
HAL Id: hal-02410904
https://hal.science/hal-02410904

Submitted on 3 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extracting a Common Signal in Tree Ring Widths with
a Semi-parametric Bayesian Hierarchical Model

Ophélie Guin, Philippe Naveau, Jean-Jacques Boreux

To cite this version:
Ophélie Guin, Philippe Naveau, Jean-Jacques Boreux. Extracting a Common Signal in Tree Ring
Widths with a Semi-parametric Bayesian Hierarchical Model. Journal of Agricultural, Biological, and
Environmental Statistics, 2018, 23 (4), pp.550-565. �10.1007/s13253-018-0330-0�. �hal-02410904�

https://hal.science/hal-02410904
https://hal.archives-ouvertes.fr


HAL Id: hal-02410904
https://hal.archives-ouvertes.fr/hal-02410904

Submitted on 3 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extracting a Common Signal in Tree Ring Widths with
a Semi-parametric Bayesian Hierarchical Model

Ophélie Guin, Philippe Naveau, Jean-Jacques Boreux

To cite this version:
Ophélie Guin, Philippe Naveau, Jean-Jacques Boreux. Extracting a Common Signal in Tree Ring
Widths with a Semi-parametric Bayesian Hierarchical Model. Journal of Agricultural, Biological,
and Environmental Statistics, Springer Verlag, 2018, 23 (4), pp.550-565. �10.1007/s13253-018-0330-0�.
�hal-02410904�

https://hal.archives-ouvertes.fr/hal-02410904
https://hal.archives-ouvertes.fr


Extracting a common signal in

tree ring widths with a semi-parametric

Bayesian hierarchical model

Abstract

There are numerous statistical challenges involved in the general field of climate

reconstructions, including the preprocessing of raw data, often called standardization.

This paper focuses on this essential but often overlooked preprocessing stage for one

of the most used climate proxy, tree ring widths. One basic premise of dendroclima-

tology (dendron = tree) is that tree ring widths are assumed to contain relevant infor-

mation about past climate. By going back to the data source, we focus on improving

uncertainty assessments and more accurately identifying a climatic signal.

Tree ring width logarithms measured on a given tree are classically decomposed

into an individual age effect and a common signal shared by all trees from the same

site. Through informative priors, we assume that the individual age effect component

lives on a narrow frequency band. This corresponds to the a priori knowledge that

individual trees have a smooth aging process. In contrast, the environmental signal

shared by all trees is not assumed to belong to a specific frequency range. From a

statistical perspective, the search of this common signal shared by a series of tree ring

width logarithms can be viewed at inferring the different components of a specific
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additive model. Compared to past dendroclimatology studies, we propose a semi-

parametric Bayesian hierarchical model that offers the possibility to capture low and

high frequencies in tree ring widths. Our new model is tested on simulated data and

applied to Pinus halepensis Mill. ring widths recorded in French Mediterranean.

1 Introduction

One key issue to understanding past and recent climate changes is to derive, study and

apply efficient statistical procedures to reconstruct past records of temperatures and pre-

cipitation. Direct measurements of such climatological variables are missing whenever the

instrumental record length is shorter than the period of interest. The so-called proxies,

i.e. indirect measurements, offer the raw material to reconstruct past chronologies in such

situations. Proxies should contain records of past climates, but they are also tainted by im-

portant and complex non-climatic factors, e.g. local ecological effects. This explains that

most published climate reconstruction results/methods in the statistical literature (e.g., Li

et al., 2010b; Wahl et al., 2010; Cressie and Tingley, 2010; Li et al., 2010a; Smith, 2010a;

McShane and Wyner, 2011b; Smith, 2010b; Christiansen et al., 2009; Esper et al., 2002;

Tingley et al., 2012; Tingley and Huybers, 2013; Werner and Tingley, 2015) generally do

not start with raw proxies, but rather have analyzed a series of already pre-processed data

products. In this paper, we focus on this pre-processing step for one of most used proxies,

tree ring widths.

Since the work of Douglass (1920, 1936), there has been an active and extensive research

activity dedicated to the field of dendrochronology (dendron = tree and chronos = time) that

study tree rings to analyze temporal and spatial patterns of processes in the physical and

social sciences (e.g. Cook and Kairikukstis, 1990; Gornitz, 2009; Cook et al., 1999; Evans

et al., 2006; Melvin and Briffa, 2008). One major advantage of dendrochronology is that
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annual ring formation makes the time sampling, one ring per year, constant in zones that

have a distinct dormant season related to cold weather. Figure 1 shows the lifetime of the

seventeen trees that are used in our application. The x-axis corresponds to the years (1867-

1993) and the y-axis to the tree label. This graph illustrates the lifetime heterogeneity

among individual trees. Some trees like 11 has a short record of a few decades while others

like 5 covers more than one century.
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Figure 1: The lifetime of the seventeen trees that has been used in our application, see
Section 4.2. The x-axis corresponds to the years (1867-1993) and the y-axis to the tree
label.

Typically the number of sampled trees diminishes as one goes back in time. Finding older

trees becomes more and more arduous for the field experimenter. This classical issue in

paleo-studies implies that the assessment of uncertainty can be non-trivial and should vary

in time.

Given tree ring widths measurements from a given site, how should one extract a common

signal from this data set ? Our underlying assumption is that the common signal shared

by all the trees from a particular site should be due to an environmental factor, possibly

climatic but not necessarily. Statistically, we aim to propose and study a Bayesian inference
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scheme capable of extracting latent individual and common signals. Essential elements of

our analysis are the modeling of varying uncertainties due to tree lifetime heterogeneity,

bypassing the need of parametric forms for either individual or common signals and taking

into account the prior information given by dendroclimatologists.

2 Dendrochronology: data and methods

To present and discuss our approach, we have analyzed a set of seventeen Pinus halepensis

Mill. French Mediterranean coast where tree ring width measurements were studied by

Nicault et al. (2001). This region is climatically characterized by a Mediterranean climate

with clear summer droughts. Nicault et al. (2001) identified possible relationships between

tree growth measurements and climatic factors in the same geographical region and with the

same tree species. Hence this past study provides a referential for our extraction procedure

and has been beneficial for discussing and interpreting our approach.

Figure 3 displays seventeen Pinus halepensis Mill tree ring width logarithms from the

"Rognac" site. The group of seventeen time series illustrates the difficulty of finding a

common signal; each time series having its own time length (see Figure 1), its own growth

trend and a large variability.

A classical decomposition to represent yearly individual tree ring growths is the following

additive model, often called the linear aggregate model (Cook, 1990; Buckley, 2009),

log(ring width) = Ft +Gt +Dt + unexplained variability (1)

where t represents a year, Gt corresponds to the age-related trend due to normal physiolog-

ical aging processes,Ft to the climatically-related environmental signal and Dt to distur-
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Figure 2: The "Rognac" site located in the South of France, near Marseille, where Pinus
halepensis Mill tree ring width logarithms shown in Figure 3 were recorded.

bance factors, either within the forest stand or outside of it (e.g., insect outbreaks or fires).

In most studies, the site of interest is selected in order to minimize the possibility of internal

and external ecological processes affecting tree growth. In this paper, we follow this hy-

pothesis and Dt is set to zero. Ring width logarithm is used because tree ring multiplicative

properties are well known.

Individual trees at a environmentally homogenous site have their own physiological aging

process Gt (e.g., Fang et al., 2010; Cook et al., 1990; Esper et al., 2002). The function

Gt is often represented by parametric curves such as a negative exponential function or

more complex smooth functions such as a Hugershoff curve (see Figure 1 in Fang et al.,

2010). Hence, one common principle in representing Gt resides in its smoothness, i.e. it

is assumed to be a low frequency signal. Besides this prior knowledge, it is difficult to

impose an universal parametric form because it should depend on the tree specie and the
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Figure 3: Seventeen Pinus halepensis Mill tree ring width logarithms from the "Rognac"
site located in Figure 2. The x-axis (years) covers the period 1867 � 1993 and each time
series has a different length, see Figure 1.

site of interest and most tree rings have complex temporarily behaviors, see Figure 3. In this

paper the low frequency information has been used to guide some of our prior distributions

choice within our Bayesian modeling.

The function Gt in Equation (1) is often considered as a nuisance term to be removed

and the main element for most dendroclimatologists resides in finding the component Ft.

This quest leads to the so-called standardization problem and remains an object of active

research (Melvin and Briffa, 2008; Nicault et al., 2010). Standardization aims at calculating

a dimensionless chronological index that reflects an hidden yearly common environmental

signal shared by all individual trees. This is encapsulated by Equation (3) from Melvin and

Briffa (2008)

Ring width = Chronology index ⇥ Expected growth ⇥ Error,

which is simply a multiplicative version of Equation (1) (we assume Dt = 0) and the so-
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called expected growth corresponds to exp(Gt). To eliminate the age-affect Gt or equiva-

lently the expected growth, an age-related trend is first estimated for each individual tree.

This is classically done by implementing a univariate parametric regression (e.g., negative

exponential curve (Fritts et al., 1969)) or a semi-parametric one (e.g., Cook and Peters,

1981; Barefoot et al., 1974). Second, each ring width is then divided by the corresponding

fitted value obtained from the regression (e.g, see Figure 3 in Fang et al., 2010) and (e.g,

see Cook et al., 1990; Esper et al., 2002). This produces the so-called tree indices that

should have a mean of approximately equal to one. Third the so-called chronology time

series, i.e. the standardized dimensionless index, is calculated as the arithmetic mean of all

tree indices for a year.

Although the underlining model beneath this series of statistical steps is similar to a mul-

tiplicative model on the raw data, or to an additive model like (1) for the ring width log-

arithms, the inference aspect of this standardization approach is not clear. Each step is

made independently of the previous one. Consequently, calculating valid estimates and

confidence intervals of the final output, the dimensionless index, remains challenging. The

fact that the variable of interest Ft is common to all time series implies that the inference

scheme should be performed in a jointly manner by treating all trees at once. But univariate

inferential techniques have been used at each step and error estimates made of each step

are decoupled from each other. This is also another drawback. By construction, the clas-

sical standardization scheme takes out all the low frequency information contained in tree

rings. This due to the removal of the age-effect. Individually a univariate regression cannot

make the distinction between two low frequency components, see Gt and Ft in (1). Only,

by treating the full set of trees jointly, one can hope to discriminate between a common

smooth climate signal and other individual ones. For the practitioner, this drawback is very

important. It implies that the classical standardization scheme is only adapted to capture

annual variability but not decadal or centennial trends from tree rings. This is also true

for other standardization based on ARMA modeling (Guiot, 1987). Recently we (Boreux
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et al., 2009) proposed and studied a Bayesian hierarchical model to extract hidden signal

but again, it was under the hypothesis that smooth trends have already been removed by a

preprocessing of individual tree rings.

The Regional Curve Standardization (RCS) and the Adaptive Regional Growth Curve

(Nicault et al., 2010) are attempts to preserve low frequency climatic information con-

tained into tree rings. The former is based on producing a regional biological growth trend

obtained by averaging ring widths that have been aligned according to their biological age

(not their chronological age). This requires a large number of trees. Another assumption

here is that this structural form is the same for each tree and does not vary in time. Coming

back to (1), this means that Gt comes from an unique profile that has been shifted accord-

ing to the tree age. This is rather strong limitation because individual growth rate trees can

differ according to soil conditions, competition and other factors governing productivity.

To circumvent this issue, Nicault et al. (2010) proposed to regress tree rings according to

biological age, initial and maximum productivities using a neural network. The initial and

maximum productivities are defined as the average of the first 10 rings and the maximum

value during the first 50 years over an individual smoothed growth profile, respectively.

Hence the computation of the predictors is tailored to the application at hand and may be

difficult to generalize to other cases without an expert in dendrochronoloy. In addition, the

inference properties of the method are not clear to us because tree rings seem to be used as

predictant and as data for building the predictors.

3 Model description and its inference

During the last two decades, Bayesian Hierarchical Models (BHM) have blossomed in

climate sciences. One appealing idea in BHMs is to probabilistically decompose a com-

plex climatic process and its relationships to observations in several simple components
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throughout a hierarchy of layers. BHMs handle efficiently the uncertainty assessment of

each layer by clearly identifying prior and posterior distributions of underlining processes.

For an introduction to such models, see e.g. Gelman et al. (2003) and the recent book of

Cressie and Wikle (2011). Examples of BHM applied to climate issues could be as follows.

Berliner et al. (2000) studied long-lead predictions of Pacific Sea Surface Temperatures

via Bayesian Dynamic Modeling. Schliep et al. (2010) estimated extreme precipitation

from regional climate models by combining BHM and extreme value theory. Tebaldi et al.

(2010) characterized uncertainties of future climate change projections using BHM and

Sahu et al. (2007) studied space-time ozone modeling for assessing trends. Haslett et al.

(2006) investigated the problem of reconstructing prehistoric climates from lake sediment

cores by making use of pollen assemblages. Other recent examples of BHM applied in

paleoclimate can be found in (McShane and Wyner, 2011b; Berliner, 2011; Craigmile and

Rajaratnam, 2011; Davis and Liu, 2011; Haran and Urban, 2011; Holmström, 2011; Ka-

plan, 2011; McIntyre and McKitrick, 2011; McShane and Wyner, 2011a; Nychka and Li,

2011; Rougier, 2011; Gavin A. Schmidt and Rutherford;, 2011; Smerdon, 2011; Tingley,

2011; Wahl and Ammann, 2011; Tingley and Huybers, 2013; Werner and Tingley, 2015).

Schematically, uncertainty in BHM is spread over different layers, usually three. The base

level, called the data layer, characterizes observations, e.g. tree ring profiles in our case.

The second level in the hierarchy, called the process layer, models latent processes that

drive the growth of such rings, tree-to-tree and regional variations. In this second layer,

one can start incorporating temporal processes, e.g. individual age effects and the hidden

common environmental factor. The third level, called the parameter layer, consists of the

information concerning prior parameters distributions that control the process layer.

In dendrochronology, Hooten and Wikle (2007) investigated with a BHM shifts in the

spatio-temporal growth dynamics of shortleaf pine. These authors did not work with raw

tree measurements but with chronology indices, i.e. already preprocessed and standardized
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data. They linked these chronologies with drought information like the Palmer Drought

Severity Index. Concerning the standardization issue and BHM, we (Boreux et al., 2009)

extracted an inter-annual high frequency signal from detrended tree ring series and con-

sequently, smooth trends were also overlooked. Compared to these past studies, our goal

is to add the flexibility of modeling non-parametric trends that can capture low frequency

changes for the age effect and higher frequency variations with trend for the hidden com-

mon environmental signal.

Denote yj = (yj(t1), ..., yj(tn))
T the tree ring width logarithms vector produced by tree j

over the period of interest (t1, . . . , tn). Equation (1) provides the foundation of our data

layer that can be expressed with the common notations used by the Bayesian community

as

yj|gj, f , , �
2 ⇠ gj + f + �

2Nn(0n, In), with j = 1, . . . , p, (2)

where the unknown f = (f(t1), . . . , f(tn))
T represents the hidden common signal, see Ft

in (1), the unknowns gj = (gj(t1), . . . , gj(tn))
T correspond to the individual age effect

for each tree j, see Gt in (1), 0n = (0, . . . , 0)

T and In denotes the identity matrix of size

n. Measurement uncertainty is modeled as a zero mean Gaussian vector with covariance

�

2
In and each tree record [yj|gj, f , , �

2
] is supposed to be mutually independent of each

other ("i.e. our observations are assumed to be conditionally independent with respect to

the model parameters). In our application shown in Figure 3, the number of tree p is equal

to seventeen and the time period is defined as t1 = 1867 and tn = 1993. The tree length

variation displayed in Figure 1 implies that gj starts with a series of missing values for

most trees.

To go one step further in our Bayesian hierarchy, we need to define the process layer, i.e.

to set priors for gj, f , and �

2.In contrast to past dendrochronological studies that imposed

a parametric form for gj or f or both, we opt to describe both functions as semi-parametric
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splines viewed within a BHM framework.

Splines modeling was formulated by Reinsch (1967) and developed by many author (e.g.,

Eubank, 1999; Wand and Jones, 1995; Fan and Gijbels, 1996). Within the Bayesian frame-

work, Kimeldorf and Wahba (1970) demonstrated that specific forms of spline smoothing

correspond to Bayesian estimates under a class of improper Gaussian prior distributions on

function spaces. For the classical non-parametric regression problem y = f + �

2N (0, I),

Wahba (1978) proposed and studied a particular partially improper Gaussian prior for the

trend f

f |⌧ 2 ⇠ Nn(0, ⌧
2
K

�
) (3)

where ⌧

2
= �

2
/� and � � 0 is the smooth parameter of the classical penalized sum of

squares criterion
Pn

i=1(yi � f(xi))
2
+ �

R
(f

00
(x))

2
dx that is minimized over all functions

f(x) such that the integral exists. In (3), K� refers to a generalized inverse of a matrix

K, with the understanding that an eigenvalue of zero for K gives an eigenvalue of +1 for

K

�. In the case of smoothing splines K is linked to the penalty
R
(f

00
(x))

2
dx = f

T
Kf .

Hastie and Tibshirani (1990, 2000) showed that this prior covariance matrix K

� is equal

to B⌦

�
B

T evaluated at the data. Let nu be the number of unique value of x, the basis

matrix B consist of the vector of nu + 2 cubic B-splines basis functions b(x) (de Boor,

1978) evaluated at the nu sample values xi and the penalty matrix ⌦ has elements ⌦ij =

R
b

00
i (x)b

00
j (x)dx.Priors for the smoothing parameter or the variances �

2 and ⌧

2 belongs to

the parameter layer of the Bayesian hierarchy and they have to be fixedHastie and Tib-

shirani (1990, 2000) suggested to use proper inverse gamma priors for the variance com-

ponents �

2 ⇠ IG(a�, b�) and ⌧

2 ⇠ IG(a, b). In this work, the hyper-parameters of the

inverse gamma distribution are (0.0001, 0.0001).

Following the work of Wahba (1978) and Hastie and Tibshirani (1990, 2000), we assume
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the same type of priors for gj and f (see Equation (3))

f |⌧ 20 ⇠ Nn(0, ⌧
2
0K

�
) and gj|⌧ 2j ⇠ Nn(0, ⌧

2
j K

�
), for all j = 1, . . . , p.

At this stage, our model is too versatile and associated with identifiability issues". For ex-

ample, if all gj are proportional to f , it is impossible to distinguish f from gj . Additional

constraints are needed and these have been be chosen according to basic tree ring charac-

teristics. From Fang et al. (2010); Cook et al. (1990); Esper et al. (2002), we know that the

individual age effect function gj should be very smooth because individual tree growth is

a rather slow and cumulative process. In contrast, we assume that the hidden signal shared

by all trees f should capture environmental variabilities that correspond to rapid (yearly

or decadal) or slow (centennial) changes. This means that the frequency range of gj is as-

sumed to be much narrower than the one of f . To illustrate this difference, Figure 4 displays

simulations that mimic this phenomenon. The top and middle panels represent a simulated

common signal f and simulated individual tree growth signals gj , respectively. In this ide-

alized example, one can see that the functions gj do not reproduce the rapid variations seen

in f . To test the resilience of our method, a slow positive trend was also included into f

here and this adds difficulties to separate f from gj , see Section 4.1.

The smoothness information can be translated into informative prior choice of the smooth-

ness parameters ⌧ 2j for j = 0, . . . , p. For comparison and interpretation reasons, we substi-

tute ⌧

2
j by a parameter that lives on the interval [0, 1], �j =

⌧

2
j

⌧

2
j + �

2
j

, for all j = 0, . . . , p.

If �j takes a value near zero, then it means that the curve is very smooth. Beta priors for

these parameters seem natural.

To improve identifiability and interpretability, the condition g1 + · · · + gp = 0 is also

imposed. If p = 1, we have only one tree and it is impossible to distinct f from g1 (under

this case, the latter is set to zero). As the number of trees p increases, individual growth
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Figure 4: Simulations of logarithmic tree ring widths from the additive model (2). The top
panel corresponds to the common signal f , the second panel to individual growth tree effect
signals gj and the bottom panel to simulated tree ring series yj , respectively. Our objective
is to find f and gj from the yj’s.

effect gj can become more and more complex. A fundamental case is when all individual

growth gj are proportional to each other, say gj = ↵jg with ↵j � 0 and g 6= 0, then

imposing g1+ · · ·+gp = 0 implies that ↵j = 0. In other words, if individual growths have

something in common, then it should capture by f (and not by gj). This makes sense in

our model because f will be interpreted as the common signal and the gj will be viewed as

individual characteristics (anomalies from the common behavior).

To compute the posteriors of the latent vectors and model parameters, we use Gibbs sampler
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and Metropolis-Hasting algorithms. Explicitly posterior distribution for some functions can

be derived (Hastie and Tibshirani, 1990, 2000)

f |g,�0,y, �
2 ⇠ Nn(B(B

T
RB+ �0⌦)

�1
B

T
s, �

2
B(B

T
RB+ �0⌦)

�1
B)

with

s =

pX

j=1

(yj � gj), �0 = (1� �0)/�0, R = Diag(p),

and

gj|, f ,�jyj, �
2 ⇠ Nn(B(B

T
B+ �j⌦)

�1
B

T
d, �

2
B(B

T
B+ �j⌦)

�1
B)

with d = yj � f and �j = (1 � �j)/�j .It is also possible to show that �2 have an inverse

gamma posterior distribution. These parameters are estimated with Gibbs sampler.The

parameters �0 and �j don’t have standard posterior distributions so we use Metropolis-

Hasting algorithm to estimate them(Hastie and Tibshirani, 2000). The Bayesian inference

was carried out with the open source R statistical software.

4 Data analysis

4.1 Simulations results

As described in Section 3 simulated data are used to study model performances. This data

are simulated to mimic tree ring widths series as the sum of a common signal f and indi-

vidual tree growth signals gj . The simulated common signal corresponds to the normalize

equation :

f(t) = exp

2t

(1 + t)

+ 2 sin(t),

14



were t represents time and gj’s have a Beta density form with random parameters according

to j. Signals are simulated for 50 time length.The simulated data yj’s, are the sum of this

signals with normal uncertainty. These simulations are displayed in Figure 4.

A first analyse study the prior question about �. After discussions with experts in den-

drochronology it seems the common signal have to be an annual proxy while individual

age effect, gj are smooth trend. In Section 3, Beta priors are selected for the smooth pa-

rameters �. Table 1 summaries the posterior distribution of �1 under a variety of prior

distribution. We note the prior parameters have not a significant impact over the poste-

rior distribution and this result is aproximatively the same for the others �j . So we set an

non-informative prior �j ⇠ Beta(1, 1) for j = 1, ..., p.

Parameters of the prior distribution Summaries of the posterior distribution
↵ � Posterior median of �1 90% posterior interval for �1

1 1 0.00083 [0.00047 ; 0.04853 ]
1 5 0.00175 [0.00076 ; 0.01737 ]
1 10 0.00061 [0.00061 ; 0.02292 ]
1 15 0.00165 [0.00034 ; 0.01060 ]
1 20 0.00567 [0.00153 ; 0.03160 ]

Table 1: Summaries of the posterior distribution of �1 under a variety of conjugate prior
distributions.

Concerning �0 prior (common signal f smooth parameter) the question is some different.

In a first time we select also a non-informative prior �0 ⇠ Beta(1, 1). But a good posterior

estimation for this parameter depend of the model uncertainty variance. The Figure 5

represents the posterior estimation of f compared to the real simulated commun signal for

difference noise levels. If �2 has a too high variance the model has difficulty to detect the

exact common signal and it tends to smooth the estimated f curve.

To complet this analysis we choose a some important variance level (�2
= 0.8) and we

make vary the � parameter for Beta prior over the smooth common signal parameter. Figure

15

To complete this analysis, Figure 6 shows the influence of the Beta prior parameter, \beta, on the smoothness of the common signal, f, while keeping a variance level of \sigma^2=0.8.
 As \beta increases (more prior information),  the hidden signal appears to be better captured.   The gain after $\beta=10$ seems marginal and  the common signal does not change anymore.
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Figure 5: Posterior information about the common signal f obtained from the simulated
tree series shown in the bottom panel of Figure 4 with different noise levels. The gray and
black line correspond to the true f and the estimated posterior median, respectively. The
dotted lines represents the 90% credibility intervals.

6 represents the common signal f for these different priors. More the value of � increases

(corresponding to more informative prior) better is the estimation of f . In view of this

analysis it seems reasonable to fix a Beta(1, 10) prior for �0.

Different sensitivity analysis concerning the influence of the number of tree were also per-

formed and are available upon request. In a nutshell, around 10 trees in our simulations
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Figure 6: Posterior information about the common signal f obtained from the simulated
tree series with different smooth parameter prior. The gray and black line correspond to
the true f and the estimated posterior median, respectively. The dotted lines represents the
90% credibility intervals.

were necessary to derive reasonable results. However this remark about a minimal number

of trees is only valid within the framework of our simulations and it should not be directly

transposed to real data because the shapes of f and gj and the variance �

2 strongly depend

on the tree species and the site characteristic.
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4.2 Analysis of seventeen tree ring width logarithms of Pinus halepen-

sis Mill

Our model and inference scheme have been applied to the seventeen tree ring width loga-

rithms shown in Figure 3. Our priors were the same that previously discuss. The posterior

median (black line) and their associated 90% credibility intervals (dotted lines) of the three

individual age trends g1, g2 and g3 are displayed in the left panels of Figure 7. The poste-

riors of the smoothness parameter are centered around 0 - 0.1 (see the right panels). This

implies that the inferred curves are fairly smooth. Still this graph reveals a variety of shape

with different wiggles, see also Figure 8.

To put our approach into perspective with respect to the RCS method, Figure 8 compares

posterior median of individual age effect profiles gj that have been aligned according to

their biological age (not their chronological age) with the classical global biological RCS

trend obtained by averaging ring widths in function of their biological age (gray line).

Although a majority of curves has overall the same degree of smoothness, this figure em-

phasizes the variability among age effect profiles. This tends to indicate that the added

flexibility of our modeling approach allows to improve individual age-related growth vari-

ability. A strong message from Figure 8 resides in the large variability among the different

age effect shapes. Each tree has its own trend and associated uncertainty. And having this

information could help dendrochronologists to interpret local tree behaviors.

Figure 9 shows the posterior common signal obtains with our bayesian model. Like pre-

viously, the black line represents the posterior median and the dotted lines their associated

90% credibility intervals. This result is compared with the RCS chronologie ( in gray in

Figure 9). The fluctuations to the both signals have the same smoothing of their curve seem

has almost the same variations. The major difference is that with the bayesian method the

common signal capture low frequencies. The second point is that with this method we have
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Figure 7: Left panels: posteriors of the three individual age effect trends g1, g2 and g3

obtained from our analysis of the seventeen tree ring width logarithms shown in Figure 3.
Black lines correspond to posterior medians and dotted lines to 90% credibility intervals.
Right panels: posterior pdfs of the smoothness parameters �1, �2 and �3. Note that the
y-axes are different in right hand panels.

be able to quantify the uncertainty related to common signal estimation.

5 Conclusion

In this paper we introduce a new method to estimate a tree-rings hidden common signal.

The proposed model is a semi-parametric Bayesian hierarchical model that offers the pos-

sibility to capture low and high frequencies in tree ring widths, and to obtain quantify
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Figure 8: Posterior median of individual age effect profiles gj that have been aligned ac-
cording to their biological age (not their chronological age). The gray line represents the
classical global biological trend obtained by averaging ring widths in function of their bio-
logical age.

uncertainty over the different estimated signals.

Our model is tested on simulated data and applied to Pinus halepensis Mill. ring widths

recorded in French Mediterranean. The results are compared with a dendrochronological

classical method (Regional Curve Standardization) and the results are not in contradiction.

The bayesian method permits to bring further information as credibility intervals or low

frequency in common signal contains relevant information about past climate. The more

complexe modeling permits also to have different age effect shapes for each tree which can

be an interesting information to help dendrochronologists to interpret local tree behaviors.
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Overall, our findings do not contradict the classical RCS approach, but it goes one step further   
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Figure 9: Posterior information about the common signal f and comparison with RCS
chronnology.The black line correspond the estimated posterior median and the dotted lines
represents the 90% credibility intervals. The gray line is the RCS chronology.

To estimate the contribution of this method for dendrochronologists it will be interested

to investigate potential links between extracted signals and climatic variables and try to

reconstruct past temperatures for exemple. Different methods were developed for this but

they are not adapted to integrate the additional information given with the paper devel-

oped method. So a reflexion is required to include, in particular common signal estimation

uncertainty, in climatic reconstructions.
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