.31) with t = tc, showing perfect agreement.

5 OPE maximization at large ∆

5.1 The problem

In this section, we will apply our formalism to the following interesting bootstrap problem.

We consider unitary solutions to crossing (2.5) such that there is a single primary operator
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Figure 5. OPE maximization functional at ∆φ = 1/π. The three dashed curves which are almost

entirely overlapping are the numerical results obtained using JuliBootS [15, 50] with N = 104, 184

and 264 derivatives. As the number of components is increased, the functional action rapidly

converges to the red curve, with double zeros for ∆ = 2π−1 + 2n+ 1 with n ≥ 1. This curve in turn

was obtained by acting with the combination of logarithmic and normal functionals that decays as

∼ z−4 as z →∞.

Ob with scaling dimension ∆b in the region 0 < ∆b < 2∆φ. We do not impose any

constraints on the spectrum above 2∆φ. We ask what is the maximal value of the OPE

coefficient c2
b ≡ c2

φφOb among such solutions to crossing. As explained in section 2.3, an

upper bound on c2
b can be obtained from a functional ω satisfying

ω(∆b) > 0 and ω(∆) ≥ 0 for ∆ ≥ 2∆φ . (5.1)

We then necessarily have ω(0) < 0 and the upper bound reads

c2
b ≤ −

ω(0)

ω(∆b)
. (5.2)

The optimal (lowest) upper bound is obtained by minimizing this ratio by scanning over

all functionals subject to constraints (5.1). In the optimal solution to crossing, the inequal-

ity (5.2) is saturated, with ω being the extremal functional. The spectrum of the optimal

solution consists of Ob and (possibly a subset of) the zeros of ω(∆) for ∆ ≥ 2∆φ.

The analysis of the general problem is beyond the scope of this work. Instead, we will

solve the optimization problem analytically at the leading order in the limit where

∆φ,∆b →∞ with m ≡ ∆b

∆φ
∈ (0, 2) fixed. (5.3)

We will find the extremal functional in this limit and use it to derive the optimal bound

as well as the spectrum of the optimal solution to crossing. We will see the spectrum
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corresponds to an interacting 1D CFT parametrized by m ∈ (0, 2). The key observation

allowing us to solve the problem is that the action of the functional can be computed using

a saddle-point approximation in this limit.

This limit has already been considered in [22] using the numerical conformal bootstrap.

As discussed in that article, an important class of solutions to crossing arises from placing

any massive (unitary and UV-complete) 2D QFT into AdS2. Scaling dimensions of primary

operators are then proportional to the radius of AdS. The limit corresponds to taking the

AdS radius large while keeping the flat-space masses and couplings fixed. Our set-up then

corresponds to a scattering process φφ → φφ, where the φ particle is the lightest particle

in the theory which has a single flat-space bound state of mass m measured in the units

of mass of the φ-particle.18 An upper bound on c2
b corresponds to an upper bound on

the non-perturbative coupling between two φ-particles and the bound state. Physically,

such a bound should exist since increasing the coupling increases the force mediated by the

bound state, eventually causing new bound states to appear, thus invalidating our original

assumption on the spectrum. We will see that our extremal solutions to crossing correspond

to integrable field theories placed in large AdS2, as observed numerically in [22].19 We will

sometimes refer to (5.3) as the large-radius limit although our results are completely general

and do not rely on an underlying AdS description.

5.2 The solution

We will work in the subspace of bootstrap functionals given by (3.1) with f(z) and g(z)

satisfying constraints discussed in section 3.1. We will find the extremal functional in this

subspace by optimizing over f(z) and g(z). A priori, there is no guarantee that the true

extremal functional for the full problem lies in this subspace. However, we will be able to

prove the optimality of our functional. We will do so by exhibiting a physical solution to

crossing (asymptotically in the large-radius limit) which saturates the bound arising from

our functional, guaranteeing that no better functional exists.

We set ∆b = m∆φ with 0 < m < 2 and regard ∆φ as a parameter. For any finite ∆φ,

let us denote the extremal functional for the problem we want to solve by ω∆φ
, and the

functions specifying it by f∆φ
(z) and g∆φ

(z). In order to make progress, we need to make

a general assumption on the asymptotic behaviour of f∆φ
(z) and g∆φ

(z) as ∆φ →∞. We

will take inspiration from the normal functionals for the free fermion, where we found20

f free
∆φ

(z) ∼ − 2z − 1

[z(z − 1)]3/2

gfree
∆φ

(z) ∼ (1− z)2∆φ
(z + 1)

z3/2

(5.4)

18In reference [22], m1,mb are used for the masses of the external particle and its bound state respectively.

Therefore our m is mb/m1 in that reference.
19For φ to be the lightest particle of the theory, we should have 1 < m < 2. While we will solve the

CFT problem for all 0 < m < 2, we do not know if the extremal solution has a physical interpretation for

0 < m <
√

2.
20After renormalizing ω∆φ so that f∆φ(z) has a finite limit.
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as ∆φ →∞. Accordingly, we will assume that in general

f∆φ
(z) ∼ f(z) for Im(z) > 0

g∆φ
(z) ∼ (1− z)2∆φ g̃(z) for z ∈ (0, 1)

(5.5)

in that limit, with f(z) and g̃(z) to be determined. Moreover, we will assume that the

convergence is sufficiently uniform so that f(z) satisfies the usual constraints on the f

weight-function. We will see that this asymptotic behaviour guarantees a well-behaved

∆φ →∞ limit of the functionals. Our goal in the remainder of this section is to find f(z)

and g̃(z) corresponding to the asymptotic solution of our optimization problem. We will

see that the optimal f(z) is closely related to the flat-space S-matrix of a two-dimensional

theory.

The optimization problem naturally splits into two parts: making sure that ω∆φ
(∆) ≥

0 for ∆ > 2∆φ and minimizing the ratio −ω∆φ
(0)/ω∆φ

(m∆φ). We will start by analyzing

the former condition. In the regime ∆ > 2∆φ, we can use the contour deformation of

section 3.2 to write the action of the functional as an integral over z ∈ (1,∞), i.e. (3.28),

which we reproduce here for convenience21

ω∆φ
(∆) =

∞∫
1

dz

{
z2∆φ−2 g∆φ

(
z − 1

z

)
− Re

[
e−iπ(∆−2∆φ)f∆φ

(z)
]} Ĝ∆(1− z)

(z − 1)2∆φ
. (5.6)

Demanding that this integral converges for ∆ > 2∆φ implies f∆φ
(z) should not grow faster

than (z − 1)−1+ε for some ε > 0 as z → 1, and that g∆φ
(z) should not grow faster than

z−1+ε for some ε > 0 as z → 0. We will assume the same is true for the limits f(z) and g̃(z).

We take the large-radius limit in the regime ∆ > 2∆φ by setting ∆ =
√
s∆φ with

s > 4 fixed and taking ∆φ → ∞. In the language of QFT in large AdS2, an operator

of dimension
√
s∆φ exchanged in the φ × φ OPE corresponds to an intermediate state of

center-of-mass energy
√
s in the scattering process φφ→ φφ, measured in the units of the

φ-particle mass. In other words, s is the standard flat-space Mandelstam variable (p1 +p2)2

in these units. In this limit, the integral (5.6) is dominated by a saddle point at

z =
s

4
, (5.7)

as we show in appendix B.1.22 Note that the flat-space crossing tranformation of the

Mandelstam variable

s 7→ 4− s (5.8)

21One reason to expect the contour deformation to be allowed for ∆ > 2∆φ is by analogy with the free

fermion functionals, where it is valid for ∆ > 2∆φ + 1.
22The localization has a nice physical interpretation. Conformal blocks can be computed via geodesic

Witten diagrams [51], with a particle being exchanged between a pair of geodesics in AdS2. In the limit

under consideration the exchange takes place only between the nearest points on this pair. When we then

integrate over z the saddle point will occur where the geodesics intersect, so that they emanate from four

boundary points and meet at an interaction point inside AdS2. The immediate neighbourhood of the

intersection point then has the kinematics of a flat-space scattering process with center-of-mass energy
√
s.

We thank Shota Komatsu for discussions regarding this point.
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becomes the CFT crossing transformation z 7→ 1−z. The final answer for the integral (5.6)

in the large-radius limit reads

ω∆φ
(∆) ∼ µ(∆φ, s)

{(s
4

)−2
g̃

(
s− 4

s

)
− cos

[
π
(

∆− 2∆φ + δ
(s

4

))] ∣∣∣f (s
4

)∣∣∣} , (5.9)

where µ(∆φ, s) is a positive prefactor independent of f(z) and g̃(z) given in appendix B.1,

and where we factored f(z) on the branch cut into its phase and absolute value

f(z + i0+) = |f(z)|e−iπδ(z) . (5.10)

Note that in spite of the saddle-point localization, the integral does not approach a smooth

function of s as ∆φ →∞. This is because the second term in the curly bracket contains the

term cos(π∆ + const.) and thus oscillates as function of ∆ with period ≈ 2. Therefore, the

oscillations become infinitely fast as a function of s in the ∆φ →∞ limit. The oscillations

will be necessary to reproduce the spectrum of the extremal solution. Note that the phase

of f(s/4) controls the shift of the minima of the functional away from the free scalar

values 2∆φ + 2n.

It is now straightforward to state the necessary and sufficient condition for the asymp-

totic non-negativity of the functional for any s > 4. Since the oscillations become arbitrarily

fast as a function of s in our limit, the first term in the curly bracket must be greater than

|f(s/4)| for any s > 4. Equivalently,

g̃(z) ≥ (1− z)−2

∣∣∣∣f ( 1

1− z

)∣∣∣∣ for z ∈ (0, 1) . (5.11)

Having established the condition for the positivity of the functional, we can move on to

minimizing −ω∆φ
(0)/ω∆φ

(m∆φ). We need to evaluate ω∆φ
(m∆φ) and ω∆φ

(0) in the large-

radius limit in terms of f(z) and g̃(z). Representation (5.6) is not available in this regime

of ∆, and we need to proceed differently. As we show in appendix B.2, the computation of

ω∆φ
(m∆φ) localizes to a saddle point at

zb =
m2

4
∈ (0, 1) , (5.12)

the result being

ω∆φ
(m∆φ)∼ 1

16

√
π

∆φ
m1/2(2 +m)3/2(2−m)1/2

[
22(m+2)

(2−m)2−m (2 +m)2+m

]∆φ

Im[f(zb)]

(5.13)

as ∆φ → ∞. In particular, ω∆φ
(m∆φ) asymptotically only depends on f(z) and not on

g̃(z). Note that the factor multiplying Im[f(zb)] on the r.h.s. is always exponentially large

(and positive) as ∆φ →∞ since

22(m+2)

(2−m)2−m (2 +m)2+m > 1 for 0 < m < 2 . (5.14)
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Since ω∆φ
(m∆φ) should be positive for an OPE maximization functional, we need to impose

Im[f(zb)] > 0 . (5.15)

In order to evaluate the action on identity ω∆φ
(0) in the large-radius limit, we can use

a trick relying on the crossing-symmetry of the free-fermion four-point function. As we

explain in more detail in appendix B.3, the limit simplifies greatly

ω∆φ
(0) ∼ −

1∫
0

dz g̃(z) , (5.16)

i.e. the dependence on f(z) drops out completely. The optimization problem can now be

reformulated entirely in terms of the functions f(z) and g̃(z)

minimize

∫ 1
0 dz g̃(z)

Im[f(zb)]
subject to g̃(z) ≥ (1− z)−2

∣∣∣∣f ( 1

1− z

)∣∣∣∣ for z ∈ (0, 1) . (5.17)

Let us proceed to solve this problem. The first thing to notice is that for a fixed f(z), the

ratio is minimized by the g̃(z) saturating the inequality. Therefore

g̃(z) = (1− z)−2

∣∣∣∣f ( 1

1− z

)∣∣∣∣ for z ∈ (0, 1) (5.18)

in the optimal functional. We find from (5.9)

ω∆φ
(∆) ∼ 2µ(∆φ, s) sin2

[π
2

(
∆− 2∆φ + δ

(s
4

))] ∣∣∣f (s
4

)∣∣∣ . (5.19)

We see that the functional has developed double zeros at

∆ = 2∆φ + 2n− δ
(s

4

)
, (5.20)

where −πδ(z) is the complex phase of f(z). It remains to find the optimal f(z) by mini-

mizing the ratio ∫∞
1 dz |f(z)|
Im[f(zb)]

, (5.21)

subject to the usual constraints on the f weight function, including the gluing condition.

This optimization is an interesting problem in complex analysis which we solve in detail in

appendix B.4. The result is

f(z) =
2z − 1

[z(z − 1)]1/2(z − zb)(z − 1 + zb)S(z)
, (5.22)

where

S(z) = ±
√
z(1− z) +

√
zb(1− zb)√

z(1− z)−
√
zb(1− zb)

. (5.23)

The upper (lower) sign applies when zb ∈ (0, 1) is larger (lower) than 1/2, respectively.

Note that when z ∈ (1,∞), S(z) has unit modulus, and since all the other factors in f(z)

are real and positive, we can write

S(z + i0+) = eiπδ(z) for z ∈ (1,∞) , (5.24)

where δ(z) controls the location of the double zeros through (5.20).
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Finally, we can also evaluate the ratio −ω∆φ
(0)/ω∆φ

(m∆φ) on the optimal solution,

giving us the optimal upper bound on c2
b . We find

c2
b ≤

√
64π∆φ

m3/2
√

2−m
|m2 − 2|

√
2 +m

[
22(m+2)

(2−m)2−m (2 +m)2+m

]−∆φ

, (5.25)

where the bound is valid asymptotically as ∆φ → ∞. We can see that for m 6=
√

2, the

OPE coefficient must be exponentially supressed as ∆φ → ∞. Our bound is singular for

m =
√

2, signalling that the ansatz (5.5) must be modified in this case, and the asymptotic

behaviour of the bound will be different.

5.3 Holographic scattering interpretation

Having found the extremal functional, let us move on to identifying the corresponding

extremal solution to crossing. The asymptotic bound that we found (5.25) exactly agrees

with the results of [22]. There the same conformal bootstrap problem was studied numer-

ically at an increasing sequence of values of ∆φ and for varying m ∈ (0, 2). The result

was that the asymptotic behaviour of the upper bound as ∆φ � 1 is well approximated

by (5.25).

In that reference it was shown that the corresponding asymptotic solution to crossing

has a nice physical interpretation. It was identified as the boundary four-point function

of the elementary Φ field in the sine-Gordon theory, placed in AdS2 with large radius.

To construct the theory, we can start with the free scalar of mass MΦ placed in AdS2

of radius R. Choosing the Dirichlet boundary condition on the bulk Φ field, the scaling

dimension of the corresponding boundary operator φ(x) is given by the larger root of

∆φ(∆φ − 1) = (MΦR)2, and hence ∆φ ∼ MΦR as R → ∞. The φ × φ OPE in the free

theory contains only the identity and the bilinear operators φ
←→
∂ 2nφ with scaling dimensions

∆n = 2∆φ + 2n where n = 0, 1, . . . . In the R →∞ limit, these become the continuum of

two-particle states of the theory in flat space.

We can now deform the bulk Lagrangian by a general unitary and UV-complete inter-

action. The interaction couplings can depend on R, but we would like to require that they

approach the couplings of the sine-Gordon theory as R→∞:

V (Φ)
R→∞∼ M2

Φ

∞∑
n=1

(−1)n+1 g
2n−2

(2n)!
Φ2n . (5.26)

The excitation sourced by the Φ field is the lightest breather of the sine-Gordon theory.

The flat-space two-to-two exact S-matrix of the lightest breathers was computed long ago

in [52, 53] with the result

S(s) =

√
s(4− s) +m

√
4−m2√

s(4− s)−m
√

4−m2
, (5.27)

where s = (p1 + p2)2/M2
Φ and m is the mass of the second-lightest breather in the units

of MΦ.23 The second-lightest breather exists for 0 < g2 < 8π/3, corresponding to the

23m depends on the coupling g appearing in the Lagrangian as m = 2 cos
(

πg2

16π−2g2

)
.
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range
√

2 < m < 2. In this regime, the pole of the S-matrix at s = m2 means the second-

lightest breather can be thought of as a bound state of a pair of the lightest breathers.

The only intermediate states in the ΦΦ→ ΦΦ scattering process are this bound state and

a continuum of two-particle states with s > 4. Integrability of the theory means no three-,

four- or higher-particle states can appear as intermediate states.

Let us translate these results to AdS. The intermediate states correspond to operators

in the φ×φ OPE. The existence of the flat-space bound state of mass mMΦ means that as

long the bulk Lagrangian behaves as in (5.26), the φ×φOPE will contain a primary operator

Ob whose dimension behaves as ∆b ∼ m∆φ as ∆φ → ∞. Its OPE coefficient squared at

large ∆φ is then given precisely by the right-hand side of (5.25). It can be computed from

the geodesic tree-level exchange diagram in AdS2, where the vertices contribute a factor

proportional to the residue of the S-matrix (5.27) at s = m2 and the geodesics contribute

a factor e−M×L with L the length of the geodesic. The latter factor is reponsible for the

exponential suppression of c2
b as ∆φ →∞.

Besides the bound state with ∆ ∼ m∆φ, the φ × φ OPE will also contain an infinite

tower of two-particle states. It can be shown (see [22]) that as ∆φ → ∞, their scaling

dimensions are shifted from the free scalar values 2∆φ + 2n by the phase of the flat-space

S-matrix. Indeed, let us write the sine-Gordon S-matrix in the two-particle regime s > 4

as S(s) = eiπδ(s/4). The scaling dimensions of the two-particle states for which ∆ ∼
√
s∆φ

as ∆φ →∞ are given by

∆ = 2∆φ + 2n− δ
(s

4

)
. (5.28)

This is the same as the sequence of asymptotic double zeros of our extremal func-

tional (5.20), since the phase of f(z) is minus the phase of the sine-Gordon S-matrix.

Indeed, we have

S(s) = S
(s

4

)
(5.29)

with S(z) given in (5.23).

It should be noted that at any finite radius R, i.e. finite ∆φ, the φ × φ OPE will

generically contain other primary operators corresponding to composites of the form [φ2k]

with k = 2, 3, . . . . However, provided the Lagrangian approaches the flat-space integrable

theory (5.26) as R → ∞, the contribution of these operators to the four-point function

will be subleading compared to that of the bound state and the two-particle states in the

large-radius limit.

This finishes the identification of the asymptotic extremal solution to crossing in the

regime
√

2 < m < 2, thus showing that we have indeed constructed the optimal asymptotic

functional. It would be interesting to identify the extremal theory (or rule out its existence)

in the regime 0 < m <
√

2.

5.4 S-matrix bootstrap from the conformal bootstrap

The problem we analyzed has a direct analogue in the framework of the flat-space S-matrix

bootstrap, considered in [23, 24]. Since flat space can be thought of as the R→∞ limit of

AdS, we expect that any S-matrix bootstrap result should at least in principle be derivable
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from an appropriate limit of the conformal bootstrap equations in one fewer spacetime

dimensions. The purpose of this section is to illustrate how one can derive some results of

the 2D S-matrix bootstrap from our approach to the 1D CFT bootstrap at large ∆φ.

Before reviewing the S-matrix bootstrap problem and its solution, let us generalize the

OPE maximization problem to include multiple bound states. We allow for the φ×φ OPE

to include primary operators with dimensions ∆j , j = 1, . . . , N such that ∆j ∼ mj∆φ as

∆φ →∞, where mj ∈ (0, 2) are kept fixed. We want to maximize the OPE coefficient of a

fixed bound state labeled k.

We would like to determine the optimal f(z) and g̃(z) corresponding to the new prob-

lem. The only difference compared to the analysis of section 5.2 is that we now also need

to impose ω∆φ
(mj∆φ) ≥ 0 for all bound states. Thanks to (5.13), this is equivalent to

imposing Im[f(zj)] > 0 for all j, where zj = m2
j/4. For a given f(z), the bound is still

optimized by g̃(z) satisfying (5.18) and it remains to determine the optimal f(z).

Following the discussion in appendix B.4, we can eliminate the branch cut of f(z) in

z ∈ (0, 1) by writing

f(z) = − 2z − 1

[z(z − 1)]1/2
f1(z) , (5.30)

where f1(z) = f1(1 − z). To satisfy the positivity criterium on the bound states, f1(zj)

should have the same sign as 2zj−1 for all j. Let us make the following change of variables

mapping the cut plane to the unit disk

x(z) =

√
zk(1− zk)−

√
z(1− z)√

zk(1− zk) +
√
z(1− z)

, (5.31)

so that zk gets mapped to x = 0 and the remaining bound state locations zj get mapped

to xj = x(zj) ∈ (−1, 1). Following appendix B.4, let us write

f3(x) =
f1(z(x))

1 + x2
, (5.32)

so that the problem is equivalent to minimizing

1
2π

∫ 2π
0 dθ |f3

(
eiθ
)
|

|f3(0)|
(5.33)

subject to f3(xj) having the same sign as 2zj−1 for all j. Let us choose the labels j so that

xj with j = 1, . . . , N form an increasing sequence. If all 2zj − 1 were of the same sign, the

optimization problem is solved by f3(x) = ±1, as explained in appendix B.4. In this case,

the extremal functional has no additional zeros corresponding to exchanged operators in

the region 0 < ∆ < 2∆φ. In other words, the optimal solution to crossing does not contain

the bound states with j 6= k and the bound on the OPE coefficient is unchanged compared

to the case of a single bound state.

For a general configuration of xj , the only complication arises when there are two

consecutive bound states at xj and xj+1 such that 2zj − 1 and 2zj+1 − 1 have opposite

signs. In that case, we need to insert a zero at a location yj ∈ (xj , xj+1). Since we would
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like to introduce this zero without modifying the modulus of f3(x) on the unit circle, let

us define the following function

α(x, y) =
x− y
xy − 1

. (5.34)

Importantly, |αj(x, y)| = 1 for y ∈ R and x on the unit circle. For a given choice of the

precise location of zeros yi, the optimal f3(x) reads

f3(x) = ±
∏
j∈D

α(x, yj) , (5.35)

where j runs over all the bound states such that 2zj − 1 and 2zj+1− 1 have opposite signs

and xj < yj < xj+1. We still have the freedom to optimize the yj ’s in order to minimize

the ratio (5.33). Since α(0, y) = y, the minimal value is achieved when each |yj | in the

product is maximized. This in turn happens when yj = xj or yj = xj+1, whichever of the

two has a greater absolute value. Hence, the final result is

f3(x) = ±
∏
j∈D̃

α(x, xj) , (5.36)

where the set D̃ consists of all j such that the sign of 2zj − 1 is the opposite from the sign

of 2zj−sgn(xj) − 1. The overall sign is chosen to ensure f3(0) has the same sign as 2zk − 1.

We can see that the functional has developed zeros asymptotically at mj∆φ with j ∈ D̃.

Therefore, the asymptotic optimal solution to crossing will only contain bound states at

these locations, together with the bound state at mk∆φ. Translating our result for the

optimal f3(x) back to f(z), we find

f(z) =
2z − 1

[z(z − 1)]1/2(z − zk)(z − 1 + zk)S(z)
, (5.37)

where

S(z(x)) = ±1

x

∏
j∈D̃

α−1(x, xj) , (5.38)

where the overall sign is chosen so that the residue at x = 0 has the opposite sign than

2zk − 1. S(z) has poles at z = m2
j/4 for each of the bound states appearing in the optimal

solution to crossing. Just like in the case of a single bound state, S(z) has unit modulus

on the branch z ∈ (1,∞), and its phase there coincides with minus the phase of f(z).

Therefore, it has a natural interpetation as the S-matrix of a flat-space theory with no

particle production [54, 55], with the two-particle scaling dimensions determined by the

phase of S(z) as in (5.28).

Finally, the upper bound on the OPE coefficient c2
b , given by −ω(0)/ω(mk∆φ) is

modified. ω(0) is the same as in the case of a single bound state since S(z) has a unit

modulus on the branch cut. On the other hand, |ω(mk∆φ)|−1 gets multiplied by the relative

new factor in Im[f(zk)]
−1, i.e. by ∏

j∈D̃

1

|xj |
. (5.39)
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Since |xj | ∈ (0, 1) for all j, the bound goes up. This could be expected since by introducing

the possiblity for additional bound states, we enlarged the space of allowed solution to

crossing.

This completes our discussion of asymptotic OPE maximization with multiple bound

states-like primary operators. Let us proceed by reviewing the analogous set-up directly

in the context of the 2D S-matrix bootstrap [24]. We will see that the final results will be

equivalent but the way this happens is relatively nontrivial.

One considers a 2D S-matrix S(s) of the two-to-two scattering of identical particles,

assumed to be the lightest particle of the theory. All dimensionful quantities are measured

in the units of the scattered particle’s mass. S(s) is meromorphic in C\((−∞, 0)∪ (4,∞))

and satisfies crossing symmetry and unitarity

S(s) = S(4− s) and |S(s)| ≤ 1 for s ∈ (4,∞) . (5.40)

We fix the spectrum of bound state masses to be mj , j = 1, . . . , N , where 0 < mj < 2.

This means S(s) has simple poles with negative residues at s = m2
j and simple poles

with positive residues at s = 4 − m2
j . S(s) is holomorphic away from these poles in the

cut plane. The question is to identify the S-matrix that maximizes the coupling of the

scattered particle to the kth bound state, i.e. with maximally negative residue at s = m2
k.

This problem admits an analytic solution, derived in [23] for the case of a single bound

state and in [24] with multiple bound states, which we will now review. The first step is

to make a familiar change of variables

x(s) =
mk

√
4−m2

k −
√
s(4− s)

mk

√
4−m2

k +
√
s(4− s)

, (5.41)

The cut plane gets mapped to the interior of the unit disk and the point s = m2
k to x = 0.

A pole at s = m2
j with negative residue gets mapped to a pole at xj = x(m2

j ) ∈ (−1, 1)

with residue of the same sign as 2−m2
j . Let us denote S̃(x) = S(s(x)). We will start with

the case where there is a single bound state, with mass mk, whose coupling we want to

maximize. S̃(x) is bounded by 1 on the unit circle and its only singularity is a simple pole

at x = 0. Hence xS̃(x) is holomorphic inside the unit circle, bounded by 1 on the unit

circle and we want to maximize its absolute value at x = 0. Hence the solution is

S̃(x) = ±1

x
, (5.42)

where the sign is the same as the sign of 2 − m2
k. When mk >

√
2, this is precisely the

S-matrix of the lightest breathers of the sine-Gordon theory.

In order to solve the problem with a general spectrum of bound states, let us again

consider S̃(x). Let us choose the labels j so that xj with j = 1, . . . , N form an increasing

sequence. For each j, S̃(x) should have a pole at xj whose residue has the same sign

as 2−m2
j .

We would like to introduce the additional poles of S̃(x) without changing the modulus

on the unit circle. To achieve that, we can again use α(x, xj) from (5.34) and write the
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following ansatz

S̃(x) = A(x)
N∏
j=1

α−1(x, xj) , (5.43)

so that A(x) is holomorphic inside the unit disk and bounded by one on the unit circle.

However, A(x) can not be a constant in general since the product accompanying it has

residues that alternate in sign. If the sequence of m2
j − 2 with j = 1, . . . , N has alternating

signs, there is no issue and we can set A(x) = ±1 to get the optimal S-matrix, where the

sign depends on the distribution of m2
j around 2. On the other hand, when there is j such

that m2
j − 2 and m2

j+1 − 2 have the same sign, we need to make sure S̃(x) has a zero in

between xj and xj+1. To do that, we simply insert α(x, yj) with xj < yj < xj+1 into the

product. Doing this for all consecutive pairs of bound states with equal sign of m2
j − 2, we

end up with the ansatz

S̃(x) = B(x)
N∏
j=1

α−1(x, xj)
∏
i∈C

α(x, yi) , (5.44)

where C includes all j such that m2
j − 2 and m2

j+1 − 2 have the same sign. Given a fixed

choice of all yis, the residue at x = 0 is now maximizied by B(x) = ±1. Moreover, the

values yi can be varied to maximize the residue at x = 0 too. This residue is proportional

to
∏
i∈C yi. Therefore, it is maximized if all yi are taken as far from x = 0 as possible,

i.e. precisely cancelling the pole at xj+sgn(xj). We conclude the optimal S-matrix takes

the form

S̃(x) = ±1

x

∏
j∈D̃

α−1(x, xj) , (5.45)

where the set D̃ is exactly the same as the one needed to optimize the bootstrap functional,

see (5.36). We can see that the optimal S-matrix coincides with the S-matrix arising from

the conformal bootstrap problem (5.38) after the substitution z = s/4. Moreover, the

maximal coupling, i.e. the residue of the optimal S-matrix at s = m2
k is obtained from the

maximal coupling with no extra bound states by multiplying by the factor∏
j∈D

1

|xj |
, (5.46)

again agreeing with the conformal bootstrap prediction. This completes our demonstration

that in this context, the S-matrix bootstrap results can be derived from the conformal

bootstrap in the large-∆ limit.

We conclude this section by making a suggestive observation. At first, it may seem

peculiar that the functional contains the S-matrix in the denominator. However, there is a

different way to think about it. Consider again the map to the unit disk z → x(z). Since

along the boundary of the disk we have |S̃(x)| = 1 we can define the analytic continuation

outside the disk by S̃(1/x) = 1/S̃(x). Back in the z variable the disk exterior corresponds

to a second copy of the complex plane obtained by traversing the cuts. So really we should

think of the functional as naturally living on the second sheet of the Mandelstam plane,
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where the poles of the S-matrix become zeros. In this way the functional and the S-matrix

are unified between the sheets.

6 Conclusions and outlook

In this work, we have studied a class of linear functionals that act on the conformal boot-

strap equation arising from the crossing symmetry of the four-point function of identical

operators in 1D CFTs. We have argued that these functionals are ideally suited for extract-

ing information from the crossing equation, in the form of bounds on CFT data, thereby

extending the philosophy first set out in [1] from the realm of numerics to analytics. The

functionals take the form of integrals in the complexified cross-ratio space against suitable

weight functions. The weight functions satisfy certain analyticity properties and non-trivial

functional equations.

While solving the optimization problem for the weight function analytically in general

remains a formidable task, we have shown that in certain simplified settings exact solutions

can be found. In particular, we have shown our ansatz is sufficiently general to capture the

extremal functionals for the gap maximization in 1D, as well as a class of OPE maximiza-

tion functionals, where the optimal bounds are saturated by the generalized free fermion,

extending the results in [17]. More interestingly, we have solved the optimization problem

exactly for OPE maximization at large conformal dimension. We found that the optimal

solutions to crossing then correspond to holographic duals of 2D integrable field theories

placed in large AdS2, thus analytically establishing the results of [22].

Since we solved the OPE maximization problem exactly at the leading order at large

∆φ, it would be very interesting to use this as a starting point of a perturbative analysis

around infinite ∆φ. In the context of field theories in AdS, the 1/∆φ corrections come from

the AdS space having a finite radius R. The solution of the OPE maximization problem at

large but finite ∆φ presumably corresponds to a distinguished theory of a single scalar field

in AdS2, whose couplings approach those of the flat-space sine-Gordon model as ∆φ →∞.

The φ×φ OPE in a generic field theory in large but finite AdS2 will contain primary states

corresponding to four- six- and higher φ-particle states. When the couplings approach

those of a flat-space integrable theory as R → ∞, the contribution of these states to the

asymptotic four-point function decouples in this limit and we are left with only the bound

state and two-particle states.

However, the numerical bootstrap indicates that the solution to crossing maximizing

the OPE coefficient of the bound state only contains the bound state and two-particle states

even at finite ∆φ, see [22]. This requires a large amount of fine-tuning of the bulk couplings

as a function of R. Note that such a theory could not exist in more than two (boundary)

dimensions since multi-twist composites of φ must always be present in the OPE. It should

be possible to identify the theory perturbatively in 1/R both using our method and using

direct computation starting from a general bulk Lagrangian. We would thus obtain an

interesting two-parameter family of solutions to crossing, parametrized by ∆φ and ∆b from

the point of view of the 1D CFT and by R and the sine-Gordon coupling g from the point

of view of the bulk. Drawing a rough analogy with the more complicated case of string
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theory in the bulk of AdS, our operator φ would correspond to a massive string state, and

the parameters R and g correspond to (a power of) λ and 1/N respectively.

The functionals we have constructed are extremal, i.e. they automatically come with

associated exact solutions to crossing. In such cases, it is known that at least in the

truncated, numerical context, one can use the functionals to construct flows in the space

of CFT data starting at the original solution that remain crossing-symmetric along the

flow [50]. One can use our functionals to find these flows analytically, but this will require an

infinite set of functionals telling us how individual OPE coefficients and scaling dimensions

vary along the flow. These and other matters will be explored in an upcoming work [18].

One should attempt to generalize our method to other contexts where numerical boot-

strap has proven powerful, such as in higher dimensions, in the presence of global symme-

tries and with mixed correlators. The boundary bootstrap of [56] and modular bootstrap

can plausibly also be tackled with our approach.

Finally, it would be interesting to understand whether the SYK or related models can

saturate appropriate bootstrap bounds. The tools of this work should prove relevant in

that context.
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A Details on the free functionals

This appendix contains technical details omitted from the main text, which concern the

functionals for the generalized free fermion.

A.1 A lower bound

Firstly, let us prove that the integer n in (4.9) is bounded by n ≥ 0 under our assumptions

on f(z). Let us recall that f(z) is analytic in C\[0, 1], satisfies f(z) = f(1−z), f(z̄) = f(z)

and is holomorphic at z =∞ where it must decay at least as z−2. There are no singularities

in z ∈ (0, 1). Furthermore, f(z) < 0 for z ∈ (1,∞). Finally f(z) is constrained by the

fundamental relation (4.7).

Let us map the region z ∈ C\[0, 1] to the interior of the unit disk |w| < 1 by

z(w) =
(1 + w)2

4w
. (A.1)
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The branch cut z ∈ [0, 1] gets mapped to the unit circle, and z =∞ to w = 0. Define

f̃(w) = f(z(w)) . (A.2)

f̃(w) is holomorphic in the unit disk with possible exceptions at w = ±1 and satisfies

f̃(w) = f̃(−w). Furthermore, we have

f̃(0) = lim
z→∞

f(z) = 0 . (A.3)

Suppose, seeking contradiction, that n < 0. In this case the singularity at w = ±1 is at

most logarithmic, and we can use holomorphy of f̃(w) to write its value at the origin as

the average over the unit circle

0 = f̃(0) =
1

2π

2π∫
0

dθf̃(eiθ) . (A.4)

This integral can be further simplified by using the symmetry and reality of f̃(w)

0 =
2

π

π/2∫
0

dθRe[f̃(eiθ)] . (A.5)

The fundamental relation (4.7) relates the real part of f(z) on the branch cut to its values

for z ∈ (1,∞), where it is non-positive by our assumption. Therefore, (A.5) cannot be

satisfied, showing that the singularity at z = 1 must be stronger, or n ≥ 0.

A.2 Mellin inversion

In section 4.2, we defined the following Mellin-like transform of the weight-function f(z)

M(s) = − 1

2 cos(πs)

1∫
0

dz [z(1− z)]sRe[f(z)]. (A.6)

Here we would like to show how to invert this transform. Recall that for the normal

functional, f(z) ∼ −2π−2(z − 1)−2 for z → 1. Using the fundamental relation (4.7) it

follows that cos(πs)M(s) is holomorphic for Re(s) > 1 and has a simple pole at s = 1. It

will be convenient to define f̃(z) with softer behaviour at z = 0, 1 as follows

f̃(z) = f(z) +
2

π2z2(1− z)2
, (A.7)

so that f̃(z)
z→1
= o((z − 1)−1−ε) for any ε > 0. Let us also define the analogous transform

of f̃(z)

M̃(s) = − 1

2 cos(πs)

1∫
0

dz [z(1− z)]sRe[f̃(z)] . (A.8)
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We have

M̃(s) = M(s)− Γ(s− 1)2

π2 cos(πs)Γ(2s− 2)
. (A.9)

The upshot is that the integral in (A.8) converges for Re(s) > 0 and not just for Re(s) > 1.

Now, provided that 0 < Re(s) < 1/2, we can deform the integration contour in (A.8) and

obtain

M̃(s) =

∞∫
1

dz [z(z − 1)]sf̃(z) . (A.10)

This integral becomes a standard Mellin transform after the change of variables w =

z(z − 1). It can be inverted as follows

f̃(z) =
2z − 1

z(z − 1)

s0+i∞∫
s0−i∞

ds

2πi
[z(z − 1)]−sM̃(s) , (A.11)

where 0 < s0 < 1/2. Now, note that

f(z)− f̃(z) = − 2

π2z2(z − 1)2
=

=
2z − 1

z(z − 1)

∫
Γ

ds

2πi
[z(z − 1)]−s

[
Γ(s− 1)2

π2 cos(πs)Γ(2s− 2)

]
=

=
2z − 1

z(z − 1)

∫
Γ

ds

2πi
[z(z − 1)]−s

[
M(s)− M̃(s)

]
,

(A.12)

where Γ passes to the left of the poles at s = 1/2 + n, n = 0, 1, . . . but to the right of the

pole at s = 1. Since the contour in (A.11) can be deformed to become Γ, we finally arrive

at the inversion formula

f(z) =
2z − 1

z(z − 1)

∫
Γ

ds

2πi
[z(z − 1)]−sM(s) . (A.13)

A.3 A differential equation for f(z)

Consider the following highly symmetric third-order linear homogenous ODE for an un-

known function f(z)

f (3)(z)2(z − 2)(z − 1)2(z + 1)(2z − 1)z2+

+f ′′(z)
[
4(z − 1)z

(
7z4 − 14z3 − 9z2 + 16z − 5

)
−

− 4(z − 2)(z − 1)z(z + 1)(2z − 1)2∆φ

]
+

+f ′(z)
[
6(2z − 1)

(
3z4 − 6z3 − 8z2 + 11z − 2

)
−

− 4(2z − 1)
(
8z4 − 16z3 − 11z2 + 19z − 6

)
∆φ+

+ 8(z − 2)(z − 1)z(z + 1)(2z − 1)∆2
φ

]
+

+f(z)
[
4(z − 2)(z + 1)

(
8z2 − 8z + 3

)
∆2
φ − 3

(
z2 − z + 4

)
−

− 4
(
8z4 − 16z3 − 32z2 + 40z − 9

)
∆φ

]
= 0 .

(A.14)

– 39 –



J
H
E
P
0
2
(
2
0
1
9
)
1
6
2

The equation has regular singular points at z = 0, 1,∞ and z = −1, 1/2, 2. The ODE

is invariant under the group S3 permuting the above triples of points generated by the

following transformations
f(z) 7→ f(1− z)

f(z) 7→ z2∆φ−2f(1/z) .
(A.15)

Since z = ∞ is a regular singular point, the solution space is generated by solutions with

leading behaviour zα as z → ∞. The allowed values are α = −2, 2∆φ − 2, 2∆φ. Taking

∆φ > 0, there is a unique solution f(z) (up to an overall constant) such that f(z) = O(z−2)

for large z. This asymptotic behaviour is invariant under the symmetry z 7→ 1 − z, and

hence the solution must satisfy f(z) = f(1− z). It can be checked, for example by a series

expansion around z = ∞, that the proposal for f(z) given in (4.24) solves the ODE for

general ∆φ > 0 and therefore must agree with this unique solution. Our goal is to show

using the ODE that the fundamental relation (4.7) holds for f(z).

We start by considering g(z) defined from f(z) as in (4.5)

g(z) = −(1− z)2∆φ−2f

(
1

1− z

)
. (A.16)

Thanks to a symmetry of the ODE, g(z) is also its solution. Furthermore, thanks to the

symmetry of the ODE under z ↔ 1− z, g(z) + g(1− z) is yet another solution. This is the

unique solution (up to a constant) of the ODE which is regular at z = 1/2 and symmetric

under z ↔ 1 − z. The way to see this is as follows. z = 1/2 is a regular singular point

where the leading power-law behaviour of a solution must be (z − 1/2)α with α = 0, 1, 3.

The only symmetric solution thus has α = 0 and so g(z) + g(1− z) must be this solution.

We would like to show that

g(z) + g(1− z) = −Re[f(z)] for z ∈ (0, 1) . (A.17)

f(z) has a branch cut for z ∈ (0, 1) so consider instead f̃(z) defined as f(z) for Im(z) > 0

and by an analytic continuation through the interval (0, 1) to Im(z) < 0. Symmetry of

f(z) under z 7→ 1− z implies that

2 Re[f(z)] = f̃(z) + f̃(1− z) for z ∈ (0, 1) . (A.18)

Note that f̃(z) has branch cuts for z ∈ (−∞, 0) ∪ (1,∞), just like g(z) + g(1 − z). Now

f̃(z) + f̃(1 − z) is symmetric under z 7→ 1 − z and regular at z = 1/2, but we know

g(z) + g(1− z) is the unique such solution up to a scalar multiplication. Therefore the two

must be proportional to each other

f̃(z) + f̃(1− z) = a [g(z) + g(1− z)] (A.19)

for some a ∈ C. The fundamental relation follows if we can show a = −2. a can be fixed

by looking at the coefficient of the double pole at z = 1 at both sides of the equation.

Suppose

f(z) ∼ b

(z − 1)2
as z → 1 . (A.20)
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We know this is true from the explicit expression for f(z) given in (4.24). It is also, as

we will see now a self-consistent assumption. By symmetry f(z) also has a double pole

at z = 0. The analytic continuation f̃(z) must have the same double poles with the same

residue, and hence the coefficient of the double pole on the l.h.s. of (A.19) is 2b. Moreover

g(z) = −(1− z)2∆φ−2f

(
1

1− z

)
z→1
= O((1− z)2∆φ)

g(1− z) = −z2∆φ−2f

(
1

z

)
z→1∼ − b

(z − 1)2
.

(A.21)

Therefore, the constant in (A.19) is a = −2. We conclude f(z) satisfies the fundamental

relation.

B Details on the OPE maximization

This appendix fills in some technical details in the discussion of section 5.

B.1 The functional for ∆ > 2∆φ

Here we evaluate the integral (5.6)

ω∆φ
(∆) =

∞∫
1

dz

{
z2∆φ−2 g∆φ

(
z − 1

z

)
− Re

[
e−iπ(∆−2∆φ)f∆φ

(z)
]} Ĝ∆(1− z)

(z − 1)2∆φ
(B.1)

in the flat space limit, where ∆ =
√
s∆φ with s > 4 and ∆φ → ∞. We assume the

asymptotic behaviour of f∆φ
(z) and g∆φ

(z) is as in (5.5), i.e.

f∆φ
(z) ∼ f(z) for Im(z) > 0

g∆φ
(z) ∼ (1− z)2∆φ g̃(z) for z ∈ (0, 1) .

(B.2)

This implies that the factors inside the curly bracket approach the finite limit{
. . .

}
∼ z−2g̃

(
z − 1

z

)
− Re

[
e−iπ(∆−2∆φ)f(z)

]
. (B.3)

On the other hand, the asymptotic behaviour of the factor outside the curly bracket reads

Ĝ√s∆φ
(1− z)

(z − 1)2∆φ
∼
√
z + 1

2z1/4

[
22
√
s (
√
z − 1)

√
s−2

(
√
z + 1)

√
s+2

]∆φ

. (B.4)

When s > 4, as is the case for us, the expression in the square bracket has a unique

stationary point in the region z > 1: a maximum at z = s/4. Standard saddle-point

approximation around this point then gives the result

ω∆φ
(∆) ∼ µ(∆φ, s)

{(s
4

)−2
g̃

(
s− 4

s

)
− Re

[
e−iπ(∆−2∆φ)f

(s
4

)]}
, (B.5)

where the prefactor reads

µ(∆φ, s) =

√
π

64∆φ
s1/4

(√
s+ 2

)3/2(√
s− 2

)1/2[
22(
√
s+2) (

√
s− 2)

√
s−2

(
√
s+ 2)

√
s+2

]∆φ

. (B.6)
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B.2 The functional for ∆ = ∆b

Here we evaluate the action of the functional on the vector with ∆ = ∆b ∈ (0, 2∆φ) in the

large-radius limit where ∆b = m∆φ with ∆φ →∞. In this regime, the representation (3.28)

using an integral over z ∈ (1,∞) is not available since the integral does not converge and

we need to go back to the original definition (3.1) using a pair of contours

ω(∆) =
1

2

1
2

+i∞∫
1
2

dz f(z)

[
G∆(z)

z2∆φ
− G∆(1− z)

(1− z)2∆φ

]
+

1∫
1
2

dz g(z)

[
G∆(z)

z2∆φ
− G∆(1− z)

(1− z)2∆φ

]
. (B.7)

Keeping f(z) and g(z) completely general, we can change variables in some factors to bring

this to the form

ω(∆) = −


1
2

+i∞∫
1
2

dz
f(z)

2
+

1
2
−i∞∫
1
2

dz
f(1− z)

2
+

1∫
1
2

dz g(z) +

0∫
1
2

dz g(1− z)

 G∆(1− z)

(1− z)2∆φ
, (B.8)

where the factor outside the square bracket is meant to be distributed into each of the four

integrands. Note that the gluing condition (3.3) can be stated as

f(z) + f(1− z)

2
+ g(z) + g(1− z) = 0 for z ∈ (0, 1) . (B.9)

where as usual the values of f(z) are obtained by taking the limit from the upper-half

plane. This implies that we can simultaneously shift the lower limit of each of the integrals

in the square bracket from 1/2 to an arbitrary z0 ∈ (0, 1)

ω(∆) = −


1
2

+i∞∫
z0

dz
f(z)

2
+

1
2
−i∞∫
z0

dz
f(1− z)

2
+

1∫
z0

dz g(z) +

0∫
z0

dz g(1− z)

 G∆(1− z)

(1− z)2∆φ
. (B.10)

When we set ∆ = m∆φ and take ∆φ →∞, the factor outside the square bracket behaves

as follows

Gm∆φ
(1− z)

(1− z)2∆φ
∼
√
z + 1

2z1/4

[
22m

(1−
√
z)

2−m
(1 +

√
z)

2+m

]∆φ

. (B.11)

When 0 < m < 2 as is our case, the last expression has a saddle point at

zb =
m2

4
. (B.12)

The saddle point is a minimum when moving along the real axis, and the direction of the

steepest descent is along the imaginary axis. Therefore, it is particularly convenient to

set z0 = zb in (B.10) so that each of the contours starts at the saddle point. We will

now use the asymptotic behaviour of f∆φ
(z), g∆φ

(z) stated in (B.2). The contours in the

first two terms of (B.10) can be chosen to run along the direction of the steepest descent.
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The exponential supression (1 − z)2∆φ of g(z) implies that the last two terms are always

subleading, leaving us with the saddle-point evaluation of the first two terms only

ω∆φ
(m∆φ)∼ 1

16

√
π

∆φ
m1/2(2 +m)3/2(2−m)1/2

[
22(m+2)

(2−m)2−m (2 +m)2+m

]∆φ

Im[f(zb)]

(B.13)

where we used the symmetry and reality of f(z) to write

f(zb)− f(1− zb)
2i

= Im[f(zb)] . (B.14)

B.3 Action on identity

Here we will compute the action of the functional ω∆φ
on identity in the limit ∆φ → ∞.

The representation (3.28) does not directly apply for ∆ = 0. Instead, we can use a trick

relying on the crossing symmetry of the generalized free fermion four-point function. The

crossing symmetry implies that for any consistent functional ω, we must have

ω(0) = −
∞∑
n=0

c2
n ω(2∆φ + 2n+ 1) , (B.15)

where c2
n arise in the OPE decomposition of the generalized free fermion four-point function

∞∑
n=0

c2
nG2∆φ+2n+1(z) =

(
z

1− z

)2∆φ

− z2∆φ . (B.16)

Now, the representation (3.28) applies to each term on the r.h.s. of (B.15). Therefore, we

can write

ω∆φ
(0) = −

∞∫
1

dz

{
z2∆φ−2 g∆φ

(
z − 1

z

)
+ Re

[
f∆φ

(z)
]} ∞∑

n=0

c2
n

Ĝ2∆φ+2n+1(1− z)

(z − 1)2∆φ
, (B.17)

i.e. the sum over n completely decouples from the part depending on f∆φ
(z). The infinite

sum can be easily evaluated to give

ω∆φ
(0) = −

∞∫
1

dz

{
z2∆φ−2 g∆φ

(
z − 1

z

)
+ Re

[
f∆φ

(z)
]} (

1− z−2∆φ
)
. (B.18)

As ∆φ → ∞, both terms in the curly bracket approach a finite limit. On the other hand,

the second term in the round bracket is subleading and we may drop it, finding

ω∆φ
(0) ∼ −

∞∫
1

dz

{
z−2 g̃

(
z − 1

z

)
+ Re[f(z)]

}
, (B.19)

where we used the asymptotic properties of f∆φ
(z) and g∆φ

(z) stated in (B.2). Let us

focus on the second term and rewrite it using the symmetry and reality of f(z) as

− 2

∞∫
1

dzRe[f(z)] = −
0∫

−∞

dz f(z + i0+)−
∞∫

1

dz f(z + i0+) . (B.20)
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Since f(z) decays sufficiently fast as |z| → ∞, we can add a semicircle at infinity at no

cost and contract the contour to find

− 2

∞∫
1

dzRe[f(z)] =

1∫
0

dzRe[f(z)] = 0 . (B.21)

where we used the ∆φ → ∞ limit of the gluing condition to obtain the last equality.

Therefore, we conclude

ω∆φ
(0) ∼ −

∞∫
1

dz z−2 g̃

(
z − 1

z

)
= −

1∫
0

dz g̃(z) . (B.22)

as ∆φ →∞.

B.4 Optimizing f(z)

Our goal here will be to perform the final step of the optimization and thus determine the

limiting function f(z). Specifically, we would like to minimize∫∞
1 dz |f(z)|
Im[f(zb)]

, (B.23)

where zb = m2/4 ∈ (0, 1), and where f(z) satisfies a number of constraints, which we

summarize now. f(z) is holomorphic away from the cut z ∈ R and on the cut is only

allowed to have singularities at z = 0, 1 and ∞. Im[f(zb)] is to be evaluated at zb + i0+.

f(z) satisfies the following symmetry and reality properties

f(z) = f(1− z) and f(z̄) = f(z) . (B.24)

f(z) is not allowed to grow faster than O((z − 1)−1+ε) for some ε > 0 as z → 1, and must

decay at least as O(z−1−ε) for some ε > 0 as z → ∞. In particular, this guarantees the

numerator in (B.23) is a convergent integral. Finally, we should remember f∆φ
(z) and

g∆φ
(z) satisfy the gluing condition (3.3) for any finite ∆φ. Since g∆φ

(z) is exponentially

supressed for z ∈ (0, 1) as ∆φ →∞, the gluing condition implies

Re[f(z)] = 0 for z ∈ (0, 1) . (B.25)

Since the real part of f(z) vanishes for z ∈ (0, 1), we can easily cancel its branch cut in

this region by writing

f(z) = − 2z − 1

[z(z − 1)]1/2
f1(z) . (B.26)

f1(z) is now analytic in the connected region C\((−∞, 0] ∪ [1,∞)) and satisfies24

f1(z) = f1(1− z) and f1(z̄) = f1(z) . (B.27)

24Note that the prefactor (2z − 1)/[z(z − 1)]1/2 is symmetric under z 7→ 1− z, and not antisymmetric as

one might think at first sight.
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In particular, f1(z) ∈ R for z ∈ (0, 1). The asymptotic conditions on f1(z) are boundedness

by (z − 1)−1/2+ε as z → 1 and by z−1−ε as z →∞. Note that

Im[f(zb)] =
2zb − 1

[zb(1− zb)]1/2
f1(zb) . (B.28)

Thus, to satisfy positivity of Im[f(zb)], we must have f1(zb) > 0 if zb > 1/2 and f1(zb) < 0

if zb < 1/2. Under this condition, our problem is equivalent to minimizing∫ ∞
1
dz

2z − 1

[z(z − 1)]1/2
|f1(z)|
|f1(zb)|

. (B.29)

There is a change of variables particularly convenient for our problem. It reads

x(z) =

√
zb(1− zb)−

√
z(1− z)√

zb(1− zb) +
√
z(1− z)

. (B.30)

The map z 7→ x takes the region of analyticity of f1(z), i.e. C\((−∞, 0] ∪ [1,∞)), into

the interior of the unit disk, and z and 1 − z are mapped to the same point. The point

z = zb is mapped to x = 0, and the points just above, below the branch cut z ∈ (1,∞)

get mapped to the upper, lower half of the unit circle respectively. Defining f2(x) so that

f2(x(z)) = f1(z), we now want to minimize∮
dx

2πi

1

(x+ 1)2

|f2(x)|
|f2(0)|

, (B.31)

where the contour of the integral is the unit circle. Here, we used the invariance of dx/(1+

x)2 under complex conjugation on the unit circle to double the contour from the upper

semicircle to the whole unit circle. Finally, let us define

f3(x) =
f2(x)

(1 + x)2
, (B.32)

so that we want to minimize
1

2π

∫ 2π

0
dθ
|f3

(
eiθ
)
|

|f3(0)|
. (B.33)

Using Cauchy’s theorem, we can write this as a ratio satisfying the inequality:∫ 2π
0 dθ |f3

(
eiθ
)
|∣∣∣∫ 2π

0 dθ f3(eiθ)
∣∣∣ ≥ 1 . (B.34)

The inequality is only saturated if f3(x) is a constant. In order to prove that, first note

that saturation requires f3(x) to have a constant phase on the whole unit circle. We can

now define f3(x) outside the unit circle by

f3(x) = f3(1/x) . (B.35)

The constancy of the phase on the unit circle ensures f3(x) is continuous across the unit

circle, and indeed holomorphic in the whole complex plane away from possible singularities
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at x = ±1. The asymptotic conditions on f1(z) at z = 1 and z = ∞ imply that these

singularities are removable. Moreover, f3(x) is bounded as |x| → ∞ so it must in fact be

a constant. This constant should be real and positive for zb > 1/2 and real and negative

for zb < 1/2.

Tracing our way back, we can write the optimal f(z) as

f(z) = −sgn(2zb − 1)
2z − 1

[z(z − 1)]1/2
[√

z(1− z) +
√
zb(1− zb)

]2 , (B.36)

which completes our solution to the original optimization problem.

C Fall-off conditions

We will now review the conditions derived in [44] for consistency of the class of functionals

given in equation (3.1). The functional action consists of two separate pieces involving the

kernels f(z), g(z). We must both ensure that these pieces are finite and that the functional

action commutes with crossing symmetry sum rules. The latter requirement can be stated

as the swapping condition, according to which we must have for all ∆` > 0

lim
∆∗→∞

∑
∆`<∆<∆∗

c2
∆ ω

[
F

∆φ

∆

]
= ω

 ∑
∆b<∆

F
∆φ

∆

 , (C.1)

or equivalently

lim
∆∗→∞

ω

[ ∑
∆∗<∆

F
∆φ

∆

]
= 0. (C.2)

We will examine the implications of these conditions on the f(z) and g(z) pieces in turn.

It is clear that thanks to the exponentially fast convergence of the OPE for any fixed z in

R, the only way these conditions can fail is if the kernels do not decrease sufficiently fast

near z = 1 or ∞. We begin by noting that

F
∆φ

∆ (z) = O(|z|−2∆φ log(|z|)) as |z| → ∞. (C.3)

Hence finiteness of the f(z) piece of the functional demands that f(z) should fall off faster

than z2∆φ−1+ε at infinity, for some ε > 0. However the swapping property imposes a

stronger condition. We have∣∣∣∣∣ ∑
∆∗<∆

c2
∆F

∆φ

∆ (z)

∣∣∣∣∣ ≤ ∑
∆∗<∆

c2
∆


∣∣∣G∆

(
z
z−1

)∣∣∣
|z|2∆φ

+

∣∣G∆

(
z−1
z

)∣∣
|1− z|2∆φ

 . (C.4)

where we have used∣∣∣∣G∆

(
z

z − 1

)∣∣∣∣ = |G∆(z)| for all z ∈ C\[1,+∞). (C.5)
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As |z| → ∞, the arguments of the conformal blocks approach unity, and we probe the

u-channel OPE limit. We may comfortably bound each sum on the r.h.s. by the identity

contribution in that channel, which grows like |z|2∆φ . Hence∑
∆∗<∆

c2
∆F

∆φ

∆ (z) = O(1) as z →∞. (C.6)

We must therefore require the stronger fall off behaviour

f(z)
|z|→∞∼ o(z−1−ε) for some ε > 0. (C.7)

To conclude let us consider the contribution of g(z). In this case the action of the functional

is finite for an individual F
∆φ

∆ if

g(z)
z→1∼ o

[
(1− z)2∆φ−1+ε

]
for some ε > 0. (C.8)

Adding up infinite series of F
∆φ

∆ cannot change this. This is because the only danger

comes from the infinite sum of blocks in the direct channel, but this just reproduces the

cross-channel singularities which are already taken into account by the condition above.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[17] D. Mazáč, Analytic bounds and emergence of AdS2 physics from the conformal bootstrap,

JHEP 04 (2017) 146 [arXiv:1611.10060] [INSPIRE].
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