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Abstract: Brillouin spectroscopy is an emerging analytical tool in biomedical and 
biophysical sciences. It probes viscoelasticity through the propagation of thermally induced 
acoustic waves at gigahertz frequencies. Brillouin light scattering (BLS) measurements have 
traditionally been performed using multipass Fabry-Pérot interferometers, which have high 
contrast and resolution, however, as they are scanning spectrometers they often require long 
acquisition times in poorly scattering media. In the last decade, a new concept of Brillouin 
spectrometer has emerged, making use of highly angle-dispersive virtually imaged phase 
array (VIPA) etalons, which enable fast acquisition times for minimally turbid materials, 
when high contrast is not imperative. The ability to acquire Brillouin spectra rapidly, together 
with long term system stability, make this system a viable candidate for use in biomedical 
applications, especially to probe live cells and tissues. While various methods are being 
developed to improve system contrast and speed, little work has been published discussing 
the details of imaging data analysis and spectral processing. Here we present a method that 
we developed for the automated retrieval of Brillouin line shape parameters from imaging 
data sets acquired with a dual-stage VIPA Brillouin microscope. We applied this method for 
the first time to BLS measurements of collagen gelatin hydrogels at different hydration levels 
and cross-linker concentrations. This work demonstrates that it is possible to obtain the 
relevant information from Brillouin spectra using software for real-time high-accuracy 
analysis. 

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. 
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, 
journal citation, and DOI. 

1. Introduction

Brillouin light scattering (BLS) spectroscopy is an emerging technique in biomedical 
sciences, biophysics and biophotonics. It is making an impact in these fields as it probes 
micromechanical properties through an optical high-resolution and contact-free method. In 
BLS, micromechanical information is obtained via spectral analysis of inelastically scattered 
light from thermally induced acoustic waves in the GHz range. Longitudinal acoustic modes 
propagating at a speed of a few km/s give rise to Brillouin peaks in the range 10-20 GHz. The 
actual frequency shift depends on the stiffness and the linewidth on the attenuation of the 
acoustic waves in the material [1–3]. Viscoelastic materials such as biopolymers and 
biomaterials in general exhibit frequency-dependent mechanical responses, and their elastic 
moduli differ based on the spatial and temporal scale of the technique employed. In these 
materials, Brillouin measurements giving access to microscale mechanics yield longitudinal 
elastic moduli of the order of GPa [4,5], whilst traditional quasistatic mechanical testing give 
Young’s moduli in the MPa range [6]. Whilst this indicates that the techniques probe different 
forms of elastic modulus, it is also apparent that measurements and molecular dynamics 
simulations on a nanometre scale also provide Young’s moduli in the GPa range [7]. 

Vol. 10, No. 3 | 1 Mar 2019 | BIOMEDICAL OPTICS EXPRESS 1329 

#353393 https://doi.org/10.1364/BOE.10.001329 
Journal © 2019 Received 4 Dec 2018; revised 13 Jan 2019; accepted 20 Jan 2019; published 19 Feb 2019 

https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.10.001329&amp;domain=pdf&amp;date_stamp=2019-02-19


Traditionally Brillouin spectroscopy has been performed using tandem multipass Fabry-
Pérot interferometers, which can achieve very high contrast and spectral resolution [8], the 
only limitation being the acquisition time of a single spectrum especially in mapping large 
samples. While coherent methods have been developed to improve speed and sensitivity [9], 
spontaneous Brillouin techniques are convenient in terms of simplicity of implementation and 
instrument costs. Here we use spontaneous Brillouin microscopy based on a double-stage 
cross-axis cascading virtually imaged phase array (VIPA) spectrometer [10,11] capable of 
acquiring hyperspectral maps of biomedical samples with good contrast and reduced laser 
power. 

Our previous works have demonstrated the application of tandem Fabry-Pérot Brillouin 
spectroscopy to the studies of fibrous proteins of the extracellular matrix (ECM), providing 
access to the full elasticity tensor of collagen and elastin fibres [4] and the effects of hydration 
[6] and purification [5]. We have also applied high-resolution Brillouin microscopy to 
microbial biofilms [8], histological sections of epithelial tissue in Barrett’s oesophagus 
[12,13] and to Alzheimer’s brain in a mouse model of amyloidopathy [14,15]. This has 
demonstrated the versatility and the capability of the technique to spatially map stiffness in 
correspondence to specific molecular composition in tissues on a microscale. 

In the present work, we apply VIPA Brillouin microscopy to collagen gelatin hydrogels at 
various concentrations and in the presence of a cross-linker, and present a new method to 
extract the relevant information contained in Brillouin images of biomaterials. Gelatin 
hydrogels are physical gels derived from bovine skin collagen that are devoid of the complex 
hierarchical structure (triple helices / fibrils / fibril bundles / fibres) typical of collagen-rich 
tissues [16], thus providing a homogeneous material for testing. Formalin is commonly used 
as a fixative for biological samples, to preserve cells and tissues. Here it is added prior to 
gelation, thus altering the gel structure. Although the method can readily be extended to other 
specimens, it is applied here to hydrogels that are tissue models with water concentration 
ranging between 96 and 82 wt. %. 

The method that we present here for the first time is capable of automatically analysing 
Brillouin images, to identify peaks and to apply fit analysis to extract the relevant parameters 
for viscoelastic characterization. Further, the software automatically corrects for drifts in the 
pattern of scattered light and other visual distortions, and provides real-time, fully automated 
data analysis. The ability to complete processing in real time, i.e. faster than the image 
acquisition rate, will allow for high resolution scanning of large areas without the need to 
store vast amount of imaging data. Further, algorithm design has been developed with modern 
high speed parallel processing devices, such as Graphics Processing Units (GPUs), in mind so 
that the remarkable increase in speed that this type of hardware brings can be applied to the 
data analysis. The protocol was developed for dual-stage VIPA Brillouin images, however it 
can be easily adapted to analyse images from a single-stage spectrometer. 

This paper is divided into three sections. In Section 2, we present the experimental system 
and the computer method developed for image acquisition and data processing. We also 
address issues related to laser drifting and how to correct for those without the need for an 
additional optical path. In Section 3, we present and discuss the results from image analysis of 
collagen gelatin hydrogels. Finally, Section 4 draws the conclusion. 

2. Materials and methods 

2.1 Collagen gel preparation 

Type B 225-Bloom gelatin derived from bovine skin (G9382, Sigma-Aldrich) was combined 
with appropriate quantities of Milli-Q water to prepare hydrogels of 4 to 18 wt. % gelatin 
giving a water concentration of 96 to 82 wt. %. Gelatin powder was dissolved in water at 55–
65 °C under stirring for 60 minutes, resulting in a clear solution for all concentrations. 

Gels containing the cross-linker were prepared using the same protocol, with the addition 
of formalin (37 wt. % formaldehyde solution, Sigma-Aldrich) when the gel reached 50°C. 
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