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ABSTRACT4

Multiple changes in Earth’s climate system have been observed over the past decades. De-5

termining how likely each of these changes are to have been caused by human influence, is6

important for decision making on mitigation and adaptation policy. Here we describe an ap-7

proach for deriving the probability that anthropogenic forcings have caused a given observed8

change. The proposed approach is anchored into causal counterfactual theory (Pearl 2000)9

which has been introduced recently, and was in fact partly used already, in the context10

of weather and climate-related events attribution. We argue that these concepts are also11

relevant, and can be straightforwardly extended to, the context of climate change attribu-12

tion. For this purpose, and in agreement with the principle of fingerprinting applied in the13

conventional D&A framework, a trajectory of change is converted into an event occurrence14

defined by maximizing the causal evidence associated to the forcing under scrutiny. Other15

key assumptions used in the conventional D&A framework, in particular those related to16

numerical models error, can also be adapted conveniently to this approach. Our proposal17

thus allows to bridge the conventional framework with the standard causal theory, in an18

attempt to improve the quantification of causal probabilities. An illustration suggests that19

our approach is prone to yield a significantly higher estimate of the probability that an-20

thropogenic forcings have caused the observed temperature change, thus supporting more21

assertive causal claims.22
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1. Introduction23

Investigating causal links between climate forcings and the observed climate evolution24

over the instrumental era represents a significant part of the research effort on climate.25

Studies addressing these questions in the context of climate change have been providing over26

the past decades, an ever increasing level of causal evidence that is important for decision-27

makers in international discussions on mitigation policy. In particular, these studies have28

produced far-reaching causal claims; for instance the latest IPCC report (Stocker et al. 2013)29

stated that “It is extremely likely that human influence has been the dominant cause of the30

observed warming since the mid-20th century.” An important part of this causal claim, as31

well as many related others, regards the associated level of uncertainty. More precisely, the32

expression “extremely likely” in the latter quote has been formally defined by the IPCC33

(Mastrandrea et al. 2010) to correspond to a probability of 95%. The above quote hence34

implicitly means that the probability that the observed warming since the mid-20th century35

was not predominantly caused by human influence but by natural factors, is roughly 1 : 20.36

Based on the current state of knowledge, it means that it is not yet possible to fully rule out37

that natural factors were the main causes of the observed global warming. This probability38

of 1 : 20, as well as all the probabilities associated to the numerous causal claims that can39

be found in the past and present climate literature, are critical quantities that are prone40

to affect the way in which climate change is apprehended by citizens and decision makers,41

and thereby to affect decisions on the matter. It is thus of interest to examine the method42

followed to derive them and, potentially, to improve it.43

Aforementioned studies buttressing the above claim usually rely on a conventional attri-44

bution framework in which “causal attribution of anthropogenic climate change” is under-45

stood to mean “demonstration that a detected change is consistent with the estimated re-46

sponses to anthropogenic and natural forcings combined, but not consistent with alternative,47

physically plausible explanations that exclude important elements of anthropogenic forcings”48

(Hegerl et al. 2010). While this definition has proved to be very useful and relevant, it offers49
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a description of causality which is arguably overly qualitative for the purpose of deriving a50

probability. In particular, it comes short of a mathematical definition of the word “cause”51

and incidentally, of the “probability to have caused” that we in fact wish to quantify. Hence,52

beyond these general guidance principles, the actual derivation of these probabilities is left53

to some extent to the interpretation of the practitioner. In practice, causal attribution has54

usually been performed by using a class of linear regression models (Hegerl and Zwiers 2011):55

y =

p∑
f=1

βfxf + ε (1)

where the observed climate change y is regarded as a linear combination of p externally forced56

response patterns xf with f = 1, ..., p referred to as fingerprints, and where ε represent of57

internal climate variability and observational error (all variables are vectors of dimension n).58

The regression coefficient βf accounts for possible error in climate models in simulating the59

amplitude of the pattern of response to forcing f . After inference and uncertainty analysis,60

the value of each coefficient βf and the magnitude of the confidence intervals determine61

whether or not the observed response is attributable to the associated forcing. The desired62

probability of causation, i.e. the probability that the forcing of interest f has caused the63

observed change y is denoted hereafter P(f → y). It has often been equated to the probability64

that the corresponding linear regression coefficient is positive:65

P(f → y) = P(βf > 0) (2)

A shortcoming of the conventional framework summarized in Equations (1) and (2) above,66

is that a linear regression coefficient does not have any causal meaning from a formal stand-67

point. As acknowledged by Pearl (2000), turning an intrinsically deterministic notion such68

as causality into a probabilistic one, is a difficult general problem which has also long been69

a matter of debate (Simpson 1951; Suppes 1970; Mellor 1995). Nevertheless, the current70

approach can be theoretically improved in the context of climate change where the values of71

the probabilities of causation have such important implications.72
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Our proposal to tackle this objective is anchored into a coherent theoretical corpus of73

definitions, concepts and methods of general applicability which has emerged over the past74

three decades to address the issue of evidencing causal relationships empirically (Pearl 2000).75

This general framework is increasingly used in diverse fields (e.g. in epidemiology, economics,76

social science) in which investigating causal links based on observations is a central matter.77

Recently, it has been introduced in climate science for the specific purpose of attributing78

weather and climate-related events (Hannart et al. 2015a). The latter article gave a brief79

overview of causal theory and articulated it with the conventional framework used for the80

attribution of single weather events, which is also an important topic in climate attribution.81

In particular, Hannart et al. (2015a) showed that the key quantity referred to as the fraction82

of attributable risk (FAR) (Allen 2003; Stone and Allen 2005) which buttresses most weather83

events attribution studies, can be directly interpreted within causal theory.84

However, Hannart et al. (2015a) did not address how to extend and adapt this theory85

in the context of the attribution of climate changes occurring on long timescales. Yet,86

a significant advantage of the definitions of causal theory — and to start with the very87

notion of “event” — is precisely that they are relevant no matter the temporal and spatial88

scale. For instance, from the perspective of a paleoclimatologist studying Earth’s climate89

over the past few hundred millions of years, global warming over the past hundred and90

fifty years can be considered as a climate event. As a matter of fact, the word “event”91

is used in paleoclimatology to refer to “rapid” changes in the climate system, but ones92

that may yet last centuries to millennia. Where to draw the line is thus arbitrary: one93

person’s long term trend is another person’s short term event. It should therefore be possible94

to tackle causal attribution within a unified methodological framework based on shared95

concepts and definitions of causality. Doing so would allow to bridge the methodological96

gap that exists between event attribution and trend attribution, thereby covering the full97

scope of climate attribution studies. Such a unification would present in our view several98

advantages: enhancing methodological research synergies between D&A topics, improving99
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the shared interpretability of results, and streamlining the communication of causal claims100

— in particular when it comes to uncertainty.101

Here, we address this issue by adapting some formal definitions of causality and proba-102

bility of causation to the context of climate change attribution. Technical implementation103

under standard assumptions in D&A is then detailed. The method is finally illustrated on104

the warming observed over the 20th century.105

2. Causal counterfactual theory106

While an overview of causal theory can not be repeated here, it is necessary for clarity107

and self-containedness to highlight its key ideas and most relevant concepts for the present108

discussion109

Let us first recall the so-called “counterfactual” definition of causality by quoting the110

18th century Scottish philosopher David Hume: “We may define a cause to be an object111

followed by another, where, if the first object had not been, the second never had existed.” In112

other words, an event E (E stands for effect) is caused by an event C (C stands for cause)113

if and only if E would not occur were it not for C. Note that the word event is used here in114

its general, mathematical sense of subset of a sample space Ω. According to this definition,115

evidencing causality requires a counterfactual approach by which one inquires whether or116

not the event E would have occurred in an hypothetical world, termed counterfactual, in117

which the event C would not have occurred. The fundamental approach of causality which118

is implied by this definition is still entirely relevant in the standard causal theory. It may119

also arguably be connected to the guidance principles of the conventional climate change120

attribution framework and to the optimal fingerprinting models, in a qualitative manner.121

The main virtue of the standard causality theory of Pearl consists in our view in formalizing122

precisely the above qualitative definition, thus allowing for sound quantitative developments.123

A prominent feature of this theory consists in first recognizing that causation corresponds to124
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rather different situations and that three distinct facets of causality should be distinguished:125

(i) necessary causation, where the occurrence of E requires that of C but may also require126

other factors; (ii) sufficient causation, where the occurrence of C drives that of E but may127

not be required for E to occur; (iii) necessary and sufficient causation, where (i) and (ii) both128

hold. The fundamental distinction between these three facets can be visualized by using the129

simple illustration shown in Figure 1.130

While the counterfactual definition as well as the three facets of causality described above131

may be understood at first in a fully deterministic sense, perhaps the main strength of Pearl’s132

formalization is to propose an extension of these definitions under a probabilistic setting.133

The probabilities of causation are thereby defined as follow:134

PS(C → E) = P(E | do(C), C, E) , (3a)

PN(C → E) = P(E | do(C), C, E) , (3b)

PNS(C → E) = P(E | do(C), E | do(C)) . (3c)

where C and E are the complementaries of C and E, and where the notation do(.) means135

that an intervention is applied to the system under causal investigation. For instance PS,136

the probability of sufficient causation, reads from the above: the probability that E occurs137

when C is interventionally forced to occur, conditional on the fact that neither C nor E138

were occurring in the first place. Conversely PN, the probability of necessary causation, is139

defined as the probability that E would not occur when C is interventionally forced to not140

occur, conditional on the fact that both C and E were occurring in the first place. While141

we omit here the formal definition of the intervention do(.) for brevity, the latter can be142

understood merely as experimentation: applying these definitions thus requires the ability143

to experiment. Real experimentation, whether in situ or in vivo, is often accessible in many144

fields but it is not in climate research for obvious reasons. In this case, one can thus only145

rely on numerical in silico experimentation: the implications of this constraint are discussed146

further.147
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While the probabilities of causation are not easily computable in general, their expres-148

sion fortunately becomes quite simple under assumptions that are reasonable in the case of149

external forcings (i.e. exogeneity and monotonicity):150

PN(C → E) = max (1− p/p, 0) , (4a)

PS(C → E) = max (1− (1− p)/(1− p), 0) , (4b)

PNS(C → E) = max (p− p, 0) . (4c)

where p = P(E | do(C)) is the so-called factual probability of the event E in the real world151

where C did occur and p = P(E | do(C)) is its counterfactual probability in the hypothetic152

world as it is would have been had C not occurred. One may easily verify that Equation153

(4) holds in the three examples of Figure 1 by assuming that the switches are probabilistic154

and exogenous. In any case, under such circumstances, the causal attribution problem can155

thus be narrowed down to computing an estimate of the probabilities p and p. The latter156

only requires two experiments: a factual experiment do(C) and a counterfactual one do(C).157

Equation (3) then yields PN,PS and PNS from which a causal statement can be formulated.158

Each three probability PS, PN and PNS have different implications depending on the159

context. For instance, two perspectives can be considered: (i) the ex post perspective of160

the plaintiff or the judge who asks “does C bear the responsibility of the event E that did161

occur?”; and (ii) the ex ante perspective of the planner or the policymaker who instead asks162

“what should be done w.r.t. C to prevent future occurrence of E?”. It is PN that is typically163

more relevant to context (i) involving legal responsibility, whereas PS has more relevance164

for context (ii) involving policy elaboration. Both these perspectives could be relevant in165

the context of climate change, and it thus makes sense to trade them off. Note that PS and166

PN can be articulated with the conventional definition recalled in introduction. Indeed, the167

“demonstration that the change is consistent with (...)” implicitly corresponds to the idea168

of sufficient causation, whereas “(...) is not consistent with (...)” corresponds to that of169

necessary causation. The conventional definition therefore implicitly requires a high PS and170
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a high PN to attribute a change to a given cause.171

PNS may be precisely viewed as a probability which combines necessity and sufficiency.172

It does so in a conservative way since we have by construction that PNS ≤ min(PN,PS). In173

particular, this means that a low PNS does not imply the absence of a causal relationship174

because either a high PN or a high PS may still prevail even when PNS is low. On the175

other hand, it presents the advantage that any statement derived from PNS asserting the176

existence of a causal link, holds both in terms of necessity and sufficiency. This property177

is thus prone to simplify causal communication, in particular towards the general public,178

since the distinction no longer needs to be explained. Therefore, establishing a high PNS179

may be considered as a suitable goal to evidence the existence of a causal relationship in a180

simple and straightforward way. In particular, the limiting case PNS = 1 corresponds to the181

fully deterministic, systematic and single-caused situation in Figure 1c — i.e. undeniably182

the most stringent way in which one may understand causality.183

3. Probabilities of causation of climate change184

We now return to the question of interest: for a given forcing f and an observed evolution185

of the climate system y, can y be attributed to f? More precisely, what is the probability186

P(f → y) that f has caused y? We propose to tackle this problem by applying the causal187

counterfactual theory to the context of climate change, and more specifically, by using the188

three probabilities of causation PN, PS and PNS recalled above. This Section shows that it189

can be done to a large extent similarly to the approach of Hannart et al. (2015a) for weather190

event attribution. In particular, as in weather event attribution, the crucial question to be191

answered as a starting point consists in narrowing down the definitions of the cause event192

C and of the effect event E associated to the question at stake — where the word “event”193

is used here in its general mathematical sense of “subset”.194
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a. Counterfactual setting195

For the cause event C, a straightforward answer is possible: we can follow the exact same196

approach as in weather attribution by defining C as “presence of forcing f” (i.e. the factual197

world that occurred) and C as “absence of forcing f” (i.e. the counterfactual world that198

would have occurred in the absence of f). Indeed, forcing f can be switched on and off in199

numerical simulations of the climate evolution over the industrial period, as in the examples200

of Fig. 1 and as in standard weather attribution studies. Incidentally, the sample space201

Ω consists in the set of all possible climate trajectories in the presence and absence of f ,202

including the observed one y. In other words, all forcings other than f are held constant at203

their observed values as they are not concerned by the causal question.204

In practice, the factual runs naturally always correspond to the HIST experiment. The205

counterfactual runs are obtained from the same setting as HIST but switching off the forcing206

of interest, and thus correspond to the NAT experiment if f consists of the anthropogenic207

forcing (i.e. f = ANT), i.e. Ω = {HIST runs; NAT runs}.208

These definitions of C and Ω have an important implication w.r.t. the design of numerical209

experiments in climate change attribution: the latter are required to be counterfactual (i.e.210

all forcings except f), in agreement with the design prevailing in weather event attribution,211

but in contrast with the design prevailing in trend attribution (forcing f only). We elaborate212

further on this remark in Section 6.213

b. Balancing necessity and sufficiency214

To define the effect event E, we propose to follow the same approach as in weather event215

attribution, where E is usually defined based on an ad hoc climatic index Z exceeding a216

threshold u:217

E = {Z ≥ u} (5)
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Thus, defining E implies choosing an appropriate variable Z and threshold u that reflect218

the focus of the question while keeping in mind the implications of the balance between the219

probabilities of necessary and sufficient causation. We now illustrate this issue and lay out220

some proposals to address it.221

Consider the question “Have anthropogenic CO2 emissions caused global warming?”.222

Following the above, the event “global warming” may be loosely defined as a positive trend223

on global Earth surface temperature, i.e. E = {Z ≥ 0} where Z is the global surface224

temperature trend coefficient and the threshold u is zero. In that case, E nearly always225

occurs in the factual world (p ' 1) but it is also frequent in the counterfactual one (p226

medium) thus the emphasis is mostly on PS, i.e. on sufficient causation, while PN and PNS227

will have moderate values. But if global warming is more restrictively defined as a warming228

trend comparable to or greater than the observed trend, i.e. E = {Z ≥ z} where u = z is229

the observed trend, then the event becomes nearly impossible in the counterfactual world230

(p ' 0) but remains frequent in the factual one (p medium) thus the emphasis is on PN, i.e.231

on necessary causation, while the values of PS and PNS will this time be low. Therefore, the232

above two extreme definitions both yield a low PNS. But under a more balanced definition233

of global warming as a trend exceeding an intermediate value u∗ ∈ [0, z], then the event234

nearly always occurs in the factual in the factual world (p ' 1) and yet remains very rare235

in the counterfactual one (p ' 0). Hence PNS is then high: both necessary and sufficient236

causation prevail. We propose to take advantage of this optimal value to define the event237

“global warming” as the global trend index Z exceeding the optimal threshold u∗ such that238

the amount of causal evidence, in a PNS sense, is maximized:239

u∗ = argmaxu<z PNS(C → {Z ≥ u}) (6)

where the condition u < z insures that the event has actually occurred. When used on real240

data (see Section 6), this approach yields a high value of PNS = 0.95 for the above question241

(Figure 2b).242

Let us now consider the question “Have anthropogenic CO2 emissions caused the Argen-243
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tinian heatwave of December 2013?” (Hannart et al. 2015b). Here, the event can be defined244

as E = {Z ≥ u} where Z is surface temperature anomaly averaged over an ad-hoc space-245

time window. Like in the previous case, the causal evidence agains shifts from necessary246

and not sufficient when u is equal to the observed value of the index z = 24.5◦C (unusual247

event in both worlds but much more so in the counterfactual one) to sufficient and not nec-248

essary when u is small (usual event in both worlds but much more so in the factual one).249

Like in the previous case, a possible approach here would be to balance both quantities by250

maximizing PNS in u as in Equation (6). However, this would lead here to a substantially251

lower threshold which no longer reflects the rare and extreme nature of the event “heatwave”252

under scrutiny. Furthermore, this would yield a well-balanced, but pretty low level of causal253

evidence (PNS = 0.35). Thus maximizing PNS is not relevant here. Instead, maximizing254

PN, even if that is at the expense of PS, is arguably more relevant here since we are dealing255

with extreme events that are rare in both worlds, thereby inherently limiting the evidence of256

sufficient causation. This maximization corresponds to u∗ = argmaxu<z PN(C → {Z ≥ u})257

which often yields the highest observed threshold u = z. Therefore, PN (i.e. the FAR) is258

an appropriate metric for the attribution of extreme weather events, and a high threshold u259

matching with the observed value z should be used in order to maximize it. In contrast with260

weather events, long term changes are prone to be associated with much powerful causal261

evidence that simultaneously involves necessary and sufficient causation, and may yield high262

values for PN, PS and PNS. PNS is thus an appropriate summary metric to consider for263

the attribution of climate changes, in agreement with D&A guidance principles (Hegerl et264

al. 2010). An optimal intermediate threshold can be chosen by maximizing it.265

c. Building an optimal index266

In the above example where “global warming” is the focus of the question, the variable of267

interest Z to define the event can be considered as implicitly stated in the question, insofar268

as the term “global warming” implicitly refers to an increasing trend on global temperature.269
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However, in the context of climate change attribution, we often investigate the cause of “an270

observed change y” with no precise characterization on the nature of the change thought to271

be relevant, and where y may be a large dimensional space-time vector. Thus the definition272

of the index Z in this case is more ambiguous.273

We argue that in such a case, the physical characteristics of y which are implicitly consid-274

ered relevant to the causal question are precisely those which best enhance the existence of275

a causal relationship in a PNS sense. This indeed corresponds to the idea of “fingerprinting”276

used thus far in climate change attribution studies (as well as in criminal investigations,277

hence the name): we seek a fingerprint, i.e. a distinctive characteristic of y which would278

never appear in the absence of forcing f (i.e. p ' 0) but systematically does in its presence279

(i.e. p ' 1). If this characteristic shows up in observations, then the causal evidence is280

conclusive. A fingerprint may thus be thought of as a characteristic which maximizes the281

gap between p and p and thereby maximizes PNS, by definition.282

As an illustration, Marvel and Bonfils (2013) focus on the attribution of changes in pre-283

cipitation, and subsequently address the question “Have anthropogenic forcing caused the284

observed evolution of precipitation at a global level?”. Arguably, this study illustrates our285

point in the sense that it addresses the question by defining a fingerprint index Z which286

aims precisely at reflecting the features of the change in precipitation that are thought to287

materialize frequently (if not systematically) in the factual world and yet are expected to288

be rare (if not impossible) in the counterfactual one, based on physical considerations. In289

practice, the index Z defined by the authors consists of a non-dimensional scalar summa-290

rizing the main spatial and physical features of precipitation evolution w.r.t. dynamics and291

thermodynamics. The factual and counterfactual PDFs of Z are then derived from the292

HIST and NAT runs respectively (Fig. 3c). From these PDFs, one can easily obtain an293

optimal threshold u∗ for the precipitation index Z by applying Equation (6). This yields294

PNS = 0.43, i.e. anthropogenic forcings have about as likely as not caused the observed295

evolution of precipitation.296
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A qualitative approach driven by physical considerations, such as the one of Marvel and297

Bonfils (2013), is perfectly possible to define a fingerprint index Z that aims at maximizing298

PNS. However, a quantitative approach can also help in order to define Z optimally, and299

to identify the features of y that best discriminate between the factual and counterfactual300

worlds. Indeed, the qualitative, physical elicitation of Z may be difficult when the joint301

evolution of the variables at stake is complex or not well-understood a priori. Furthermore,302

one may also wish to combine lines of evidence by treating several different variables at the303

same time in y (i.e. precipitation and temperature, Yan et al. (2016)). Let us introduce304

the notation Z = φ(Y ) where Y is the space-time vectorial random variable of size n which305

observed realization is y, and φ is a mapping from Rn to R. Extending Equation (6) to306

the simultaneous determination of the optimal mapping φ∗ and optimal threshold u∗, we307

propose the following maximization:308

(u∗, φ∗) = argmaxu<φ(y), φ∈Φ PNS(C → {φ(Y ) ≥ u}) (7)

The event E∗ = {φ∗(Y ) ≥ u∗} defined above in Equation (7) may thus be referred to as309

the optimal fingerprint w.r.t. forcing f . The maximization performed in Equation (7) also310

suggests that our approach shares some similarity with the method of Yan et al. (2016),311

insofar as the variables of interest are in both cases selected mathematically by maximizing312

a criterion which is relevant for attribution (i.e. potential detectability in Yan et al. (2016),313

PNS in the present article), rather than by following qualitative, physics- or impact-oriented,314

considerations.315

4. Implementation under the standard framework316

We now turn to the practical aspects of implementing the approach described in Section317

3 above, based on the observations y and on climate model experiments.318
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a. Generalities319

The maximization of Equation (7) requires the possibility to evaluate the probabilities320

of occurrence p and p, in the factual and counterfactual world, of the event {φ(Y ) ≥ u},321

for any φ and u. For this purpose, it is convenient to derive beforehand the factual and322

counterfactual PDFs of the random variable Y , denoted [Y | f ] and
[
Y | f

]
respectively.323

Assuming their two first moments are finite, we introduce:324

E (Y | f) = µ , V (Y | f) = Σ

E
(
Y | f

)
= µ , V (Y | f) = Σ

(8)

The means µ and µ represent the expected response in the factual and counterfactual worlds;325

it is intuitive that their difference µ−µ will be key to the analysis. The covariances Σ and Σ326

represent all the uncertainties at stake, they must be carefully determined based on additional327

assumptions. To avoid repetition in presenting these assumptions, we will detail them for328

the factual world only, but they will be applied identically in both worlds.329

As recalled above, in situ experimentation on the climate system is not accessible, thus330

we are left with in silico experimentation as the only option. While the increasing realism of331

climate system models renders such an in silico approach plausible, it is clear that modeling332

errors associated to their numerical and physical imperfections should be taken into account333

into Σ. In addition, sampling uncertainty and observational uncertainty, which are com-334

monplace sources of uncertainty in dealing with experimental results in an in situ context335

as well, should also be taken into account. Finally, internal climate variability also needs to336

be factored. The latter four sources of uncertainty can be represented by decomposing Σ337

into a sum of four terms:338

Σ = C + Q + R + S (9)

where the component C represents climate internal variability; Q represents model un-339

certainty; R represents observational uncertainty; and S represents sampling uncertainty.340

Assumptions regarding the latter four sources of uncertainty are also key in the conventional341
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Gaussian linear regression framework recalled in Section 1. We therefore propose to take342

advantage of some assumptions, data and procedures that have been previously introduced343

under the conventional framework, and adapt them to specify µ, C, Q, R and S. The sta-344

tistical model specification below can thus be viewed as an extension of developments under345

the conventional framework, in particular those exposed in Hannart (2016). The various346

parameters and data involved, as well as their conditioning, are summarized in the direct347

acyclic graph of Figure 3.348

b. Model description349

The conventional linear regression formulation recalled in Equation (1) implies that the350

random variable Y is Gaussian with mean xβ and covariance C + R:351

[Y | β,x,C,R ] = N (xβ,C + R) (10)

In the conventional framework, climate models are assumed to correctly represent the re-352

sponse patterns x but to err on their amplitude. Recognizing that the scaling factors β353

thereby aim at representing the error associated to models, we prefer to treat β as a random354

variable instead of a fixed parameter to be estimated. The latter factors are also assumed355

to be Gaussian:356

[ β | ω ] = N (e, ω2I) (11)

where we assume that the expected value of β is e = (1, ..., 1)′, and ω is a scalar parameter357

which will be determined further in this Section. Combining Equations (10) and (11), it358

comes:359

[Y | µ,x,C,R, ω ] = N (µ,C + R + ω2xx′) (12)

where µ = xe =
∑p

i=1 xi. Equation (12) thus shows that the covariance Q associated to360

model error can be represented by the component ω2xx′, which results from the random scal-361

ing of the individual responses x1, x2, ..., xp. Furthermore, the expected value of Y , denoted362

µ, is equal to the sum of the latter individual responses. Under the additivity assumption363
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prevailing in the conventional framework, µ thus corresponds to the model response under364

the scenario where the p forcings are present. Hence, µ can be obtained by estimating di-365

rectly the latter combined response as opposed to estimating the individual responses one366

by one and summing them up. Such a direct estimation of µ is indeed advantageous from a367

sampling error standpoint, as will be made clear immediately below.368

The PDF of Y in Equation (12) involves three quantities µ, x and C that needs to369

be estimated from a finite ensemble of model runs denoted E, which of course introduces370

sampling uncertainty. Assuming independence among runs, it is straightforward to show371

that:372

[µ | C,E ] = N (µ̂, 1
r
C) , [xi | C,E ] ∼ N (x̂i,

1
ri

C) for i = 1, ..., p (13)

where x̂i is the ensemble average for the individual response i; µ̂ is the ensemble average373

for the combined response; ri is the number of runs available for the individual response to374

forcing i; r is the number of combined forcings runs. Combining Equations (12) and (13),375

and after some algebra, it comes:376

[Y | C,R,E, ω ] = N (µ̂,C + R + ω2x̂x̂′ + λC) (14)

with λ = 1/r+ ω2
∑

i 1/ri, and where the sampling uncertainty S on the responses µ and x377

thus corresponds to the term λC. On the other hand, the internal variability component C378

also has to be estimated from the r0 preindustrial control runs, which introduces additional379

sampling uncertainty. The sampling uncertainty on C can be treated by following the380

approach of Hannart (2016), with an Inverse Wishart PDF:381

[ C | E ] = IW(Ĉ, ν̂) (15)

where the estimated covariance Ĉ consists of a so-called shrinkage estimator:382

Ĉ = â∆̂ + (1− â)Ω̂ (16)

where Ω̂ is the empirical covariance of the control ensemble; ∆ is a shrinkage target matrix383

taken here to be equal to diag(Ω̂) i.e. ∆̂ii = Ω̂ii and ∆̂ij = 0 for i 6= j; the shrinkage384
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intensity â is obtained from the marginal likelihood maximization described in Hannart et385

al. (2014); and ν̂ = 2 + r0/(1− â).386

Combining Equations (14) and (15), and after some algebra and an approximation, it387

comes:388

[Y | E, ω, σ ] = St(µ̂, σ2I + ω2x̂x̂′ + (1 + λ)Ĉ, ν̂) (17)

where we adopted the simplified parametric form R = σ2I for the covariance of observational389

error, and where St(µ,Σ, ν) is the multivariate t distribution with mean µ, variance Σ and ν390

degrees of freedom. Equation (17) implies that taking into account the sampling uncertainty391

on C does not affect the total variance of Y . Instead, it only affects the shape of the PDF392

of Y , which has thicker tails than the Gaussian distribution. With these parameterizations,393

our model for Y is thus a parametric Student t model with two parameters (σ, ω).394

After computing the estimators µ̂, x̂, Ĉ and ν̂ using the ensemble of model experiments395

as described above, the parameters (σ, ω) are estimated by fitting the above model to the396

observation y based on likelihood maximization. The log-likelihood of the model has the397

following expression:398

`(σ, ω; y) = −1
2

log |(1 + λ)Ĉ + σ2I + ω2x̂x̂′|

−1
2
(ν̂ + n) log

(
1 + 1

ν̂−2
(y − µ̂)′

(
(1 + λ)Ĉ + σ2I + ω2x̂x̂′

)−1

(y − µ̂)

) (18)

The estimators σ̂ and ω̂ are then obtained numerically using a standard maximization al-399

gorithm (e.g. gradient descent). With µ̂ being obtained from factual runs (i.e. HIST runs)400

and x̂ containing all the forcings including f , this procedure thus yields the PDF of Y in401

the factual world:402

[Y | f ] = St(µ̂, Σ̂, ν̂)

Σ̂ = (1 + λ̂)Ĉ + σ̂2I + ω̂2x̂x̂′
(19)

Next, to obtain
[
Y | f

]
, one simply needs to change the mean µ̂ to µ̂ obtained as the en-403

semble average for the counterfactual experiment “all forcings except f”. Some changes also404

need to be made regarding the covariance. Indeed, since forcing f is absent in the counter-405

factual world, the model error covariance component ω̂2x̂f x̂
′
f , corresponding to the random406
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scaling of the response x̂f to forcing f , must be taken out of the covariance. Furthermore, if407

the number of counterfactual runs r differ from the number of factual runs r, the sampling408

uncertainty Ĉ/r associated to estimating µ also has to be modified. The PDF of Y in the409

counterfactual world can thus be written:410 [
Y | f

]
= St(µ̂, Σ̂, ν̂)

Σ̂ = Σ̂− ω̂2x̂f x̂
′
f + (1

r
− 1

r
)Ĉ

(20)

As noted above, when f is anthropogenic forcing, the counterfactual experiment NAT is411

usually available in CMIP runs, allowing for a straightforward derivation of µ̂. But for other412

forcings, by the design of CMIP experiments, counterfactual runs are usually not available.413

A possible workaround then consists in applying the additivity assumption to approximate414

µ̂ with µ̂− x̂f . However in that case, the sampling uncertainty term Ĉ/rf corresponding to415

the estimation of x̂f must be added to the covariance Σ̂.416

c. Derivation of the probabilities of causation417

With the two PDFs of Y in hand, an approximated solution to the maximization of418

Equation (7) can be conveniently obtained by linearizing φ, yielding a closed mathematical419

expression for the optimal index φ∗(Y ):420

φ∗(Y ) = (µ̂− µ̂)′Σ̂
−1
Y (21)

Details of the approximations made and of the mathematical derivation of Equation (21) are421

given in Appendix. The optimal index Z∗ = φ∗(Y ) can thus be interpreted as the projection422

of Y onto the vector Σ̂
−1

(µ̂− µ̂) which will be denoted φ∗ hereinafter, i.e. φ∗(Y ) ≡ φ∗
′
Y .423

To obtain PNS, we then need to derive the factual and counterfactual CDFs of Z = φ∗(Y ),424

denoted G and G respectively. Since no closed form expression of these CDFs is available,425

we simulate realizations thereof. Drawing two samples of N random realizations of Y from426

the Student t distributions [Y | f ] and
[
Y | f

]
is straightforward, by treating the Student427

t as a compound Gaussian–Chi-squared distribution. Samples of Z are then immediately428
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obtained by projecting onto φ∗ and the desired CDFs can be estimated using the standard429

kernel estimator, yielding Ĝ(u) and Ĝ(u) for all u ∈ R. Finally, PNS∗ follows as:430

PNS∗ = Ĝ(u∗)− Ĝ(u∗) (22)

and:431

PN∗ = 1− 1− Ĝ(u∗)

1− Ĝ(u∗)
, PS∗ = 1− Ĝ(u∗)

Ĝ(u∗)
(23)

where u∗ = argmaxu<z {Ĝ(u)− Ĝ(u)}.432

d. Reducing computational cost433

When the dimension of y is large, the above described procedure can become prohibitively434

costly if applied straightforwardly, due to the necessity to derive the inverse and determinant435

of Σ̂ at several steps of the procedure. However, the computational cost of these operations436

can be drastically reduced. Applying the Sherman-Morrison-Woodbury formula (and omit-437

ting the notation .̂ for more clarity), we have:438

Σ−1 = A−1 − ω2A−1x(I + ω2x′A−1x)−1x′A−1 (24)

where A = (1 + λ)C + σ2I can be inverted using the same formula:439

A−1 = B−1 − 1
r0

(1 + λ)(1− a)B−1x0(I + 1
r0

(1 + λ)(1− a)x′0B
−1x0)−1x′0B

−1 (25)

where B = (1 +λ)a∆ + σ2I. Likewise, we apply the Sylvester formula twice to compute the440

determinant of Σ:441

|Σ| = |A| . |I + ω2x′A−1x|

= |B| . |I + 1
r0

(1 + λ)(1− a)x′0B
−1x0| . |I + ω2x′A−1x|

(26)

Independently of n, the matrices I+ω2x′A−1x is of size p, I+ 1
r0

(1+λ)(1−a)x′0B
−1x0 is of size442

r0, and B is diagonal. Obtaining their inverse and determinant is therefore computationally443

cheap. Hence, the inverse and determinant of Σ can be obtained at a low computational444

cost by applying first Equation (25) to determine A−1 and second Equations (24) and (26).445
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5. Illustration on temperature change446

Our methodological proposal is applied to the observed evolution of Earth’s surface tem-447

perature during the 20th century, with the focus being restrictively on the attribution to448

anthropogenic forcings. More precisely, y consists of a spatial-temporal vector of size n = 54449

which contains the observed surface temperatures averaged over 54 time-space windows.450

These windows are defined at a coarse resolution: Earth’s surface is divided into 6 regions of451

similar size (3 in each hemisphere) while the period 1910-2000 is divided into 9 decades. The452

decade 1900-1910 is used as a reference period, and all values are converted to anomalies453

w.r.t. the first decade. The HadCRUT4 observational dataset (Morice et al. 2012) was used454

to obtain y. With respect to climate simulations, the runs of the IPSL-CM5A-LR model455

(Dufresne et al. 2012) for the NAT, ANT, HIST and PIcontrol experiments were used (see456

Appendix C for details) and converted to the same format as y after adequate space-time457

averaging.458

Following the procedure described in Section 4, we successively derived the estimated459

factual response µ̂ using the r HIST runs; the estimated counterfactual response µ̂ using the460

r NAT runs; the estimated individual responses x1 and x2 using the r1 NAT runs and r2461

ANT runs respectively (p = 2 and x = (x1, x2)); the estimated covariance Ĉ from the r0462

PIcontrol runs. Then, we derived σ̂ and ω̂ by likelihood maximization, to obtain Σ̂ and Σ̂.463

An assessment of the relative importance of the four components of uncertainty was ob-464

tained by deriving the trace of each component (i.e. the sum of diagonal terms) normalized465

to the trace of the complete covariance. The results for the factual and counterfactual covari-466

ances are plotted in Figure 3a, showing that climate variability is the dominant contribution,467

followed by model uncertainty (in the factual world), observational uncertainty and sampling468

uncertainty. The split between model and observational uncertainty is to some extent arbi-469

trary as we have no objective way to separate them based only on y, i.e. the model could be470

equivalently formulated as Q = ω2xx′ + (1− α)σ2I and R = ασ2I. An objective separation471

would require an ensemble representing observational uncertainty, allowing for a preliminary472
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estimation of R.473

The optimal vector φ∗, designed to capture the space-time patterns that best discriminate474

the HIST evolution and the NAT one, was then obtained from Equation (21). To identify475

which features of Y are captured by this optimal mapping, the coefficients (φ∗1, ..., φ
∗
n) were476

averaged spatially and temporally, and were plotted in Figure 3bc. Firstly, it can be noted477

that the coefficients’ global average 〈φ∗〉 =
∑n

i=1 φ
∗
i is large and positive: a major discrim-478

inant feature is merely global mean temperature, as expected. Secondly, the coefficients479

also exhibit substantial variation around their average 〈φ∗〉 in both space and time. Spa-480

tial variations of φ∗ unsurprisingly suggest that, beyond global mean temperature, other481

discriminant features include the warming contrast prevailing between the two hemispheres482

and/or between low and high latitudes (the low resolution prevent from a clear separation),483

as well as between ocean and land (Fig. 3b). Temporal variations of φ∗ suggest that discrim-484

inant features includes the linear trend increase as expected, but also higher order temporal485

variations (Fig. 3c).486

The PDFs of the optimal index Z = φ∗
′
Y were derived, and are plotted in Figure 4,487

together with PNS as a function of the threshold u. The maximum of PNS determines the488

desired probability of causation:489

P(ANT→ y) = 0.9999 (27)

In IPCC terminology, this would mean that anthropogenic forcings have virtually certainly490

caused the observed evolution of temperature, according to our approach. More precisely,491

the probability that the observed evolution of temperature is not caused by anthropogenic492

forcings is one in then thousands (1:10,000) instead of one in twenty (1:20). Therefore, the493

level of causal evidence found here is substantially higher than the level assessed in the IPCC494

report. This discrepancy will be discussed in Section 6.495

Before digging into this discussion, it is interesting to assess the relative importance of496

the “trivial” causal evidence coming from the global increase in temperature, and of the less497

obvious causal evidence coming from space-time features captured by φ∗. For this purpose,498
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we merely split φ∗ into the sum of a global average contribution
∑n

i=1〈φ∗〉Yi and of the499

remaining variations
∑n

i=1(φ∗i − 〈φ∗〉)Yi. The PDFs of the resulting indexes are plotted in500

Figure 4ab. Their bivariate PDF can also be visualized with the scatterplot of Figure 4c.501

The following two probabilities of causation are obtained:502

P(ANT→ 〈y〉) = 0.9781

P(ANT→ y − 〈y〉) = 0.9994
(28)

where 〈y〉 refer to the globally averaged evolution and y − 〈y〉 refer to other features of503

evolution. Therefore, while the globally averaged warming provides alone a substantial level504

of evidence (i.e. P(ANT → 〈y〉) = 0.9781), these results suggest that the overwhelmingly505

high overall evidence (i.e. P(ANT → y) = 0.9999) is primarily associated to non-obvious506

space-time features of the observed temperature change.507

6. Discussion508

a. Comparison with previous statements509

The probabilities of causation obtained by using our proposal appear may depart from510

the levels of uncertainty asserted by the latest IPCC report, and/or by previous work. For511

instance, when y corresponds to the evolution of precipitation observed over the entire globe512

during the satellite era (1979-2012), we have shown in Section 3 that, using the dynamic-513

thermodynamic index built by Marvel and Bonfils (2013), the associated probability of cau-514

sation P(ANT→ y) is found to be 0.43. This probability is thus significantly lower than the515

one implied by the claim made in this study that “the changes in precipitation observed in516

the satellite era are likely to be anthropogenic in nature” wherein “likely” implicitly means517

P(ANT→ y) ≥ 0.66.518

In contrast with the situation prevailing for precipitation, when y corresponds to the519

observed evolution of Earth’s surface temperature during the 20th century, and in spite of520

using a very coarse spatial resolution, we found a probability of causation P(ANT → y) =521
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0.9999 which considerably exceeds the 0.95 probability implied by the latest IPCC report.522

Such a gap deserves to be discussed.523

Firstly, the probability of causation defined in our approach is of course sensitive to the524

assumptions that are made on the various sources of uncertainty, all of which are here built525

into Σ. Naturally, increasing the level of uncertainty, for instance through an inflation factor526

applied to Σ, reduces the probability of causation (Figure 5). In the present illustration,527

uncertainty needs to inflated by a factor 2.4 to obtain P(ANT → y) = 0.95 in agreement528

with the IPCC statement. Therefore, a speculative explanation for the gap is that experts529

may be adopting a conservative approach by implicitly inflating uncertainty, although not530

explicitly, perhaps in an attempt to account for additional sources of uncertainty that are531

not well known. In the present case, such an inflation should amount to 2.4 to explain the532

gap. This number is arguably too high to provide a satisfactory standalone explanation, yet533

overall, such a conservativeness may partly contribute to the discrepancy when it comes to534

temperature. However, no such conservativeness seems to be at play w.r.t. precipitation.535

This thus highlights the need for a more explicit and consistent use of conservativeness — if536

any.537

Another possible explanation for the discrepancy is more technical. Many previous at-538

tribution studies buttressing the IPCC statement regarding temperature, are based on an539

inference method for the linear regression model of Equation (1) which is not optimal w.r.t.540

maximizing causal evidence — despite of it being often referred to as “optimal fingerprint-541

ing”. More precisely, the inference on the scaling factors β and the associated uncertainty542

quantification, are obtained by projecting the observation y as well as the patterns x onto543

the leading eigenvectors of the covariance C associated to climate internal variability. Such a544

projection choice sharply contrasts with the projection used in our approach, which is indeed545

performed onto the vector φ∗ = Σ−1(µ− µ). Denoting (v1, ..., vn) the eigenvectors of Σ and546
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(λ1, ..., λn) the corresponding eigenvalues, the expression of φ∗ can be written:547

φ∗ =
n∑
k=1

〈vk | µ− µ〉
λk

. vk (29)

Equation (29) shows that projecting onto φ∗ does not emphasize the leading eigenvectors548

of Σ, in contrast to the aforementioned standard projection. Instead, it emphasizes the549

eigenvectors that simultaneously present a low eigenvalue λk and a strong alignment with550

the contrast between the two worlds µ − µ. As a matter of fact, the ratio 〈vk | µ − µ〉/λk551

can be interpreted as the signal-to-noise ratio associated to the eigenvector vk, where the552

eigenvalue λk quantifies the magnitude of the noise and 〈vk | µ − µ〉 that of the causal553

signal. Projecting onto φ∗ thus maximizes the signal-to-noise ratio. In contrast, since C is a554

large contribution to Σ (the dominant one in our illustration), a projection onto the leading555

eigenvectors of C naturally tends to amplify the noise, and to partly hide the relevant causal556

signal µ− µ.557

In order to assess whether or not these theoretical remarks hold in practice, we revisited558

our illustration and quantified the impact on P(ANT → y) of using such a projection onto559

the leading eigenvectors of C. For this purpose, after computing the projection matrix P on560

the ten leading eigenvectors of C, our procedure was applied identically, but this time using561

the projected vector φ+ = Pφ∗. Results are shown in Figure 6, again after splitting the562

contribution of global mean change and patterns of change. Unsurprisingly, the probability563

of causation associated to the global mean change remains unmodified at 0.978. However, the564

probability of causation associated to the space-time features of warming drops from 0.9994565

to 0.92. Indeed, the features that most discriminate the two worlds, and are summarized in566

φ∗, do not align well with the leading eigenvectors of C. They are thus incompletely reflected567

by the projected vector φ+ (Figure 7). Furthermore, the uncertainty of the resulting index568

Z+ = φ+′
Y is high by construction, as the magnitude of climate variability is maximized569

when projecting onto its leading modes (Figure 6b). This further contributes to reducing570

P(ANT→ y) to 0.992.571
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b. Counterfactual experiments572

Our methodological proposal has an immediate implication w.r.t. the design of stan-573

dardized CMIP experiments dedicated to D&A: a natural option would be to change the574

present design “forcing f only” into a counterfactual design “all forcings except f”. Indeed,575

P(f → y) is driven by the difference µ − µf between the factual response µ (i.e. historical576

experiment) and the counterfactual response µf (i.e. all forcings except f experiment). Un-577

der the assumption that forcings do not interact with one another and that the combined578

response matches with the sum of the individual responses, the difference µ − µf coincides579

with the individual response xf (i.e. forcing f only experiment). While this hypothesis is580

well established for temperature at large scale (Gillett et al. 2004), it appears to break down581

for other variables (e.g. precipitation, (Shiogama et al. 2013)) or over particular regions582

(e.g the Southern extratropics, (Morgenstern et al. 2014)) where forcings appear to signifi-583

cantly interplay. Such a lack of additivity would inevitably damage the results of the causal584

analysis. It is thus important in our view to better understand the domain of validity of585

the forcing-additivity assumption and to evaluate the drawbacks of the present “one forcing586

only” design versus its advantages. Such an analysis does require “forcing f only” experi-587

ments, but also “all forcings except f” experiments in order to allow for comparison. This588

effort would hence justify including in the DAMIP set of experiments an “all forcings except589

f” experiment — which is presently absent even in the lowest priority tier thereof — at least590

for the most important forcings such as anthropogenic CO2.591

c. Benchmarking high probabilities592

Section 5 showed that the proposed approach may sometimes yield probabilities of cau-593

sation that are very close to one. How can we communicate such low levels of uncertainty?594

This question arises insofar as the term “virtual certainty” applies as soon as PNS exceeds595

0.99 under the current IPCC language. Thus, this terminology would be unfit to express in596
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words a PNS increase from 0.99 to 0.9999, say — even though such an increase corresponds597

to a large reduction of uncertainty by a factor one hundred. One option to address this issue598

is to use instead the uncertainty terminology of theoretical physics, in which a probability is599

translated into an exceedance level under the Gaussian distribution, measured in numbers600

of σ from the mean (where σ denotes standard deviation), i.e. F−1(PNS)σ with F the CDF601

of the standard Gaussian distribution. Under such terminology, “virtual certainty” thus602

corresponds to a level of uncertainty of 2.3σ, while P(ANT→ y) = 0.9999 found in Section603

5 reaches 3.7σ. It is interesting to note that the level of uncertainty officially requested in604

theoretical physics to corroborate a discovery as such — e.g. the existence of the Higgs Boson605

— is 5σ. By such high standards, P(ANT → y) = 0.9999 found above can actually still be606

considered much too low a probability to corroborate that human influence has indeed been607

the cause of the observed warming. Therefore, further increasing P(ANT → y) by building608

more evidence into the analysis, may still be considered to be a relevant goal.609

7. Summary and conclusion610

We have introduced an approach for deriving the probability that a forcing has caused a611

given observed change. The proposed approach is anchored into causal counterfactual theory612

(Pearl 2000) which has been introduced recently in the context of weather and climate-related613

events attribution. We argued that these concepts are also relevant, and can be straight-614

forwardly extended to the context of climate change attribution. For this purpose, and615

in agreement with the principle of fingerprinting applied in the conventional D&A frame-616

work, a trajectory of change is converted into an event occurrence defined by maximizing617

the causal evidence associated to the forcing under scrutiny. Other key assumptions used618

in the conventional D&A framework, in particular those related to numerical models er-619

ror, can also be adapted conveniently to this approach. Our proposal thus allows to bridge620

the conventional framework with the standard causal theory, in an attempt to improve the621
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quantification of causal probabilities. Our illustration suggested that our approach is prone622

to yield a higher estimate of the probability that anthropogenic forcings have caused the623

observed temperature change, thus supporting more assertive causal claims.624
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APPENDIX A631

632

Derivation of the PDF of Y633

To obtain Equation (12) from Equation (10) and (11), we integrate out β:634

[Y | x,C,R ] =
∫
β

[Y | β,x,C,R ] . [ β | ω ] dβ (A1)

Given the quadratic dependence to β of the two terms under the integral in the right hand635

side of Equation (A1), it is clear that the PDF of the left hand side is also Gaussian. Thus,636

instead of computing the above integral, it is more convenient to derive the mean and variance637

of this PDF by applying the rule of total expectation and total variance:638

E(Y | x,C,R) = E (E(Y | β,x,C,R) | x,C,R) = E (xβ | x,C,R) = xE (β)

= xe

V(Y | x,C,R) = V (E(Y | β,x,C,R) | x,C,R) + E (V(Y | β,x,C,R) | x,C,R)

= V (xβ | x,C,R) + E (C + R | x,C,R)

= xV(β)x′ + C + R = ω2xx′ + C + R

[Y | x,C,R ] = N (xe,C + R + ω2xx′)

(A2)

Next, in order to account for the sampling uncertainty on the estimation of µ, we apply639

Bayes theorem to derive the PDF of µ conditional on the ensemble E. Denote µ(1), ..., µ(r)
640

the r simulated responses in E which are assumed to be i.i.d. according to a Gaussian with641

mean µ and covariance C. We have:642

[µ | C,E ] ∝ Πr
j=1

[
µ(j) | C

]
. [µ ]

∝ Πr
j=1 N (µ(j) | µ,C)

= N (µ | µ̂, 1
r
C)

(A3)
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where µ̂ is the empirical mean of the ensemble, and we use the improper prior [µ ] ∝ 1. The643

exact same approach yields [xi | C,E ] ∝ Πri
j=1 N (x

(j)
i | xi,C) = N (xi | x̂i, 1

ri
C).644

To integrate out µ, we proceed by following the same reasoning as above for integrating645

out β. Since the resulting PDF is clearly Gaussian, it suffices to derive its mean and variance:646

E(Y | x,C,R,E) = E (E(Y | µ,x,C,R,E) | x,C,R,E) = E (µ | x,C,R,E)

= µ̂

V(Y | x,C,R,E) = V (E(Y | µ,x,C,R,E) | x,C,R,E) + E (V(Y | µ,x,C,R,E) | x,C,R,E)

= V (µ | x,C,R) + E (ω2xx′ + C + R | x,C,R,E)

= 1
r
C + ω2xx′ + C + R

(A4)

Likewise, to integrate out x, we derive the total mean and total variance:647

E(Y | C,R,E) = E (E(Y | x,C,R,E) | C,R,E) = E (µ̂ | C,R,E)

= µ̂

V(Y | C,R,E) = V (E(Y | x,C,R,E) | C,R,E) + E (V(Y | x,C,R,E) | C,R,E)

= 0 + (1 + 1
r
)C + R + E (ω2xx′ | C,E)

= (1 + 1
r
)C + R + ω2

∑
i E (xi x

′
i | C,E)

= (1 + 1
r
)C + R + ω2

∑
i V (xi | C,E) + ω2

∑
i E (xi | C,E)E (xi | C,E)′

= (1 + 1
r
)C + R + ω2

∑
i

1
ri

C + ω2
∑

i x̂i x̂
′
j

= (1 + 1
r

+ ω2
∑

i
1
ri

)C + R + ω2x̂x̂′

= C + R + ω2x̂x̂′ + λC

(A5)

with λ = 1/r + ω2
∑

i 1/ri. Note that [Y | C,R,E ] is no longer Gaussian after integrating648

out x, because x appears in the covariance of [Y | x,C,R,E ]. However, for simplicity, we649

approximate it to be Gaussian.650

The sampling uncertainty on the covariance matrix C is addressed by using an approach651

described in Hannart et al. (2014) which main ideas are succinctly recalled here. The reader652

is referred to the publication for details and explicit calculations. In summary, we apply653

Bayes theorem in order to derive [ C | E ], as for µ and x. However, we use this time an654
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informative conjugate prior on C, as opposed to an improper prior.655

[ C |∆, a ] = IW(∆, a) (A6)

where ∆ denotes the a priori mean of C and a is a scalar parameter that drives the a656

priori variance. Furthermore, the mean and variance parameters (∆, a) of this informative657

prior are estimated from E by maximizing the marginal likelihood `(a,∆) associated to this658

Bayesian model.659

`(a,∆) = ( a r0
1−a + n+ 1) log | a

1−a∆| − ( r0
1−a + n+ 1) log |Ω̂ + a

1−a∆|

+ 2 log
(
Γn{1

2
( r0

1−a + n+ 1)} /Γn{1
2
( a r0

1−a + n+ 1)}
)
.

(A7)660

where Γn is the n−variate Gamma function and Ω̂ = x0x
′
0/r0 is the empirical covariance.661

The estimators (â, ∆̂) satisfy to:662

(â, ∆̂) = argmaxa∈[0,1], ∆∈F `(a,∆), (A8)663

where F is a set of definite positive matrices chosen to introduce a regularization constraint664

on the covariance. Here we choose F = {diag(δ1, ..., δn) | δ1 > 0, ..., δn > 0} the set of definite665

positive diagonal matrices, and we derive an approximated solution to Equation (A8) with666

∆̂ = diag(Ω̂) and â = argmaxa∈[0,1] `(a, ∆̂). Because the prior PDF is fitted on the data,667

this approach can be referred to as “empirical bayesian”. The “fitted” prior [ C | ∆̂, â ] is668

then updated using the ensemble E, and the obtained posterior has a closed form expression669

due to conjugacy:670 [
C | E, ∆̂, â

]
∝ [ E | C ] . IW(∆̂, â) = IW(Ĉ, â′) (A9)

where Ĉ = â∆̂ + (1 − â)Ω̂ and â′ = 1/(2 − â). We can then use the above posterior to671

integrate out C in the PDF of Y , in order to obtain [Y | E,R, ∆̂, â ]:672 [
Y | E,R, ∆̂, â

]
=

∫
C

[Y | C,R,E ] .
[

C | E, ∆̂, â
]

dC (A10)

The integral above does not have a closed form expression because the variance Σ = R +673

ω2x̂x̂′ + (1 + λ)C of [Y | C,R,E ] is not proportional to C. To address this issue, we674
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approximate [ Σ | E, ∆̂, â ] by IW(R+ω2x̂x̂′+(1+λ)Ĉ, â′). This assumption is conservative675

in the sense that it extends the sampling uncertainty on C to R + ω2x̂x̂′ + (1 + λ)C even676

though R + ω2x̂x̂′ is a constant. It yields a closed form expression of the above integral677

thanks to conjugacy:678

[
Y | E,R, ∆̂, â

]
= St(µ̂,R + ω2x̂x̂′ + (1 + λ)Ĉ, ν̂) (A11)
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APPENDIX B679

680

Optimal index derivation681

Let us solve the optimization problem of Equation (7) under the above assumptions.682

For simplicity, we restrict our search to so called “half-space” events which are defined by683

E = {Y ∈ Ωf | φ′Y ≥ u} where φ′Y is a linear index with φ a vector of dimension n, and u684

is a threshold. Let us consider PNS as a function of φ and u.685

PNS(φ, u) = P(φ′Y ≥ u | f)− P(φ′Y ≥ u | f) (B1)

For simplicity, we will use an expression of PNS(φ, u) in the treatment of the optimization686

problem which approximates [φ′Y | f ] by a Gaussian PDF, even though it is a Student t PDF687

from the calculations of Section 4. Note that this approximation is made restrictively here688

for deriving an optimal index. Once this index is obtained, it is the then the true Student t689

PDF of Y that will be used to derive the desired value of PNS. Therefore, the implication690

of this approximation is to yield an index which is suboptimal and thereby underestimates691

the maximized value PNS∗.692

PNS(φ, u) = F

(
u−φ′µ√
φ′Σφ

)
− F

(
u−φ′µ√
φ′Σφ

)
(B2)

where F is the standard Gaussian CDF. The first order condition in u, ∂PNS(φ, u)/∂u = 0,693

thus yields:694

exp

(
− (u−φ′µ)2

2φ′Σφ

)
= exp

(
− (u−φ′µ)2

2φ′Σφ

)
(B3)

Next, we introduce a third approximation Σ ' Σ to solve Equation (B3), yielding:695

u∗ = 1
2
φ′(µ+ µ)

⇒ PNS(φ, u∗) = 2F

(
φ′(µ−µ)

2
√
φ′Σφ

)
− 1

(B4)
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Then, the first order condition in φ, ∂PNS(φ, u∗)/∂φ = 0, yields:696

(φ′Σφ)(µ− µ) = (φ′(µ− µ))Σφ

⇒ φ∗ = Σ−1(µ− µ)
(B5)

which proves Equation (21). Figure 5c illustrates this solution and also shows that the opti-697

mization problem of Equation (7) may be viewed as a classification problem. Our proposal698

to solve Equation (7) is in fact similar to a commonplace classification algorithm used in699

machine learning and known as Support Vector Machine (SVM) (Cortes and Vapnik 1995).700

33



APPENDIX C701

702

Data used in illustration703

As in Hannart (2016), observations were obtained from the HADCRUT4 monthly tem-704

perature dataset (Morice et al. 2012), while GCM model simulations were obtained from the705

IPSL CM5A-LR model (Dufresne et al. 2012), downloaded from the CMIP5 database. An706

ensemble of runs consisting of two sets of forcings was used, the natural set of forcings (NAT)707

and the anthropogenic set of forcings (ANT) for which three runs are available in each case708

over the period of interest and from which an ensemble average was derived. On the other709

hand, a single preindustrial control run of 1000 years is available and was thus split into ten710

individual control runs of 100 years. Temperature in both observations and simulations were711

converted to anomalies by subtracting the time average over the reference period 1960-1991.712

The data was averaged temporally and spatially using a temporal resolution of ten years.713

Averaging was performed for both observations and simulations by using restrictively values714

for which observations were non missing, for a like-to-like comparison between observations715

and simulations.716
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Term Probability
Virtually certain ≥ 0.99
Extremely likely ≥ 0.95
Very likely ≥ 0.90
Likely ≥ 0.66
About as likely as not > 0.33 and < 0.66
Unlikely ≤ 0.33
Very unlikely ≤ 0.10
Exceptionally unlikely ≤ 0.01

Table 1. Correspondence between language and probabilities in IPCC calibrated terminol-
ogy (Mastrandrea et al. 2010).
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Fig. 1. The three facets of causality. (a) Bulb E can never be lit unless switch C1 is on,
yet activating C1 does not always result in lighting E as this also requires turning on C2:
turning on C1 is thus a necessary cause of E lighting, but not a sufficient one. (b) E is lit
any time C1 is turned on, yet if C1 is turned off E may still be lit by activating C2: turning
on C1 is thus a sufficient cause of E lighting, but not a necessary one. (c) Turning on C1

always lights E, and E may not be lighted unless C1 is on: turning on C1 is thus a necessary
and sufficient cause of E lighting.
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Fig. 2. Probabilities of causation in three different climate attribution situations. Upper
panels (a,b,c) : factual PDF (red line) and counterfactual PDF (blue line) of the relevant
index Z, observed value z of the index (vertical black line). Lower panels (d,e,f): PN, PS and
PNS for the event {Z ≥ u} as a function of the threshold u. Left column (a,d): attribution
of the Argentinian heatwave of December 2013. Middle column (b,e): attribution of the 20th
century temperature change. Left column (c,f): attribution of the precipitation change over
the satellite era (Marvel and Bonfils 2013).
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Fig. 3. Structural chart of the statistical model introduced in Section 4: underlying hierarchy
of parameters (i.e. unobserved quantities, circles); and data used for inference (i.e. observed
quantities, squares).
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Fig. 4. Illustration on the 20th century temperature change: model fitting. (a) Distribution
of the total variance between its four components (%). (b) Coefficients of the optimal map-
ping φ∗ averaged spatially. (c) Coefficients of the optimal mapping φ∗ averaged temporally.
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Fig. 5. Illustration on the 20th century temperature change: results. (a) Factual PDF
(red line) and counterfactual PDF (blue line) of the optimal index Z = φ∗(Y ), observed
value z = φ∗(y) of the index (thin vertical black line); PNS as a function of the threshold u
(thick black line). (b) Same as (a) for the global mean index. (c) Scatterplot of factual (red
dots) and counterfactual (blue dots) joint realizations of the global mean index (horizontal
axis) and of the space-time pattern index (vertical axis). (d) Same as (a) for the space-time
pattern index.
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Fig. 7. Same as Figure 4 for the mapping φ+ projected onto the leading eigenvectors of C.
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Fig. 8. Same as Figure 3 for the mapping φ+ projected onto the leading eigenvectors of C.
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