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Parametrix for wave equations on a rough

background III: space-time regularity of the phase

Jérémie Szeftel

Laboratoire Jacques-Louis Lions,
Université Pierre et Marie Curie, France
jeremie.szeftel@Qupmec.fr

Abstract. This is the third of a sequence of four papers [21], [22], [23], [24] dedicated
to the construction and the control of a parametrix to the homogeneous wave equation
Ug¢ = 0, where g is a rough metric satisfying the Einstein vacuum equations. Controlling
such a parametrix as well as its error term when one only assumes L? bounds on the
curvature tensor R of g is a major step of the proof of the bounded L? curvature conjecture
proposed in [12], and solved by S. Klainerman, I. Rodnianski and the author in [17]. On a
more general level, this sequence of papers deals with the control of the eikonal equation on
a rough background, and with the derivation of L? bounds for Fourier integral operators
on manifolds with rough phases and symbols, and as such is also of independent interest.

Contents
1 Introduction 5
2 Main results 10
2.1 Maximal foliationon M . . . . . . .. ... 10
2.2 Geometry of the foliation generated by uon M . . . . . . .. ... .. .. 10
2.3 Null structure equations . . . . . . . . ... ... 13
2.4 Commutation formulas . . . . . . . . ... 18
2.5 Bianchi identities . . . . .. .. 0oL 19
2.6 Assumptionson Rand w, ... ... ..o 19
2.6.1 Assumptionson R . . . ... ... 19
2.6.2 Assumptions on Uy + o v e 20
2.7 Mainresults . . . . . . . 21
2.8 Dependance of the norm LL*(H,)onw €S? . . . . ... ... ... ... 25
2.9 Additional estimates for try . . . .. ... ... 29
2.10 Organization of the paper . . . . . . . . . . ... ... ... ... 29



3 Calculus inequalities on P, ,, H, and 31

3.1 Calculus inequalitieson P, . . . . . . ... ... 00 31
3.2 Geometric Littlewood Paley theory on P, . . . . ... ... ... .. ... 32
3.3 Hodge systems . . . . . . .. 37
3.4 Calculus inequalitieson H, . . . . . . . .. .. 42
3.5 Calculus inequalitieson >; . . . . . . . . ... L 45
3.6 Geometric Littlewood-Paley theoryon > . . . . . .. . ... ... ... .. 50
3.6.1 The Gagliardo-Nirenberg inequality on 3, . . . . . . ... ... .. 50
3.6.2 Heat equationon >y . . . . . .. ... 52
3.6.3  Invariant Littlewood-Paley theory on >y . . . . . . . . ... .. .. 53
3.6.4 Besovspaces on X; . . ... 55

4 Regularity with respect to (¢,x) 58
4.1 Lower bound on the injectivity radiuson H, . . . . . . . . . .. .. .. .. 59
4.1.1 Absence of caustic . . . . . ... ... 60
4.1.2 Covering of ¥; by the u-foliation . . . . . ... ... ... .. ... 60
4.1.3 Nonintersection of distinct null geodesics . . . . . . .. .. ... .. 61

4.2 Coordinate systems on ¥, and P, . . . . . .. ..o 63
4.2.1 A global coordinate systemon P, . . . .. ... ... ... .... 63
4.2.2 A global coordinate system on Xy . . . . .. ... L. 64
4.2.3 Harmonic coordinateson >; . . . . . . . .. ... 66

4.3 Bound on the Gauss curvature K . . . . . . . . ... 67
4.4 Estimates for the lapsen . . . . . . . . ... o 68
4.4.1 BEstimates for kon >, . . . . . . ... 68
4.4.2 Improvement of the bootstrap assumptionsonn . . . . . . .. . .. 68
443 An L®(M) estimate for Vi . . . . . ..o 71

4.5 Estimates for kon H, . . . . . . . 71
4.5.1 A Hodge type systemon H, . . . . . . . .. ... ... 72
4.5.2 Estimates for m,e,0 . . . . .. .. 73

4.6 Time foliation versus geodesic foliation . . . . . . . .. ... ... ... .. 75
4.6.1 The case of the geodesic foliation . . . . . .. ... ... ... ... 75
4.6.2 Estimates in the time foliation . . . . . . . .. .. .. ... ... .. 79

4.7 Trace norm bounds for d and €. . . . . . . . ... ... 83
4.8 Estimates for b . . . . . ... 88
4.9 Remaining estimates for try, Yand ¢ . . . . . ... ... ... 91
5 Estimates for LLtry, YV, (¢) and LL(b) 93
5.1 Besov improvement for try in the time foliation . . . ... ... ... ... 94
5.1.1 Definition of the Besov spaces and first properties . . . . . . . . .. 94
5.1.2  Structure of the commutators in the time foliation . . . . . . . . .. 95
5.1.3  Structure of the Bianchi identities in the time foliation . . . . . . . 97
5.1.4  Decomposition of ¥(nx) . . . . . . .. o 98
5.1.5 Decomposition of V(nd) . . . . ... ... ... ... 99
5.1.6  Besov improvement for try . . . .. ..o 100

5.2 Structure equations for LLtrxy and YV, (¢) . . . . . . . ... ... 101



5.3 Estimates for V,(C) . . . . . . . . .
5.4 Estimates for LLtry . . . . . . . . . .
5.5 Estimates for LLb . . . . . . . . . . .

5.5.1 Structure equation for LLb . . . . . . . . . . ... ...

5.5.2  Estimates for LL(b) . . . . . . . ...

First order derivatives with respect to w
6.1 Commutator formulas . . . . . . ... ...
6.2 Control of O N, O,b, O,x and O, . . . . . . . . . ...
6.2.1 Derivatives of d,/N with respect to the null frame . . . .. ... ..
6.2.2 Transport equations for d,x and 0, . . . . . . . .. ... ... ..
6.2.3 Estimates for d,N,0,b,0,x and 9, . . . . . . .. ... ... ..
6.3 Control of W, II(0ux) - - - -« o o o
6.4 Proof of the decomposition (2.79) for X . . . . . . ... ... ... ... ..
6.4.1 Estimates for x1 . . . . . ...
6.4.2 Estimates for xo . . . . ...
6.5 Besov improvement for 9,N and O,x . . . . . . . ...
6.6 Estimate for N(-,w) = N(-,w') . . . . . .. .. o

Second order derivatives with respect to w

7.1 Equation for D02N,D402N, D 0>N, 0>Cand O%b . . . . . . . . ... ..

7.2 Estimates for 92N,020,02x and 92C . . . . . ...
7.2.1 Estimates for 92N . . . ..o
7.2.2 estimate for 92b . . . ...
7.2.3 BEstimates for 92x . . . . . ..
7.2.4 estimate for 92C . . ...
7.2.5 Estimate for ¥V, (IL(G2N)) . . . . . .. o i

Dependance of the norm L*°L*(H,) on w € S?

8.1 The basic estimates . . . . . . . . ...
8.1.1 Proof of Proposition 8.1 . . . . . . ... ... ... ... ......
8.1.2 Proof of Corollary 8.2 . . . . . . ... ... ... ... ... ..

8.2 Decompositions involving 0, N, try and ¥ . . . . . . . . ... ...
8.2.1 Proof of Proposition 2.31 . . . . . . . .. ... ...
8.2.2  Proof of Proposition 2.32 . . . . . . . .. ... L.
8.2.3 Proof of Proposition 2.33 . . . . . . . ... ... ...

8.3 A first variant of Proposition 8.1. . . . . . . . . . ... ... ... ..., .

8.4 Decompositions involving x . . . . . . . ..o
8.4.1 Proof of Lemma 2.34 . . . . . . . .. ...
8.4.2 Proof of Proposition 2.35 . . . . . . . . ... oL
8.4.3 Proof of Proposition 2.36 . . . . . . . . ... ... ...
8.4.4 Proof of Corollary 813 . . . . . . . . .. .. ... ... ...
8.4.5 Proof of Corollary 8.14 . . . . . . . . . ... ... ...
8.4.6 Proof of Proposition 2.37 . . . . . . . ... Lo
8.4.7 Proof of Corollary 815 . . . . . . . . .. ... ... ... ...



8.5

8.6

8.4.8 Proof of Proposition 2.38 . . . . . .. ... L
A second variant of Proposition 8.1 . . . . . . .. ... ... ...
8.5.1 Proof of Proposition 816 . . . . . . . . . ... ...
8.5.2  Proof of Corollary 817 . . . . . . . . . ... ... ...
Decompositions involving ¢, Yband 9,b . . . . . . . ... ...
8.6.1 Proof of Corollary 2.39 . . . . . . .. .. ... ... . ...
8.6.2 Proof of Corollary 2.40 . . . . . . . . .. ... ... ... ...

Additional estimates for try

9.1
9.2
9.3

Commutator estimates between P; and ¥,V . . . . . . ... ... ...
Commutator estimates acting on try . . . . . . . . ... L.
Additional estimates for Pitrx . . . . ... ...
9.3.1 Proof of Proposition 2.41 . . . . . . . . ... .. ... ... ... .
9.3.2 Proof of Proposition 2.42 . . . . . . .. ... L

Appendix to section 4

Al
A2
A3

Proof of Proposition 4.11 . . . . . . . . . . . . . ... ..
Proof of Lemma 4.14 . . . . . . . .
Proof of Lemma 4.24 . . . . . . . .

Appendix to section 5

B.1
B.2
B.3
B4
B.5
B.6
B.7
B.8

B.9

Proof of Lemma 5.6 . . . . . . . . . ..
Proof of Lemma 5.7 . . . . . . . . ...
Proof of Lemma 5.8 . . . . . . . . ...
Proof of Lemma 5.9 . . . . . . . . ...
Proof of Lemma 5.10 . . . . . . . . . . ..
Proof of Lemma 5.11 . . . . . . . . . . .
Proof of Lemma 5.12 . . . . . . . . . . ...
Proof of Lemma 5.13 . . . . . . . . . ..
B.8.1 Estimate of the first term in the right-hand side of (B.36) . . . . .
B.8.2 Estimate of the second term in the right-hand side of (B.36) . . . .
B.8.3 Estimate of the third term in the right-hand side of (B.36) . . . . .
B.8.4 End of the proof of Lemma 5.13 . . . . . ... ... ... ... ...
Proof of Lemma 5.14 . . . . . . . . ...

B.10 Proof of Lemma 5.15 . . . . . . . .
B.11 Proof of Lemma 5.16 . . . . . . . . . . .
B.12 Proof of Lemma 5.17 . . . . . . . .

Appendix to section 6

C.1
C.2
C.3
C4
C.5
C.6
C.7

Proof of Lemma 6.9 . . . . . . . . . ...
Proof of Lemma 6.10 . . . . . . . . . . . ...
Proof of Lemma 6.12 . . . . . . . . . ...
Proof of Lemma 6.13 . . . . . . . . . ...
Proof of Lemma 6.14 . . . . . . . . . ...
Proof of Lemma 6.16 . . . . . . . . . . ..
Proof of Lemma 6.17 . . . . . . . . . ...



C.8 Proof of Lemma 6.18 . . . . . . . . . 227

C.9 Proof of Lemma 6.19 . . . . . . . . . 230
C.10 Proof of Lemma 6.20 . . . . . . . . . . e 232
C.11 Proof of Lemma 6.21 . . . . . . . . . . . 232
C.12 Proof of Lemma 6.23 . . . . . . . . . 236
C.13 Proof of Lemma 6.24 . . . . . . . . . . . e 238
C.14 Proof of Lemma 6.25 . . . . . . . . . .. 239
D Appendix to section 8 241
D.1 Proofof Lemma 83 . . . . . . . . . . . . e 241
D.2 Proofof Lemma 84 . . . . . . . . . . e 245
D.3 Proof of Lemma 8.5 . . . . . . . . . . 246
D.4 Proof of Lemma 8.6 . . . . . . . . . . ... 247
D.5 Proof of Lemma 8.7 . . . . . . . . . e 249
D.6 Proof of Lemma 8.8 . . . . . . . . . e 252
D.7 Proofof Lemma 89 . . . . . . . . . . 253
D.8 Proof of Lemma 8.12 . . . . . . . . . 257
D.9 Proof of Lemma 8.18 . . . . . . . . . . 258
D.10 Proof of Lemma 8.19 . . . . . . . . . . ..o 262
D.11 Proof of Lemma 8.20 . . . . . . . . . . . e 263
E Appendix to section 9 266
E.1 Proof of Proposition 9.1 . . . . . . .. . .. ... ... ... 266
E.2 Proof of Proposition 9.2 . . . . . . ... ... 268
E.3 Proof of Proposition 9.3 . . . . . . ... ... 271
E.4 Proof of Proposition 9.4 . . . . . . . . ... 275
E.5 Proof of Proposition 9.5 . . . . . . . ... 279
E.6 Proof of Proposition 9.6 . . . . . . .. ... ... ... . 282
E.7 Proof of Lemma 9.7 . . . . . . . . . 283
E.8 Proofof Lemma 9.8 . . . . . . . . . . 286
E.9 Proof of Lemma 9.9 . . . . . . . . ... 287
E.10 Proof of Lemma 9.10 . . . . . . . . . . . e 290
E.11 Proof of Lemma 9.11 . . . . . . . . . . . e 290

1 Introduction
We consider the Einstein vacuum equations,
Ric,s =0 (1.1)

where Ric,s denotes the Ricci curvature tensor of a four dimensional Lorentzian space
time (M, g)!. (1.1) corresponds to an evolution problem. An initial data set consists of

LOur convention is that g has signature (—, +, +, +). Furthermore, the curvature tensor R is defined
for all vectorfields X, Y, Z by R(X,Y)Z = DxDyZ —DyDxZ — D{x y}Z. In a coordinates system, we
have R (i o ) % =R* me;im and the Ricci tensor Ric is given by Ricg, = R gau.

oxY ) Jzh



a three dimensional manifold ¥, together with a Riemannian metric g and a symmetric
2-tensor k on ¥y. For a given initial data set (2o, g, k), the Cauchy problem consists in
finding a metric g satisfying (1.1) and an embedding of ¥y in M such that the metric
induced by g on ¥, coincides with g and the 2-tensor k is the second fundamental form
of the embedding. (1.1) is an overdetermined system and the initial data set (X, g, k)
must satisfy the constraint equations

Jl.. _\J. —
{ Viki; — V,Trk = 0, (12)

R— |k[? + (Trk)2 = 0,

where the covariant derivative V is defined with respect to the metric g, R is the scalar
curvature of g, and Trk is the trace of k£ with respect to the metric g.

One of the fundamental problems in general relativity is to study the long term reg-
ularity and asymptotic properties of the Cauchy developments of general, asymptotically
flat, initial data sets (Xo,g,k). As far as local regularity is concerned it is natural to
ask what are the minimal regularity properties of the initial data which guarantee the
existence and uniqueness of local developments. In [17], we obtain the following result
which solves the bounded L? curvature conjecture proposed in [12]:

Theorem 1.1 (Theorem 2.10 in [17]) Let (M,g) be an asymptotically flat solution
to the Einstein vacuum equations (1.1) together with a mazimal foliation* by space-like
hypersurfaces ¥, defined as level hypersurfaces of a time function t. Let r,q(3;, 1) the
volume radius on scales < 1 of X3, Assume that the initial slice (3o, g, k) is such that:

R 20) < &, (1Rl 2(m0) + IVl L2(50) < € and 101(30, 1) >

DN | —

where R denotes the curvature tensor of g. Then, there exists a small universal constant
g0 > 0 such that if 0 < € < gg, then the following control holds on 0 <t < 1:

IR |z

[0,1

o | =

2@ S & Ikl 20 + IVEILg 20 S € and Oiél;?”wl(zt» 1) >
Remark 1.2 While the first nontrivial improvements for well posedness for quasilinear
hyperbolic systems (in spacetime dimensions greater than 1+ 1), based on Strichartz esti-
mates, were obtained in [3], [2], [26], [27], [9], [15], [19], Theorem 1.1, is the first result
in which the full nonlinear structure of the quasilinear system, not just its principal part,
plays a crucial role. We note that though the result is not optimal with respect to the
standard scaling of the FEinstein equations, it is nevertheless critical with respect to its
causal geometry, i.e. L* bounds on the curvature is the minimum requirement necessary
to obtain lower bounds on the radius of injectivity of null hypersurfaces. We refer the
reader to section 1 in [17] for more motivations and historical perspectives concerning
Theorem 1.1.

Remark 1.3 The regularity assumptions on ¥ in Theorem 1.1 - i.e. R and Vk bounded
in L*(Xg) - correspond to an initial data set (g, k) € HE (Xo) x HE (Z0).

2See section 2.1 for a definition.
3See Remark 1.5 below for a definition.



Remark 1.4 In [17], our main result is stated for corresponding large data. We then
reduce the proof to the small data statement of Theorem 1.1 relying on a truncation and
rescaling procedure, the control of the harmonic radius of ¥y based on Cheeger-Gromouv
convergence of Riemannian manifolds together with the assumption on the lower bound
of the volume radius of X, and the gluing procedure in [6], [5]. We refer the reader to
section 2.3 in [17] for the details.

Remark 1.5 We recall for the convenience of the reader the definition of the volume
radius of the Riemannian manifold ¥;. Let B,.(p) denote the geodesic ball of center p and
radius . The volume radius r,.(p,r) at a point p € ¥y and scales < r is defined by

_ . 1Be(p)]
T'Uol(p7 T) - 7}%5 (T/)3 9

with |B,| the volume of B, relative to the metric g, on ¥;. The volume radius 7,,(%¢, )
of 3y on scales < r is the infimum of ryo(p,r) over all points p € %;.

Remark 1.6 In [17], as is it the case in this paper, the timelike scalar function t appear-
ing in Theorem 1.1 is normalized at spacelike infinity by n — 1, where n denotes the lapse
of the time foliation (see (2.3) for a definition of n).

The proof of Theorem 1.1, obtained in the sequence of papers [17], [21], [22], [23], [24],
[25], relies on the following ingredients®:

A Provide a system of coordinates relative to which (1.1) exhibits a null structure.

B Prove appropriate bilinear estimates for solutions to Ug¢p = 0, on a fized Einstein
vacuum background .

C Construct a parametriz for solutions to the homogeneous wave equation Ugp = 0 on
a fixed Einstein vacuum background, and obtain control of the parametriz and of its
error term only using the fact that the curvature tensor is bounded in L?.

Steps A and B are carried out in [17]. In particular, the proof of the bilinear estimates
rests on a representation formula for the solutions of the wave equation using the following
plane wave parametrix®:

+oo
Sf(t,z) = /S / et @) fONG N d\dw, (t,2) € M (1.3)
2Jo

where u(-,.,w) is a solution to the eikonal equation g*’d,udsu = 0 on M such that
u(0,7,w) ~ x.w when |z| = 400 on Xy". Therefore, in order to complete the proof of

the bounded L? curvature conjecture, we need to carry out step C with the parametrix
defined in (1.3).

“We also need trilinear estimates and an L*(M) Strichartz estimate (see the introduction in [17]).

®Note that the first bilinear estimate of this type was obtained in [13].

6(1.3) actually corresponds to a half-wave parametrix. The full parametrix corresponds to the sum of
two half-parametrix. See [22] for the construction of the full parametrix.

"The asymptotic behavior for u(0,z,w) when |z| — +o0c will be used in [22] to generate with the
parametrix any initial data set for the wave equation.
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Remark 1.7 Note that the parametriz (1.3) is invariantly defined®, i.e. without reference
to any coordinate system. This is crucial since coordinate systems consistent with L?
bounds on the curvature would not be reqular enough to control a parametriz.

Remark 1.8 In addition to their relevance to the resolution of the bounded L? curvature
conjecture, the methods and results of step C are also of independent interest. Indeed, they
deal on the one hand with the control of the eikonal equation g*?0,udsu = 0 at a critical
level, and on the other hand with the derivation of L? bounds for Fourier integral operators
with significantly lower differentiability assumptions both for the corresponding phase and
symbol compared to classical methods (see for example [20] and references therein).

In view of the energy estimates for the wave equation, it suffices to control the
parametrix at ¢t = 0 (i.e. restricted to %)

+00
Sf0,z) = / / e02w) £ N2 dw, x € (1.4)
s2Jo

and the error term

+o00
Ef(t,z) =0gSf(t,z) = z/ / ATyt 2, w) fFAw) NPdAdw, (t, ) € M.
s2 Jo

(1.5)
This requires the following ingredients, the two first being related to the control of the
parametrix restricted to ¥y (1.4), and the two others being related to the control of the
error term (1.5):

C1 Make an appropriate choice for the equation satisfied by u(0, x,w) on X, and control
the geometry of the foliation generated by the level surfaces of u(0,x,w) on .

C2 Prove that the parametriz at t = 0 given by (1.4) is bounded in L(L*(R3), L*(%))
using the estimates for u(0,x,w) obtained in C1.

C3 Control the geometry of the foliation generated by the level hypersurfaces of u on
M.

C4 Prove that the error term (1.5) satisfies the estimate ||Ef|2v) < ClIAf|l2s)
using the estimates for u and Ogu proved in C3.

Step C1 has been carried out in [21] and step C2 has been carried out in [22]. In the
present paper, we focus on step C3. This step was initiated in the sequence of papers
[14], [10], [11] where the authors prove in particular the estimate Ogu € L>°(M) using
a geodesic foliation. In view of achieving step C4, we actually need to work in a time

80ur choice is reminiscent of the one used in [19] in the context of H?¢ solutions of quasilinear wave
equations. Note however that the construction in that paper is coordinate dependent.

9As we will see in this paper, we need at least L? bounds on the curvature to obtain a lower bound
on the radius of injectivity of the null level hypersurfaces of the solution u of the eikonal equation, which
in turn is necessary to control the local regularity of w.



foliation!. We start by reproving the estimates obtained in [14], [10], [11] in the case of
a time foliation. We also obtain new estimates which will be crucial for the proof of step
C4. Let us mention in particular

e a lower bound for the radius of injectivity of the null level hypersurfaces of u,

the control of the second fundamental form k,

the control of the null lapse associated to u,

a second order derivative of Ugu requires an estimate,

the control of the regularity of the u-foliation on M with respect to the parameter
w € S?, which requires estimates for first and second order derivatives with respect
to w of various geometric quantities related to u.

The difficulty will be to obtain the aforementioned estimates when assuming only L2
bounds on the curvature tensor R. Indeed, this level of regularity for R is critical for
the control of the eikonal equation. In turn, at numerous places in this paper, we will
encounter log-divergences which have to be tackled by ad-hoc techniques taking full advan-
tage of the structure of the Einstein equations. More precisely, we will use the regularity
obtained in Step C1, together with null transport equations tied to the eikonal equation,
elliptic systems of Hodge type, the geometric Littlewood-Paley theory of [10], sharp trace
theorems, and an extensive use of the structure of the Einstein equations, to propagate
the regularity on Y to the space-time, thus achieving Step C3.

The rest of the paper is as follows. In section 2, we state our main result. In section
3, we derive embeddings with respect to the foliation generated by ¢ and v on M which
are consistent with the level of regularity we are considering. In section 4, we investigate
the regularity with respect to (¢, z) of the foliation generated by u on M. In section 5, we
derive estimates for certain second order derivatives of the u-foliation on M. In section
6, we derive estimates for first order derivatives with respect to w of the u-foliation on
M. In section 7, we derive estimates for second order derivatives with respect to w of
the u-foliation on M. In section 8, we investigate the dependence in w of certain norms
associated to the u-foliation on M. Finally, additional estimates are derived in section 9.

Acknowledgments. The author wishes to express his deepest gratitude to Sergiu Klain-
erman and Igor Rodnianski for stimulating discussions and constant encouragements dur-
ing the long years where this work has matured. He also would like to stress that the
basic strategy of the construction of the parametrix and how it fits into the whole proof
of the bounded L? curvature conjecture has been done in collaboration with them. The
author is supported by the ERC grant ERC-2016-CoG 725589 EPGR.

0Tndeed, the geodesic foliation leads to a loss of derivatives in the direction transverse to the the level
hypersurfaces of u. This loss of derivatives would prevent us to establish Step C4.



2 Main results

2.1 Maximal foliation on M

We foliate the space-time M by space-like hypersurfaces ; defined as level hypersurfaces
of a time function t. Denoting by 7' the unit, future oriented, normal to »; and k the
second fundamental form

kij = —<D,T,0; > (2.1)
we find,
kij = _%ETg ij
with L£x denoting the Lie derivative with respect to the vectorfield X. Let Tr(k) = ¢g“k;;

where ¢ is the induced metric on ¥; and Tr is the trace. In order to be consistent with
the statement of Theorem 1.1, we impose a maximal foliation

Tr(k) = 0. (2.2)
We also define the lapse n as
n~t=T(t). (2.3)
We have:
D;T =n"'Vn, (2.4)

where V denotes the gradient with respect to the induced metric on ;. To check (2.4)
observe that J; = nT" and therefore, for an arbitrary vectorfield X tangent to X;, we easily
calculate, < DT, X >= n2X" < Dy,0,,0; >= —n X' < 0;,Dp,0; >= —n2X" <
0y, Dy, 0y >= —n2X"'20; < 0,0, >= n"2X"20;(n?) = n"' X (n).

Finally, the lapse n satisfies the following elliptic equation on ¥, (see [4] p. 13):

An = |k|*n, (2.5)

where one uses (2.1), (2.4), Einstein vacuum equations (1.1) and the fact that the foliation
generated by ¢t on M is maximal (2.2).

2.2 Geometry of the foliation generated by u on M

Remember that u is a solution to the eikonal equation g*’d,udsu = 0 on M depending
on a extra parameter w € S%. The level hypersufaces u(t, z,w) = u of the optical function
u are denoted by H,. Let L’ denote the space-time gradient of u, i.e.:

L' = —g*05ud,. (2.6)
Using the fact that u satisfies the eikonal equation, we obtain:
D, L =0, (2.7)

which implies that L’ is the geodesic null generator of H,,.
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We have:
T(u) = £|Vul

where [Vu|? = 327, |e;(u)[? relative to an orthonormal frame e; on %, Since the sign of
T'(u) is irrelevant, we choose by convention:

T(u) = |Vul. (2.8)

We denote by P, the surfaces of intersection between X, and H,. They play a funda-
mental role in our discussion.

Remark 2.1 Let us mention that the H, are topologically 3 dimensional hyperplanes and
the P, are topologically 2-planes. Note that this differs from the corresponding objects in
[4] (which are respectively topologically cones and 2-spheres).

Definition 2.2 (Canonical null pair) We define the vector fields L and L by

L=bl/=T+N, L=2T-L=T-N (2.9)
where L' is the space-time gradient of u (2.6), b is the lapse of the null foliation (or shortly
null lapse)

bl=—< LT >=T(u), (2.10)

and N is a unit normal, along ¥, to the surfaces P,,. Since u satisfies the eikonal
equation g*?0,udgu = 0 on M, this yields L'(u) = 0 and thus L(u) = 0. In view of the
definition of L and (2.8), we obtain:

Vu

N=-——"
|Vl

(2.11)

Remark 2.3 u is prescribed on ¥q as in step C1. For any (0,x) on Xy, L is defined as
L =T+ N where T is the unit normal to ¥y at (0,z) and N = —Vu/|Vu| at (0,z), and
b is defined as b~' = |Vu|. Let k,(t) denote the null geodesic parametrized by t and such
that k. (0) = (0,2) and k,(0) =nL. Then, we claim that

Ky (t) = n(ky(t)) L, ) for all t. (2.12)
Indeed, recall that L' = b~'L is the geodesic null generator of H, (see (2.7)). Thus, if

s — v(s) denotes a null geodesic such that v = b='L, then we infer in view of (2.3) and
the fact that b=*L(s) = 11!

ds bL(s) 1 1
"ty =v— =b"'L = L=—L=nL
rall) =V L) L) T "

which is precisely (2.12).

HNote that we have b=*L(s) = 1 since s is an affine parameter.
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Definition 2.4 A null frame ey, es,e3,e4 at a point p € Py, consists, in addition to the
null pair e3 = L,eq = L, of arbitrary orthonormal vectors ey, ea tangent to P, ,,.

Definition 2.5 (Ricci coefficients) Let ey, e, e3,eq be a null frame on P, as above.
The following tensors on P,

xap =< Dgey, e >, X5 =< D es, ep >, (2.13)
1 1

CA=§<D3€4,€A >, QA:§<D4€3>€A >
1

§A:§<D3637€A>-

are called the Ricci coefficients associated to our canonical null pair.
We decompose x and x into their trace and traceless components.

try = g*Pxan, t@:gABXAB, (2.14)

~ 1 - 1
XAB = XaB = 5UX8AB, X5 = Xap ~ 5"X845; (2.15)

Definition 2.6 The null components of the curvature tensor R of the space-time metric
g are given by:

1
A = R(L,eA,L,eB), ﬁAI §R(€A,L,L, L), (2.16)
1 1
p = ZR(La LaLa L)7 0 = Z*R(L7L7L7 L) (217)
1
éA = ER(6A7L7 L7 L) P dpp = R(Lv eA?Lv eB) (218)

where *R. denotes the Hodge dual of R. The null decomposition of *R. can be related to
that of R according to the formulas, see [4]:

a(R) = —"a(R), B(R)=-"BR), p('R)=
o("R) = —pR), B(R)="FR), a('R)= "a(R)

Observe that all tensors defined above are P, ,-tangent.

Definition 2.7 We decompose the symmetric traceless 2 tensor k into the scalar §, the
P, ,-tangent 1-form €, and the P, ,-tangent symmetric 2-tensor n as follows:

kNN =4
kAN = €A (221)
kag = nap.

Note that Tr(k) =tr(n) + 0 which together with the mazimal foliation assumption (2.2)
yields:
tr(n) = —4. (2.22)
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Remark 2.8 Most notations in this paper such as

T7k7X7X7<7§7§’67677]7a7/87p70-7§’g7‘"
are taken from [4]. Notable exceptions are n and b which are taken from [16].

The following Ricci equations can be easily derived from the properties of 7' (2.1)
(2.4), the fact that L’ is geodesic (2.7), and the definition (2.13) of the Ricci coefficients
(see [4] p. 171):

Daes = xapep — €aeq, Daes = x, €8 + €aes,
Dye, = —dey, Dyes = 2¢ ea + des, (2.23)
Dsey = 2Caea + (6 +n"'N(n))ey, Dyes =26 ea — (0 + n~'N(n))es,
Dyes = Vea+ ¢ e, Dieyq = Yyea + Caes + € ea,
1 1
Dpges = WBGA + §XAB es + §XAB €4

where, Y, ¥, denote the projection on P, of D3 and Dy, ¥ denotes the induced covariant
derivative on P, , and 0,€ are defined by:

0=6-—n"'N(n),es=es—n'Y n (2.24)
Also,
X, = —XaB — 2kap,
¢, = —€a, (2.25)

§,=¢€a +n 'YV n— Ca.
Remark 2.9 We also have the identity (see [4] p. 171):
Ca=b""V b+ ea. (2.26)

Indeed, recall from the definition of b (2.10) that b='Vb = —bVT (u), which together with
the fact that es(u) = 0 implies:

bV b = —bY T(u) = —blea, T)(u) = —b(D,, T — Dres)(u).

Now, using the Ricci equations (2.23) for D., T and Dres and the fact that L(u) =
ea(u) =0 and T(u) = b~ yields (2.26).

2.3 Null structure equations

Below we write down our main structure equations.
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Proposition 2.10 The components try, X, ¢ and the lapse b verify the following equa-
tions'?:

L(b) = —bo, (2.27)
L(trx) + 5 (irx)* = ~IRI* — Birx, (2.28)
VX + trxX = —0X — «a, (2.29)
Y.Ca+ %(”X)CA = —(€g + (B)XaB — %”XEA — Ba,. (2.30)

Remark 2.11 Equation (2.28) is known as the Raychaudhuri equation in the relativity
literature, see e.g. [8].

Proof The proof is derived from the formulas (2.23) above (see [4] chapter 9 p.266).
We briefly sketch the proof for convenience. We start with (2.27). Using the fact that L’
is geodesic (2.7) and the fact that L = bL' by (2.9), we obtain:

D.L=b"L(b)L

which together with the Ricci equations (2.23) for Dy L yields (2.27).
To obtain (2.28) and (2.29), we compute:

Voxap = L(xas) —x(V,ea,ep) — x(ea, Vien)
= g(DrD.,L,ep) — x(V,ea es) + gD, L,Drep) — x(ea, YV, eB)
= g(D.D.L,ep)+ g(D[L,eA]L, es) — X(V,ea,es) + Rprra
+g(D.,L,Drep —V,ep)
= g(DeADLLa eB) +g<DDL€A*WL€A*DeALL’ eB) — QAB

+g(De, L, Dres — YV, ep)
which together with the Ricci equations (2.23) yields:
Y, XaB = —XacXcB — 0XAB — QaB- (2.31)

Decomposing (2.31) into its trace and traceless part yields respectively (2.28) and (2.29).
Finally, we derive (2.30). We compute:

V64 = L(Ca) —¢(V,ea)
— %g(DLDLL, ea) + %g(DLL, Drea) — ((Viea)

1 1 1 1

= §g(DLDLL, GA) + §g(D[L7L]L, €A) + ERLLAL -+ §g<DLL, DLeA — WLeA)
1 1 1

= §g(DLDLLa eq) + §g(DDLL—D£LL> ea) — Ba+ §g(DLL, Drea — VY, ea),

12which can be interpreted as transport equations along the null geodesics generated by L. Indeed
observe that if a P, tangent tensorfield II satisfies the homogeneous equation ¥,II = 0 then II is
parallel transported along null geodesics.
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which together with the Ricci equations (2.23) yields (2.30). u

To obtain estimates for x, we may use the transport equations (2.28) (2.29). However,
this does not allow us to get enough regularity. Instead, we follow [15] [14] and consider
(2.28) for try together with an elliptic system of Hodge type for X.

Proposition 2.12 The expression (djtx)a = V" Xap verifies the following equation:

(404 + Tawes = 3(Tatrx +eatrn) = (2.32)

Proof The proof is derived from the formulas (2.23) (see [4] chapter 7). We briefly
sketch the proof for convenience. We compute:

YVoxas = ec(xap) — X(VeceA’ es) — x(ea, VeceB)
= 8(DecDe, L ep) = Xx(V, €a,8) + 8De,L,Decep) — x(ea, ¥
= 8(De,DecL,ep) + 8D ealsen) — x(V,.€a,ep) + Repra

+g(De,L,Decep — YV, e8)
= Vaxcs — &(De.L,De e — WeAeB) +g(D

+Reapr + 8D, L,Drep — YV, ep)
which together with the Ricci equations (2.23) yields:

cc€B)

L.e
DeceA_WECCA_DeAEC'f‘ esec” ! B)

WCXAB = VBXAC — xapéc + Repra + xaces.

Contracting in the previous equality yields (2.32). [ |

Finally, we consider the control of ¢ and Ltry. To this end, we follow again [15] [14]:
we derive an elliptic system of Hodge type for ¢ and a transport equation for L(try).

Proposition 2.13 We have:

L(try) + %tm_(trx = 2dfo¢+ (0 +n'N(n))try —X-X+2(-C+2p,  (2.33)

-1 ~ _ -1 ~
VX + 52?7)_()( = V&(+ (0 +n"'N(n))xX — §t7’>@—|— (RC, (2.34)
where for F,G P,,-tangent 1 forms, we denote by W@)F the traceless part of the sym-
metrized covariant derivative of I, i.e. Y&Fap = YV, Fg+YgFa— djvFéap and by FRG
the traceless symmetric 2-tensor FRGap = FAGp + FgGa — 2FGedap.

Also, let

p=L(trx) — (6 + n='N(n)) try. (2.35)
Then, the expressions djv¢ = VP Cg and cufl¢ =B Y +Cs verify the following equations:
, 1 1 ~ ~
djv¢ = §<u+§t7’xtm_<+x-z—2ld2> - p, (2.36)
1
cufl¢ = —55(\/\2—1-0, (2.37)
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where for F',G symmetric traceless P, ,-tangent 2-tensors, we denote by F' N\ G the tensor
FNGap =€ap FacGpe, with €, denoting the components of the volume element of

P, t.e. €11=€2=0 and €12= — €91= 1. Furthermore, we have the Gauss equation,
1. 1
K= XX~ Ztrxtm_( — p. (2.38)

Finally, we have
L(p) + trxp = —2(¢—¢) - Virx — 2 - (V&C + (B¢ — 0X) (2.39)
—2tr(p+C- (26— n7'Wn) —n 7 Wn- e+ Jef + R +7- X))
Proof To obtain (2.33), (2.34), (2.36) and (2.37), we compute:

Voxap = L(xap) — x(Vpea.en) — x(ea, ¥Ven)
= g(D.D.,L,ep) —x(V,ea,ep) +g(De, L, Dreg) — x(ea, ¥Vyen)

= g(De,DrL.ep) +g(Direylien) — x(Viea es) + Rprra
+g(D€AL7 DLeB - WLQB)

= QVACB - g(DLLa DeAeB - WeAeB) + g(DDAEA—WLeA_DeALL’ eB)
+péap — 0 €ap +8(De, L, Drep — ¥V ep)

which together with the Ricci equations (2.23) yields:

Y xa8 =2V 4C8 + XaB(0 + 17 N (n)) +20aCp — X, . XoB + pdap — 0 €ap . (2.40)

Taking the symmetric part of (2.40), and decomposing into its trace and traceless part
yields respectively (2.33) and (2.34). (2.36) follows from (2.33). Finally, taking the
antisymmetric part of (2.40) yields (2.37).

We now focus on obtaining (2.39). Differentiating the Raychaudhuri equation (2.28)
with respect to L yields:

L(L(trx)) = [L,LJtrx + L(L(trx))
= OL(trx) — (6 +n""N(n))L(trx) — 2(¢ — ¢) - Vtrx — L(trx)trx — 2V, (X) - X
—L(8)trx — 6L (try)
= —(0+n"'N(n))L(trx) — 2(¢ = ¢) - Wtrx — L(trx)trx

~ L ~ _ 1 -
—2Y - (—Etrxx + V&¢+ (6 +n  N(n))xX — Etrxx + C®C> — L(d)try,
where we used (2.34) in the last equality. We infer in view of the definition (2.35) of u

L(p) +trxp = L(L(trx)) + trxL(try) — L(6 +n'"N(n))trx — (6 +n~"N(n))L(trx)
—try*(0 + n~ N (n))
= —2(0 +n"'N(n))L(try) — 2(¢ — ¢) - Vtrx

R 1 N ~ _ 1 ~
-2 - (—Etrxx + VR H (6 +n"tN(n))Y — 5trxx+ C®€)

—L(8)try — L(6 +n'~ N(n))try — trx (6 + n ' N(n)). (2.41)
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In view of the right-hand side of (2.41), we need to compute L(J). We first compute
T(6). We have:

T(0) = —g(DrDNT,N)—g(DNxT,DrN)
= —g(DNDTT N) g(D[TJv]T, N) + RNTNT - g(DNT, DTN)
= —N(g(DrT,N))+g(DrT,DyN) — g(Dp,n-pyrT, N) + p — g(DyT,DrN).
4)

Recall from (2.1) and (2.4) that

DyT = —egqeq — 0N and DT = n~'Vn,
which yields

T(6) = —N(n'N(n))+gn 'Vn,DyN) — g(Dp,ntcentsnT, N) + p

—g(—€eqe4 — SN, D N)

= —n 'N(N(n))+ (n"'N(n))*+n"'Y ng(ea, DyN)
_g(D*g(DTN»T)T+g(DTN7€A)6AT> N) - eAg(DAT> N) - 5g(DNTa N) +p
+eag(ea, DrN)

= —n 'N(N(n)) + (n"'N(n))* +n~ 'V ng(ea, DN N)
+g(DrN, T)g(DyT, N) — g(DrN, e4)g(DaT, N) + | +6° + p
+eaglea, DrN)

= —n 'N(N(n)) +n"'V nglea, DyN) + |e|* + 6 + p + 2eag(ea, DrN).

In view of the Ricci equations (2.23) and the identities (2.9) and (2.25), we have

&(DrN ea) = 5(~C,+ G E,) = Ca—n ' Wyn

and ]
8(DxNea) = 5(=C, —CatE,) =ea—Ca

from which we infer
T@)=-n"'"N(Nn)+p+(- (26 —n"'Vn) —n'Vn- e+ |e]* + 6 (2.42)
Now, since L =T+ N, L=T — N and § = § — n~'N(n), we have:
T(8) = SL() + 3L+~ N(n) —n~ N(N(n)) + (™ Nn))?
which together with (2.42) yields:

L(5) = 2T(8) — L6 +n"'N(n)) +2n 'N(N(n)) — 2(n"'N(n))? (2.43)
= —L(6+n"'Nn)+2p+2¢- (2c —n'Vn) —2n7'Vn - € + 2|e|* + 25
—2(n"'N(n))*.
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Plugging (2.43) in (2.41), we obtain
L(p) +trxp = =2(0+n""N(n))L(trx) — 2(¢ — ¢) - Vitry

25 (_%th FYBC+ (60 N — stk + g@g)

—trx(Zp +2¢ - (26 —2n7'Vn) — 207 'Vn - € + 2|e|? + 267

—2(n_1N(n))2> —trx2(5 +n ' N(n)).

In view of the Raychaudhuri equation (2.28) and the first identity in (2.25), we infer
L(p) +trxp = =2(¢ = ¢) - Vtry — 2X - (V&C + (BC + trxX — 0% + trx7)

—try <2p +2¢- (26 =n7'Vn) — 207 'Wn - € + 2|¢f* + 262
—2(n"'N(n))? — 25(5 + n—1N<n)))

from which we derive the desired transport equation (2.39). [ |

2.4 Commutation formulas
We have the following four useful commutation formulas (see [4] p. 159):
Lemma 2.14 Let II4 be an m-covariant tensor tangent to the surfaces P,,. Then,
VeVilla = V,¥Vplla = xpcVclla— nilanWz;HA (2.44)
+ Z(XAZ-BEC — XBC€a,— €a,0 B4, oa
VValla = V,¥Vplla = XBCWCHA - éBWz;HA - bilWBbW?,HA (2.45)
+ Y (xamb, + x8c, = X, 5l + Xpola
W3W4HA - V4W3HA = _SW?)HA + (0 + n_1N<n))Y74HA +2(¢p — QB)WBHA
+ 2) (¢, o= Colat €ao o)y o, (2.46)

Finally, (2.44), (2.45) together with the fact that N = (L — L) yield:
VeVyla—VyVplla = (xsc+ kBC)WcHA - b_IWBbWNHA (2.47)
1
t 3 Z(XA»LB(EC +&0) = xBo(ea, + €, ) + X, 56 — Xpoba

— €a,c "B+ B )4, o4,
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For some applications we have in mind, we would like to get rid of the term containing
a Y, derivative in the RHS of (2.44). This is achieved by considering the commutator

[V, V¥, ;] instead of [V, ¥,]:

WBWnLHA - WnLWBHA = ”XBCWCHA (2-48)
+ Z(HXAZ-BEC — nxBc€A,— Ca,0 W PB)LL oa -

7

(2.48) yields for any scalar function f:

[nL, Alf = —2an72f + n(2Xapep — €atry — n_IWAntrX + Vitrx)V . f- (2.49)

Also, we would like to get rid of the term containing a YV, derivative in the RHS of (2.47).
This is achieved by considering the commutator [V, ¥, ] instead of [V, ¥V :

Ve Vinlla = VinVlla = b(xsc + kse)Vella (2.50)

b _ _
+ 5 Z(XAZ-B(EC +&.) — xBc(Ean + §Ai) + XAZ,BQC — Xpola;

— €a,c "B+ B4, o4,

2.5 Bianchi identities

In view of the formulas on p. 161 of [4], the Bianchi equations for «, 3, p, o, B are:

YV, B+ 2trxB = difa— 08+ (2¢ —¥) - a, (2.51)
VB +trxB8 = Vp+ (Vo) +2X-B+(6+ n'Nn))B+¢- o
+3(Cp + *Co), (2.52)
Lip) + gtrxp _ B — %X ot (e—29) -8 (2.53)
L(p)+ Strxp = —diB— Xt 26+ (c—20) B (254)
L(o) + gtrxa = —cuflp+ %X*a + (—e+ 2€) "B, (2.55)
L(o) + ;trxa = —cuflB — %f*g — 2676+ (e —2¢) "B, (2.56)
Y.B+trxB = =Vp+ (Vo) +2x-8+68—3(Cp—*Co). (2.57)

2.6 Assumptions on R and u,
2.6.1 Assumptions on R

We introduce the L? curvature flux R relative to the time foliation:

1

2

R = <||04||%2(Hu) 1817200y + 10I72¢00) + 17200, + ||§||2L2(Hu)> (2.58)

In view of the statement of Theorem 1.1, the goal of this paper is to control the geometry
of the null hypersurfaces H, of v up to time ¢ = 1 when only assuming smallness on
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|R||zser2(x,) and R. In the rest of the paper, we still denote by H, the portion of the
hypersurface of u between t = 0 and ¢ = 1, and we assume for some small ¢ > 0:

|R[[zer2(s,) < € and supR <, (2.59)

w,u

where the supremum is taken over all possible values u € R of u(t,z,w) and over all
possible w in S?, with u solution to the eikonal equation g*’d,udsu = 0 on M, and
depending on a extra parameter w € S?. Note that (2.59) corresponds to a bootstrap
assumption’ in the proof of Theorem 1.1 in [17] under which steps C3 and C4 must be
achieved!*. We refer to section 5.3 in [17] for the bootstrap assumption corresponding to
(2.59) in the proof of the bounded L? curvature conjecture.

Remark 2.15 Note that in (2.59), all components of R are controlled in L L (%), while
all components but a are controlled in L°L*(H,). Thus, it will be crucial to avoid a in
our estimates in order to obtain suitable control on H,. This will be possible due to the
specific form of the null structure equations of the u-foliation on M (see section 2.3)'.

Remark 2.16 As a byproduct of the reduction to small initial data outlined in Remark
1.4 and performed in section 2.3 of [17], we may choose (Xq, g, k) to be smooth, small and
asymptotically flat outside a compact set U of Xy of diameter of order 1 (see section 2.3 in
[17] for details). In turn, using the finite speed of propagation, we may assume that (M, g)
to be smooth, small and asymptotically flat outside of compact set U of MN{0 <t <1}
of diameter of order 1. This allows us to avoid issues about decay at infinity, and to
solely concentrate on establishing reqularity of the u-foliation on the compact set U of
Mn{o<t<1}

2.6.2 Assumptions on u,

Recall that u is a solution to the eikonal equation g*?d,udsu = 0 on M depending on a
extra parameter w € S?. Now, for u to be uniquely defined, we need to prescribe it on
Yo (i.e. at t = 0). This issue has been settled in Step C1 (see [21]). In that step, the
choice of u(0,z,w) is such that u(0, z,w) has enough regularity'® to achieve step C2. At
the same time, it is also such that u is regular enough for ¢t > 0 to achieve step C3. More
precisely, the regularity of u for ¢ > 0 will involve transport equations - see for instance

13There should be a large enough universal bootstrap constant in front of € in the right-hand side of
(2.59) - see (5.3) and (5.4) in [17] - which we omit for the simplicity of the exposition. Note also that
(5.4) in [17] holds for any suitable null hypersurface, and in particular for any H, and for any w € S?
which is is consistent with taking the supremum in (u,w) in the second assumption of (2.59).

14Recall that step C3 corresponds to the control of the u-foliation on M, while step C4 corresponds
to the control of the error term (1.5).

15The only exception is the transport equation (5.105) satisfied by LL(b) which contains an « term,
and leads to the weak estimate (2.75).

6Notice that in order to study the regularity of u(0,z,w) in [21], we do not differentiate u(0,x,w)
directly. Instead, we proceed as in this paper, i.e. we consider in [21] the regularity of the Ricci coefficients
associated to a frame adapted to the (0, .,w)-foliation of ¥ for w € S2.
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Proposition 2.10 - and will therefore require the same regularity at ¢ = 0. We denote this
regularity at ¢ = 0 by the quantities Zy and Z ;, j € N, which are defined by

Ty = |16(0,.) = 1f[zoc(zo) + 1600, .) = Ul zeor2(py0) + IVO(0, )| zee2(pp.0) + VOO, )| Lo L2y )
H[trx (0, )| oo () + [[61X(0, )| o L2(Py0) + 1 VEIX(0, )| oo L2y )

+SupZ<H VX (0, )|z (e, + 125W0(0, )l 2y ) + [[F514(0 ,-)Hmwo,u))

+HV&0N( s Mgz, 100600, )| oo s) + [[WIub(0, ) g 2y )

F110x (0, )l £eor2(py ) + 10€(0, I pser2(py) + 105600, ) || L2e £2(py ) (2.60)
and
To; = ||P(NN(trx))(0,.)||2z) + [P (NN (5))(0, )|l £2(s0)
| P (VN TL(0wx)) (0, ) 22 (0) + 1P (N (900)) (0, ) || £2(5)

HIPH(Vy OGN0, )l ra(sg) + 15 (THOZ)(0, )2y, (261)

where P; denotes the geometric Littlewood-Paley projections P; which have been con-
structed in [10] using the heat flow on the surfaces Fp, (see section 3.2), and where the
projection II of vectorfields X on M onto vectorfields tangent to P, is defined by

X = X — g(X,N)N + g(X,T)T

and extended to covariant tensors by duality. This regularity Zy and Z; required for
u(0, z,w) is consistent with the estimates derived in step C1, where the following estimate
for the initial data quantities Zy and Z; has been derived under the curvature bound
assumption (2.59) (see [21]):

Ty <, (2.62)
and ‘
To; S €22, V5 >0 (2.63)
as well as the additional bounds
10N (0, )| zoe(zo) + 1OZN (0, )l oo L2(py.) S 10 (2.64)

From now on, we assume that u is the solution to the eikonal equation g**9,udsu = 0 on
M which is prescribed on ¥ as in step C1, and such that it satisfies on ¥y the smallness
assumption (2.62) and (2.63) as well as the estimate (2.64).

2.7 Main results

We define some norms on H,,. For any 1 < p < 400 and for any P, ,-tangent tensor F' on

H., we have:
1 P
||F|\Lp<m)=< / dat / |Frpdut,u) ,
0 Pt7u
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where dji;,, denotes the area element of P;,, and where |F|*> = FABF,p for a P, ,-tangent
tensor F'. We also introduce the following norms:

Ni(F) = [[Flle2a00) + IVF 2t + 1V L 22(020)

No(F) = Ni(F) + IV Fll 20 + IV VL F Il 2000,

Let 2’ a coordinate system on Fp,. By transporting this coordinate system along the
null geodesics generated by L, we obtain a coordinate system (¢, ') of H,. We define the

following norms:
1
1 2
[E o5z = sup </ |F(t,x/)|2dt> ,
0

x'EPo,u

||F“Li,Lt°° =

sup |F(t,27))|
0§t§1 L2<P0,'u.)
Remark 2.17 In the rest of the paper, all inequalities hold for any w € S? with the

constant in the right-hand side being independent of w. Thus, one may take the supremum
n w everywhere. To ease the notations, we do not explicitly write down this supremum.

Remark 2.18 Let a function f depending onu € R. In the rest of the paper, all estimates
on H, will be either of the following types

[fu)] S e, (2.65)

or .
()] S 2e + 22ey(u), (2.66)

where 7y is a function of L*(R) with compact support satisfying ||V|| 12y < 1. For instance,
the inequalities (2.67)-(2.72), (2.76), (2.77), and (2.80)-(2.86) below are of the first type,
while the inequalities (2.73)-(2.75), (2.78) and (2.88) below are of the second type. All
inequalities of the first type hold for any uw with the constant in the right-hand side being
independent of w. Thus, one may take the supremum in u in these inequalities. To ease
the notations, we do not explicitly write down the supremum in u for all estimates of the
type (2.65).

Remark 2.19 The contribution 2%7(u) to (2.66) will always come from the initial data
term of a transport equation estimate which is controlled using (2.63). In the particular

case of the estimate (2.75) below, it will also come from the presence of an term involving
a in the transport equation satisfied by LL(b) (see (5.105)).

Remark 2.20 In the right-hand side of (2.66), u is used as a coordinate. Note that
the precise asymptotic of w at infinity is irrelevant since vy is assumed to be compactly

supported. In turn, the fact that v can be chosen so follows immediately from Remark
2.16.

The existence of a solution u to the eikonal equation initialized on a timelike hypersur-
face is classical, see for instance the beginning of Chapter 9 of [4]. The following theorem
investigates the regularity of u with respect to (¢, x):
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Theorem 2.21 Assume that u is the solution to the eikonal equation g*’d,udgu = 0
on M such that u is prescribed on ¥ as in section 2.6.2 where it satisfies in particular
(2.62). Assume also that the estimate (2.59) is satisfied. Then, null geodesics generating
H. do not have conjugate points (i.e. there are no caustics) and distinct null geodesics
do not intersect. Furthermore, the following estimates are satisfied:

I = Lo,y + VRl oo rn) + 110l pger2, + HinHLgOLi, + VT ()| pgorz, S, (2.67)

Ni(k) + IV el 2, + I1LO 2o + Ell sz + HSHL;‘,’L? SE (2.68)
b= Uy + Ao — 1)+ ILOz i + LO)imss, S (269)
[[#rx] Loo (32,) + HtTXHLi,LtOO + HW”’XHLi,LgO + HL”XHLi,LgO Se, (2.70)

Xl £os 2z + Ni(X) + IV XN 2200 S & (2.71)
”C”Li,Lf" + M) Se. (2.72)

Remark 2.22 Recall that we work in a time foliation under the assumption (2.59). Un-
der the same assumption, in the case of a geodesic foliation, the estimates (2.70) (2.71)
(2.72) have been obtained in [14] on a truncated null cone (see also [28] for the case of
a non truncated null cone). These estimates have also been obtained in the case of a
time foliation in [29], albeit under an additional assumption of a priori control on k and
V(log(n)). Finally, recall from Remark 2.1 that the null hypersurfaces H, are topolog-
ically 3 dimensional hyperplanes. This allows us to avoid issues in [28] concerning the
vertex of a null cone.

We introduce the family of intrinsic Littlewood-Paley projections P; which have been
constructed in [10] using the heat flow on the surfaces P, (see section 3.2). This allows
us to state our second theorem which investigates the regularity of LLtry, WLC and LLb.

Theorem 2.23 Assume that u is the solution to the eikonal equation g*’d,udgu = 0
on M such that u is prescribed on ¥y as in section 2.6.2 where it satisfies in particular
(2.62) and (2.63). Assume also that the estimate (2.59) is satisfied. Then, there exists a
function v in L*(R) with compact support satisfying ||V||r2ry < 1, such that for all j > 0,
we have:

1P LLtr|| 20y S 26 + 28 er(w), (2.73)
1PV (Ol 20y S € +2 2y (u), (2.74)

and , .
1 P,LLb|| o2, S 26 + 25e(u). (2.75)

The following theorem investigates the regularity with respect to the parameter w € S2.

Theorem 2.24 Assume that u is the solution to the eikonal equation g*’0,udsu = 0
on M such that u s prescribed on ¥ as in section 2.6.2 where it satisfies in particular
(2.62), (2.63) and (2.64). Assume also that the estimate (2.59) is satisfied. Then, we
have the following estimates:

10Nl S 1, (2.76)
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IDOuN |12, 0 + 1000l e 30) + 1¥Dubll 2, e + N0uxll22, 20 + 10uCllr2, 1o S, (2.77)

and '
1PV (D) | pr2, S 206 + 22e7(u), (2.78)

where p is any real number such that 2 < p < +o00, and where 7y is a function of L*(R)
with compact support satisfying ||| 2@y < 1.

Also, there exists x1 and x2 two symmetric traceless P,,-tangent 2-tensors such that
we have the following decomposition for X :

X = X1+ X2 (2.79)
where x1 and o satisfy:
10ux1l Loz, + Ni(xa) + NiOx2) + IV pxellr2ae) + Ixellzs ez + 10uxelliperz, S e (2-80)
and for any 2 < p < 400, we have:
HWXI”LgOLi/ + ||X1||L§’L;<; + ”auXQHLr;Li; + 10uxzlls- 3,) + 1VOuxell L2, S e (2.81)
Furthermore, for any 2 < q < 4, we have:
||Y7LX1||L;>°L§,+L§L1, + ||Y7LX1||L;>°L§,+L$LZ, Se. (2.82)
Finally, let w and w' in S®. Then, there holds the following lower bound
IN(-,w) — N(-, )| 2w — '] (2.83)

Remark 2.25 Notice from (2.80) that x1 and x2 have at least the same reqularity as X.
Now, the point of the decomposition (2.79) is that both x1 and x2 have better reqularity
properties than X. Indeed, in view of (2.81), x1 has better reqularity with respect to (t, x)
while xo has better reqularity with respect to w.

Remark 2.26 Let w and o' in S®.. The estimate (2.76) for N yields the following upper
bound for N(-,w) — N(-,w'):

ING,w) = N, W) S w =]
Note that (2.83) establishes the corresponding lower bound.

Finally, the following theorem contains estimates for second order derivatives with
respect to w.

Theorem 2.27 Assume that u is the solution to the eikonal equation g*’0,udgu = 0
on M such that u is prescribed on ¥ as in section 2.6.2 where it satisfies in particular
(2.62), (2.63) and (2.64). Assume also that the estimate (2.59) is satisfied. Then, we
have the following estimates:

162N 2,12 S 1, (2.84)
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IV, 05N r2) S e (2.85)

”af;bHL;’oLQ, Se, (2.86)
”Pjn(aiX)HLgoLi/ S e, (2.87)

and | |
1PV IO N) oz, + I PIHOZC) I pr2, S 27 + 22e(u), (2.88)

where p is any real number such that 2 < p < +o00, and where 7y is a function of L*(R)
with compact support satisfying ||| 2@y < 1.

Remark 2.28 Our assumption on curvature (2.59) is critical with respect to the control
of the Fikonal equation as can be seen throughout the paper where numerous log-losses
are barely overcome. In order to prove Theorem 2.21, Theorem 2.23, Theorem 2.24, and
Theorem 2.27 we will rely in particular on the null transport equations and the elliptic
systems of Hodge type on P, of section 2.3, the geometric Littlewood-Paley theory of
[10], sharp trace theorems, and an extensive use of the crucial structure of the Bianchi
identities (2.51)-(2.57).

Remark 2.29 The regularity with respect to (t,x) forw is clearly limited as a consequence
of the fact that we only assume L? bounds on R. On the other hand, R is independent of
the parameter w, and one might infer that u is smooth with respect to w. Surprisingly, this
1s not at all the case. Indeed, we are even not able to go beyond estimates for the second
order derivatives with respect to w which are given in Theorem 2.27. This is due to the
fact that we rely in a fundamental way on the null transport equations of Proposition 2.10.
Now, the commutator between L and 0,, gives rise to a tangential derivative with respect
to P, (see (6.5)) for which we have less control. This leads to a loss of one derivative
for each deriwative taken with respect to w for all quantities estimated through transport
equations. This is best seen by comparing the estimate (2.70) (2.71) for x, the estimate
(2.77) for O,x and the estimate (2.87) for 0>y

2.8 Dependance of the norm L*L*(H,) on w € S?

Let w and w’ in S? such that .
w—w| <273

Let © = u(-,w) and v/ = u(-,w’). In this section, we compare the norm in L*L?*(H,)
with the norm in L% L?*(H,/) for various scalars and tensors, relying on the estimates of
the previous section. Let us first stress the difficulty by considering the decomposition
for try in Proposition 2.32 below. A naive approach consists in writing the following
decomposition

trx(t, z, w) = try(t, z, ') + (trx(t, z,w) — trx(t, z, ') = fi + .
ff does not depend on w and satisfies, in view of the estimate (2.70)

1Al S lrx ()= S e
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Also, we have (see Remark 2.30 below)
' 1
3 =(w- w')/ Outrx(t, x,w,)do, (2.89)
0
which together with the fact that |w — &'| < 2% yields

1
/ Outrx(t, z,wy)do
0

13 peer2h0) S 272
L L2(Hu)

Unfortunately, we can not obtain the desired estimate for fg since we have O trx (-, w,) €
L L*(M., ), and LPL*(H,) and L L*(H,,) are not directly comparable, where u, =
u(,wy). Nevertheless, relying on the geometric Littlewood-Paley projections of [10], on
well-suited coordinate systems, and on various commutator estimates, we are able to
improve on this naive approach in order to obtain the decompositions below.

Remark 2.30 The identity (2.89) relies on a notation that will be used throughout section
8. Let w and ' in S? and f a function on S%. Also, let v the length minimizing geodesic
of S? between w and w' parametrized by an affine parameter o such that v(0) = w and
v(1) = w'. Then, applying the fundamental theorem of calculus to f oy, we infer

) = fw) + / ()0 f (ws)do

where w, denotes the point y(c) € S? on the curve v. From mow on, we rewrite for
convenience, by a slight abuse of notation, this identity as

f&) = fw) + (@ —o) / 0, f (w)do, (2.90)

from which (2.89) is a particular case. Note that (2.90) will always be used when w and
W' are such that |w — W'| <272, and hence close to each other.

Proposition 2.31 Let w and &' in S? such that |w — W'| < 275, Let N = N(-,w) and
N' = N(-,w"). For any j > 0, we have the following decomposition for N — N':

N—N' = (F/ + F})(w—w)
where Ff only depends on w' and satisfies:
1F7 |- S 1,

and where Fj satisfies:

19 per2ea) S 272

26



Proposition 2.32 Let w and w' in S* such that |w — /| < 2-%. For any j > 0, we have
the following decomposition for trx(-,w):

where ff does not depend on w and satisfies:
1A= S e,

and where fé satisfies:

13| e r2emy S 27 2.

Proposition 2.33 Let w and w' in S*>. Let p € Z. For any j > 0, we have the following
estimate for bP(-,w) — bP(,w'):

167(-, w) = 07 (-, )| o2 ) S lw — W'le

Lemma 2.34 Let w and w' in S®. Let xo the symmetric traceless P;,-tangent 2-tensor
introduced in (2.79) which satisfies the estimates (2.80) (2.81). For any j > 0, we have
the following estimate for xo(-,w) — x2(+,W'):

HX2('7W) - X2('7w/>||L30L4—(Hu) S |UJ — w'|5.

Proposition 2.35 Let w and w' in S* such that |w — /| < 2-%. For any j > 0, we have
the following decomposition for x(-,w) and X(-,w):

X('ﬂw)a 55('7("-)) = X2('7W,) + Flj + FQJ
where Ff does not depend on w and satisfies for any 2 < p < +o0:

HFlj'HLzS’LfLOO(Pt’u,) Se,

and where FJ satisfies: _
17 || e 2ty S 272

Proposition 2.36 Let w and w' in S? such that |w — w'| < 2-%. For any j > 0, we have
the following decomposition for x(-,w) and X(-,w):

X('aw)a 55('7(")) = Flj + F2]
where Ff does not depend on w and satisfies:
”Flj‘HLZ‘,’LOO(Pt’u/)Lf Se,

and where Fj satisfies:

15 || peer2gmay S 27 26
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Proposition 2.37 Let w and w' in S* such that |w — /| < 2-%. For any j > 0, we have
the following decomposition for X(-,w)?:

2('70‘))2 = XZ('JW/)2 + X2<'7w/>F1j + X2<'7w/>F2j + Fg + F4j + Fg
where Ff and Fg do not depend on w and satisfy:
||F1J||L§L§L°°(Pt,u/) + ”F?zHLZ‘,’L?LOO(Pt‘u,) Se,

where FJ and FJ satisfy:

1F3 N poor200) + | Ff || poo r2 ey S 27 e,

and where F? satisfies . .
13 |20y S €277

Proposition 2.38 Let w and w' in S* such that |w — /| < 2-%. For any j > 0, we have

the following decomposition for X(-,w)3:

55('7 w)S = X2<'7w1)3 + X2('7 w/)2F1J + X?('v w/)?FZj + X2('7 w/)Fg + XQ('v wl)Féf
+x2(, W) F + F} + F! + F] + Fj
where Ff, Fg and Fg do not depend on w and satisfy:

) T HFz)fHLg;LfLoo(PW) + HFgHLZ‘,’LfLOO(Pt’u/) Se

T P—
where FQj, FZ and F7] satisfy:
17 | e 20y + 1 F1 Nl Lo 20ty + 1 FE e 120y S 2-%¢,
where F? and Fg satisfy
HFE{HLQ(M) + HFgHLQ(M) S 5277'.

and where FJ satisfies
, 35
1Sl g2 gy S €277

Proposition 2.39 Let w and w' in S* such that |w — w'| < 2-5. For any j > 0, we have
the following decomposition for ((-,w) and Vb(-,w):

C('vw)v Wb(,CU) = FIJ + FQJ
where Ff does not depend on w and satisfies for any 2 < p < +o0:
lej.HLz‘}LfLP(Pt’u/) Se

and where Fj satisfies:

1F3 || e r2(mny S 27 1e
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Proposition 2.40 Let w and w' in S* such that |w — /| < 2-%. For any j > 0, we have
the following decomposition for b(-,w) — b(-,w'):

b('aw) - b<'7w,) = (ff + fg)(w - ("/)
where ff does not depend on w and satisfies:
1Al Se,
and where fg satisfies:

||f§||L3°L2(Hu) <2 1e

2.9 Additional estimates for try

In this section, we state estimates for try involving the geometric Littlewood-Paley pro-
jections P; on P, constructed in [10], that are not direct consequences of the estimate
(2.70) for try and basic properties of FP;.

Proposition 2.41 try satisfies the following estimates
[1Ptrxll2, e S 277, (2.91)

and |
|1Pj(nLirx)|lpz,p < 27€. (2.92)

Proposition 2.42 try satisfies the following estimates
IVP<jtrxlliz, i S e, (2.93)
and

HWPSJ'(”L”'X)HLi,Lg Se (2.94)

2.10 Organization of the paper
The rest of the paper is as follows.
e In section 3,

— we derive several embeddings on P, ,, H, and X; which are compatible with
the regularity stated in Theorem 2.21,
— we also discuss the Littlewood-Paley projections of [10] as well as several elliptic
systems of Hodge type on P, .
e In section 4, we prove Theorem 2.21. More precisely
— The fact that the null geodesics generating H, do not have conjugate points
and distinct null geodesics do not intersect is proved in section 4.1.

— (2.67) is proved in section 4.4.
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— (2.68) is proved in section 4.5 except for the L L? estimates which are proved
in section 4.7.

— (2.69) is proved in section 4.8.

— (2.70) is proved in section 4.9 except for the bound in L* which is proved in
section 4.6.2.

— (2.71) and (2.72) are proved in section 4.9 except for the bounds in L% L? which
is proved in section 4.6.2.

In section 5, we prove Theorem 2.23. More precisely

— (2.74) is proved in section 5.3.
— (2.73) is proved in section 5.4.
— (2.75) is proved in section 5.5.

In section 6, we prove Theorem 2.24. More precisely

— (2.76) and (2.77) are proved in section 6.2.3.
— (2.78) is proved in section 6.3.

— (2.79)-(2.82) are proved in section 6.4.

- (2.83)

2.83) is proved in section 6.6.

In section 7 we prove Theorem 2.27. More precisely

— (2.84) and (2.85) are proved in section 7.2.1.
— (2.86) is proved in section 7.2.2.

— (2.87) is proved in section 7.2.3.

— (2.88) is proved in sections 7.2.4 and 7.2.5.

In section 8, we derive the various decompositions of section 2.8. More precisely

— Proposition 2.31 is proved in section 8.2.1.
— Proposition 2.32 is proved in section 8.2.2.
— Proposition 2.33 is proved in section 8.2.3.
— Lemma 2.34 is proved in section 8.4.1

— Proposition 2.35 is proved in section 8.4.2
— Proposition 2.36 is proved in section 8.4.3

— Proposition 2.37 is proved in section 8.4.6

Proposition 2.38 is proved in section 8.4.8
— Corollary 2.39 is proved in section 8.6.1
— Corollary 2.40 is proved in section 8.6.2

e In section 9, we prove Proposition 2.41 in section 9.3.1 and Proposition 2.42 in
section 9.3.2.

e Finally, technical results of sections 4-9 are proved in Appendices A to E.
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3 Calculus inequalities on 7, H, and

In this section, we first recall some calculus inequalities from [10] on the 2-surfaces P, ,,.
We then discuss the Littlewood-Paley projections of [10] as well as several elliptic systems
of Hodge type on F,,. We establish calculus inequalities on #H,. Finally, we establish
calculus inequalities on ¥;, and we construct geometric Littlewood-Paley projections on
Y in the spirit of [10].

3.1 Calculus inequalities on F,,

We denote by v the metric induced by g on F,,. A coordinate chart U C P, with

coordinates z', 2?2 is admissible if, relative to these coordinates, there exists a constant

¢ > 0 such that,
P < vap(p)eie? < cl¢)?, uniformly for all p € U. (3.1)

We assume that P, can be covered by a finite number of admissible coordinate charts,
i.e., charts satisfying the conditions (3.1). Furthermore, we assume that the constant ¢ in
(3.1) and the number of charts is independent of ¢ and w.

Remark 3.1 The ezistence of a covering of Py, by coordinate charts satisfying (3.1) with
a constant ¢ > 0 and the number of charts independent of t and u will be shown in section
4.2.1.

Under these assumptions, the following calculus inequality has been proved in [10]:

Proposition 3.2 Let f be a real scalar function. Then,

12y SNV llzvpn + 11l pw)- (3.2)

As a corollary of the estimate (3.2), the following Gagliardo-Nirenberg inequality is derived
in [10]:

Corollary 3.3 Gwen an arbitrary tensorfield F' on P,,, and any 2 < p < oo, we have:

1—2 2
IEN e ey S IVE N 2(p, )1 E 122, ) + 1 2000 - (3.3)

As a corollary of (3.2), it also classical to derive the following inequality (for a proof, see
for example [7] page 157):

Corollary 3.4 For any tensorfield F' on P, and any p > 2:

1 F[ 2oy S NIVF | zepn) + 1Fl|zep,)- (3.4)

We recall the Bochner identity on P, (which has dimension 2). This allows us to
control the L? norm of the second derivatives of a tensorfield in terms of the L? norm
of the Laplacian and geometric quantities associated with P, (see for example [10] for a
proof).
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Proposition 3.5 Let K denote the Gauss curvature of P,,. Then
i) For a scalar function f:

/P V2 2 = / A Pdpie — / K|V f Pdyisa. (3.5)

ii) For a vectorfield F':

/ V2 F Py, = / AFPdps, — / K(2|VFP — P2 — |cuftF?)dp
Pt,u Pt,u Pt,u

T+ KPP, (3.6)
Pt,u

where djpF = yABY ,Fy, cuflF = dju*F) =B Y , Fg.

Using (3.3) and (3.6), the following Bochner inequality is derived in [10] for a tensor
F. For all 2 < p < 400, we have:

1
IV Flleae,y S NAF Iz + (K e + 1K V2, (3.7)

_p_ =2 1
HIE N 2(p, o IV 2 p, yE W 2P, + 1 2R 0)-

3.2 Geometric Littlewood Paley theory on P,

We recall the properties of the heat equation for arbitrary tensorfields £’ on F,,.
o.U(T)F — AU(T)F =0, U(O)F = F.
The following L? estimates for the operator U(7) are proved in [10].

Proposition 3.6 We have the following estimates for the operator U(T):

10, + / IVU () o dr < 1F |2 (3.8)

V0 () F| 2o+ / VAU () F|2a ™ S IV F o, (3.9)
0

YU F o + / ATV oy S IF 2o (3.10)

We also introduce the nonhomogeneous heat equation:
0, V(r) = AV(r) = F(7), V(0) =0,

for which we easily derive the following estimates:
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Proposition 3.7 We have the following estimates for the operator V():
IV s + [ AV e S [ NP s (3.11)
0 0

HV(T)Hiz(pt,u)Jr/O WV(T’)Hé(pt,u)dT'S/O/P V() E (T dp udr" (3.12)

To build a Littlewood-Paley theory on P, ,, we will need the following simple lemma
(see for example Lemma 5.4 in [10] for a proof).

Lemma 3.8 There exists a smooth and compactly supported in (0,1) function m such
that'?

/ " e =0 (3.13)
and

> 2%m(2%7) = 8(7). (3.14)

kEZ

We now recall the definition of the geometric Littlewood-Paley projections P; con-
structed in [10]:

Definition 3.9 Consider the function m constructed in Lemma 3.8. We set, m;(1) =
229m(2%7) and define the geometric Littlewood -Paley (LP) projections P;, for arbitrary
tensorfields ' on P,,, to be

P;F = /000 m;(T)U(7)Fdr. (3.15)

Given an interval I C Z we define

Pr=> PjF.

jel

In particular we shall use the notation Py, P<i, P, P>j.

Observe that P; are selfadjoint, i.e., P; = P7, in the sense,
< PiF,G >=<F, P;G >,

where, for any given m-tensors F, G

Py

U

17Tn [10], the function m may verify the vanishing of higher order moments in addition to (3.13). Now,
(3.13) suffices for the basic properties of LP projections of [10] used in this paper and recalled in this
section.
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denotes the usual L? scalar product. Also, note from (3.14) that the LP-projections
associated to m verify:
Y p=1 (3.16)
JEZ
The following properties of the LP-projections P; have been proved in [10]:

Theorem 3.10 The LP-projections P; verify the following properties:
i) LP-boundedness  For any 1 < p < oo, and any interval I C Z,

| PrE | op) S I F e (3.17)

i1)  Bessel inequality

D B FIp, o S IF G2,

J

iii) Finite band property For any 1 < p < oc.

|APF|to(p,.) S 22j2H,F||LP(Pt,u> (3.18)
1P Fllep,y S 277 (A e,

In addition, the L? estimates

IV P | 2P,
1P Fll 22 (p,)

hold together with the dual estimate

IP;YF| 2p 0y S 21F || 2(p)

21| F | 2Py
_- tu 3.19
2 |\VF o (3.19)

AR ZA

iv)  Weak Bernstein inequality For any 2 < p < o0
_2y;
1P Fllo(py S 1777+ DIF | 22ep,0),
1P<oFlLr(p) S I L2(p0)

together with the dual estimates

L2y,
1P Fr2py S QY727 + DIF | -
1P<oFll 2Py S 1Fl 1m0
In addition, in [10], the following estimate is derived
> 2NPFap, S IV, (3.20)

J

We further recall the definition of the negative fractional powers of A = I — A on any
smooth tensorfield F' on P,,, used in [10].

]. o0 «
AF = —/ r 2 eTTU (7)) Fdr 3.21
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where « is an arbitrary complex number with R(«) < 0 and I' denotes the Gamma
function. We extend the definition of fractional powers of A to the range of a with
R(a) > 0, on smooth tensorfields F', by defining first

ANF =A% (I -AF

for 0 < R(a) < 2 and then, in general, for 0 < R(«) < 2n, with an arbitrary positive
integer n, according to the formula

A“F = A*"2" . ([ — A)"F.

With this definition, A® is symmetric and verifies the group property A*A? = A8, We
also have by standard complex interpolation the following inequality:

1A 2(p, 0y S A F (o, ) IAF Il 21, (3.22)

Pt,u)| Pt,u).

We now investigate the boundedness of A=® on LP(P,,,) spaces for 0 < a < 1. For any
tensor F' on P, and any a € R, integrating by parts and using the definition of A, we
get:

IAF 2, + VA F 2, = / NUF - N'Fdp, + | YAF - YA Fp,
Pt,u

Pt,u

= (1= A)AF - A“Fdyuy,, = / A*AF - A“Fdyy,

Pt,'u, 1 9 Pt,u
= ||Aa+ F||L2(Pt,u)~
(3.23)
Taking a = —1 in (3.23), we obtain:
VAT Fll2p) S 1Nl 2(p0)- (3.24)

Below, we deduce several estimates from (3.24). Taking the adjoint of (3.24), we obtain
for any tensor F"

ATV E 2y S IF 2 - (3.25)
Also, (3.3) and (3.24) imply for any tensor F on P ,:

A | op) S IF | r2p,. for all 2 < p < +oc. (3.26)
Taking the adjoint of (3.26) yields:
||A_1FHL2(Pz,u) § ”FHLP(Pt’u) for all 1 < P < 2. (327)

Interpolating between the identity and A™', we deduce form (3.27):
2
||A_aFHL2(Pt w) ,S, HFHLP(Pt w) forall 0 <a < 1, F <p<2 (328)
: : a

The proposition below completes the estimates for the heat flow recalled at the beginning
of the section:
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Proposition 3.11 Let a € R and d > 0. We have the following estimates for the homo-
geneous heat equation satisfied by U(T)F and the nonhomogeneous heat equation satisfied

by V(7):
IO F Ry + [ P IPUEF R ie’ S (1 DIA Pl (3.20)
AVl + [ IPAVE a7 S [ [ NVER i, (330)
PV e+ [ IVt s [ [P s

T 2d-1
+ /0 PNV () 2o, T (331)
Proof We have

d
ST Fllzp,,) = 27/ U(r)FAU(T)F + U 12p,..)

Pt,u

from which we infer

PO Flagn, ) + / PIVU ) F o / WU F o
0

To estimate the RHS, we use (3.8) with F replaced by A~!F which yields

AT e+ [ IVA VP’ S 1A Fln,

where we used [A™, U(7)]F = 0. Together with (3.23) with a = —1, we infer

/ WU FlRagpde < (14 1) AF|ap,

and hence, in view of the second estimate of the proof

THU(T)FHiQ(Pt,u)JF/O TIVUE) FlLap, dr S A+ DA Fllzp,,)

which is (3.29).

The proof of (3.30) follows from the nonhomogenous heat equation for V', the fact
that V(0) = 0, and the fact that [A*, A] = 0. The proof of (3.31) is straightforward and
left to the reader. This concludes the proof of the lemma. [ |

Finally, we conclude this section by recalling the sharp Bernstein inequality for scalars
obtained in [10]. It is derived under the additional assumption that the Christoffel symbols
I'4. of the coordinate system (3.1) on P, verify:

Z / ITac2detda® < 7, (3.32)
U

A,B,C

with a constant ¢ > 0 independent of u and where U is a coordinate chart.
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Remark 3.12 The ezistence of a covering of P, by coordinate charts satisfying (3.1)
and (3.32) with a constant ¢ > 0 and the number of charts independent of u will be shown
i section 4.2.1.

Let 0 <~ <1, and let K, be defined by:
I(fY = ||A_A/K||L2(pt7u). (333)

Then, we have the following sharp Bernstein inequality for any scalar function f on P ,,
0<~vy<1,any j >0, and an arbitrary 2 < p < oo (see Theorem 10.1 in [10]):

. j 1_ 1
1P fllepy S 214+ 275 (K + K2) | flls2pn) (3.34)
2

1
1Pcofllzecpiy S (1+ B + K| fllz2p.)- (3.35)

Also, the Bochner identity (3.5) together with the properties of A implies the following
inequality (see the equation (69) on page 158 of [10]):

/ VP < / AP+ (KT 1K) / P (3.36)
Py o Py P

Thus, we need to bound K., in order to be able to use (3.34), (3.35), and (3.36). For
0 <a < 1, we will use the fact that for any tensor F' on P, ,:

+o0
A= Fli2p,) S 1P<oFllz2p, + D27 1P F 22, (3.37)

=0

which follows from the methods in [10] (Corollary 7.12 page 140 of [10] holds for the case
a < 0 and can be immediately extended to the easier case 0 < a < 1).

Finally, we also recall from [10] (see estimate (10) in that paper) the following estimate
for the L*> norm of any tensor F' on P, ,:

p—2 1

1 p=2 1 p=1
1Pl S IV EW2ai o IV Epy NN+ IE N ) + IV lliam (3:38)

which is valid for any 2 < p < 4+00. This estimate requires the assumption (3.32).

3.3 Hodge systems

We consider the following Hodge operators acting on 2 surface P, ,:
1. The operator D; takes any 1-form F into the pairs of functions (dixF’, cuflF’).

2. The operator D, takes any 2-covariant P, tangent symmetric, traceless tensor F'
into the P, tangent one form ditF.

3. The operator *D; takes the pair of scalar functions (p, o) into the P, ,-tangent 1-form

—Yp + (Vo).
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4. The operator *Dy takes 1-forms F' on P, , into the 2-covariant, symmetric, traceless

tensors —%Z\m with Z;}/ the traceless part of the Lie derivative of the metric v
relative to I, i.e.

—

(LrY)ap = Vpla+ VaFp — (dFF)vap.
Observe that *Dy, resp. *Dy are the L? adjoints of Dy, respectively Ds.

We record the following simple identities (see [4] page 38)
D1 Dy = —-A+K, D, "Dy = —A (3.39)
Dy Dy = —ATK, Dy Dy=— (A4 K) (3.40)
Using integration by parts, this immediately yields the following identities for Hodge
systems:

Proposition 3.13 Let (P,,,7) be a two dimensional manifold with Gauss curvature K.

i.)  The following identity holds for 1-form F on P ,:
/ (IVFP + K|F|?) = / (P + |cuftF|?) = / DFP (341)
Pt,u Pt,u Pt,u
ii.)  The following identity holds for symmetric, traceless, 2-tensor F' on Py ,,:
/ ([VF]? +2K|F|?) = 2/ |djuF |* = 2/ Dy F|? (3.42)
Piy P Piu
iii.) The following identity holds for pairs of scalar functions (p,o) on P ,,:
[owekeivel) = [ 1Yo+ orP= [ Dol ey
Pt,u Pt,u Pt,u
iv.) The following identity holds for 1-forms F' on P,,,
[ (wrp-mipy =2 [ o (3.44)
Pt,u Pt,u
We recall the following estimate from [10]. Let 0 < v < 1 and let F' a P, ,-tangent

tensor. Then, we have

_ 1—
; K|F? SIATK | e 2, IVF 2 0p, I Fll 20, -
t,u

We need to refine this estimate outside of a compact set of F;,,. Recall from Remark 2.16
that there is a compact set U of MN{0 < ¢ < 1} of diameter of order 1, such that (M, g)
is smooth, small and asymptotically flat outside of U. Let ¢ a smooth cut-off function
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which is one on U and compactly supported in M N {0 <t < 1}, and let Va compact
set containing the support of ¢ is its interior. Then, since V' is compact, relying on the
coordinate charts on P, satisfying (3.1), we easily obtain for any scalar f on P,

1 z2p, iy S NV llz2ce0)-

Choosing f = |F|, we deduce for any tensor F

I 2y uniy S IV E 20,0

We infer from the previous estimates

KIWFP S A7 K|z, IV E)e, o [0 F I,

S AT K e, IVl 2(py + 11 2, 0))”
S AT K g2 IV 72, )-

Since ¥ = 1 on U , we deduce

KIFP S A7 Klesz | VPV + [ KIFP

Pt,u Pty’U«\U

Together with Proposition 3.13, we immediately obtain the following corollary.

Corollary 3.14 Assume that |AVK| jep2, S € for some 0 < v < 1. The following

~J

estimates hold on an arbitrary 2-surface P, :

i.) Let a P,,-tangent 1-form H, and let the pair of scalars F = (p,o) such that
divH = p, cuflH = o. Then, we formally write H = D;'F, and we have the following
estimate

IV Dy Fllzep,.) S 1Fllzee,.) + \//P @ K|Dy'FP2. (3.45)

ii.) Let a P, ,-tangent symmetric, traceless, 2-tensorfields H, and let the P,,, tangent
1-form F such that djvH = F. Then, we formally write H = Dy'F, and we have the
following estimate

IV - Dy Fllzep,.) S 1Fllzecp,.) + \//P & KD, FI2. (3.46)

iii.) Let(p,0) apair of scalars on P,,, and let the P, -tangent L* 1-form F such that
~VYp + (Yo)* = F. Then, we formally write (p,0) = *D;'F, and we have the following
estimate

IV "D Fllrzpy S IFllee.) + \//P @ K[*Dy'FP. (3.47)
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iv.) Let a P,, tangent 1-form H, and let F the P,,-tangent symmetric, traceless,
2-tensor such that *DoH = F. Then, we formally write H = *Dy'F, and we have the
following estimate

IV - Dy Flirae.y S IFllz2ep..) + \//P & K[*Dy'FP2. (3.48)

In view of (3.45), (3.46), (3.47) and (3.48), we have schematically

IV - D™ Fl2p0) + 1D Fllzey S NFl2ep,) + \// _K|D'F]?, (3.49)
Po\T

where D = Dy, Dy, *D; or *Dsy. Now, due to the fact that (M, g) is smooth, small and
asymptotically flat outside of U as recalled above, all scalars and tensors estimated in
this paper are sufficiently smooth and decaying outside of U so that the last term in the
right-hand side of (3.49) will always be harmless. Indeed, for that term, we just need

2

K|D'F|? in M\ U

< &
~o 1+ |2

while due to the asymptotic flatness assumption, we have K = O(g|x|™®) and D7'F =
O(elz|™) as |x| — +oo for all choices of F satisfying a Hodge type system considered in
this paper, so there is in fact |z| ™ room for that term. For the simplicity of the exposition,
by a slight abuse of notation, we will replace (3.49) with the following estimate in the rest
of the paper

IV - D Fll2p,.) + 1D Fllrae) S NE2ep)s (3.50)

where D = D, Ds, *D; or *Ds.

Remark 3.15 The estimate (3.50) together with the Gagliardo-Nirenberg inequality (3.3)
yields for any 2 < p < 4o00:

D™ Fllio(p S IF |l z2p)

where F is a Py, -tangent tensor and D~' denotes one of the operators DY, Dy, D,
*D~L. We also obtain the dual inequality for any 1 < p < 2:

1D Flir2p) S IF N Loe)-
Lemma 3.16 For all 2 < p < 400, and 7 > 0 we have:

_2
p

D7 PiF\lpop S 277 I1F 20, (3.51)

where F is a Py, -tangent tensor and D~ denotes one of the operators Dy, Dy', *Di?,
*D_l.
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Proof First, note that the finite band property implies

|PD7'Fllr2p) S 27{|’77®71F\|L2(Pt,u)
S 27|Fle2p

where we have used in particular (3.50) in the last inequality. Since D! denotes one of
the operators D;*, Dy*, *D;t, *D~!, we infer that the dual of D' is also of the type
D!, Thus, we deduce by duality

D™ PiFlli2p,y S 27 F |2

Y

Together with the Gagliardo-Nirenberg inequality (3.3), we infer:

_ _ 2 _ 1-2 _
DB Fllopny S 1D BiF Lo, JIVD B F Nl ofp, ) + 1D B Fll2(p,)

- 2 1-2 -
S D 1PjF||z2(pt7u)||F||L2(Z}at7u) +D 1PjF||L2(Pt,u)
2
S 277 | DT rap,)
which concludes the proof of the lemma. [ |

The following lemma generalizes Remark 3.15.

Lemma 3.17 For all1 < p <2 < g < 400 such that % < % + %, we have:

1D Flpa(p) S INF||oep)s

where F is a Py, -tangent tensor and D~' denotes one of the operators DY, Dy, Dy,
*D_l.

Proof Let F,p,q as in the statement of Lemma 3.17. We decompose |D™'F||Lq(p,.,)
using the property (3.16) of the geometric Littlewood-Paley projections:

1D Flla(p) S IP<oD 7 Fllrawpi, + D _IPD ™ Flliae,.)- (3.52)
>0

We focus on the second term in the right-hand side of (3.52), the other being easier to
handle. Since 2 < g < +00, we may use the weak Bernstein inequality for B:

_2 _
IPD Fllop,y < 2D IBDFllap,., (3.53)
1(1-2 -
S 2CDNPD M e (p 2@ | F oo
1(1-2 -
S 2( q)HD 1Pl”ﬁ(L?(Pt,u)Lp’(Pt,u))HFHLP(Pt,u)
where p’ is the conjugate exponent of p, i.e. zla + 1% =1.
Next, note that 2 < p’ < 400 and hence from (3.51) we have

21

HID?IPIH[,(LQ(Pt,u),LP'(Pt,u)) S22
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which together with (3.52) and (3.53) implies:

_2_2
D Fllzae,y S (HZ?“ q p”) 1Pl

>0

N (1 + QZ(_1_2+’2’)> 1| Lr(p.0)

>0

S I Fzepw)s

where we used the fact that % < % + % in the last inequality. This concludes the proof of
Lemma 3.17. u

We end this section with an algebraic expression for the commutators between L and
Dt Dy Dy

Lemma 3.18 Let D' be any of the operators D7', Dy, *Drt. Then,

L, D] =D '[D,L]D" (3.54)

3.4 Calculus inequalities on H,

For all integrable function f on H,, the coarea formula implies:

1
/ fdH = / Fodps udt. (3.55)
H 0 JPi.

It is also well-known that for a scalar function f:

d
= ( . fdut,u> = /P (L)t d (3.56)

We have the classical Sobolev inequality on H:
Lemma 3.19 For any tensor F' on H, we have:
1E N sy S Mi(F), (3.57)

and

HFHL;’OL‘;, S MU(F). (3.58)
Proof Using (3.2), we have:

IF@ M Somy = NFE P
S VE®, ) - F)IFE e + WEE )P e
S IVEE N2 [ E s, + 1EE Lm0 1 E 2,
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which yields:

1 2
IE N oy S (IVEN 2y + 1 220002 I | oo 1,

and hence ) )
1F s,y S NI(F)guFHz?oL;l/' (3.59)

Using (3.56) and (3.57), we have:

||F(t7‘)||i4(Pt7u) = L4 (Po,u)

1£(0,
+4/ / nDyF(r,2') - F(1,2)|F (7, 2')2drdjir..

/ / ntry|F(r, )| drdps., (3.60)

< IF, )5, +||DLF||L2(HU Fll s
+HnHL°° Ha) HtrXHLoo Ha) F”L“(’HU)
S IEO, Magp,.y + NE) + 1F (176 30.)-

Replacing F' with ¢(t)F where ¢ is a smooth function such that ¢(0) = 1 and ¢(1) =0,
and proceeding as in (3.60), we obtain:

IFO, ks, = — / / (N*DLF(r.2') - F(r,2")|F(r,2")Pdrdpr,

4/ / 3 F (1, 2')|*ndrdu,.,

ntrxp (1)} F(r, ') |4d7'dpJT,u
0o JP,
S NME) +1F 760y,

which together with (3.60) yields:
IEE sy S NUE) + 1Fl|og,)-
Taking the supremum in ¢ yields
1Fllens, S M(E) + [Pl (3.61)

Finally, (3.59) and (3.61) imply (3.57) and (3.58). This concludes the proof. [

Lemma 3.20 For any tensor F':
1 1
[E N ez, S IDLEN 2300 1E 1 2230, + IE 204 (3.62)
Furthermore, if F(0,.) belongs to L*(Py.), we have:

1F N pger2, S MO, )lz2er,) + PLE L200,)- (3.63)
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Proof Using (3.56), we have:

VEE gy = IO, e,

10,
+2/ / nDLF (r,2") - F(r,2")drdpir

/ / ntrx|F(r, ") |*drdu.., (3.64)

S IFO.)zem,,) + IDLF 2 | Fll 2
+||n||L°°(Hu)||trX||L°° 1l FlIZ2,
2 2
S IEO )z m, . + ||DLFHL2(7-Lu)”F||L2(Hu) +E 20,

Replacing F' with ¢(t)F where ¢ is a smooth function such that ¢(0) = 1 and ¢(1) =0,
and proceeding as in (3.64), we obtain:

||F(O’-)||%2(Po,u) - _2// 7D F(r,2) - F(r,2")drdpi, .,

2 / / D E(r, ) Pdrdyn,

/ / ntrx(r)2|F (7, o) Pdrdjin,

S IDLF i) 1F 2y + I 1230,
which together with (3.64) yields:
It M zep, S IDLFl 2o 1Fll2ge) + 1F1E200,)- (3.65)

Taking the supremum in ¢ yields (3.62).
To obtain (3.63), we combine (3.64) with Gronwall’s lemma. This concludes the proof.
|

The following lemma will be useful to estimate the various transport equations arising
in the null structure equations. Its proof is immediate.

Lemma 3.21 Let W and F two P,,-tangent tensors such that Y, W = F. Then, for
any p > 1, we have:

IWlze,ge S W O)l2ocro,y + 12z, 2t (3.66)

Finally, let us recall the Minkowski inequality which will be often useful to estimate
the right-hand side of (3.66):

HFHLs/Lg < HFHLgLZﬂ prOVided 1 S q S P S “+00. (367)

~
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3.5 Calculus inequalities on

Recall that ¢ is the metric induced by g on ¥;. A coordinate chart U C Y; with coordinates
x = (x1, z9, x3) is admissible if, relative to these coordinates, there exists a constant ¢ > 0
such that,

cHEP < i ()€€ < ), uniformly for all p € U. (3.68)

We assume that >; can be covered by a global admissible coordinates system, i.e., a chart
satisfying the conditions (3.68) with U = ;. Furthermore, we assume that the constant
c in (3.68) is independent of ¢.

Remark 3.22 The existence of a global coordinate system %, satisfying (3.68) with a
constant ¢ > 0 independent of t will be shown in section 4.2.2.

Lemma 3.23 Let f a real scalar function on ¥;. Then:
1415w, < IV Fllcrcsy (3.69)

Proof We may assume that f has compact support in ¥;. In the global coordinate
system x = (21, za, r3) on ¥, satisfying (3.68), we have:

1
|f(9517I2,l’3 %: ’/ 81 y7I27$3 dy/ a2 Jfl,yax?) dy/ 83f T1,T2,Y )dy

(/ \81 Y, T2, T3 \dy) (/ ’an T1,Y,23 ’d?/) </ \33f T1,22,Y )|d3/>

/ |f($1,$2;$3)|%dx1dx2dx3
R3

(/ |81f($1,$2,$3)|d$1d$2df3)
]R3

</3 ‘asf(xla$2,$3)|dI1dI2dI3>
.

Hence,

D=

%
(/ Iagf(l’l,$2,$3)|d1’1d?£2d$3)
R3

(SIS

N

< ( \Vf(wl,xz,ms)ldxldxzdws)
R3

Now in view of the bootstrap assumption (4.1) (4.4), and the coordinates system proper-
ties (4.19) and (4.20), we have £ < \/|g;| < 5 which together with the previous estimate
yields:

</R !f(x>|3\/@dx1dx2dx3> F o /R IV f(2)|/ |9t dar dwydixs

as desired. m
As a corollary of the estimate (3.69), we may derive the following Sobolev embeddings.
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Corollary 3.24 Given an arbitrary tensorfield F' on ¥y, we have:

1Pl S IV, (3:70)

and
[EN s S IVE 2, (3.71)

Proof We use (3.69) with f = |F|?:
1oy = FEl 5 o) S IET Pl S IVFlL g o 1l
which yields (3.70). To obtain (3.71), we use (3.69) with f = |F|*:
1P Wes o = F, 5 0,y S IFPES Pl S IVl s,
which yields (3.71). n

As a corollary of (3.69), it is classical to derive the following inequality (for a proof,
see for example [7] page 157):

Corollary 3.25
[Fllzsy S NIV oy + 1 F Lo, (3.72)

where p is any real number p > 3.
As a corollary of (3.71) and (3.72), we immediately obtain:
[Fl ez S IVAF |2z + [1Fll22(s)- (3.73)
Lemma 3.26 For any tensor F' on M:
||F||L30L§, S IVF|peres,) + 1 Fll e r2(s,)- (3.74)

and

[Flpger2, S TVE ) T E N2 (3.75)

L°°L2

Proof We first recall the analogous formula to (3.55) (3.56). For all integrable
functions on ¥, the coarea formula implies:

Et Pt u

Also, we have for all integrable scalar functions f:

d
- ( /P fdut,u> ~ /P - b(Vaef 8 s (3.77)

where 0 is the second fundamental form of P, in 3, i.e. 0;; = V;N;. Note that from the
definition of k, x and 6, we have:

XA =< DalL,eg >=< VT, eg >+ < VaN,eg >= —kap + Oap. (3.78)
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The proof of (3.74) is easier, so we focus on (3.75). Using (3.76)-(3.78), we obtain:

1Flps, 5 [ [ P VP + ool Puds

S [[VNF

|L?oLg(Et)||F||L§°L3(Et) + ltrx e | Fll 20 r2ss,)
+{[trk|| Lo o) |1 F |l oo s | Fll oo 250
S |VE ||2Lo<>m + | F 70 25, (3.79)

where we have used the bootstrap assumptions (4.3) (4.4) and the Gagliardo-Nirenberg
inequality (3.70) in the last inequality. We thus have obtained (3.75). [ |

We have the following corollary of the estimate (3.75):
Corollary 3.27 For any tensor F on M, we have
HFHLg’OLi, S IV reres,) + 1Fllsere(s,)- (3.80)
Proof Using (3.75) with F replaced by |F|?, we obtain
1F s, < I1F-VE s H I e pagen

~

L°°L2
1

S HF\|L§°L6(Et)HVFHL;”L?(&) + HFHLQ,tOOLG(Et)HFHLQ,tOOLQ(Et)

S ||VF”%;>OL2(&) + HF”%;”L?(&y

where we used in the last inequality the Sobolev embedding (3.71). This concludes the
proof of the corollary. [ ]

Proposition 3.28 For any tensor F' on ¥;, we have the following inequality:
IV2F|l 2w S 1AF |2 + 1 F |2 (3.81)

Proof We recall the Bochner identity on the 3 dimensional manifold ¥3; for a tensor
F (see for example page 133 in [10]):

/\VQFPdZt = /|AF|2dzt—/(Rt),-jviFlij,dzt (3.82)
Et Et Et

1
+/ (Re)ijimVm F;V Fyd3, — 5/ (Re)mijit(Re)niji Fon FndXy
Et Et

where R, is the curvature tensor of the induced metric on ¥;. The bound (4.26) on R,
together with the Sobolev inequality (3.71) and (3.82) implies:

VEFPdS, S Af L2y + I Relleeo IVE s, + IRl w0 I FllZoe (s,

S ~
1 3
S NAFILe s, +ellVE I IVEll s,y + IV F 2w, + 1F Iz s,)
1 3
S AP + IVEI 2wy IV Fll s,y + 1F Iz,
which yields (3.81). n
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Proposition 3.29 For any tensor F' on X;, we have the following inequality:

[El ey SN2y + IVEl 2 + 1VVE] s, (3.83)
Proof Using (3.4) with p = 4, we have:
1Pl S I9Flers, + 1Pl (3.81)

Pick any real number ug. Now, using the coarea formula (3.76) and (3.77), as well as the
Sobolev embedding (3.71), we have:

IVE (s e g, + 1 (s e, (3.85)
S IIVF(qu-)H“L;/+||F(uo,-)||‘i;,+ g VNYF - VE|VF[?
+ | |VE|*0+ | VyF-FIFP+ [ |F[*r0
St it N
S IVF(uo, Migers, + 1F (o Migrs, + 1VyVEl 2w IVF 7o,
HIVN 2ol Fllzos,) + UVE Iz, + 1Fl| 2o 1620130
S IVE o Mg, + I1F (o Migers, + 1Va VIF 125 + IVVF 2w,

HIVE L2y,
where we used in the last inequality the estimates (2.68)-(2.70) for b and tr6.
In view of (3.84) and (3.85), we need to estimate ||[Vy, V|F|/12(s,). Using the com-
mutator formula (2.47), we have:
V8 VIF Ny S 16020, IV F Lz iy + 157 Pl 20 ¥ Fl
b Rl grs, (s, + WEls) + Il 20, 1l s DIF s
+1B 2o + 1Bl 2@ I Fll oo )
el Ol ez, + 1€l 1Lz,
S Del|VPFllram) + Del| WV NFll (s + Del| Fllre(s,)
+De|Fl| 215 + Del| Fll 214,
S DellFllreowy + IVVE 2 + IVE 2@ + 1F 2w, (3.86)
where we have used the curvature bound (2.59) for 5 and (3, the bootstrap assumptions

(4.1)-(4.6) for b,0, x, x,¢ and &, the estimate (3.3) to bound the L2L% norm of I, the
estimate (3.38) to bound the L2 L% norm of F, and the estimate:

Sl;P“HHLgoLi, = S?LPHHHL;’OL‘;, S MNi(H),
which is valid for any tensor H and follows from (3.61).
Now, in view of (3.84)-(3.86), we have for any real number uy:
[F Nl ooy + IV E | gers, + [[Fllgers,
S IVF o Migrs, + 1F (o, Migrs, + 1VVFllzs) + IVE 225,
HEl 2 + DellFll (),
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which yields:
[E oo + IWE N ngera, + [1F | ngers, (3.87)
S VE (uo, ‘)HigoLi, + || F (uo, -)||i;;oy;, +IVVE 2w + [IVF|r2(s0) + 1 Fl 2y

~J

Let ¢ a smooth compactly supported scalar function on ;. Applying (3.87) respectively
to @F with ug outside of the support of ¢, and then to I’ with ug inside the support of
¢ finally yields (3.83). This concludes the proof of the proposition. [ |

For the following proposition, we assume that for each § > 0, there exists a constant
C'(9) > 0 and a finite covering of ¥; by charts U with coordinates systems relative to
which we have

(14 06)7" ¢ < gu(p)E'E < (1+0)[E), peU (3.88)

AW%%%@MSC@- (3.89)

Remark 3.30 The existence of a finite covering of ¥; by coordinates systems relative to
which we have (3.88) (3.89) with C(0) and the number of charts being independent of t
will be shown in section 4.2.5.

and

Proposition 3.31 Assume that for each 6 > 0, there is a finite covering of ¥, by coordi-
nates systems relative to which we have (3.88) (3.89). For an arbitrary tensorfield F' on
>, we have the following inequality:

IV*FI g gy SHAFI g 0 + IVFllL2s). (3.90)

L3 () L3 (S

Proof (3.90) may be reduced by partition of unity to the case where F' has compact
support in a coordinate chart U. Let x = (x1, 22, x3) a coordinate system on U satisfying
(3.88) (3.89). We have:

2 2
IV2F = 6*Fll 3.,

S g — 23)82F||L2(U +[18g0F 1| 3, +||329F||L2(U)
S gy = dillzn [0°FII, 5 +||39||L6(U IVE L2y

+0*gllr2w (1+H3!JIIL3 )HFHLG(U)

< 6|162F||L2(U) CO) IV Fllzqo).

where we have used the Sobolev embedding (3.71) in the last inequality. Thus, we now
fix 6 > 0 small enough such that for a constant C' > 0, we have:

IV2F — 0 Fl, 3 0, < S10°Fl, 3 4, + CIVF 0 (3.91)

L3 (U)
Note that C'= C(§) > 0 is now a fixed number. Similarly, we also have:
3

AF — Za?F

J

3

> o F

j=1

< + CIVF| 2wy, (3.92)

)

N | —

— 3 3
Jj=1 L2 (U) L2
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where Z?Zl 97 is the usual Laplacian in R®. Now, from usual Calderon-Zygmund theory,
3
2

we have: ;
2
S tr
J=1 L3 (V)

which together with (3.91) and (3.92) yields (3.90). u

2 <
021l 3,4

Finally, we have the following useful commutation formula for any scalar function f

on M:
[A,Dr]f = —2kV2f + 207 'VnVT(f) + n 'AnT(f) — VEVf —2n 'kVnVf  (3.93)

where we used the fact that we are on a maximal foliation (see (2.2)), so that the term
Tr(k)Af vanishes. We also used the fact that the Einstein equations (1.1) are satisfied,
so that the term of type RV f vanishes as well. We also provide commutation formulas
with tensors. Let II4 be an m-covariant tensor tangent to ;. Then, we have:

V,Drlly = DrV,Iy = kyViIla+n 'VnDrlly + > (0" 'ka;Vin (3.94)

—n "k Van 4 Rea, (905 — Reu(ge) )y, foa, -

For some applications we have in mind, we would like to get rid of the term containing
a Dr derivative in the right-hand side of (3.94). This is achieved by considering the
commutator [V, D,r| instead of [V, Dr]:

VanTHA — DnijHA = nklelHA (395)
+ Y (kayVin — kpVan +nRea, ()} — nRru(gr); )y, joa, -

3.6 Geometric Littlewood-Paley theory on
3.6.1 The Gagliardo-Nirenberg inequality on Y,

We first consider the case of LP(3;) with 2 < p < 6. Using the Sobolev inequality (3.71)
and interpolation implies for any tensor F' on X,

3(3—1 —3+2
1ENren S IVEl s 1F 2y ¥2 < p < 6. (3.96)
Next, we derive the following analog of Lemma 3.23

Lemma 3.32 Assume that for § = %, there is a finite covering of ¥ by coordinates
systems relative to which we have (3.88) (3.89). Let f a real scalar function on ¥;. Then:

1 1
1l S UV 22 IV 2wy + IV F 2y (3.97)
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Proof The statement may be reduced to the case where f has compact support in
an admissible local chart U of ¥, satisfying (3.88) (3.89) with 6 = 3. Let = = (21, z2, x3)
denote the corresponding coordinate system. We start by proving the following estimate
on R3

1721 oo ey S 1O | 2oy |07 f1] L2y (3.98)

To this end, we introduce a standard Littlewood-Paley decomposition on R3. Let ¢ a
positive function in C§°(R?) equal to 1 for || < 1/2 and to 0 for || > 1. For all

integer p we define the Littlewood-Paley projection A, by A,f(§) = ¢(2’p§)f(§) where
B(€) = p(£/2) — p(€). We also define A_; by A_; £(€) = p(€)f(€). The Littlewood-Paley

decomposition of f is:
= Z Ap(f )

p>—1

Using the Littlewood-Paley decomposition for f2, we have:

2] sy S Z 1A, (%) || oo ey (3.99)
j>—1
S Z 27|12, (F)]] 2 (R?)
j>—1
35
S Z 22 || A (ALf A f)l 22 (ms)-
Jlym>—1

The expression being symmetric in (I, m), we may assume m < [. We consider the two
cases [ < j and j < [ separately. If j < [, we use the boundedness of A; on L*(R?) and
the Bernstein inequality for A,, to obtain

1A (A f A Pl 2@y S 278 (1A || 2 || A fll 22 @9 (3.100)

If I < j, we use the finite band property for A;, A; and A,,,, and the Bernstein inequality
for A,, to obtain

A (AL A )] L2(m3) 27| AAF A ) || 22 (r2) (3.101)
27 || AAS) A fllz2esy + 277 | AL FA(A ) || 22 w2
27N V(ALS)V (A )l L2 (rs)

27 (2 4 I L 0| A e | A f | 22e)

_95 3m
27PN A f || 2y || A f 1] 22 @3y,

AR ZA

AN

where we used the fact that m <[ in the last inequality. Now, (3.100) and (3.101) imply

li—m]| M\

3 Lo m
22 || A (Af A ) c2es) S 2 2% Af llz2@) 2" | A f | r2geey)-

Together with (3.99), we infer

1£2] ey S (Z(QzlllﬁzfllL%R%)Q) ( > (QmIIAmf||L2<R3>)2) S N0f 2@ 107 f | 2oy

I>-1 m>—1
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which is (3.98). Now in view of the assumptions (3.88) (3.89) with 6 = 5, we have

< Vgl £ 8 and the estimate ||I'||z3) < 1 where I' is the corresponding Christoffel
symbol, which together with (3.98) yields:

[|f || oo (ms)

< (Lovrersreivs \/Edw) ([ 1wt de)

. ((/R3 |V2f(x>|2md$)é + (/Rg |Vf(fv)!6\/@d:c>6> </R$|Vf(x)|2\/mdx>é

Coming back to ¥;, we obtain

[fllz) S (||V2f||L2 =t IV 1113, zt))”VfH]ﬁ s T IV,
which together with the Sobolev embedding (3.71) yields (3.97). u

Let F a tensor on 3;. Then (3.97) with the choice f = |F|* yields

1 1
1y S NFV2E 4 [VFR ) |- VF| 2o, + IF - Vs,
<

IFl oo IV F 2 + IVE2am)2 (IF |l oo [V F Il L2(s,)) 2
H | 2o =) I VE L2(5,) -

Using the Gagliardo-Nirenberg inequality (3.96) to evaluate ||V F| 4(5,), we deduce
1 1 3 3 1
1oy S IENe@olIVEll 7wy IV Ell ey + IV Ell 2 IV El o [ s
HIE Lo e IVl 22020

Thus, we finally obtain for any tensor F' on
1 1
||F||L°°(Et) S ||v2F||i2(gt)||VF||22(zt) + ||VF||L2(Et)-

Interpolating with the Sobolev embedding (3.71) on ¥;, we finally obtain the following
Gagliardo-Nirenberg inequality on ¥,

3
| Fllees) S HV2F||L2 ) HVFH =) V6 < p < +o0. (3.102)
3.6.2 Heat equation on X;

In this section we study the properties of the heat equation for arbitrary tensorfields F'
on Et'
OU(T)F — AU(T)F =0, U(O)F = F.

Observe that the operators U(7) are selfadjoint and form a semigroup for 7 > 0. In other
words for all, real valued, smooth tensorfields F, G,

/ U(T)F -G :/ F-U(T)G, U(T)U(T2) =U(T1 + T2). (3.103)
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We have the following L?(%;) estimates for the operator U(7).

||U(T)F||L2(Et) < ||F||L2(zt), (3.104)
IVU(T)F |25y < (IVFL2(sy)- (3.105)

They are obtained after multiplication of the Heat equation satisfied by U (1) F' respectively
with U(7)F and AU(7)F, and then integration over %;.
In the next proposition we establish a simple LP(%;) estimate for (7).

Proposition 3.33 For every 2 < p < 0o, we have
[UT)Ellzossy < 1F | ze(se)-

Proof: The proof is identical to the one in [10] on compact 2-surfaces. We reproduce
it here for the convenience of the reader. We shall first prove the Lemma for scalar
functions f. We multiply the equation 0,.U(7)f — AU(T)f = 0 by (Z/I(T)f)prl
integrate by parts. We get,

1 d

3y g U s,y + 20 = 1) [ (VUG PP o0

and

Therefore,
[U(T) fllLze (s < (1 llz2e(s0)-

The case when F' is a tensorfield can be treated in the same manner with multiplier
(U()FP)" " U(r)F. .

3.6.3 Invariant Littlewood-Paley theory on

In this section we shall develop an invariant, fully tensorial, Littlewood-Paley theory on 3,.
We follow the analog construction in [10] for two dimensional compact manifolds. Now, the
results essentially rely on the properties of the heat flow discussed in the previous section.
Since these properties are true for manifolds of arbitrary dimensions, both compact and
noncompact, the results in [10] extend in a straightforward fashion. Thus, we recall below
the main objects introduced in [10], and we refer to [10] for the proofs.

Definition 3.34 Consider the function m constructed in Lemma 3.8. We set, my (1) =
22km(2267) and define the geometric Littlewood -Paley (LP) projections Qy, associated to
the LP- representative function m € M, for arbitrary tensorfields F on 3, to be

QuF — / (U7 Fdr (3.106)
0
Given an interval I C 7 we define
Qr = Z Qrl
kel

In particular we shall use the notation Q<k, Q<k, @>k, @>k-
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Observe that @)y are selfadjoint, i.e., Q) = @, in the sense,
< QpF, G >=< F,QG >,

where, for any given m-tensors F, G
< F, G >= / giljl . gimijil...imGjl...jdeOIQ
¢

denotes the usual L?(3;) scalar product. Also, note from (3.14) that the LP-projections
associated to m

> Q=1 (3.107)
k
The following theorem summarizes the main properties of the Littlewood-Paley de-
compositions Q.

Theorem 3.35 The LP-projections Qi associated verify the following properties:
i) LP(X;)-boundedness  For any 1 < p < oo, and any interval I C 7Z,

1QrF ez S IIF ez (3.108)
i1)  Bessel inequality

D NQkFlGasy S IFI 2w,
k

iii) Finite band property For any 1 < p < oc.
IAQkF oy S 27M1F || Loz
1QkF ey S 27 AF| Lo,

Moreover given m € MM we can find m € M such that AQ, = 2% P, with P, the LP
projections associated to m.
In addition, the L*(3;) estimates

IVQRF | L2(s,)
|QrF[| L2 (s

hold together with the dual estimate
1@V F 2z S 21 Fll sy

iv)  Bernstein inequality —For any 2 < p < 400

2| F || 2z,

<
S 27M|VF sy

1

1_1
1QeF |l rosy S (2°272% 4+ )| F|| 120,
1Q<0F ey S F 2z

together with the dual estimates

1_1
1QkF N2 S 2% + DIIF | s,
1Q@<0F 2 S 1E 1 (s,)
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Proof We refer to [10] for the proof of i)-iii). Next, we turn to the proof of iv). In the
case 2 < p < 6, it is an easy consequence of the Gagliardo-Nirenberg inequality (3.96):

HQk‘FHLP(Et) HVQRFHLZ z:t) HQkFHLZ’(zt

<
< 2PETH P e,

where we used the finite band property and the boundedness on L?(%;) for Q. Next,
we consider the case 6 < p < +00. Using the Gagliardo-Nirenberg inequality (3.102), we
have

3 143
1QkF vz S ”VQQkFHH(Et IVQFI| 72,
(L 2+3

1_ é 1 é

S (1AQkFIl 2y + 1@ Fllrawy) #2259 Fl o %,
1 1

S @ 1)) Fll s,

where we used the Bochner inequality (3.81), and the finite band property and the bound-
edness on L*(3;) for Q. This concludes the proof of vi), and of the theorem. [

3.6.4 Besov spaces on Y

Using the Littlewood-Paley projections of the previous section, we introduce Besov spaces
on Y.

Definition 3.36 Let a > 0. We define the Besov norms

IFllge = 290QiFllz2(s,) + I1F |2,

>0
where F' is an arbitrary tensor on Y.

In view of the definition of B> and the Bernstein inequality for );, we immediately
obtain the following embedding

1Pl S 1l g, (3.100)

where F'is an arbitrary tensor on ;. R
Next, we consider the action of V on Bz.

Lemma 3.37 Let f a scalar function on ¥;. Then, we have the following estimate

IVAllgz S 1Fl 53 (3.110)
Proof We have
1Q;V fllz2my S 1QVQ<0f |2 + D _IQVQifIlze(s,). (3.111)
>0
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Next, we estimate the right-hand side of (3.111). We start with the case j < [. Using the
finite band property for @);, we have

1Q;VQuif 2y S 2ZNQufll 2.y (3.112)
Next, we consider the case [ < j. Using the finite band property for ();, we have
1Q;VQifll2sy S 27 VIAVQUS | 2z, (3.113)

Furthermore, we have [A, V]h = R;Vh for any scalar h on ¥;, where R; is the curvature
tensor of the induced metric on ¥;. Thus, we obtain

IAVQifllzesy S IIVAQufllz2sy + A, VIQif | 25 (3.114)
IVAQi fllr2(s) + 1RV Quif || L2

IVAQuf | z2(s0) + (| Bell 2(en IVQuf | o)
21 Quf |2y + IV Quf 250,

where we used in the last inequality the finite band property for P, and the bound (4.26)

for R;. Next, we evaluate the second term in the right-hand side of (3.112). Using the
Gagliardo-Nirenberg inequality (3.102) with p = 400, we have

AR AR TAN

1 1
IVQufl =) S IVPQuf oo w0 IV2Quf 7o sy + IV Quf [l 1o ()

Together with the Bochner inequality (3.81) on 3;, we obtain

1
IVQufllzezy S (IAVQufllr2sy + 1AQf (|2(sy) + [VQUS [ 12(50)) (3.115)
1
X(|AQufll 2y + IVQufll2e))? + 1AQuS (2w + IVQuSllL2(s)
S NAVQU b 2 10 sy + 2@ 205
where we used the finite band property for @); in the last inequality. (3.114) and (3.115)
imply
IAVQif 2 S NAVQUF (17200 2 1Quf N 22wy + 22 Q1 20,
which yields
IAVQuf 2 S 27 1Quf |l 220

Together with (3.113), we obtain

1Q;VQifllresy S 277 Quf | r2(s)- (3.116)

Finally, using (3.112) for j < ! and (3.116) for j > [, we obtain

7=

37 _ 51
22 |Q;VQifllzmy S27 2 (22[|Qufll2my))

which together with (3.111) and the definition of B? implies (3.110). This concludes the
proof of the lemma. []

We conclude this section with two estimates for the product in the Besov space B:.
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Lemma 3.38 We have

HEPN 5y S UIVEFllz2y + I1F | z2(n)? (3.117)
for any tensor F' on ;.
Proof We have
1Q;IFI) 2y S D 1QH(QUF - QuF) 2y, (3.118)
1,m>0

where we dropped the terms involving ()¢ which are easier to handle. Next, we estimate
the right-hand side of (3.118). By symmetry, we may assume m < [. We start with the
case j < m. Using the dual Bernstein inequality for ¢);, we have

3; 35
1Qi(QuF - QuF)||r2m) S 22 |QF - QuFllrimy S 27 |QuF |l r2emn Q@ Fll r2sy. (3.119)

Next, we consider the case m < j < [. Using the boundedness on L*(3;) of @Q; and
the Bernstein inequality for @),,, we have

3m
1Q;(QuEF - QmF)|lr2s) S NNQF |2 |@mF | (s S 272 |QuF (120 Q@ F [l 22(50)-
(3.120)
Finally, we consider the case | < j. Using the finite band property for Q;, @; and @,
we have

Qi (QuF - QuF ) L2(s,)

S 27VNA(QF - QuF)| o)
S 2VIAQEF) - QuEllzmy + 277 IV(@QF) - V(@QnF) 12w,
+27QUF - A(QuF)|| 25
S @R 27T QU (| 2o |Qm Fll 20 + 27 IV QUF || 1120 [V Qi F| (32 -

Together with the Bernstein inequality for @Q,,, the Gagliardo-Nirenberg inequality (3.96),
and the fact that m <[, we obtain

Qi (QF - QmF)| r2(s,)
_ 95 3m
S 27PN |QuF || 2o |Qm Fll r2 ()
. 3 1 3 1
27N VPQUF || o s IVQUE N 2 50 IV Qi F N 2 50 IV Qi F 25,

Using the finite band property for @; and @,,, the Bochner inequality (3.81) on ¥; and
the fact that m <[, we obtain

1QH(QUF - QuF) |l r2(zy) S 27BN QUF || (e | @ F ll r2csy- (3.121)
In the end, (3.119), (3.120) and (3.121) imply

il _ Im—jl

i =gl fm—j| m
22 Qi(QF - QuF)lzmy 277 T (2N QiF lr20) 2" QuF [l r2(s0)):

which together with (3.118) and the definition of B2 implies (3.117). This concludes the
proof of the lemma. []
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Lemma 3.39 We have

1805 S (1l + VAl s bl (3.122)
for any scalars f and h on .

Proof We have
1Q;(fM) 2y S D _NQ5(F Qi) (3.123)

>0

where we dropped the term involving (). which is easier to handle. Next, we estimate
the right-hand side of (3.123). We start with the case j < [. Using the boundedness on
L*(%;) of Q;, we have

1Q;(fQ) 2z S 1fQibllr2sy S 1 lpee s |Qibllr2(sy)- (3.124)
Next, we consider the case [ < j. Using the finite band property for @);, we have

1Q;(fQi) 12wy S 27V Qb 20
S 27Vl eenll@ibll osy) + 277 (| fll oo IV Qb 2(s,)-

Using the Bernstein inequality and the finite band property for (), this yields
1Q;(fQM) |2z S 277 IV Fllsimey + 1l e @a) 1 Qubl L2(s,)- (3.125)

Finally, (3.124) and (3.125) imply

[1—41
2

22)1Q; (fQuh) | r2imy S 27 7 (22]|Qibl|r2esy),

which together with (3.123) and the definition of B2 implies (3.122). This concludes the
proof of the lemma. [ |

4 Regularity with respect to (¢, )

This section is devoted to the proof of Theorem 2.21. We assume the following bootstrap

assumptions:
1

< — 4.1
< (1)

7 = 1| oo 2e,) + 16— 1| oo 21,)

IVnll ez, + 11Vl ez, + V20l r2s) + VT ()| e,
HIVT()llLgeroey + Na( = 1) + [ LO)[ 12,00 < De, (4.2)

Ni(k) + 1V el 2y + DOl 2oy + [Ellzsgzz + 10l 22 < De, (4.3)
[tz aen) + Ntrxlc, 2o + [Wtrxl| 2, 25e + | Ltrx |22, 0 < De, (4.4)
Il zes 22 + NMi(X) + 1V X2 e < De, (4.5)
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1€l 2, pe + N1(Q) < De, (4.6)

where D > 0 is a large enough constant. We will improve on these estimates. To this end,
we show in section 4.1 that the null hypersurfaces H,, are well-behaved for 0 <t < 1, in the
sense that there are neither caustics nor intersection of distinct null geodesics generating
H,. In section 4.2, we construct coordinate systems on F,, and X; needed for the validity
of the estimates derived in section 3. In section 4.3, we derive an estimate for the Gauss
curvature K necessary to obtain a useful strong Bernstein inequality, as well as a useful
Bochner inequality on P, ,. In sections 4.4 and 4.5, we improve on the bootstrap bounds
for n and k in (4.1)-(4.3), with the exception of the trace estimates for € and 0 in (4.3).
In section 4.6, we show how to infer estimates in the time foliation from corresponding
estimates in the geodesic foliation obtained in [14]. This allows us to improve on the L™
bound for try and the trace bounds on Y and ¢ in the bootstrap bounds (4.4) and (4.6).
In section 4.7, we improve on the bootstrap bound (4.3) for the trace estimates of § and .
In section 4.8, we improve on the bootstrap bounds for b in (4.1) (4.2), and we also derive

an estimate for b in L°L},. Finally, we improve on the remaining bootstrap bounds in
(4.4)-(4.6) in section 4.9.

Remark 4.1 This section concerns the reqularity of the foliation generated by u on M
with respect to (t,x). Thus, the dependance in the angle w € S* plays no role in this
section.

4.1 Lower bound on the injectivity radius on H,

The control we obtain on the geometric quantities associated to our foliation is only valid
as long as no caustic form and null geodesics do not intersect on H,. The goal of this
section is to prove the absence of caustic and that null geodesics do not intersect at least
until £ = 1, i.e. the null radius of injectivity of H, is at least 1. In addition to the bound
(2.59) on the curvature tensor R of g, we make the following regularity assumption on g.
There exists a coordinate chart on M such that

Igllezmy < M, (4.7)

where M is a very large constant.

Remark 4.2 The assumption (4.7) is only used to prove the absence of caustic and that
null geodesics do not intersect at least until t = 1, which is a qualitative property. On
the other hand, we only rely on the bound (2.59) on R to prove the various quantitative
bounds of Theorems 2.21, 2.23, 2.24 and 2.27.

For (0,z) in X, recall the definition in Remark 2.3 of the null geodesic k(). For all
0<t<1,let & : %y — X; defined by ®,(0,z) = k,(t). We have ®¢(0,z) = (0,x) on X
which together with (4.7) and the global inversion theorem shows that ®; is a C'! global
diffeomorphism from >y to ¥; for 0 < ¢t < m. We define ty > 0 as the supremum of
0 <t <1 such that ®; is bijective from >y to 3;. Our goal is to show that we have in fact
to = 1. We will first show the absence of caustic which is a consequence of the fact that

®, is locally injective. We will then show that 3; is covered by the u-foliation which is
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equivalent to the surjectivity of ®,. Finally, we will show the nonintersection of distinct
null geodesics which is equivalent to the global injectivity of ®,.

Remark 4.3 As long as 0 <t < ty, there are no caustics and no distinct null geodesic
intersections. Thus, we may assume that the u-foliation exists and satisfies the bounds
(4.1)-(4.6) given by the bootstrap assumptions. Furthermore, we may assume the identity
(2.12) for the null geodesics k. (t).

4.1.1 Absence of caustic

The absence of caustic is equivalent to the absence of conjugate points and is a conse-
quence of the fact that &, is locally injective. Since ®; preserves the u-foliation, it is
enough to show that ®, is locally injective as a map from F, to P,,. We will actually
show that ®; as a map from F, to P, is a local C! diffeomorphism.

Let (0,z) a point in Fy,,. From (2.12), we have x/,(t) = nL,, ) for all 0 <t < ty. Since
®,(0,x) = k. (t), we obtain the following differential equation for the Jacobian matrix D®,

of &,

d
pr (D®;) = nx(D®;,eg)ep

which together with the fact that y is symmetric yields:

% (det (D(D®,)")) = 2ntrx det (D®,(D2,)")

and after integration in time:

det (D®,(D®;)") = exp (2 /0 t ntrxdT) ~1 (4.8)

where we used the bootstrap assumption (4.4). In particular, the local inversion Theorem
together with (4.8) and (4.7) yields the fact that ®; as a map from Fp, to P, is a local
CO! diffeomorphism. In particular, no caustic form for all 0 < t < ¢,.

4.1.2 Covering of >; by the u-foliation

We will prove that for all 0 <t < tg, 3; is covered by the u-foliation, i.e.:
z]t = UuPt,u

which is equivalent to the surjectivity of ®; as a map from ¥y to >;.

Let A = {t/%; = U,P.,}. We start by showing that A is closed in 0 < ¢t < .
Consider a sequence of times ¢, — ¢ such that ¢, belongs to A for all p. Let (f,z) an
arbitrary point in ;. There exists a sequence (t,,z,) in 3, such that (t,,z,) converges
to (t,x). Since (t,,) is in ¥;, and ¢, belongs to A, (t,,x,) belong to UX,, and therefore
there is (0, ;) in ¥ such that (t,, ;) = ka9(t,). Now, the bound (4.7) together with the
fact that (,,x,) is a bounded sequence implies that (0, xg) is a bounded sequence in X.
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Thus, up to a subsequence, it converges to (0,zg) in Xg. Finally, using again the bound
(4.7) together with the fact that t, converges to ¢ and (0,z) converges to (0, o) implies
that r,0(t,) converges to ky,(t). Thus, (¢,2) = £y, (t) which shows that (¢, z) belongs to
Uy P . Therefore, t belongs to A which implies that A is closed.

Let us now prove that Aisopenin 0 <t < ty. Let t € A and consider times ¢ satisfying
|t —t| < 1go5;7 where M is the constant appearing in (4.7). Let (¢, xo) an arbitrary point
in ;. We may assume t > t since the case t < t is treated in the exact same way. Let
C~ denote the backward null cone with vertex (¢, z() (we would consider the forward null
cone in the case t < t). Let S~ denote the intersection of the backward null cone C~
with ;. Then, the assumption [t — t| < 5557 together with the bound (4.7) implies that
S~ is a C'!' compact orientable surface in 3;. In particular, since any compact set of 3; is
included in {—B < u < B} for a large enough constant B, the set {u/ P,, NS~ # 0} is a
bounded subset of R. Using the fact that S~ is compact, P, is closed in ¥;, and t € A,

we obtain the existence of ug such that P,,, NS~ # 0 and:
up = min{u / P,,, NS~ # 0}.

Let (¢,x1) a point in P, ,, N S™. Then, by definition of ug we have P, NS~ = ) for all
u < up which implies that N = —Ng- at (¢, 1) where N = Vu/|Vu] is the normal to P, ,
and Ng- is the outward normal to S™. In turn, this implies that L coincides with the
null generator of the backward null cone C~ at (¢,z;). From (2.3), let (0, 23) on ¥y such
that b~'L = «!,_(t). Since s, (t) coincides with the null generator of the backward null
cone C~ at (t,z1), we obtain k,,(t) = (f,z9). Therefore, (¢,x¢) belongs to P,,, where
uy = u(0, ). This implies that ¥; = U, P, for all [t —¢] < m so that A is open.

Finally, A is closed and open in 0 < ¢t < t,. Furthermore, ¥y = U,F, from the
construction of u on ¥y in [21]. Therefore, A = {0 < t < to}, i.e. X = U, P, for all
0<t<t.

4.1.3 Nonintersection of distinct null geodesics

We would like to show that ¢y > 1. Assume by contradiction that 0 <ty < 1.

Let us first show that there exist two distinct null geodesics intersecting at t = t.
Assume by contradiction that there exists 4 > 0 such that no distinct null geodesics
intersect on 0 <t < tg+ 9. Then, u exists on 0 <t < tg + d unless a caustic forms at a
time 0 < t; < tg+ 0. Assume that ¢; is the first such time. Then, u exists on 0 <t < t;
and b and try satisfy the bootstrap assumptions (4.1) (4.4) on 0 < ¢t < ¢; so that (4.8)
holds on 0 < ¢ < t;. Now, since @, is C* from the assumption (4.7), this implies that:

det (DO(D®,)") ~ 1,0 <t <t +6

for some §; > 0. In turn, this yields the absence of caustic for 0 <t < t; +9; contradicting
the definition of ¢;. In particular, we obtain the absence of caustic for 0 < t < ty + 9,
the existence of u on the same time interval, and in turn ¥, = U, P, from section 4.1.2.
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Finally, on 0 <t < ¢y + 9, no distinct null geodesic intersect and ¥; = U, P, ,, so that ®,
which is both injective and surjective. This contradicts the definition of ¢5. We conclude
that there exist two distinct null geodesics that intersect at tg.

From the previous paragraph, u exists on the time interval 0 < t < ty where it satisfies
¥t = U,P:, and the bootstrap assumptions (4.1)-(4.6). Furthermore, two distinct null
geodesics intersect at tyo. Let (0,21) # (0,22) two points in ¥y such that s, (t)) =
K, (to) = (to, o). In view of (4.7), there exists a coordinate chart U C M which is a
neighborhood of (%y, x¢) such that relative to this coordinate system, we have:

18asllc2@y S M, Va,3=0,...,3. (4.9)
Now, from the Ricci equations (2.23) we have:

IDL Ll zee £6(20) + IDLL| £ee 6 (340) + VL || oo 6 (340) (4.10)
S IXllzeersn) + Il oo o) + 1Bl oo o) + 1Vl Leo L6 (200),

which together with the Sobolev embedding (3.57) and the bootstrap assumptions (4.1)-
(4.6) yields:
IDL| Lo ro(3,) S 1- (4.11)

From the bootstrap assumption (4.2) and the Sobolev embedding (3.57), we have:
1T ()| e Loz + VRl Lo Loz, S 1. (4.12)

(4.11) and (4.12) yield:
ID(nL)|| s (mngo<icto)) S 1. (4.13)

In particular, the same bound holds in Lé(M N {0 < ¢ < #}) which together with (4.9)
implies in the coordinate chart U:

[0(nL)| s wnio<i<to}) S M.

Together with the usual Sobolev embedding in dimension 4, this yields, in the coordinate
chart U:

|nL]| (4.14)

1 <
CT2 (UN{0<t<to}) ™~

Now, using the fact that k., (t9) = K4,(to), and the fact that k,(t) is continuous in ¢ from
(4.7), we have

lim dist(ky, (), Kz, (1)) =0

t—to_
where dist denotes the geodesic distance in ¥;. Together with (4.14), this implies that the
distance between nL,%1 () and nL,% (t) as vectors of R* in the coordinate chart U converges
to 0 as ¢ = to_. AsnLy, ) = k(1) for 0 < ¢ < tpand j = 1,2 by (2.12), and since
K,(t) is continuous in ¢ from (4.7), we conclude that &7, (to) = &7, (fo). From the classical
uniqueness result for ODEs, we deduce that k,, (t) = kg, (t) for all ¢. In particular, taking
t =0, we obtain (0,x;) = (0, z) which yields a contradiction.
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Finally, we have proved that ¢ty > 1. In particular, we have:

On 0 <t <1, there are no caustics and no intersection of distinct null geodesics.
In particular, u exists on 0 < ¢ < 1 and the bootstrap assumption (4.1)-(4.6) hold.
Furthermore, ; = U, P, for all 0 <¢ < 1.

(4.15)

4.2 Coordinate systems on >; and F;,
4.2.1 A global coordinate system on F,,

Lemma 4.4 There exists a global coordinate system x’ on P, satisfying:
(1 —0@)[E]* < vap(p)EXEP < (1 +0(e))[€)%, uniformly for all p € P,,, (4.16)

and the Christoffel symbols T'pc of the coordinate system verify:

Z/ T4, 2detda® < e. (4.17)
Pt,u

A,B,C

Remark 4.5 Lemma 4.4 provides the existence of a global coordinate system on P,
satisfying assumptions (3.1) and (3.32). Thus, we may use the results of sections 3.1 and
3.2 in the rest of the paper.

Proof : In step B1, we have constructed a global coordinate system 2’ = (x!, 2?) on
Py (see [21]). By transporting this coordinate system along the null geodesics generated
by L, we obtain a coordinate system ' of P, ,, and a coordinate system (t,z’) of H. Let
7+ denote the restriction of g to P;,. We claim that relative to the coordinates (¢, z’) on
‘H, the metric v; verifies:

d
— =2 . 4.18
dt’VAB nxap ( )
Indeed relative to the coordinates ¢,z on H we have nL = % and since [%, aﬂ%] =0
we infer from V,,;,y =0, and yap = 7(%, 8%3),
g 0 d J 0 0 0
0= NVugum gpm) = e ="MWV ger gpn) ~ " (g Vi )
d 0
= AB— ny(V_a L, ax—B) - n,}/(a‘r_A,vg)wLBL)
d
= — -2
dt'YAB nxaB

as desired.
Now, using the bootstrap assumptions (4.1) and (4.4) (4.5), we have |n — 1| < 1 and
[Xl|zr2 < De. Together with (4.18) and the fact that (4.16) is satisfied on Fy,,, this

yields (4.16).
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Differentiating (4.18) and using the fact that derivatives a%‘ commute with %, we

obtain:

d
—0cvap = 2Vea(n)xap + 2ndcxas

dt
= 2Veo(n)xas + 2nVexas + (07) - x

with (97) - x denoting sum of terms involving only products between derivatives of the
metric coefficients and components of x. Therefore, using the bootstrap assumptions (4.1)
and (4.4) (4.5), we obtain:

10Vl Lgerz, < NVl g IxN sy + IRl aen WX 200) + XN 225 221071 22030,
S 5‘1‘5”6’YHL§°L2,>

which yields (4.17). This concludes the proof of lemma 4.4. [

Remark 4.6 Denoting || = det(yagp), we obtain from (4.18):

d d
il — ~AABZ L — ont
o og |yl = o VAB = 2ntrx

or,

d

SVl =t (4.19)
Now, relative to the coordinates t, x*, z2, fpw fdpe, = [ [ f/I7]detda?, therefore,

- fd“t’“://%(f\/m)dxldﬁ:/

d
dt o - (Ef + ntrXf)d/JJt,u

which proves (3.56).

Remark 4.7 Since the global coordinate system x' on P,,, is obtained by transporting the
coordinate system on Py ,, along the null geodesics generated by L, it requires in particular
that null geodesics generating H have no conjugate points, and that two distinct null
geodesics do not intersect. This fact has been proved in section 4.1 (see (4.15)).

4.2.2 A global coordinate system on X,

Recall that we have constructed a global coordinate system on P, in section 4.2.1. Let
us denote x’ such a coordinate system. We obtain a global coordinate system on Y; as
follows.

e First, recall from (4.15) that ¥; = UP,,, so that u is defined on .

e To any p € ¥, we associate the coordinates (u(p),z’'(p)) where u(p) is the value
of the optical function u at p, and 2/(p) are the coordinate of p in the coordinate
system of P, constructed in section 4.2.1.
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e Recall that the coordinate system of F,, constructed in section 4.2.1 is global, i.e.
p — o'(p) from B, to R? is a bijection. Hence, p — (u(p),z'(p)) from %; to R? is
a bijection so that (u,z’) provides a global coordinate system on ¥;.

e Finally, by construction, and in view of the control the coordinates system of P,
in section 4.2.1, the map p — (u(p),2'(p)) is a diffeomorphism provided the lapse
of the u-foliation of ¥; does not degenerate. This is indeed the case since the lapse
of the u-foliation of 3; is given by |Vu|™! = b, with b under control in view of (4.1).

In this coordinate system, the metric g, on ¥; (i.e. the restriction of g on ¥;) takes

0 ’}/ ’ .

where 7 is the induced metric on P, ,. Together with the estimate (4.1) for b and (4.16)
for v, we obtain

(g n o<s>) 6P < (905 ()€€ < (}—é + 0<e>) &1,

and thus, for € > 0 small enough, we deduce

5 ;g 0
GlEl” < (95 (0)E'E < el (4.21)

This coordinate system allows us in particular to get a lower bound on the volume radius
of the Riemannian manifold ;. We recall below the definition of the volume radius on a
general Riemannian manifold M.

Definition 4.8 Let B.(p) denote the geodesic ball of center p and radius r. The volume
radius Ty (p, 1) at a point p € M and scales < r is defined by

Twol(p, ) = inf ———*—

with |B,| the volume of B, relative to the metric on M. The volume radius ry,(M,r) of
M on scales < 1 is the infimum of rye(p, ) over all points p € M.

Denote by B¢(p) the euclidean ball of center p and radius 7 in the coordinate system
(4.21) of ;. Then, clearly B¢, (p) C B,(p). Thus, we obtain a lower bound for any p € ¥,:
6

5 ar (5\*
|B:(p)| = )B%(p)‘ = V| g dudz” > 6 ‘B%(p) > - <6) 3

Tool(Xg, 1) > im (§)4. (4.22)



4.2.3 Harmonic coordinates on X,

We will need a second coordinate system on 3, since the metric coefficients in the coordi-
nates system of section 4.2.2 are not regular enough for some of the applications we have
in mind. Indeed, we only control some Christoffel symbols in this coordinate system (see
for example (4.17)), but no second order derivative of the metric coefficients. The second
coordinate system we have in mind are the harmonic coordinates. To obtain an appropri-
ate covering of ¥; by harmonic coordinates, we rely on the following general result based
on Cheeger-Gromov convergence of Riemannian manifolds, see [1] or Theorem 5.4 in [18].

Theorem 4.9 Given ¢, > 0,c0 > 0,c3 > 0, there exists ro > 0 such that any 3-
dimensional, complete, Riemannian manifold (M, g) with |R| 2 < c1 and volume
radius at scales < 1 bounded from below by co, i.e. r,q(M,1) > co, verifies the following
property:

Every geodesic ball B.(p) with p € M and r < 1o admits a system of harmonic
coordinates v = (x1, 9, x3) relative to which we have

(1+c3) 10y < g5 < (1+ e3)d45, (4.23)

and

r/ 10%gi;>v/|gldx < c3. (4.24)
Br(p)

To apply Theorem 4.9, we need to bound the curvature tensor R; on 3 in L°L*(3;).
Since ¥; has dimension 3, it is enough to bound its Ricci tensor. Now, we have the
following formula relating the Ricci tensor on ¥ to the curvature tensor R on M and k:

(Re)i; = kak' + Riryr
which yields:
IRl e r2(m) < IR pgerzcs,) +Ni(k)* (4.25)
The curvature bound (2.59), the bootstrap assumption (4.3) and (4.25) imply:
||Rt||L?°L2(Et) S E. (426)

Let > 0. (4.26) together with the volume lower bound (4.22) and Theorem (4.9) yields
the existence of r9(d) > 0 and a finite covering of 3, by geodesic balls of radius r4(d)
such that each geodesic ball in the covering admits a system of harmonic coordinates
x = (x1, z9, x3) relative to which we have

and

ro() / 100l < (4.28)
By (p

Remark 4.10 %, is asymptotically flat and therefore admits a harmonic coordinates sys-
tem in a neighborhood of infinity. Therefore, the problem of covering ¥; with harmonic
coordinates charts is reduced to a compact region which explains why we may chose finitely
many harmonic coordinates charts covering ¥, and satisfying (4.27) (4.28).
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4.3 Bound on the Gauss curvature K

The following proposition will be crucial to obtain useful strong Bernstein and Bochner
inequalities.

Proposition 4.11 Let K the gauss curvature on P,,. Then, K satisfies the following
bounds:

| K2,y S € (4.29)
and

A2 K || ppep2, S (4.30)

The proof of Proposition 4.11 is postponed to section A.1. The following consequence
of Proposition 4.11 will be useful in the sequel. Proposition 4.11 and (3.37) with the
choice a = 1/2 imply:

_1
1Ko = A3 K 2, S e, (4.31)

where K/, has been defined in (3.33). Together with (3.34) and (3.35) with the choice
v = 1/2, we obtain for any scalar function f on P, and any j > 0 the following sharp
Bernstein inequality:

1P fllzern S 20 fllr2pn) (4.32)
[Pofllzeoprn) S Ifll2p)- (4.33)

Also, (4.31) and (3.36) with the choice v = 1/2 imply the following Bochner inequality:

2 2< 2 2‘ 4 4
/PMIW /l N/Pt’uwsﬂ +e/Pt,u|w| (4.34)

Finally, using the Gagliardo-Nirenberg inequality (3.3) and (4.34), we obtain for any
2 < p < 400, any j > 0, and any scalar function f:

5 1—-2 2
IVEifllerpy S WV Bifllpafp, VB fl2p, ) T IVE L2 (4.35)
S (AP fllzep) + IVP fllL2(pr) )1_7213 HfHL2 (Pow) T X1 fll 2Py
_ 1N
S 220 £l ey

Taking the dual of (4.35), we obtain for any 1 < p < 2, any j > 0, and any P, ,-tangent
1-form F:

25
1B dME) | o (p) S 27 W[ f 1l 22(p)- (4.36)

Remark 4.12 (4.32) and (4.33) only hold for scalar functions f on P,,. For tensors F
on Py, and for arbitrary 2 < p < 400, we have the following sharp Bernstein inequality

(see [10] for the proof):

1B Flle(p) S 2(1+2_5||K||L2 +2_ﬁ||K||szm)HFHLQ(Pt,u)a (4.37)

~Y

[P<oF ||z (i)

A

(1+ HKHZ%B,“) + IIKIIZEEPM))HFHL(Z(PM)- (4.38)
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4.4 Estimates for the lapse n

The goal of this section is to improve the estimate for n in the bootstrap assumptions
(4.1) (4.2).

4.4.1 Estimates for £ on X;

We recall the definition of F and H used in the standard electric-magnetic decomposition
of the tensor R (see [4] chapter 7). We have:

Eog = RuasgT'T", Hop = "RyuausTHT" . (4.39)
Then, k satisfies the following symmetric Hodge system on ¥;:
curlk’ij = 11y,

Vik; =0, (4.40)
Trk =0,

where curlk;; = %(eim Vikm;+ Egm Vikmi). The solution k of the symmetric Hodge
system (4.40) in 3 dimensions satisfies the following estimate (see [4] chapter 4):

. 1
/Z (|Vk|2 + 3(Ry) ik kL — §Rt|k|2) dy, = | |H|*d%,. (4.41)

3¢

The bound (2.59) on R, the bound (4.25) on Ry, the definition of H (4.39) and (4.40)
yield:
IVEIZz s S ellklZocs,) +&° (4.42)

which together with the Sobolev embedding (3.71) implies:

||Vk||L§°L2(Et) Se. (4.43)

Y

Remark 4.13 To obtain (4.42) from (4.41), we rely on L*(%;) bounds for Ry and R.
This is enough on compacts, but not at infinity. Fortunately, ¥; is asymptotically flat so
that Ry and R decay at least like r—3 at infinity which is fast enough to obtain (4.42).
Furthermore, the fact that ¥, is asymptotically flat also implies that k decays at least like
r=2 at infinity which together with the Sobolev embedding (3.71) and the estimate (4.43)
yields:

[kl ser2cs,) S e (4.44)

4.4.2 Improvement of the bootstrap assumptions on n
We first improve the L> bound for n — 1. Using the Sobolev embedding (3.71), (3.72)
and the consequence of the Bochner identity (3.81), we have:
In—1ery S IVRlLserss,y + (7 — 1 zeorsmy
IVl o2 (z0) + IV oo 25

||A”||L§°L2(2t) + ||V”||Lch2(zt).
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Together with the equation of the lapse (2.5) on %, the bootstrap assumption (4.1) , the
Sobolev embedding (3.71), and the estimates (4.43) (4.44), we obtain:

In = ey S 0k llzerzsy + VRl o2, (4.45)
Sl 1Bl 7 s,y + V0| Lo 220
S &+ ||Vnllpserasy

Multiplying the equation for the lapse (2.5) by n — 1 on ¥, integrating by parts yields:

IValzes,) = . k" n(n — 1)dS: < [kl 72w, Il (eolln = U=,

< D282||n — 1||Loo(2t)

where we used the bootstrap assumption (4.1) and (4.3). Together with (4.45), this yields:
7 — 1| eory + V| o2z S € (4.46)

Furthermore, the equation for the lapse (2.5), the Bochner identity (3.81), together with
the estimates (4.43) (4.44) and (4.46) yields:

ARz r2(sy) + [V Lo r2(sy) (4.47)
k|| oo L2,y + €

V20| oo r2(s)

Inllzoe (o lE e a5,y + &
E.

N

S

S

S
Using (3.74), (4.46) and (4.47), we also obtain:

V|2, Se. (4.48)

We differentiate the equation of the lapse (2.5) with respect to V. We obtain:
A(Vn) = V(n|k|*) + [A, V]n = |k]*Vn + 2nkVk + R,Vn, (4.49)

which together with the bound (4.26) on Ry, the Sobolev embedding (3.71), and the
estimates (4.43), (4.44), (4.46) and (4.47), yields:

HA(V")HL?OLg(Et) (4.50)
S ke oo lIVRl e 2y + [0l e 1l g Lo 20 |V E Nl e 22052,
| Bell g2 VRl e po (s
< e
(3.90), (4.47) and (4.50) imply:
3
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We now differentiate the equation of the lapse (2.5) with respect to Ds. Using the
commutation formula (3.93), we obtain:

A(T(n)) = T(An)+ [A,Dgln (4.52)
|k[*T(n) + nkDrk — 2kV?n + 2n7'VnVT(n) + n ' AnT(n)
—VEkVn —2n'kVnVn.

We need an estimate for Drk. We have the following identity (see [4] chapter 11):
Drkij = —nV?ny; +2n7'VinVn + (Ry)y;
which together with the bound (4.26), (4.46) and (4.47) yields:
IDrkl perasy S V20w raimy + 1Vollieras,) + 1 Rellieras) Se. (4.53)
We multiply (4.52) by T'(n) and integrate by parts, which yields:

IV(T ) Lo 125, (4.54)

N

(Hkl‘%?o[/?’(ﬂt)HT<n>HL?OL6(Et) + [[nf| oo | B[ oo L3 () DTk Lo L2 (5

1kl oo a1Vl e r2im) + 107 V| oo o VT () || oo r2(50)

Hin Al g o 1T row + I VEI e 2 IV L sy

LtOOL%
7 k| e 220 anH%?LG(zt)) 1T (n)l| Lo Loz
S (s Ty + VT sy ) IT s,
where we used (4.43), (4.44), (4.46), (4.47) and (4.53) in the last inequality. (4.54) and
the Sobolev embedding (3.71) imply:
IV(T ()l zger2(sn) S € (4.55)
We now estimate (4.52) in L®L2(5,):

IA(T(n)) (4.56)

[
LELE ()

N

||k||%?oL4(Et)||T(n)||L?OLG(Et) + [kl Lo DTkl e r2(s0)

]| e o V20l Lo 2wy + 107Vl e Lo 2 VT (0) || o 25
+n Al oo 2o | T(0) | e ps sy + 1 VE| oo ool VRl 2o 2y
HInT ke s VAl e pocssy)

< ¢

~Y

where we used (4.43), (4.44), (4.46), (4.47), (4.53) and (4.55) in the last inequality. (3.90),
(4.55) and (4.56) imply:

IV*T(n) S 1A(T(n))

LeL3 () ~ HLtOOL%(Zt) +[IVT(n)| L2z, S € (4.57)
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Finally, (3.75), (4.47), (4.51), (4.55) and (4.57) imply:
Hv2n”L§OLi/ VT ()| pgere, S €. (4.58)

Note that (4.46), (4.47), (4.48), (4.55) and (4.58) improve the estimates for n in the
bootstrap assumptions (4.1) (4.2).

4.4.3 An L*(M) estimate for Vn

In view of the embedding (3.109), we have

VAl S Vllgs-
Together with the estimate (3.110), this yields

Vol ey S lln =155 (4.59)

Now, in view of the definition of the Besov spaces B2 and the finite band property for @Q);,

we have
In =15 < lAn]l 5.

Bz ~

Injecting the equation for the lapse (2.5) in the right-hand side, we obtain

In = 1llzg < llnlkl*ll 51

Bz ~

Using the product estimates (3.117) and (3.122), we deduce

I =1l 55 (Il any + 1Vl g pa) ) IEF] 54

S
S (Il + IVl o) (IVEI 2 + 1El2(s,)

Together with the estimates (4.43) and (4.44) for k, the estimates (4.46) and (4.47) for n,
and the Sobolev embedding (3.71), we deduce

In—1llgy S e

In view of (4.59), we finally obtain

[Vnllie S &

4.5 Estimates for £ on H,

The goal of this section is to improve the estimate for N1(k), [| Vel z2(3,) and [|[ V6] z2(20.)
given by the bootstrap assumption (4.3). The improvement of |[€[| o2 and 6] Leore 18
postponed to section 4.7. Note that the bootstrap assumption (4.3) yields:

N1(5)+N1(6)+N1(7]) < De. (460)
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4.5.1 A Hodge type system on H,

The first step is to derive a Hodge type system analog to (4.40) on H. We first recall the
formula p. 106/107 in [4] relating the derivatives of k to the derivatives of 7, €, ¢:

Vnkyy = VnO+207'Vb-e

Vekna = Vgea+ %&r@MB - %thﬁAB — Tacles + 25@43
Vekap = Venas + 0aces + Opcea

Vakny = Vad —204pep

Vnkan = Yyea— gablmb + b7 'V bz

Vikap = Yynag — b 'Vybep — b7 Vbea

where 6 is the second fundamental form of P, in »;. Since L = T+ N, 6 is connected
to the second fundamental form k of ¥; and the null second fundamental form x of P, ,
through the formula:

0ap = XaB + NaB. (4.61)
Together with the Hodge system (4.40), we obtain:
di/</T]A+Y7N6A = —0Oapep —trHGA—l—%5b_1WAb—b_1vaﬁAB
difre + V50 = 35t + 70 — 2b"V 4bea
Venas — Vgnac = Rarse —0acep + bapec (4.62)
WNUAB — WBEA = Rargy + b_IWAZ/?\EB + b_lbeeA + %(stref)/AB
—5t100ap — Nacbop + 20045

WNEA — V40 = Rpyranv + %(Sb_lwAb — b_lbe’;]\AB — 20 45¢€R

In order to obtain a Hodge system on H, we need to replace the derivatives in the N-
direction with derivatives in the L-direction in (4.62). We use the following formula for

D16, Vre, Vrn (see [4] p. 337):
Dy = —n"'Vin+p+0°—({+ Ce— (e
Vre = —n 'WN(n)+ 3B+ 8) + b Von 'N(n) — $(C —n~'¥n)s

+(C—n'Vn+ ) + 1de (4.63)
Y = —n_lvzn + i(g +a)—dn+e—(C—n"tVn)e
Now, (4.62) and (4.63) yield:
difma + YV ea = 5(B+B) —n'VuN(n) + bV, 0n ' N(n)

—%(QA —n 'YV, n)d — Oapep — trheq + %ébflyAb — b 'V bhas
dife + D4 = p—n'Vin—+ 6% — (¢ + Ce— e — 26tr0 + 70 — 267V 4bea
Yonas — Vgnac = — €pc *Bat €pc "B, — Oacep + Oanec
Vinap — Vgea = %OzAB - n_IWiBn - %577,43 + 2e46p — (Ca — n_IVAn)GB

—(Cs —n"'Vgn)ea + bV bep + b7 Vgbea + §0trfyap
—5tr00ap — Naclep + 20045
V. ea—Vaé = Ba—n'VyN(n)+b'¥V, bn 'N(n) — 3(Ca —n 'V, n — b1V ,b)6
—b"'VWgbiag — 20ap¢s
(4.64)
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Using the curvature bound (2.59), the bootstrap assumptions (4.1)-(4.6), the bound (4.60)
on 1, ¢€,0 together with (4.64), we obtain:

[difma + Vieallroer2,) + ||dive + Dbl poer2n) S €+ D** Se (4.65)

and
IVenas — Vgnacllrerzaw) + 1V nas — Vgeall e r2nn) + 1V ea — Vad|lpee 20,
< e+ D** L. (4.66)

4.5.2 Estimates for 7,¢,0
We start with the following identity:

[ enas ~ Famacl + 2¥mas ~ Fueal + 2A¥sea ~ Vil (167
H
= 2/71 IYVnl? + |V 0> 4 |Vel” + |dike]* + 2|V ] + [V6]* + D]
—2/ WCHABWBHAC—4/ V.14V z€a —4/ YV, €aV 40
H H H

—2/ ]di/be\z—2/ qu?_z/ Do
H H H

We compute the last terms in the right hand side of (4.67) using integration by parts and
the coarea formula (3.55) on H:

_2/%Y7077ABWB77A0_4/%Y7L77ABY7BEA —4/HWL€AVA5
2 /H difef? — 2 /H V62 -2 /H DL
. / AB(V pdifina + [V, Vgliac) + 4 / (Vs ¥sea+ Vs Vslea)
H H
4 /H (=17 L(n) = 8 + trx)napVpea — 4 /P nasVpea
4 /H 5(Y pdife + V.0, Vylea) — 2 /H difef? — 2 /H V62 -2 /H D,
= —Q/H|dj/</?7—|—y7[/€|2—Q/H|di/</€+DL6|2+2/H77ABRABCD’I70D
+4/H?7AB(XY777—H1WnY7L77+(XE+*5)77)+4/H5(XY76—H1WHY7L6+(XE+*5)6)

4 / (—n'L(n) — 3 + trx)nasVyes — 4 / nasYges
H Pt,u

—4/ (=n"'L(n) — & + try)ddike + 4/ ddite
H Pt,u
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Together with the curvature bound (2.59) and the bootstrap assumptions (4.1)-(4.6), we
obtain:

—2 / YVenap¥pnac — 4 / Vi nap¥gea — 4 / YV €aVad
H H H

- / dife? — 2 / Ve 2 / D,6P
H H H

- _2/ \dj/(/77+Y7Le]2—2/ |di/</e+DL(5|2—4/ nABWBeA+4/ §dife + O(D?e?).
H H Py o Py

The bounds (4.65) (4.66) together with (4.67) and (4.68) yield:

/ naBY g€a / ddite
Pt,u Pt,u

We now state a lemma which will allow us to control the integrals over P, in (4.68).

/ (¥l + [Vel* + [V pel” + VO] + |Drol* < + +e”. (4.68)
H

Lemma 4.14 Let F' and G tensors on ¥; such that F - YG is a scalar. Then, we have:

/ F.yG
Pt,u

The proof of Lemma 4.14 is postponed to section A.2. We now use Lemma 4.14 to
obtain estimates for 7,¢,6. The bounds (4.43) (4.44) for k on ¥; together with (4.69)
yield the following estimate:

/ ddite
Pt,u

/ N4BY péa
Pt,u

Together with (4.68), this implies:

S IF e =) lGlla - (4.69)

+ S Nkl s, S €

/ |Vnl* + [Vel* + [V el + [Vo|* + Dro|* < & (4.70)
H
Using also (3.63), we finally obtain:

Ni(n) + Ni(e) + N1 (9) S e. (4.71)

Now, in view of (4.63), we have:

D76 o r230) + | Vel poerznn) S €+ De* Se (4.72)

where we have used the curvature bound (2.59) and the bootstrap assumptions (4.1)-(4.6).
(4.71) and (4.72) yield:

DLl Leer2mn) + Vel Lo rzan) S e (4.73)

(4.71) and (4.73) improve the estimate for Ny (k), |V €l Lo 22 (31,) and [D 0| pee £2 (34, given
by the bootstrap assumption (4.3).
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4.6 Time foliation versus geodesic foliation

While we work with a time foliation, we recall that the estimates corresponding to the
bootstrap assumptions on y and ( have already been proved in the context of a geodesic
foliation in the sequence of papers [14] [10] [11]. One may reprove these estimates by
adapting the proofs to the context of a time foliation. However, this would be rather
lengthy and we suggest here a more elegant solution which consists in translating certain
estimates from the geodesic foliation to the time foliation, and in obtaining directly the
rest of the estimates. More precisely, we wish to obtain the L* bound for try, and
the trace bounds for ¥ and ¢ by exploiting the corresponding estimates in the geodesic
foliation. We will also obtain the trace bounds for § and e by reducing to estimates in
the geodesic foliation in section 4.7. Finally, these trace bounds and the null structure
equations will allow us to get all the remaining estimates in sections 4.8 and 4.9. We start
by recalling some of the results obtained in the context of the geodesic foliation in the
sequence of papers [14] [10] [11].

4.6.1 The case of the geodesic foliation

Remember that u is a solution to the eikonal equation g*’9,udsu = 0 on M. The level
hypersufaces u(t, z,w) = u of the optical function u are denoted by H,. L' = —g*?05ud,
is the geodesic null generator of H,. In particular, we have:

D, L =0,g(L, L) =0.

Let s denote its affine parameter, i.e. L'(s) = 1. We denote by P, the level surfaces of
sin H,.

Definition 4.15 A null frame €}, €5, €3,¢) at a point p € P;,, consists, in addition to
ey = L', of arbitrary orthonormal vectors ey, ey tangent to P, and the unique vectorfield
ey = L' satisfying the relations:

gley, ) = =2, g(es, e) =0, g(es, e) =0, g(es, e5) = 0.

Definition 4.16 (Ricci coefficients in the geodesic foliation) Let ¢\, ¢}, e e be
a null frame on P, as above. The following tensors on P,

S,u

’ - ro / . A
Xap =< De/Ae4,eB >, Xup =< De;‘e3,eB >,

4.74
¢y =% <Dge) e > (474)
are called the Ricci coefficients associated to the geodesic foliation.
We decompose X" and X' into their trace and traceless components.
t/rX/ = gABX;le t'{xl = gABXiL‘B7 (475)
N 1 N 1
Nap = Xap = 5tX'8an, Xy = X,y — 50rX'8an. (4.76)
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Definition 4.17 The null components of the curvature tensor R of the space-time metric
g in the geodesic foliation are given by:

1
oy = R(L, €y, L ey), By = 5 R(ey, L', L, L), (4.77)
1 1
pl = ZR(LlaL,7L/7 L/) ) OJ = Z*R(L/7L/7L,7L/> (478)
1
By = JRELLLLL), oy =R(L, e, L) (4.79)

where *R. denotes the Hodge dual of R.
The following Ricci equations can be easily derived (see [14]):

/ / / ! ! / / / ! !
Do, ey = Xap€p — Ca€y, Deyez = XapfBt+ Caes,
/ /
D¢} =0, D, ey = —2()¢)y, (4.80)
1 1
r /AR /A / / / /
Deey = WezleA Cael, D, ey = We’BeA + §XAB e3 + §XAB €4

where, W W denote the projection on P/, of D,; and D,;, and ¥ denotes the induced
3 4

covariant derlvatlve on P,
We now recall some of the main estimates obtained in the sequence of papers [14] [10]
[11]. Under the following assumption on the initial data

160" (0, ) £oe (o) + Z (|| VX' (0, )l 2y + 1P (0, ) |2y

+[| Pitrx (0, )l r2(py.0) + 125X (0, -)||L2(Po,u)> < g (4.81)

we have
[trx ([ oo ey + 11X 22,200 + ¢ N 22,200 S € (4.82)

and

X2, 2 + M(X) + M(() Se, (4.83)
where the norm N is given by
NUE) = 1F (260 + 1V Fllzz2¢e) + 1V Fllr20)-

Remark 4.18 Note that (4.81) is implied by our initial data assumption Zy < e, where
Ty is defined (2.60). Indeed, att =0, we have

L'=b'L, L =0bL ¢,=es,A=1,2
and we easily check'®

try' =b'try, X' =0b07"'X, {'=¢ W =p, trx =biry, X' =bx

18This corresponds to some of the computations of the next section in the trivial case where F’ = 0.
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In view of the definition (2.60) of Zy, and together with the analog at s = 0 of the estimates
(4.88) and (4.90) below, we immediately obtain

lerx' 0, ||Loo<p0u>+2(u S0, ) 2 cpuy + 120, 2

Pty (0, lgzey, + 1RO, lixenn) < To.
as desired.

Remark 4.19 Note that the norm L*(H,) does not depend on the particular foliation.
Now, this is also the case for the trace norm L3L2. Indeed, recall the definition of the
null geodesic k, in Remark 2.3. Then, we have:

IFBps = sup /|F ko(8) 2t = sup /|F o ()P s ~ [[F g

(0,z)€Z0 (0,z)eX0

where we used the fact that % =n"1b"! and the fact that nb ~ 1 by the bootstrap assump-

tion (4.1).

In the next section, we will obtain the estimates corresponding to (4.82) in the time
foliation. For now, we conclude this section by recalling the definition and properties of
the Besov spaces constructed in the sequence of papers [14] [10] [11]. For P; -tangent
tensors F' on H,, 0 < a <1, we introduce the Besov norms:

HF”B/a = ZQja sup HP]{FHLQ(P;IL) + sup ”P;OFHLQ(PAH)? (484)
- 0<s<1 0<s<1

[F[|pra = ZQNHP’FHL2 () F 1P F [l 22030 (4.85)
Jj=0

s USING
the definition of these Besov spaces, we recall another estimate obtained in the sequence
of papers [14] [10] [11]. We have:

where P} are the geometric Littlewood-Paley projections on the 2-surfaces P;

||X/HB’0 5 E. (486)

We now recall some properties of these Besov spaces obtained in the sequence of papers
[14] [10] [11]. We have for scalar functions on H, (see [14] section 5):

[l ey S (4.87)
Furthermore, for any P; -tangent tensors F, G on H,, we have:

1F - Gllgo < (Il )G |lgo (4.88)
and

1~ Gllpo < (I )IGllpno. (4.89)

To bound Besov norms, we sometime use the following non sharp embedding estimate.

For any 0 < a < %, we have:
[Fllgre S NY(F). (4.90)
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We also have the following non sharp product estimate:
|FGlpra S N (F)N{(G). (4.91)

The following proposition is the key tool used in [14] to control the transport equations
appearing in the null structure.

Proposition 4.20 Assume that the scalar function U satisfies U(0) = 0 and the following
transport equation along H.,:

d
£U+atTXU:F1'WL’P+F2.W7

where a is some positive number. Then,

U0 < (NI(F1) + HF1HL;<;L§) - NU(P) (N (F2) + HF2HL;<;L3) W [pro. (4.92)

Finally, using the previous proposition, we may prove the following version of the
sharp classical trace theorem which is a slight generalization of Corollary 5.10 in [14].

Corollary 4.21 Assume F' is an P, ,-tangent tensor which admits a decomposition of
the form, Y'F = AY,, P + E. Then,

1F 52z S MEF) + N{(P)(| Al + 1V All e, e + 1V All 2, 25e) + [|Ellpo. - (4.93)

Proof The scalar function f(t) = [ |F|? verifies the transport equation,
Lf=I|F]>,  f(0)=0.
Recall the following commutator formula in the geodesic foliation:

(Vi Valf = —XasVs/f

Differentiating and applying the commutator formula, we derive,
Y. (Vf) = 2F-YF—-x-(Vf)
= F-AY,P+F -E—x (YY)
Applying (4.92), we deduce:
IVl S (MUFA) + | FAls12) N (P)(N(F) + [ Flls22)
FNO) + X s 22) 1V Fll o

which together with the estimates (4.82) and (4.83) for x’ and the fact that ¢ is small
yields:

IV fllso S (N(FA) + [|FA|| L 12) N (P) + (N (F) + | Fll s 1)

IE]lpo

Ellpo.  (4.94)
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We have:

N(FA) + |FA|L=z S AV Fllzzen) + 1AV L Flliz2en) + 1Y All 20
HIEV L Allrzge) + 1AF | 260,) + [ Fll s 22l Al e
S (IF ez + NME) (Al + 1V Al 2,0 + 1V Al 22, 150

which together with (4.94) yields:
IV fllso S (NE) + 1 Fllssrz) (ANl + 1V Allz, e + 1V All 2, 120 )N (P) + [ Ellpo).
Now, in view of estimate (4.87), we infer that,

1w S Nflliers, + 17 Fllso
< WU+ 1) (AL + 19/ Allz e+ [P All, 2)NY(P)
HIEllpo) + 1 FI2 s,

Thus, recalling the definition of f = [)|F|? and the estimate 1Fll2e, S N{(F), we
obtain:
1Flsr: S (NIF) + 1 Fllessrz) ((FANlz= + 11V All 2, 10 + 11¥ 1 Alle, 100 )N (P)
HElpe) + N(F)?

which yields the desired estimate (4.93). u

4.6.2 Estimates in the time foliation

In this section, we obtain the L* bound from try, and the trace bounds for ¥ and ¢
by exploiting the corresponding estimates in the geodesic foliation (4.82). We start by
establishing the relation between the Ricci coefficients in the time and geodesic foliation.
Recall first from the definition of L and L’ (2.9) that L = bL'. Since (e, e2) and (€, €5)
are both orthonormal vectors in the tangent space of H,, which are both orthogonal to L,
we may chose these vectors such that there is a tensor F” on Py, satisfying:

ea=ey+ L', A=1,2.

Also, writing L in the frame e}, €}, L', L', and using the fact that g(L, L) = —2, g(L, L) = 0
and g(L,eq) =0, A= 1,2, we obtain:

L=b"'L'+207 ' Fye!y + b7 |F'|°L.
Finally, we have established the following relations:

L=bl
ea=¢€y+ L A=12 (4.95)
L=0b"'L'+207'F\ey + b HF'|2L.
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We now use the definition (2.13) and (4.74) of the Ricci coefficients respectively in the
time and geodesic foliation. We first establish the relation between y and y’. Using the
definition (2.13) of x and (4.74) of x/, we have:

Xap = 8(De L ep) = g(De, 4,1 (bL), €5 + FpL') = bx/yp
where we used the Ricci equations (4.80) and the identities g(L', L) = g(L',¢/,) =0, A =
1,2. In particular, we obtain:
X = by, try = btry’, X = bX'. (4.96)
(4.96) together with the bootstrap assumption (4.1) and the estimate (4.82) yields:

trx || oo (2,) < 1Bl oo () 10X || 2o (220) S €5

~ ~ 4.97
IRllzszz < 161X sz < 2. (4.97)

where we have used the fact that the trace norms L L? and LSL? are equivalent by
Remark 4.19. Note that (4.97) is an improvement of the corresponding estimates in the
bootstrap assumptions (4.4) (4.5).
Next, we establish the relation between x and x’. Using the definition (2.13) of x and
(4.74) of x', we have:
= g(Dc,L,ep) = g(De 1pp (0L + 207 Flep, + b7 F'°L), ey + FpL')
= b (g(Deyyryp L e+ FpL') +2g(Dey gy F' € + F L)
+|F'|*g(De, 1 pr /L € + FRL'))
= b}, — 2F5Ch — 2FACs + 28(De, F' €) — 2FpXac e + 2FAg(Dp I, €)
X ap) (4.98)

Xap

where we used the Ricci equations (4.80).
We establish the relation between ¢ and ¢’. Using the definition (2.13) of ¢ and (4.74)
of ', we have:

1 1
CA — §g(DLL7 eA) = Eg(Db_IL’Jﬂb—lFée’c«H)_l\F’\QL’(bL/)7 6{4 + FAL,)
1
= 58(Dpley) + Xucte (4.99)
Now, we have:
1 1
LoDy — —Ls(Dyey (4.100)

1 1
- _§g(L/7 [LI7 6/14]) - §g(L,7 DBQL/)
1
= C‘IA - §g(L/7 [L/7 6{4]),

where we used the definition of ¢’ (4.74) in the last equality. The last term in (4.100) is
given by:

([ ) = [ i) = L (e(w) + ges(Kw) =0 (4.101)
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where we used the fact that ¢/;(u) = 0 and L'(u) = —2. Finally, (4.99)-(4.101) yield:
Ca = Ch+ Xace
which together with the estimate (4.82) and Remark 4.19 implies:
1< zosr2 S 1K sz + IX s p2 | F e S € + el F]| oe (4.102)
In view of (4.102), we need to estimate || F”|| ~. We make the bootstrap assumption:
|F'|| e < D% (4.103)

where D is the large constant appearing in the bootstrap assumptions (4.1)-(4.6). Our
goal is to improve on the constant in the right-hand side of (4.103). We first estimate
D/ F. In view of the Ricci equations (2.23), we have:

1 1
€4 = —ég(DLL, eq) = —§g(DbL/(b_1L’ + 20 Flep, + b HF')PL), ey + FUL)
1
= —58(DuL.)) — gDy (F).ey)
— ¢\ —g(Du(F).e)). (4.104)
where we used the Ricci equations (4.80) to obtain the last equality. (4.104) implies:
IV F sz + N{(V L F') S I ez + €l e + N(C) + N{(E). (4.105)

Now, in view of the definition of A; and A, and the relation (4.95) between ¥ and Y,
we have for any tensor G:

Ni(G) S (1L + [[F]|ee)NU(G) S N(G) and N{(G) S (14 [[F7]| <)M (G) S Mi(G)
(4.106)
where we used the bootstrap assumption (4.103). Remark 4.19, the estimates (4.82),
(4.83), (4.105), (4.106) and the bootstrap assumptions (4.2) (4.3) imply:

IV Flllsiz + MV FY) S De. (4.107)

We now estimate ¥ F”. In view of (4.98), we have:

1 1
8(De, 7, ¢p) = Sbx = 5Xap + FeCa+ Filp + FpXacte — Fig(DuF", ep)

2
_%| FPY s (4.108)
which yields:
IV F'llgo < lIoxllzo + 1X o + 1F o + 1F2X g0 + [1F'V 0 F'|| g (4.109)
S NMOX) + X g0 + (V' EF [l Lo rz, + 1 =) I [0
HE'V F N gerz, + 1E 1 2) X g0 + IV F | gerz, + 1E ([ 2o) [V 1 F | o
S NOX) + 11X Nlgo + IV F || ez, + [1F[|=)N ()
HNE e IV E" || o2, + 1 (|2 ) N1 (X))
AUV Flgere, + I1F || 2 )N (Y, )
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where we used several times the inequalities (4.88) and (4.90) as well as (4.106). The
estimates (4.83) and (4.86) together with the bootstrap assumptions (4.1)-(4.5), (4.107)
and (4.109) yield:

IV F'llgo S De + De(L+ [ F' ) (IV F'llgo + [ F'llz=). (4.110)

Finally, the bootstrap assumption (4.103) together with (4.110) and the fact that ¢ is
small yields:
IV F'l| g0 < De

which together with (4.87) implies:
[F'|| L < De. (4.111)

(4.111) is an improvement of the bootstrap assumption (4.103) which shows that F’ is
indeed in L> and satisfies the bound (4.111). In particular, (4.102) and (4.111) imply:

||C||L;<;L§ Se. (4.112)

Note that (4.97) and (4.112) are improvements of the corresponding estimates in the
bootstrap assumptions (4.4)-(4.6).

Remark 4.22 We also have an estimate for ¥ F' in L% L. Indeed, (4.108) yields:

IV Fllzie S Moxlliz, e + I ez, e + DFClliz,ose + 1F2X Nz e + N E' V0 2 e
160N 00 + Il 150+ 1 ¢ N2, 1

Bl 2 e + 1 e IV E 2,1

[Bll1=AG () + £ + DEN(C) + D2EN(Y) + DY, F)

De (4.113)

AR A

AR AN

where we used (4.106), (4.107), (4.111), the bootstrap assumptions (4.1)-(4.6) on b and
X, and the estimates (4.83).

Remark 4.23 (4.108) implies the following estimate for V' F' + %X/"

4 / 1 ! / i !~ ! /' ! i / !
N (w +—x) < NU(by) + NUF'C) + NUF?) + NU(F'V, F)

2
S NOX) + (IF N[z + 1V F' ] 12, )N () + 1€ o 22

FE e N(X) + X N[ eo922) + NIV F) + V0 F || 2o 22)

De, (4.114)

AN

where we used (4.106), the estimates (4.82) and (4.83), the estimates (4.107) (4.111) and
(4.113) for F', and the bootstrap assumptions (4.1)-(4.6) for b and x.
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4.7 Trace norm bounds for § and ¢

The goal of this section is to improve the estimate for [|d]| e 12 and [[€]| <2 given by the
bootstrap assumption (4.3). Let us first define kpy and kp:

kLL = —g(DLT, L), kLA = —g(DLT, €A), A= 1, 2. (4115)
Then, using the definition of & (2.24) and the computation of DT (2.4), we have:
0 = 0—n"'N(n)=—gDyT,N)—-g(DrT,N)=—g(D.T,N) = —g(D.T, L)
krr. (4.116)

and

€a = ea—n'Vyn=—gDyT,ea) —gDrT,eq) = —g(DrT,ea) (4.117)

= kpa.
We also define kr/rr and krsa4:
ki = —g(DpT, 1), ko = —g(DyT,¢y), A=1,2. (4.118)

Then, the relations (4.95) between L,ej, ey and L, €], €}, together with the definitions
(4.115) and (4.118) yield:

kLL = kaL’L’ and kLA = bk’L/A + bFAkL’L’- (4119)
Thus, (4.116), (4.117) and (4.119) imply:

HSHL;?Lg S Okpillreere S ke llzosre (4.120)

[Ellesre S 0kpallpsrz + [bF ko llissee S [lkppllissee + [|kral ooz
x x xT xT T

where we used the bootstrap assumption (4.1), the L* bound for F’ (4.111) and Remark
4.19.

In view of (4.120), it is enough to bound the trace norms ||kr/z/||zosr2 and ||kpsal| Lo 2.
First, note that the bootstrap assumptions (4.1) (4.3) together with the L*> bound for F”
(4.111) and the identity (4.119) yield:

|kpwllposrz + kwallpsrz S De. (4.121)

Our goal in this section is to improve the constant D in the right-hand side of (4.121).
We will rely on the trace estimate (4.93). The improved estimates for n (4.48) (4.58) and
the improved estimate for d, € (4.71) imply:

Ni(8) + Mi(e) S e (4.122)
(4.116), (4.119), (4.122), (4.106) and the bootstrap assumptions (4.1) (4.2) for b yield:
N(kpr) SN(720) Se. (4.123)
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(4.121) and (4.123) yield:

S ONF | peeN i (krir) + (HW/F/”Li,LgO + HVL/F/HLi,Lgo)||kL/L’HL;?Lg

< D& + D% + DeN (Y, F')

< e (4.124)

N{(F'kpr)

where we used (4.107), (4.111) and (4.113). Finally, (4.117), (4.119), (4.122), (4.124),
(4.106) and the bootstrap assumptions (4.1) (4.2) for b yield:

N{(kpa) SN(bT'E) + N (Flykp) Se. (4.125)

In order to apply the trace estimate (4.93), we need to show that V'kzr, and ¥'kpi4
admit a decomposition of the form, AY,, P + E. We start with kz/;,. We have:

4
WefAkL’L’ = _De/Ag(DL’T7 L/) = _g(De’ADL/T7 Ll) - g<DL/T7 De’ALI)
= —g(DpD, T, L) — Ry, vrr — 8D, 01T, L)
—b7'g(—ON + (s Xapes — C4L)
bfl
=V laDT L)~ b Fpaly —
+b~ X ap(kpy — Cy) — b 20(2XupFp + Ch)- (4.126)
Relying on the Bianchi identities, the following decomposition for ', 5’ were obtained in
[14]):
O/ = WL’(PI) + Ela 6/ - WL/(PQ) + E2; (4127)
where P, = D';'8', P, =D'{'(p/,—0"), and
We define the tensors Aq, Ay, P3, F5 as:

Pyy = —g(De, T, L)), Ay = —b"'F', Ay = =1, (4.120)
By =b""X\p(kpy — Cy) — b20(2XupFh + Ch), '

which together with (4.126) and (4.127) yields:
W,kL’L’ == Ale,Pl + AQWL,PQ + WL’P?) + E1 —|— E2 —|— Eg. (4130)

Now, we have: B
Psy=—gDe, T, L) = b "kay — Fyb~ %0

which yields:

N/(Ps) < Ni(b'kan) (4.131)
(I e + 1V Fll 2,00 + 1V Fllnz, 120 ) (N1 (b70) + 6720 1 12)
< e+ D*?
< e
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where we used the bootstrap assumptions (4.1) (4.2) for b, the bootstrap assumption (4.3)
for 6, the improved estimate (4.71) for k4, the estimates (4.107) (4.111) and (4.113) for
F together with Remark 4.19 and (4.106). Using the bootstrap assumptions (4.1) (4.2)
for b and the estimates (4.107) (4.111) and (4.113) for F', we also have:
sl + 1V Al e+ ¥ Al e + [ Aallim + IV Aol e + 19 Al o
S (bl +Na(b = D)X + [1F 0w + 1V F lli2, 10 + IV F 112, 120)
< De. (4.132)

~Y

The functional inequalities (4.89) and (4.91) yield:
1Esllpo S (Ibllzoe + 1I¥0ll ooz, ) (1 + 1F" [l oo + (V' F | e r2,)
< IOP? + MO + NLEP + M{(0F + M)
D?e?
e, (4.133)

where we used the bootstrap assumptions (4.1)-(4.6) for b, 0, kpy and (, the estimates
(4.107) (4.111) and (4.113) for F, and the estimate (4.83) for y’ and ¢’. Finally, the sharp
trace estimate (4.93) together with (4.130) and the estimates (4.123) (4.128), (4.131),
(4.132) and (4.133) yields:

Wovllese S N(kpo) + (A= + 1V Aullz, NP + ([Aallim (4134)
IV Aall sz, 1 )NY(Bo) + N{(Py) + [ Eullpo + 1| Eallpo + | Byl

&,

AN AN

~J

which is an improvement of (4.121) for kg
Next, we show that ¥'kr,4 admit a decomposition of the form, AY,, P+ E. We have:

Vo, ke le, = —eplgDrT. ey)] + DTV, €4)
= —g(De,DpT,€y) — gDuT, Deyely — ¥V, €4)
= —g(DpD., T,¢y) = Reyprer, — 8(Dpey, 11T €)

o 1 1
—b 1g(—5N + gcec, éx;lBL/ + §XC4BL/)
= _WL’ [g(DT7 -)]AB - ]-:{'e’BL/Tef4 - g(DDebL'T7 6:4)

+g(DDL/€lB_WL/e/BT’ 614) + g(DeIBT’ DL/€i4 - VL’e%)

_ = 1 1
—b7'g(=0N + ¢ ec, 5)(1435 + §X/ABL/>

1
= —Y,.[gDT,. )]s - §b_lozf43

1. _ ¥
—i—§b 1(/)’5,43 — 0 €p +2Fé €ac 533 - |FI’204143)

+xpolkca — Fib kon — FLb™Yes + FLF,b70)
_ 1 _ _
+b71 ¢ (kpy — b Fppo) + SXan(—0 + b25| F' |2
5. (4.135)

- 1
+2071¢ FG) + 5? Xyp
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Define as in [14] p/, 5" as:
o3 / 1/\/ ~/ - 1/\/ ~/
p:p—§x-x,a:a—§x/\x. (4.136)

Relying on the Bianchi identities, the following decomposition for p', " was obtained in
[14]:

(7,6") =V (Ps) + Eu, (4.137)
where P, = *D’flé', and

N(Py) + [|Esllpro S . (4.138)

We have ~
gD, T,€)y) = —kap + Fpb 'ea + b Fikpy — b2 F)Fpp0

which yields:
gDy T,¢h) = YV (Py) + AeV,, (Py) + B (4.139)
where Ps, Ag, Ps, Eg are defined by:
Psyp = —kap + Fpb~'es — b 2F\ F},0,
Agp = b Fh, Pop = kpn, Esap = Vi [b7 F'|akpy.
We define the tensors Ay, A7, Ag, E7 as:

Ay = %bil, A; = bilF/, Ag = —b71|P1/|2 B
Erap = X,BC(kCA — F}‘b_lkcjv — Flévb_lEA_—i‘ FéFAb_z(” (4141)
+07 ' (kpn — DM Fp0) + 5 X ap(—0 + b2 F'|* + 207 FT),

which together with (4.127), (4.135), (4.137) and (4.139) yields:
W/kL/A = AV, Po+ AV, P+ AN, Py + Y., P+ AV, Ps + By + Ex + B,y

(4.140)

1 o~ Y~ 1 _ -
+Es+ E7 + bel(X’ X064 —X'AX €ap) + 3? X, 50 (4.142)
In view of (4.114), we define Ejg as:
_ 1 —1/=/ & nli 1/\/ -~/ & nli 1/\/ -2 4 / 1 / <
Es = §b X' (VF +§X)5AB—X NV F +§K) €ap)+b (WBFA+§XAB)5‘ (4.143)

Note that the non sharp product estimate (4.91) together with the bootstrap assumptions
(4.1)-(4.3) for b and 4, the estimate (4.83) for y' and the estimate (4.114) for V'F’ + 1/
yields:

| Es||po < D*e* S e (4.144)

Now, we recall the following result from [14] section 7:
Y'x' = Y (Puo) + En,
with NV{(Pio) + || Erol|po S € which together with (4.116), (4.130) and (4.143) yields:

Ly, o ~ o~ 1 _ =
(X X0ap = X AX €an) + 507, 0 (4.145)
1 N N =
= AnY(Pu)+ Bn = V(50 (X - F'éap — X' A F' €ap) + b 2F)0).

2
86



Using (4.144), the fact that Nj(Prg) + || Erollpo S € from [14], the estimate (4.83) for X/,
the bootstrap assumptions (4.1)-(4.3) for b and 9, and the estimates (4.107) (4.111) and
(4.113) for F implies that Ay, P11, F11 satisfy:

[Aullzoe + 1V Avillz, e + 1V Aullie, s + N (Pra) + | Euallpo S e (4.146)

Now, (4.142) and (4.145) yield:

1 N . . —
V' [kpa + §b’1(x’ “F'Sap — X' N F' €4p) + b 2F))d]

= AV, Po+ AsY, P+ AN, P+ Y. P+ AsY, P + AV, P
+F,+Ey+Ey+ Eg+ E; + Ey;. (4.147)

(4.140), (4.141), the bootstrap assumptions (4.1) (4.2) for b, the bootstrap assumption
(4.3) for €6, the improved estimate (4.71) for kay, the estimates (4.107) (4.111) and
(4.113) for F' together with Remark 4.19 and (4.106), the estimate (4.83) for x’ and (',
the trace estimate (4.82), the inequality (4.89) and the non sharp product estimate (4.91)
yield:

[Allzoe + 1V Ajllr2, e + 1V Ajllz2, pee S De for j = 4,6,7,8,
N(P;) Sefor j=5,6, (4.148)
| Ejllpo S e for j =6,7.

Note also that (4.125), the bootstrap assumptions (4.1) (4.2) for b, the bootstrap as-
sumption (4.3) for 0, the estimates (4.107) (4.111) and (4.113) for F” together with the
inequality (4.106), the estimate (4.83) for x’ and the trace estimate (4.82) imply:

1 _
Nll (kL’A + Eb_l(j(\, . F/(SAB — 55/ A F/ GAB) + b_QFIIL‘(S) 5 e+ D2€2 S g. (4149)

Finally, the sharp trace estimate (4.93) together with (4.147) and the estimates (4.128),
(4.138), (4.146), (4.148) and (4.149) yields:

(4.150), the bootstrap assumption (4.1) for b, the bootstrap assumption (4.3) for 4, the
estimate (4.111) for F’ and the trace estimate (4.82) for x’ imply:

1 N N _ _
kria+ —bil(Xl . FI(SAB — X/ AF' EAB) +b 2F1/4(5

5 Se+D** e (4.150)

L L2

[kroallrosre S e, (4.151)

which is an improvement of (4.121) for kz/4. (4.120), (4.134) and (4.151) yield:

HSHL;?Lf + l[ellsrz Se (4.152)

which improves the trace estimates for § and € given by the bootstrap assumption (4.3).
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4.8 Estimates for b

The goal of this section is to improve the bootstrap assumption for b given by (4.1) and
(4.2), and to derive an estimate for L(b) in L{°L%,. Using the transport equation for b

(2.27) and the estimate for transport equations (3.66), we obtain:
b=~ S 15(0) = Uz + W81l (4.153)
S e+ @4 1Ib— L) 0l ez
S e+ De|lb— 1|z

where we used the bootstrap assumption (4.3) for § in the last inequality. (4.153) yields:
[b—1flz= <€ (4.154)

which improves the estimate for b given by the bootstrap assumption (4.1). Using again
the estimate for transport equations (3.66), we also have:

16— 1||L§°Li, S 116(0) — 1“Li, + HbSHLi/Ltl Se
which together with (2.27) and (2.26) implies:
No(b—1) e+ Ni(L(b)) + N1(Vb) (4.155)
e+ N1 (b8) + Ny (bC) + N (be)

e+ ([bllz= + Na(b = 1))(N1(8) + Ni(C) + Ni(e))
€+ €N2(b — 1)

where we used (4.154) and the improved estimates (4.71) for § and ¢, and (4.180) for (.
(4.155) yields:

AR AR A4

No(b—1) <e. (4.156)

We also derive an estimate for L(b). Differentiating the transport equation for b (2.27)
with respect to L, we obtain:

L(L(b)) = [L,L](b) — L(b)d — bL() (4.157)
= (0+n7'N(n))ob—2(C = ¢) - ¥b— bL(9),

where we used the commutator formula (2.46) in the last equality. This yields:

I L(L(O)) | 22(31.) (4.158)
S (b)) (H5 + 07 N zaaen 10]| Loy + 1€ = Cllzaen IV0] o)
HIL® 0,
S @+ (1bllze) (N1(5)2 + Ni(n'Vn)? + N1(€)? + Ni(¢)* + N (VD) + IIL(5)||L2<Hu>)
< e+ D*?
S e
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where we used the bootstrap assumptions (4.1)-(4.6). Together with the estimate for
transport equations (3.66), we obtain:

ILO) |22, e S NLLO) 200 S € (4.159)

(4.156) and (4.159) improve the estimate for b given by the bootstrap assumption (4.2).
Finally, we derive an estimate for L(b) in L°L2,. In view of (2.43), we have

bL(O) = —L(b(6+n""N(n)))+ L(b)(S+n"'N(n))+2bp+ 2bC - (2¢ — n~'Vn)
—2bn"'Vn - € + 2be|* + 2067 — 2b(n"' N(n))?,
which together with (4.157) implies
L(L(b) —b(6 +n"'N(n))) = —2bp + hy, (4.160)
where hy is given by
hy = (§+n""N(n))ob—2(C —¢)-Vb— L(b)(6+n"'N(n)) —2b¢ - (2¢ — n~'Vn)
4200 Vn - € — 2be|? — 21;52 +2b(n"'N(n))?.
In view of the bootstrap assumptions (4.1)-(4.6), we have the following estimate for h;
halles, S (N1(8) +Ni(n™"Vm) + No(b — 1) + Ni(e) + Ni(C) + Ni(Q))* (1 + [|bl| )
D?*e?
€. (4.161)

NN

Next, we decompose the term involving p in the right-hand side of (4.160). In view of the
Bianchi identity (2.57), we have:

(np,no) =*D;* (WnL(é) —YV(n)p+ V(n)o +ntrx — 2nX - 8 — ngﬁ +3n(¢p — *QU))

which yields
(p,0) = LCDN(B)) +n ' [Dr, W B + b, (4.162)

where hy is given by

ho = n_l*Dfl (—W(n)p + Y(n)o + ntryf — QnX - B — ngé + 3n(£p - *ga)) )

In view of the bootstrap assumptions (4.1)-(4.6) and Lemma 3.17, we have the following
estimate for ho

1hallzyrs, + l[h2llzz2s, (4.163)

A

| oo H—W(n)p + V(n)o + ntrx —2nx - 8 — ngé + 3n(Cp — *§O>HL1L%

+n e |-V (n)p + V(n)o + ntrx — 2nx - 8 —ndB + 3n(Cp — *¢o)||

1203,
S (NU(Yn) + Ni(trx) + Ni(R) + Ni(©6) + NUOB, p, 0. B)ll e 2y 10 oo (1 + [[7]] o)
< De?
S &

where we used the bootstrap assumptions (4.1)-(4.6) and the curvature bound (2.59).
Next, we estimate the commutator term in the right-hand side of (4.162). This is done
in the following lemma.
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Lemma 4.24 D", Y, ;|(B) satisfies the following estimate:
IFDrY Yl (Bllzzes, + 10D Vo J(B)lliprs, S e

We postpone the proof of Lemma 4.24 to section A.3 and conclude the estimate for
L(b) in L{°LY,. In view of (4.160) and (4.162), we have
L (L(b) —b(0 +n""N(n)) + 2b7r1(*D1_1(§)))
= 2L(0)m ("D (B)) — 2bm ("D, ¥, )(8)) — 2bmi(ha) + ha,

where 7, denote the projection in R? on the first coordinate. Together with the estimate
for transport equations (3.66), we obtain

L) = b0 + ™ N () + 2m (DT )| e,

ILO) | zzes, "Dy (Bl zzrs, + Mol (DL Vo (Bl s, + Nh2llzizs,) + ballzyes,
Na(b = DIV DL (B)ll 2. + €

where we used in the last inequality the Gagliardo-Nirenberg inequality (3.3), the boot-
strap assumption (4.1) for b, Lemma 4.24, the estimate (4.163) for hy and the estimate
(4.161) for hy. Together with the bootstrap assumption (4.2) for b, the estimate (3.50)
for *Dy!, and the curvature bound (2.59) for 3, we deduce

S
S

|L(b) — b(6 +n~"N(n)) + 2b7r1(*D1_1(@))HL$OL4/ <e. (4.164)
This yields o
ILO gers, S [|=0(0 +n7 N () + 2bmi ("Dy(8)) ||L§QL1, +e (4.165)
< Bllze (N (8) + Mo N () + (bl =M (DT (8)) + =
< De+ N (*DiH(B)).

Next, we estimate the right-hand side of (4.165). In view of the estimate (3.50) for
*D;! and the curvature bound (2.59) for 3, we have
IV Dy (B)llz20) S 18Iz S e (4.166)
Also, in view of (4.162), we have

ILCDT (B2 S (s )z + 107 e 1D V) Bll 2 + B2l 220
< e (4.167)

~Y

where we used in the last inequality the curvature bound (2.59) for (p, ), the bootstrap
assumption (4.1) for n, the commutator estimate of Lemma 4.24, and the estimate (4.163)
for hy. Finally, (4.166) and (4.167) imply

Ni("Dr'(B)) S e
which together with (4.165) yields the following estimate for L(b)

HL(b)HL;’oL‘;, S De. (4.168)
Remark 4.25 The estimate (4.168) contains the bootstrap constant D in its right-hand

side. This is not an issue since such an estimate is not part of our bootstrap assumptions

(4.1)-(4.6).
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4.9 Remaining estimates for try, ¥ and (
We first estimate try. In view of the estimate for transport equations (3.66) and the

Raychaudhuri equation (2.28), we have

lorxlie e S Horx(O)lzece + I Ztrlee,
lorx ()2 + Ixl222s, + Ixllzzs, 180222,

1trx (0) | 22(py.0) + N1 (X)? + N1 ()2,

ANR AR A

which together with the assumption on initial data (2.62) and the bootstrap assumptions
(4.3)-(4.5) implies

Itrxlle, e S &+ D%
< - (4.169)

Next, we estimate Ytry. Differentiating the Raychaudhuri equation (2.28) and using
the commutation formula (2.44), we obtain:

Y, Vtrxy = — (gtrx +X+ 5) Viry — 2XVx + n tVnL(try) — V(8)try, (4.170)

which together with the bootstrap assumptions (4.1)-(4.6) and the estimate for transport
equations (3.66) yields:

3 = ~ ~
IVerxllez, oo S HgthJrX+5 IVtrx |2,y + X 2o 22 VX 22030
L2, Lge
Hin= Wl s ILEON, 5 + 17Oz [l
t g
5 D2€2
< e (4.171)

where we used the Raychaudhuri equation (2.28), the embeddings (3.3) and (3.58), and
the bootstrap assumption to bound L(try):

LN, 5 S Ixlzzzs, Iz, + Ixlzzes, [0l ns, S MOO* + M) S e

2L, . . 2 v

Note that (4.171) improves the estimate for Ytry given by the bootstrap assumption (4.4).
We now estimate N7 (x). Using the transport equation for X (2.29), we obtain:

IV X200 S trxllee X1 220y + 100 2a@en) IX] o) + el r2ge,) S €+ D** Se
(4.172)

where we have used the curvature bound (2.59) for a, and the bootstrap assumptions
(4.2)-(4.5) for x and ¢. Next, using the codazzi equation (2.32) for X, we obtain:

ID2Xl 220 S NWtex 223 + 1BIlz200) + XU 2o llell s,y S €+ D*e* S e (4.173)
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where we have used (4.171), the curvature bound (2.59) for (3, and the bootstrap assump-
tions (4.3)-(4.5) for x and e. The Hodge estimate (3.50) together with (4.173) yields:

VX 2230y S € (4.174)

(4.172) and (4.174) imply:
M(X) Se. (4.175)

Note that (4.175) improves the estimate for Nj(X) given by the bootstrap assumption
(4.5).

We now estimate Ltry. Using the transport equation for p (2.39) and the estimate
for transport equations (3.66), we obtain:

il | = 20 = O - Ve = 2 (76 + €8¢ - o)

—2trx(,0 +C¢-2e—n"'Vn) —n ' Vn-e+ P H X+ 55)

12,1}
S lleexlzeellpllzz, 2o + (ISl 2 + 1K Lo 22) WXl 2020
IRl 22 (1962000 + 10 + 155200
Htrxllze|lp+ ¢+ (2¢ =07 Wn) =7 Wi e+ e +RIP+7 X 2
L2(Ha
S Dellpllrz,pee + D?e? (4(17)6)

where we used the curvature bound (2.59), the bootstrap assumptions (4.1)-(4.6) and the
Sobolev inequality (3.57). (4.176) yields:

||M||L§,L;>° Se

which together with the bootstrap assumptions (4.1)-(4.6) and the definition (2.35) of u
implies:

1Lt 2, e < [+ (8407 N(n))tex|| 2 o S+ D% Se. (4.177)

Note that (4.177) improves the estimate for Ltry given by the bootstrap assumption (4.4).
We now estimate N7(¢). Using the transport equation for ¢ (2.30), we obtain:

1V Cllzze S XNz (IS zage + IEllsgey) + 1Bll2puy S e+ D% Se o (4.178)

where we have used the curvature bound (2.59) for /3, and the bootstrap assumptions
(4.2)-(4.5) for x and €. Next, using the div-curl system of equations (2.36) (2.37) for (,
we obtain:

IDiCllznny S Mallezon) + ollez2ee) + ol 2g0) + X0 Zage) + 151 Zag) + 1C1 200,
< e+ D*?
< e (4.179)
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where we have used (4.177), the curvature bound (2.59) for p and o, and the bootstrap
assumptions (4.3)-(4.6) for x, k and . The Hodge estimate (3.50) together with (4.179)
yields:
V¢ 200,y S € (4.180)
(4.178) and (4.180) imply:
NI(C) SJ?E. (4.181)

Note that (4.181) improves the estimate for A7(¢) given by the bootstrap assumption
(4.6).
We now estimate ¥ Y. Using the null structure equation (2.34), we obtain:

IV X 223t (4.182)

S IVCH 2 + Il o (X i) + 100l Ly + IR N () Lsa) + 1S 700
< e+ D%*?
< ¢
where we have used (4.180) and the bootstrap assumptions (4.1)-(4.6) for n, x, x, 0 and
¢. Note that (4.182) improves the estimate for ¥, X given by the bootstrap assumption
(4.5). a

Finally, (4.46), (4.48), (4.58), (4.71), (4.73), (4.97), (4.112), (4.152), (4.169), (4.171),
(4.175), (4.177), (4.181), (4.182), (4.154), (4.156) and (4.159) improve the bootstrap as-

sumptions (4.1)-(4.6). Thus, there exists a universal constant D > 0 such that (4.1)-(4.6)
and (4.168) hold. This yields (2.67)-(2.72) which concludes the proof of Theorem 2.21.

5 Estimates for LLtry, WL(C) and LL(b)

This section is devoted to the proof of Theorem 2.23. We assume the following bootstrap
assumptions. There exists a function v in L*(R) with ||| z2®) < 1 such that for all j > 0,
we have: ,

| Py LLtxX]| 230, < 2/ De + 22 Dey(u), (5.1)

1P (VL ()l z20) S D% + 272 D2ery(u), (5.2)

where D > 0 is a large enough constant. We will improve on these estimates. Using the
estimates obtained in Theorem 2.21, in particular for try and X, would yield an upper
bound for LLtry of the following type

||F)JitrXHL2(’Hu) 5 2%5’7(”&) + szzf‘q;llvél)f)ﬁ@), where ,y(gl) c g?(N) and ,yl(Q) c goo(N)
la

(5.3)
which is not summable. This forces us to rely on a Besov improvement for try, as well as
a suitable decomposition for Yx (see (5.40)). This is done in section 5.1. Then, we derive
a system of equations for LLtry and Y, (¢) in section 5.2. This allows us to improve
on the bootstrap assumption (5.2) in section 5.3, and (5.1) in section 5.4. Finally, the
estimate for LL(b) is then derived in section 5.5.
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5.1 Besov improvement for try in the time foliation
In this section, we first define Besov spaces, and then explain how to adapt the ideas in
the sequence of papers [14] [10] [11] to obtain the Besov improvement for try.
5.1.1 Definition of the Besov spaces and first properties
Following [10] [14], we introduce for 0 < a < 1 and for tensors F' on P,,, the Besov norm:
1E 33,y (Pr) = > VU PF | 2p,..) + | P<oF |l 2(p0), (5.4)
Jj=0

where P; are the geometric Littlewood-Paley projections on the 2-surfaces P, ,. Further-
more, for P, ,-tangent tensors F' on H,, 0 < a < 1, we introduce the Besov norms:

IFllge = > 2 sup ||PF |l + sup |P<oF|l12p,.), (5.5)
>0 0<t<1 0<t<1

IFllpe = > 2 PiF 200, + | P<oFll2203¢,)- (5.6)
j=0

Note that these Besov spaces in the time foliation correspond to the Besov spaces in the
geodesic foliation defined by the norms (4.84) (4.85). The goal of section 5.1 is to prove
the following estimates for try and ¥:

[Vtrx|lso < e, (5.7)

and
Y = WL(P) + FE with N1(P) < e and ||E|po < e. (5.8)

Note that the corresponding estimates in the geodesic foliation have been proved in the
sequence of papers [14] [10] [11]. One may reprove these estimates by adapting the proofs
to the context of a time foliation. However, this would be rather lengthy and we suggest
here a more elegant solution which consists in identifying the key structure in [14] [10]
[11] and showing that the analog structure exists in the time foliation. This will be done
in the next section.

We conclude this section with several functional inequalities satisfied by the Besov
spaces B* P Note that properties of the Besov spaces on 2-surfaces derived in [10]
apply to the Besov spaces Bj;. Indeed, these properties only depend on the fact that
P, is a 2-surface satisfying the coordinate system assumption (3.1) and the assumption
(4.30) on the gauss curvature K. In particular, the following estimates are immediate
consequences on the estimates in [10] for BS, (see also section 5 in [14]):

[l SNl S M llnger2, + 11V F 0, (5.9)

where f is a scalar function on H,,

1F - Hlso < (IVFllzgers + [1F |z ) [ H 0, (5.10)
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where I’ and H are P, ,-tangent tensors, and
1Y - D Fllpe < || Fllpe (5.11)

where 0 < a < 1, F is a P, tangent tensor on H,, and D' denotes one of the operators
Di', Dy, Dyt D7 Also, for 0 < a < § and 52 < p < 2, we have:

D Flipe S I1Fll2er,- (5.12)

Finally, we shall make use of the following non sharp embedding and product estimates.
For any P, ,-tangent tensors F, G, and for any 0 < a < %, we have:

[F ]| S Ni(F) (5.13)
[F- Gllpe S N2(F) - [|Gllpe (5.14)
1F - Gllpe S MU(E) - (1G] 260, + VG 2 0,))- (5.15)

5.1.2 Structure of the commutators in the time foliation

As noted at the end of the previous section, the results from the paper [10] on 2-surfaces
immediately apply to P;,. We shall now show that results from the paper [11] true
in the geodesic foliation apply also to the time foliation due to a similar structure of
commutators.

Let A denote A = ny. Then, the estimates (2.67) for n, (2.70) for try and (2.71) for
X of Theorem 2.21 proved in section 4 imply:

||AHL;<;L§ +Ni(4) Se. (5.16)
In view of (5.16) and the commutator identities (2.48) and (2.49), we have:

Vur Alf =A-Vf +VA-Vf+A-A-Vf (5.18)
where f is a scalar function on H, and:
V. YIFF=A-VFE+ns-F+A-A-F, (5.19)

YV, AF=A-Y'F+YVA-YF+A-A-YF+nB-VYE+Y(ns-VF+A-A-F) (5.20)

where F' is a P,,-tangent tensor on H,. Note that the structure of the commutators
(5.17)-(5.20) together with the estimate (5.16) for A is the same structure as in the case
of a geodesic foliation with the correspondence:

L' —nL, X' — nxand 8 — nf (5.21)

where L', ¥’ and ' have been defined in section 4.6.1.
The proofs of the sharp trace theorems in the paper [11] rely on the following assump-

tions (see section 3 of [11]) where we translate for the time foliation using the correspon-
dence (5.21):
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S1 The two surfaces P, satisfy the coordinates system assumption (3.1), the calculus
inequalities of section 3.1 and the geometric Littlewood-Paley theory of section 3.2

S2 The Gauss curvature K of P, , satisfies the bound (4.29) (4.30)

S3 There is A satisfying (5.16) such that we have the commutator structure (5.17)-
(5.20)

S4 nf3 satisfies the curvature flux bound |[nf| 12,y < € (which follows from the cur-
vature bound (2.59) and the estimate (2.67) for n)

Since the proof of the sharp trace theorems in [11] only rely on the structural assumptions
S1-S4, they immediately extend to the case of a time foliation. In particular, we obtain
the following analog of the sharp trace theorems in [11] (see section 4 of [11]):

Proposition 5.1 Assume that the P, ,-tangent tensor U satisfies U(0) = 0 and the fol-
lowing transport equation along H.,:

V., U+atrxU=F -V, P+ F-W,
where a 1s some positive number. Then,
U]l S (Mi(F2) + HF1HL;<;L§) - NU(P) + (M(F) + HF2HL;<;L3) W ipo. (5.22)
We also obtain the following useful commutator estimates:
Lemma 5.2 For a given 1-form F, let w the solution of the scalar transport equation
nL(w) = djuF), w =0 on Py,
and let W be a solution of the equation
V. W—nx W=FW=0 onPy,.
Then, for any 1 < p <2,

[d(W) = wllze, 0 S el Fll 2
® LI, PLl

Lemma 5.3 For any P,,-tangent tensor F' and all 1 < q < 2, we have:
1P, Vo F ll e, + 27 (1VIP;, Vo) F ll sz, S 272 Ni(F) (5.23)

(by 275+ we mean 2-% fora < % arbitrarily close to %), while for ¢ =1,
1P Vor Fllpe, + 27NV P: V[ F e, S 277 N(F). (5.24)

Finally, using Proposition 5.1, we may prove the following version of the sharp classical
trace theorem.

Corollary 5.4 Assume F' is an P,,-tangent tensor which admits a decomposition of the
form, YF = BY ,P+ E. Then,

1F Loz S Ni(F) + NU(P)(IBllzoe + 1V Bll12, 50 + 1V Bll2,152) + [|Ellpo.  (5.25)

The proof of (5.25) is the analog of the proof of the estimate (4.93) so we skip it.
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5.1.3 Structure of the Bianchi identities in the time foliation

In this section, we will show that results from the paper [14] true in the geodesic foliation
apply also to the time foliation due to a similar structure of the Bianchi identities. We first
enlarge the correspondence (5.21) with the general philosophy that L’ should correspond
tonL and L' to n='L:

L' =wnL, L' -n'L, ¢y — ey

X' —nx, X' = n 'y (5.26)

B =np, p—p o —o

where L', L', X', X, B, p' and ¢’ have been defined in section 4.6.1. Following [14], we
define p, & as:
y .o .
P:P—ﬁX'X70:U—§X/\X~ (5.27)

Multiplying the Bianchi identities (2.53) and (2.55) by n together with the null structure
equations for y and y yields:

nL(p) + ;ntrx,b = dif(nB) —e- (nf) + %(ny) : (W@E — e

Hatry) - () + 5007ty (09) ).
) 3 ) ) 1 L (5.28)
nL(5) + intrxa = —cufl(nB) +en (np) + 5(71)() A (W@e — E®E

Hatry) - (') ).

We now denote A = (ny, €) which together with the estimates (2.67) for n, the estimates
(2.68) for €, the estimates (2.70) for trx and (2.71) for X of Theorem 2.21 proved in
section 4 still imply the estimate (5.16) for A. We also denote A = ny which in view
of the estimates (2.67) for n, the estimates (2.68) for k, the estimates (2.70) for try and
(2.71) for X of Theorem 2.21 proved in section 4 satisfies the following estimate:

Ni(4) S e (5.29)
In view of the definition of A and A together with (5.28), we have:
nL(p,—3) = Di(nf) + A- (n(B, p,0) + YA+ A- A). (5.30)

We now consider a decomposition for YD, "Dy ' L(p, &) which is the analog of the one
derived in section 6 of the paper [14]. Tt relies on the assumptions S1-S4 together with
the following additional assumptions where we translate for the time foliation using the
correspondence (5.26):

S5 (p,0) satisfies the curvature flux bound ||p||z2(2,) + |0l L2,y S € (which follows
from the curvature bound (2.59), the estimate (2.68) for k, and the estimates (2.70)
and (2.71) for x)

S6 nL(p,—0d) has the structure (5.30)
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S7 The functional inequalities (5.11), (5.12), (5.14) and (5.15) are satisfied

Since the proof of the estimate derived in section 6 of the paper [14] only rely on the
structural assumptions S1-S7, they immediately extend to the case of a time foliation.
In particular, we obtain the following analogs of the decompositions derived in section 6
of the paper [14]:

and
VD, 'Dy'nL(p,6) =V, P>+ Es (5.32)
where P, P», £ and E satisfy the bounds:
Ni(Py) + Ni(Py) + (| Exllpo + [ Eallpo S e (5.33)

5.1.4 Decomposition of Y(nY)

We now in position to prove the decomposition (5.8) for Yx. We first derive an equation
for ny. Multiplying the Codazzi type equation (2.32) for X by n, we obtain:

Dy(nR) + - (1) = 5 (V(ntry) + elntrx)) — nf, (5.34)
which yields:
~ S -, L _
V) = 705" (= (1) + 5(Fow) +elon)) ~ns ). (539)
Now, in view of (5.30), we have:
nB =D;* (nL(ﬁ, —)—A-(n(B,p,0) +VA+ A- A)) (5.36)
where A satisfies (5.16) and A satisfies (5.29). Injecting (5.36) in (5.35) yields:
VR) = ~¥D5'DnL(p,~0) + VD5 D (- (n(5.p.) + A+ 4- )
+VD;! ( —€-(nx) + %(W(ntrx) + E(ntrx))). (5.37)

We estimate the second term in the right-hand side of (5.37). Using the embedding
(3.58), the estimate (5.11) with a = 0, and the estimate (5.12) with a = 0 and p = 3, we
have:

HWl%lDll (A -(n(B,p,0) +VA+A- A)) (5.38)
Po

S A (B p o) + VAT A-A) , 4

S ANz rs, (Inllee (1Bl 2 + ol 20y + Nloll2e0) + IV Al 2000 + [ Allgers, 1Al pge2s,)

S NuA)Inllze (18l r2ae) + Nol2ee,) + llollr2ee)) + Ni(A)(1 + Ni(4)))

S e
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where we used the curvature bound (2.59) for 3, the estimate (2.67) for n, the estimate
(5.16) for A and the estimate (5.29) for A.

We estimate the last term in the right-hand side of (5.37). Using the estimate (5.11)
and the non sharp product estimates estimates (5.14) and (5.15), we have:

|7052 (=20 + 5(Fntrn) + )

(5.39)

AN

2

H_g. (n¥) + E(W(ntrx) + €(ntry)) i

S ltexWnllpo +Na(n — 1)([[Wtrx|lpo + [[€ - Xllpo + [[etrx|[po)

S Na(n = DNi(trx) + [ Virx(lee + Ni(ENi(x))
S e+ [IVtrxlpo,

where we used the estimate (2.67) for n, the estimate (2.68) for € and the estimates (2.70)

and (2.71) for x.

Finally, the decomposition (5.32) for YD, Dy 'nL(p, —&) together with the estimate
(5.33) and(5.37)-(5.39) yields the following decomposition for Y(nX):

Y(nx) =V, P +E, (5.40)
where P and E satisfy the following estimate:
Ni(P) + [[Ellpo < € + || Vtrx||po. (5.41)

5.1.5 Decomposition of Y (nd)

In order to obtain a Besov improvement for try, we need to derive for W(ng_) the analog
of the decomposition for ¥'ky, s derived in (4.130). Recall from (4.116) that § = k;;, with
krp = —g(D.T, L). Thus, we have:

¥.0 = —D.g(D.T,L)=—gD.,D.T,L)—gD.T,D,L)
= —g(D.D.,T,L)—Re,rrr — (D T, L) — g(—0N, xapep — €aL)
1 -
= =V, ea— 5@4 + Xag(ep +€5) —n "'V, nd,

which after multiplication by n yields:

V(1B) = ~F,pe — 5B+ x- (e +2) (5.42)

The estimates (2.67) and (2.68) for € and €, the estimates (2.70) and (2.71) for y, and the
non sharp product estimate (5.15) yield:

Ni(e) + lIx - (e +8)llpo S &+ M(X)WNi(e) + Mi(E) S e (5.43)
Finally, (5.42), (5.43) and the decomposition of /5 given by (5.31) (5.33) yield:
Y(nd) = ¥,,P+E, (5.44)

where P and F satisfy:
Ni(P) + ||E||po S e. (5.45)
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5.1.6 Besov improvement for try

In view of (5.41), we need an estimate for || Vtry||po. We multiply the transport equation
(4.170) satisfied by Ytry. We obtain:

3 P N . . —
.o Ftrx = = (3rx+ R +5) Pery - 2R¥ () + Vn(2lR+ Lltwy) ~etry) - Fubjen
(5.46)
Using the decomposition (5.40) for ¥(ny) and the decomposition (5.44) for Y(no), we
obtain: B

—-2XY(nx) — V(no)trx = (1Y, P + W (5.47)

where in view of (5.41), (5.45) and the estimates (2.70) (2.71) for y, we have:
Ni(F) + [ Fullpsszz + Ni(F2) + [ Fallzosrz + NMi(P) + [[Wpo S € + [[Wtrxlpo.  (548)

Also, using the Raychaudhuri equation (2.28), we may rewrite the third term in the
right-hand side of (5.46) as:

Yn(2|x]? + L(trx) — etry) = xWh (5.49)

where in view of the estimate (2.67) for n, the estimate (2.68) for J and €, the estimates
(2.70) (2.71) for x, and the non sharp product estimate (5.15), Wi = ¥n - (x +  + €)
satisfies:

Willpe S Ni(Wn)N(x) + Ni(E) + Ni(9)) S e (5.50)
Using the estimate (2.67) for n, the estimate (2.68) for €, the estimates (2.70) (2.71) for

X, we also have:
3 = 3 R
M (n 5trx—|—x+5 + ||n §trx+x+5

S MNo(n = 1)(Mi(x) +N1(5) + ”XHL;?L% + ||S||L;<;L§)
< e (5.51)
Finally, (5.46)-(5.51) yield:
Y. Ytrx = iV, P+ F,W + F3Vtry (5.52)
where I, Fy, F3, P satisty:
N1<F1)+||F1HL;<;L§+N1(F2)+||F2||L;7L§+N1(F3)+||F3||L;?L§+N1(P)+||W||7>0 Se (5.53)

L% L?

We now apply Proposition 5.1 and obtain from (5.52) (5.53) the following Besov improve-
ment for YVtry:

[Vtrxllso < el Wtrx|lpo + ¢,
and the smallness of ¢ finally yields:

[Vtrx|[so < e (5.54)
Coming back to the decomposition (5.40) (5.41) of ¥(nx) and using (5.54), we obtain:
Y(nX) = ¥, P+ E with Ni(P) + [ Ellpo S €. (5.55)

(5.54) and (5.55) yield the desired estimates (5.7) and (5.8).
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5.2 Structure equations for LLtry and WL(C )

The goal of this section is to prove the following proposition.

Proposition 5.5 Let py = bL(p). Then, py satisfies the following transport equation:

L)+t = ~2BF,(0)- Vi = 208 (FET,L0) + 07 F09,(0) + 27,65
—2btrx V¢ - (26 = n~'Vn) + dit(Fy) + f5 (5.56)
where the P, -tangent vectorfield Fy and the scalar function fy satisfy the estimates:
1F1l[ L2600y + [ foll ey S e (5.57)

Furthermore, WLC satisfies the following Hodge system.:

GV, = Lo = bW Vy(Q) 20V (C) D) + i, 559
AT LC) = —BIVBATLC) - cufB) + o

where the scalar functions hyi, he satisfy the estimates:
1hiller e,y + 1h2ll1ge) S € (5.59)

Proof We start with the proof of (5.56) (5.57). We differentiate the transport equa-
tion (2.39) satisfied by p with respect to L. We have:

L(L(p) = —trxLin) =2V, (C) - Verx +2(C =€) - ¥, (Very) (5.60)
2% - (VL(VEQ) + 28V, (0))
—2trx (L(p) + V. ¢ (26 =n™'Vn) + X - V(1)) + fa,

where f; is given by:

fi = —L{tr)p+ 2, Viry = 29,8 - (VEC + (BC = 67) + 28+ (LT + 0V,%)
—2L(tr) (p+ - (2= n7'Wn) — 07" Wn- e+ e + [T + 7 X)
~2trx (¢ - (2¥ ¢ = V(07 Wn)) = V(07 W) - e = n~'Wn - Ve + 2 ¥ e
20 VR 47 V,R). (5.61)

The curvature bound (2.59) for p and the estimates (2.67)-(2.72) obtained in Theorem
2.21 yield:
1200y S VL0020 + MO0 + NU(O? + Ni(R)* + Ni(V)? + [lpll T2,

HIV L2, + 1V L2600, + ILO) 200, + 7 = L=,
e. (5.62)

AN
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We now estimate various terms in (5.60). Note first from the commutator formula (2.46)
that we have:

L(L(p) = L(L(p) + L, L}(n) (5.63)
= L(L(1) = 0L(1) + (6 +n"'N(n)) L(p) +2(C = ¢) - Vpu
= L(L(p)) = 0L(p) + (8 +n~"N(n)) L(p) + 2dik (¢ — )n)

Using the commutator formula (2.45), we have:

(C—=Q) ¥V, (Vtrx) = (¢ =) V(L(trx)) + (¢ =) - [V, V](trx) (5.64)
= dif((¢ — ¢)L(trx)) — (dit(¢) — dix(¢)) L(try)
+(¢ =€) - (—xVtrx + EL(try) + b~ 'WbL(try)),

and

V. (VRC) = VR(V.L) + [V, VI&C (5.65)
= V&(V.C) — xVC¢+EV,L(C) + b VBV L(C) + (x€ + x¢ + B)C.

Also, using the Bianchi identity (2.54), we have:

3 1,
trxL(p) = —trxdizg — §trxtrxp — §trxx o+ 2trx§ - B+ trx(e —2(¢) - B (5.66)

: 3 L
= —dif(trxp) + Viry - 8 — §trxtrxp - §tTXX o+ 2trx§ - B+ trx(e — 2() - B.

We now consider the term tryy - ¥, (%) in the right-hand side of (5.60). We start by
computing ¥ 7. We have: B

V.(map = L(kap) —n(Vyea,es) —nlea, Voen)
= —g(DLDeATa BB) + g(DWLEAT, BB) — g(DeAT> DL€B — WLeB)

= —8(De,D.T ep) — gDy en) + Roars + 8Dy |, Ten)
L
—g(DeAT, DLeB - WLQB)

= —V.B— nilyAWBn + ”72%4”?73” +g(DLT, De, 65 — WeAeB)
1 1 1

—g(De,T,Dres — YV, ep)
which together with the Ricci equations (2.23) yields:

_ _ 1 1
WL(mAB = —n IWAWBTL +n 2WA”WB” + 59%AB — §p5AB (5.67)

~Y a8 = X Mo +E €+ (ea—Ca)(n ' Wgn +ep) + (€, — Cp)ea.
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In view of (5.67), we have:

. . . _ _ 1
trxX - Vo () = trxx- (—n 1Y72n+n YnYWn + 5 (5.68)

Ve (e~ O T+ 9+ (€~ Oe).
Now, (5.60) together with (5.63)-(5.66) and (5.68) yields:
L(LGs) = DL(x) — toxLin) — 27,() - Virx (5.69)
2% (VEYL(Q) + b7 VBY(0) + 20BY,4(C) ) = 26V € - (2 — n”' V)
(=2 - O+ 2(¢ - Lltr) + 20x@) + 73+ £

where fZ2 is given by:

f3 = —(64+n""N(n))L(x) — 2(dik(¢) — dif(¢))u — 2(dif(¢) — dif(¢)) L(trx)
+2(¢ =€) - (—=xVtrx + EL(trx) + b~ ' VbL(try))
—2X - (=x V¢ + &€V (C) + (x§ + xC + B)C)

-2 (Wtrx B gtrxtrxp + 2trx€ - B+ trx (e — 2¢) ﬁ)
—2tryX - ( — 7 'VPn 4+ n2YnVn — Ve — Xxn + &€

+(e—= QO 'Vn+e)+ (- C)e).

The curvature bound (2.59) for 3, 8 and the estimates (2.67)-(2.72) obtained in Theorem
2.21 yield:

50y S MielZege, + ILGDIT2, £y + 1V L0 Z200,) + MO +MU(C)?
+N1(k)? + Ni(Vn)? + ||5H%2(Hu) + ”éH%Q(Hu) + ||P||i2(uu) + ||U||%2(Hu)
HIV2nll72pe,) + In = =)
S lellzzgu) + LWz, 1 + & (5.70)

Using the definition of p (2.35), the formula for L(x) given by (2.39), the curvature bound
(2.59) for p and the estimates (2.67)-(2.72) obtained in Theorem 2.21, we obtain:

lillZ2 e,y + LTz, 1y S €
which together with (5.70) yields:

||f22HL1(7{u) Se. (5.71)

Since p1y = bL(p), we have:
L(p1) = L(b)L () + DL(L(1)) = —bOL (1) + bL(L(p))
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where we used the transport equation (2.27) satisfied by b. Together with (5.69), this
yields:

L) = —trxm — 207,(C) - Very - 26% - (YOY,(Q) + b VBY,(¢) +2Y,(0))
OBV - (2 —n ) + d'w(b<—2<<: Q20— QL) + 2trxé)>

—Vb - (—2(¢ — Op+2(¢ — ¢)L(trx) + 2trx3) + bfy + bf3, (5.72)

which is the desired transport equation (5.56) for p; with Fj given by:

Fy = b(=2(¢ — Qp +2(¢ — ¢)L(trx) + 2trx )

and fy given by:

fo==Vb- (=2(C = On+2(C = OL(trx) + 2trx3) + bfz +bf3.
Using the curvature bound (2.59) for § and the estimates (2.67)-(2.72) obtained in The-
orem 2.21, we obtain:
1Fllz2ge) S 0Nz (IS 70 22 + M€ 12 + IO 2, e + el 22, 10
Hlltrx | ool Bl z23¢.))
87

and:

12l i) S N0 VOl 20 1 F Ll L2aa) + 10l 2o (L2 ey + 15 1 i) S &,

where we used the estimate (5.62) for f; and the estimate (5.71) for fZ. This concludes
the proof of the estimate (5.57) for F} and fs.

We now turn to the Hodge system satisfied by YV, (¢). We differentiate the equation
(2.36) giving di#(¢) with respect to L: B

1
2

LK) (L(u) L0V, ) - 4@@(@) L(p) + ) (5.73)

where h} is given by:

1 1 ~ ~ ~ o~
by = JL(trx)try + JtrxL(try) = X- V4 (8) = V. (%) - 7
The estimates (2.67)-(2.72) obtained in Theorem 2.21 yield:

1tz e S NV L0 Z200,) + N 0O + MR S e (5.74)

Also, using the commutator formula (2.45), we have:

L{dMC)) = diMVL () + [V, diFC (5.75)

= dif(V,(Q)) = X VC+E V(O +b7 Wb VL(O) + (x§ + xC + B)C.
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(5.75), (5.67), (5.73) and the Bianchi identity (2.54) yield:

T,() = 0T, + 3 (0 - 4T, ) + b+ AL (670

where h? is given by:

B= X VCHE VO + (K + xC+ B+ Strxp — 265 — (e~ 20) - B

—X- ( — 7 VPn 4+ n2VnYn — Ve —xn+&+(e—=)n'Vn+e) + (- C)e).

The curvature bound (2.59) for 3, p and 3, and the estimates (2.67)-(2.72) obtained in
Theorem 2.21 yield:

IRl ey S BN Z2 00 + M2 ) + 1B 220 + N+ N (X)* + N1 (R)* + N1 (V) S €.

(5.77)
Next, we differentiate the equation (2.37) giving cufl(¢) with respect to L:
Lcwl(Q)) = V,(X) AT+ X AV, (0) + L(0). (5.78)
The commutator formula (2.45), (5.67), (5.78) and the Bianchi identity (2.56) yield:
cufl(V,(¢)) = =07 Wb AV, (C) — cwl(B) + ha, (5.79)

where hs is given by:

h = €ap XyoFels — EAVL(O) + (XE+xC +H)C+ Yy (R) AT — Strxo — 266 + (e~ 20)°8

+X A ( — 07 VP 4+ n2YnVn — Ve — X+ &+ (e— ) 'Vn+e)+ (€ - g)e).

The curvature bound (2.59) for 3, o, 8 and the estimates (2.67)-(2.72) obtained in Theorem
2.21 yield:

1hell ey S 1B1Z2 000 o200 + 181 L2ge,) +NUO* H M) + N1 (R)* + Ni(Vn) S e.
(5.80)

Finally, (5.74)-(5.80) yield (5.58) and (5.59) which concludes the proof of the proposition.
|

5.3 Estimates for V()

The goal of this section is to obtain an improvement of the bootstrap assumption (5.2)
for ¥, (¢). We will use the following three lemmas.

Lemma 5.6 Let F' a P, ,-tangent vectorfield on H,. Assume there exists two constants
C1,Cy > 0 possibly depending on w such that for all 7 > 0, we have:

1P Fll 20,y < C1+272Cs. (5.81)
Let H a P, ,-tangent vectorfield of the same type. Then, for all j > 0, we have:
1P (H - F)|| 23,y S N(H)(2Cy 422 Ch). (5.82)
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Lemma 5.7 Let f and h two scalar functions on H,. Let 2 < p < 400. Assume there
exists two constants C,Cy > 0 possibly depending on u such that for all 3 > 0, we have:

1P fllzprz, < 2°Ch + 23 (. (5.83)
Then, for all 7 > 0, we have:
1P (hf)lzzz, S (lRllze + [ Vh]ls0)(27C1 + 22 Ch). (5.84)

Lemma 5.8 Let F' a P,,-tangent 1-form on H,. Assume there exists two constants
C1,Cs > 0 such that for all j > 0, we have:

12Dy (F)ll 1230,y < 2Ch +22C. (5.85)
Then, for all 7 > 0, we have:
1P Fll 20,y S C1+272Cs. (5.86)

We also state the following lemmas which will be used in the proof of Lemma 5.6 as
well as several places in the paper.

Lemma 5.9 For any P,,-tangent tensor F' on H,,, and for all j > 0, we have:

S DNPF s, + 2V F s, S M(F (5.87)

J=20

Lemma 5.10 For any 1-form F on P,,, for any 1 < p <2 and for all j > 0, we have:

, 2
1B i ) 2Py S 207 [1F | Lo - (5.88)

We postpone the proof of Lemma 5.6 to section B.1, the proof of Lemma 5.7 to section
B.2, the proof of Lemma 5.8 to section B.3, the proof of Lemma 5.9 to sections B.4, and the
proof of Lemma 5.10 to section B.5. We show how they improve the bootstrap assumption
(5.2). The bootstrap assumption (5.1) together with the definition of p; and p yields for
all 7 > 0: .

1P (0~ 1)l 290y S 2 De + 22 Dery(u). (5.89)

Lemma 5.6 implies:

b—l
GRS ACEE R ALY BT AT O
L2(Hy

29 De + 25 Dy(u) + (N7 (b~'Vb) + N (€)) (27 D% + 22 D?ey(u))
(1+ De)(2'De + 2% Dery(u))
29 De + 22 Devy(u), (5.90)

AN AN AN

where we used the bootstrap assumptions (5.2) for ¥ (¢), the estimate (5.89) for 1,
and the estimates (2.69) and (2.72) for b and ¢ obtained in Theorem 2.21. Using the
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Littlewood-Paley property iii) of Theorem 3.10, and the dual of the sharp Bernstein
inequality (4.32) for scalars, we obtain:

1P (dif(B) + ha)llz2 () + 1P (—cfl(B) + ho)ll 22 (3. (5.91)
S 2Bl e + 22l iy + 27 1h2llr 200

~Y

< e,

where we used the curvature bound (2.59) for 8 and the estimate (5.59) for hy, hy. Using
the Hodge system (5.58) satisfied by ¥ (¢) and the estimates (5.90) and (5.91), we obtain:

I DAV L2y S IPHAMV L (D220 + (155 (cafl(V L (O] 222
< 2 De + 23 Devy(u).
which together with Lemma 5.8 yields:
1B (VL (O)l2(,) S De +27% Dey(u). (5.92)
Note that (5.92) is an improvement of the bootstrap assumption (5.2) for ¥, (¢).

5.4 Estimates for LLtry

The goal of this section is to obtain an improvement of the bootstrap assumption (5.1)
for LLtrx. Note first that the bootstrap assumption (5.1) together with Lemma 5.7 with
the choice h = b and the definition of ;; and p yields for all 7 > 0:

1P (1) || z2(ay S 27D + 22 Dery(u). (5.93)

Another application of Lemma 5.7 this time with the choice h = b~! shows that improving
on the bootstrap assumption (5.1) is equivalent to improving (5.93). We now focus on
improving (5.93). After multiplying the transport equation (5.56) satisfied by py by n,
we have:

nL(u) + ntrxgn = — 20V, (C) - Viry — 2005 - (W@ch)+b-1%m<o+2m®<)

—2nbtrx V¢ - (26 — n”'Vn) + ndif(Fy) + nfo.
which yields:
1P (1)l 2234,

([ irnir)

w7 ([ oo 9,000 )

AN

2%7(u)€ + ‘

il

([ ng,0)- yirar) -
([ enx- 0 won, o)

L?(Hu)

i

L2(Hu) L2(Hu)

(|17

(R (VB0 )

L2 P; (/Ot(ntrxb(Ze —n~'¥n) - VL(C))dT)

P; (/Ot(WnFl)dT)

.

+
L2(Hu)

L?(Hu)

+ ||

(/
- Pj<0 (dif(nFy))d )
(

(nfo d7'>

0 L2 (Hu)
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where we used the following lemma with f = pq:
Lemma 5.11 Let f a scalar function solution of the following transport equation:
L(f) =0, f = fo on Py,
Assume there is a constant C > 0 possibly depending on u such that for all 7 > 0:
1P, folls2(py.) S C25.
Then, we have the following estimate for f:
||ij||L;>°L§, S 02%~

The proof of Lemma 5.11 is postponed to section B.6. In order to estimate the right-
hand side of (5.93), we will use the following three lemmas, which constitute the core of
section 5.

Lemma 5.12 Let a scalar function f on H, such that:

£l + VS llpe S e
Assume that py satisfies (5.93). Then, we have for all j > 0:

I ([ omar)

Lemma 5.13 Let a P, ,-tangent 2-tensor F' on H., such that VF admits a decomposition
of the form:

< 27 De? + 25 De%y(u).
L2(Hu)

where P, E are P,,-tangent tensors, and F, P, E satisfy:

NU(E) + |Fl gz + Ni(P) + [|El[po S e

Assume that Y (C) satisfies the estimate (5.92). Then, we have for all j > 0:

Lemma 5.14 Let a P,,-tangent 1-form F' on H, such that:

< e+ 2YDe* + 2%D52’y(u).
L2 (Hu)

p ([ yw, @)

1Fllpo S e.

Assume that W (C) satisfies the estimate (5.92). Then, we have for all j > 0:

o ([ - wuicnar)

< 2De? + 2%D€27(u).
LL2,
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We will also need the following three lemmas for the proof of Lemma 5.11, Lemma
5.12, 5.13 and 5.14, as well as various places in this paper.

Lemma 5.15 Let f a scalar function on H, and F' a P,,-tangent 2-tensor. For any
S 22j”fHLi,L}a

7 >0, we have:
t
17 ([ acnar)
0 L?(Hu)

‘ P, ( /0 t divdiv(F)dT)

Lemma 5.16 Let F' a P, ,-tangent 1-form. For any j > 0 and any 1 < p < 2, we have:

’ P ( /0 t d;”v(F)dT)

Lemma 5.17 The following decomposition holds:

Y(np) + (V(no))" ="Di - J - "Dy (¥, (8)) + "Di(H),

where J denotes the involution (p,0) — (—p,0) and H is a scalar function on H, satis-
fying the following estimate:

and

S 29N F 2, 11
L2(Hu) ’

25
S 27|,y
LL?,

||HHL3L§/ Se.

We postpone the proof of Lemma 5.12 to section B.7, the proof of Lemma 5.13 to
section B.8, the proof of Lemma 5.14 to section B.9, the proof of Lemma 5.15 to section
B.10, the proof of Lemma 5.16 to section B.11, and the proof of Lemma 5.17 to section
B.12. We show how they improve the estimate (5.93). We estimate each term in the
right-hand side of (5.94) starting with the first one.

The scalar function f = ntry satisfies the following estimate:

[fllze =NV fllpo S Nnllzeel[trx]le + [nVtrx][po + [[trx ¥npo

S e+ (1+ Nao(n—1)||[Vtry|lpo + Ni(try)Ni(n — 1)

S s

where we used the estimate (2.70) satisfied by try, the estimate (2.67) satisfied by n, and

the non sharp product estimates (5.14) and (5.15). Thus, in view of Lemma 5.12, we
P < 21De? + 25 De2y(u). (5.95)

We now focus on the third term in the right-hand side of (5.94). We define the 2-tensor
F = bnx. In view of the decomposition (5.55) for ¥(nY), we have:

VE = bV(nX)+nxyb

= bV, P+ E)+nxVb
V.. (bP) —nL(b)P + bE + nXVb
= V., (bP)+nbdP + bE + nXVb
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where P and F satisfy:
N(P) +[|Ellpo S e

Thus, we set P, = bP and E; = nb6P + bE + nXVb and obtain:

VE =V, (P)+E;.

Furthermore, we have:

NP+ [|Erllpe S (1]l zoe + Na(b — 1))N1(P) + Na(b — DN (n — DN (B)N1(P) + Na(b — 1)[| B[ po
+MNa(n — DN (X)N1(VD)

S MU(P)+ || Ellpo +¢

S s

where we used the estimate (2.71) satisfied by X, the estimate (2.67) satisfied by n, the
estimate (2.69) satisfied by b, the estimate (2.68) satisfied by d, and the non sharp product
estimates (5.14) and (5.15). Thus, in view of Lemma 5.13, we obtain:

< 21De? + 28 D%y (u). (5.96)

‘ b ( /OQW. (W@wow) o

We consider the second, the fourth, the fifth and the sixth term in the right-hand side
of (5.94). We define the 1-forms:

Fy = bnYitry, Fy = nXYb, F3 = bnx¢ and Fj = bntry(2¢ —n~'¥n).

These 1-forms satisfy the following estimate:

[ Ex[[po + [[Fallpo + (| F3llpo + [|F4llpo
S Na(n = DN (b — 1)||Wtrx|[po + Nao(n — DN(X)N1(VD) + Na(b — )N (n — DN (X)N1(C)
+No(b — 1)No(n — DN (try) (Ni(€) + Ni(n~1Vn))

g,

~Y

where we used the estimate (2.70) satisfied by try, the estimate (2.71) satisfied by ¥,
the estimate (2.67) satisfied by n, the estimate (2.69) satisfied by b, the estimate (2.72)
satisfied by ¢, and the non sharp product estimates (5.14) and (5.15). Thus, in view of
Lemma 5.14, we obtain:

I ([ n9,0)- wimrgar ) ot | ([ - 0w, pr) -
+‘Pj (/Ot(bny. (WLQ@C) d¢> o + ‘ P, (/Ot(ntrxb@e—n—lw).WL(g))dT) v
< 2 De? 4 22 De~(u). (5.97)

We consider the seventh term in the right-hand side of (5.94). We define the scalar
function w and the the P, ,-tangent 1-form W as the solutions of the following transport
equations:

nL(w) = dig(nFy), w=0on Py,, and YV, ;W —nx - W =nkFy, W =0 on Fy,.
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We have:

|2 ([ snrar)

| Pjwll L2 31,) (5.98)
L2(Hy)

S 18w = (W)l 20y + 1 B3RVl 220
S 2w —diw(W)llrarr, + 2 IW |2,

where we used the dual of the sharp Bernstein inequality (4.32) and the finite band
property of the Littlewood-Paley projection P;. We estimate the two terms in the right-
hand side of (5.98). Using Lemma 5.2, we have:

lw = diF(W)llznr, S ellnFillzg,) < €° (5.99)

~Y

where we used the estimate (5.57) on F; and the L* bound for n given by (2.67). Also,
using the estimate (3.66) for transport equations, we have:

IWllegey S IXWllez, + [InFillz20,) (5.100)
S Xl ez W llage,) + €
S elWllzepn,) +e

where we used the estimate (5.57) on Fi, the trace bound on y given by (2.70) (2.71),
and the L> bound for n given by (2.67). (5.100) yields:

HWHL2(Hu) Se

which together with (5.98) and (5.99) implies:

| ([ asturar )

Finally, we consider the last two terms in the right-hand side of (5.94). Using the dual
of the sharp Bernstein inequality (4.32) and the estimate (3.66) for transport equations,

we have:
|2 ([ nrnar) ([ war)

% /Ot(WnFl))dT /Ot(an)dT

P VnF|| g + 2 Infoll o)
2|Vl L2y | F1l 22 () + 27 1| o (| f2 |l 21 (220
e,

< 2. (5.101)

L2(Hy)

P (5.102)

-

L2(Hu) L2(Hu)

N

+97
2L,

L2LL,

AR ZARYAN

where we used the estimate (5.57) on F} and f,, and the L> bound for n given by (2.67).
Finally, (5.94)-(5.98), (5.101) and (5.102) yield:

1P (101) | 230y S D229 + De23(u) + Ve (5.103)
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which is an improvement of (5.93). (5.103) together with Lemma 5.7 with the choice
h = b~! and the definition of y; yields for all j > 0:

| P L)l c2my S 2'De? + 28Dy () + 2e
which in view of the definition of y implies for all 7 > 0:
| Pj(LLtrY) || r2 30,y S 2/ De® + 27 Dey(u) + 2e. (5.104)

(5.92) and (5.104) improve the bootstrap assumptions (5.1) (5.2). Thus, there exists a
universal constant D > 0 such that (5.1) (5.2) hold. This yields (2.73) (2.74).

5.5 Estimates for LLb

The goal of this section is to prove the estimate (2.75) for LLb and to conclude the proof
of Theorem 2.23.

5.5.1 Structure equation for LLb

The goal of this section is to prove the following proposition.

Proposition 5.18 Let by = bLLb — b*(L(6) + L(n"*N(n))). Then, by satisfies the fol-
lowing transport equation:

L(by) = —(2b¥b + 26 (2€ = n~'¥n)) - Y, () + b*Xa + djf Fi) + fo, (5.105)
where the P, -tangent vectorfield F and the scalar function fy satisfy the estimates:
1Ex ]l 20 + I f2ll ) S € (5.106)

Proof We differentiate the transport equation (4.157) satisfied by Lb with respect to
L. We obtain:

L(LL(b)) = L, LJ(L(b)) + L(L(L(D))) (5.107)
= OLL(b) — (0 +n " N(n))L(L(b)) — 2(C = OVL(b) + (L(3) + L(n " N(n)))db
+(0 +nT N (n)L(0)b + (8 + 0~ 'N(n))SL() — 2(V,(¢) — V,(C)) - Vb
—2(¢ =€)+ Y, Vb — L(b)L(9) — bLL(d),

where we used in the last equality the commutator formula (2.46).
_In view of (5.107), we need to compute LL(J). Differentiating the formula (2.43) for
L(0) with respect to L, we obtain:

LL(6) = —L(L()+ L(n"'N(n))) — [L, L|(6 +n~'N(n)) + 2L(p) (5.108)
+4e - VL(E) +40L(0) + ZWLQ (26 = n'Vn) + 2 (2Y7Le WL(n_IWn))
—2Y7L(n’1y7n) ce—2n"'Vn - WLG —4n"*N(n)L(n "N (n))

= —L(L(6) + L(n"'N(n))) — [L, L}(0 +n~'N(n)) — 2dit(8) — X - a — 3trxp
+4€ - B+ 2(e —2¢) - B+ 4e -V (€) +40L(0) + 2V (- (26 —n~'Vn)
+2¢- 2V e — Vi (n7'Vn)) = 2V, (n7'Vn) - e — 207"V - Ve
—4n"*N(n)L(n"'N(n)),

112



where we used the Bianchi identity (2.54) for L(p) in the last equality. Now, (5.107),
(5.108), the transport equation (2.27) satisfied by b, and the definition of b, yield:

L(b1) = bL(LLb) + L(b)LLb — b*L(L(0) + L(n"'N(n))) — 2bL(b)(L(8) + L(n"'N(n)))
= bL(LLb) — bOLLb — bL(L(8) + L(n™'N(n))) + 2b0(L(3) + L(n""N(n)))
= —(2bVb + 26*(2¢ — n"'Vn)) - V,(C) + b*Xa + dif(F1) + fo, (5.109)
where the P, ,-tangent vectorfield F} is given by:
Fy = —4b(¢ — ¢)L(b) + 2b°83, (5.110)
and the scalar function f, is given by:
o = —b(d+n " N(n)L(LE)) +4b(VC — VOL() +4Vb- (¢ — OL() (5.111)
+b(L(0) + L(n"'N(n)))ob + b(6 +n N (n))L(6)b + b(6 + n "N (n))dL(b)
20V, (€) - Wb — 2b(¢ =€) - [V, WI(b) — bL(b)L(9) — 2bL(D)(L(J) + L(n~'N(n)))
+0°[L, L](6 + n~'N(n)) — 4bV(b) - B 4 3b%trxp — 4b°€ - § — 2b° (e — 2¢) - B — 4b%¢ - ¥ (¢)
—4b*5L(68) — 2b*C - (QWLE - Wé(n_lvn)) + 2b2Y7£(n_1Y7n) e+ 2b°n"'Vn - Ve
+4b*°n "N (n)L(n"'N(n)) + 206(L(5) + L(n ' N(n))).
In view of the definition (5.110) of F}, we have:

1Bl e (1€l o5 22 + 1€ 225 22) I LO) I 22, e + 0N Zo0 1B 22030, (5.112)

&

1 F1 ]| 2 (34

AN A

where we used in the last inequality the curvature bound (2.59) for 3, and the estimates
(2.67)-(2.72) for b,¢ and (.
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Next, we estimate fo. In view of (5.111), we have:

[ foll L1 30) (5.113)
[1B]] 2= (Hf5 + 07 N ()| 20 | LELO) | 22600y + IV = VE |22 (342
HIOT Wbl s 1€ = Ll LGN 220 + 1V L (O 2200 V0] 2231,

¢ = Lllzsn VL VIO, 5 + + L) 2 1L00) | 220,

A

IO 1L0) + Lo~ N e

I (1246) + L= Nz Pl + (llzo,

Hn T N )| 2 e LG [ 2200 + (101240 + 17 N ) 24600 18] 2430
X|ILO) |23y + Ly LI + 7 N () |13y + 107 VO 22300 1B 2230
Fltrx|l ez ol z2 e, + 1€l 22 18l 200, + € = 2¢M 2 1Bl 22034
+0ll€l| 220, 1V L ()| 2(300) + 1101 2220, |1 LLO) [ 220,

¢ 200 12V, (€) = V(07 V)l 20y + 1V L ()| 2 I Wl 2200,
Hllell 2 1V L (07 V)| 23y + 107 N ()| 2 |IL(RT N ()] 2220,

+100 z2ze) (L) |20y + IIL(n_lN(n))Ilm(Hu)))

S et ellLLO))lran) + el VIO, 4 + L, LI(6 +n" N(n)l| 1)

L3L3

where we used in the last inequality the curvature bound (2.59) for 3, p and 3, and the

estimates (2.67)-(2.72) for n,b,¢, 4,9, ¢,§ and (. Now, we evaluate the right-hand side
of (5.113). Using the estimate (4.158) for ||L(L(b))||r2(3,) and the commutator formulas
(2.45) and (2.46), we have:

IELO) 20 + IV L VIO, 4 4" L, L8 +n~ N () [l1 0.

S e+ Xlpgers WOl 24y + ||§||L;>OL;,||L(5)||L2(HU> + {107 Wbl e, |L(O) | 223,
0l 2 1LO + 27 N ()| 2,y + 116 + 7 N (0)l| 20, [1L(8 + 07 N (n)l| 20,

+1¢ = Cllz2en V(0 + 07 N (n) 2
S 6

where we used in the last inequality the estimates (2.67)-(2.72) for n, b, 6, d, ¢,&,X and C.
Together with (5.113), this yields:

I fallor ) S e (5.114)

In view of (5.109), (5.112) and (5.114), this concludes the proof of Proposition 5.18. H
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5.5.2 Estimates for LL(b)

After multiplying the transport equation (5.105) satisfied by b; by n, we have:
nL(by) = —(2nb¥b + 2nb*(2e — n='Vn)) - ¥, (¢) + nb*Xe + dif(nFy) — YnFy + fo,

which together with Lemma 5.11 yields:

P 00lrs, % 2z | ([ (oo 2 - ) 9,()ar )

LyeL?,
t t
+ ’ P; (/ (anQ-g)dT) + ’ P; (/ (di/(/(nFl))dT>
0 LL2, 0 LL2,
t t
+ ‘ P; (/ (WnFl)dT) + ‘ P; (/ (nfg)dT) (5.115)
0 LL?, 0 LoL?,

Next, we evaluate the right-hand side of (5.115). Using the nonsharp product estimates
(5.14) and (5.15), we have:

12nbYb-+2nb2(2e—n " W) lpo < No(b—1)N () (N1 (WD) +Na(b—1) (N () + N (n V) < e,

where we used in the last inequality the estimates (2.67)-(2.69) for n,e and b. Together
with Lemma 5.14, this yields the following estimate for the second term in the right-hand
side of (5.115):

Using Lemma 5.16 with p = 2, we have the following estimate for the second term in the
right-hand side of (5.115):

|2 ([ snrar)

where we used in the last inequality the estimate (2.67) for n and the estimate (5.106) for
Fy. Also, using the dual of the sharp Bernstein inequality for scalars (4.32) and the L?
boundedness of P;, and the estimate for transport equations (3.66), we have the following
estimate for the remaining terms in the right-hand side of (5.115):

I ([ s ar) ([ (werar)
ol ([ )],

27 ||nb’y - QHL?,L,} + 2|Vl g, + 2 Infall oo

< 2+ 28ey(u).  (5.116)
LL?,

b </ot((2nb% +2nb*(2¢ —n~'Y¥n)) - WL(O)CZT)

S YnFillzg) S 2lnlleellFillizgn) S 276, (5.117)
LgL?,

+ ‘
LyoL?, LyeL?,

[l (B2 IR o5 22 el 22y + 271V e 2, |2 22040 + 27 Il oo foll 2t 0
2e + ey(u), (5.118)

AR ZANR7AN
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where we used in the last inequality the curvature bound ||a||r2(3,) S 7(u)e provided by
(2.59), the estimates (2.67)-(2.71) for n,b and Y, and the estimate (5.106) for F} and f.
Finally, in view of (5.115)-(5.118), we have:

IPi(b)llger, S 2 + 25y (u). (5.119)
Now, in view of the definition of b; in Proposition 5.18, we have:
IP;OLLO ez, S 1P () iger, + 1P (B (LO) + Ln ™ N ()| porz,  (5.120)
1P (b ez, + 1P (B (L) | o2, + | L N ()| oo,
Ve + 25ey(u) + || P (0 (L(O)) |12,

where we used in the last inequality the estimate (2.67) for n, and the estimate (5.119)
for by. Now, we have in view of (4.62) and (4.63):

L(8) = p + dife + h, (5.121)

AR AN

where the scalar h is given by
3 -~
h=-n"'Vin+d6 —((+e—Ce+ Eétre — 70+ 2b"'V \bea.
In view of the definition of h, we have

||h||L;>°L§, N ||”_1V?V”||L§°Li, + <||5||L;>OL;1, + ||g||Lt°°Li, + ||£||LgoL‘;, + ||€||L§°Li,

2
160 e, + et + 107 Vbl e, )
S 6 (5.122)

where we used in the last inequality the estimates (2.67)-(2.72) for n,4,¢, ¢, €,0,7 and b.
Also, using the finite band property for P; and the estimate (2.68) for €, we have

1P (die)]| o2, S 2jH€HL§’°Li, S Ve (5.123)
We will obtain in Lemma 6.21 the following estimate for p
IPipllipere, S 2%e. (5.124)
Finally, (5.121)-(5.124) imply
HPj(L((s))HL;’OLi/ < 2e. (5.125)

Together with Lemma 5.7 with the choice h = b?, this yields:
HPj<b2L<5))HLt‘X’Li, S 2e.
Together with (5.120), we obtain
IP(BLL()) || or2, S 26 + 2her(u).
Together with Lemma 5.7 with the choice h = b~!, this yields:
1P, (LLO)) | ze 2, S 26 + 23ey(w),

which implies the estimate (2.75) for LL(b). Together with the estimates (2.73) and (2.74)
which were obtained in section 5.3 and section 5.4, this concludes the proof of Theorem
2.23.
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6 First order derivatives with respect to w

The goal of this section is to prove Theorem 2.24. In section 6.1, we derive commutator
formulas involving d,,. In section 6.2, we prove the estimates (2.76) and (2.77) for 0,N,
Oub, O,x and 0,¢. In section 6.3, we prove the estimate (2.78) for ¥, II(0,x). In section
6.4, we derive the decomposition (2.79)-(2.82) for Y. In section 6.5, we derive Besov
improvements for d, N and 9, x. Finally, we prove the lower bound (2.83) for N(-,w) —
N(-,w’) in section 6.6.

Remark 6.1 Recall that not all quantities depend on w. Indeed, only the quantities tied
to u = u(-,w) depend on w. More precisely, the following quantities depend on w

The optical function .

The null lapse b and the vectorfield N.

The null frame (ey, €3, €1, €3).
e The Ricci coefficients x, C.
On the other hand, the curvature tensor R, the vectorfield T, the time lapse n and the

second fundamental for k are all independent of w.

6.1 Commutator formulas

In this section, we derive several formulas involving commutators with d,,. We start with
some useful identities.

Lemma 6.2 For any 1-form F', we have the following identity:
Fy,e.ea+ Fa0,eas = —FnO,N — Fy N N. (6.1)

For any symmetric 2-tensor H, we have the following identity:
Huappee Hop + HacHo e 8 = —HanHo,ng — Hag,nHnB. (6.2)

For any 2-tensor H and any 1-form F', we have the following identity:
Fo,enHpa + FpHy,epa = —FnHy,na — Fo,nHna. (6.3)
Proof The identities (6.1), (6.2) and (6.3) are easy consequences of the identities:

g(0ye1,e1) =0, g(O,e2,e2) =0, g(dper, e2) = —g(0uea,€1), g(Onea, N) = —g(0,N, e4),

(6.4)
which follow from the fact that (e;, e, V) is orthonormal. u

We first consider commutators for scalar functions.
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Proposition 6.3 Let f a scalar function on M. We have:

[auu L]f = awN(f)? [aw’L]f = _awN(f) (65)

and:

[auv V]f = _WawaN - VNfawN' (66)

Proof Differentiating g(7, N) = 0 and g(N, N) = 1, and using the fact that T is
independent of w, we obtain

g(T,0,N) =0 and g(N,0,N) =0

which shows that J,,/N is tangent to P, ,. Furthermore, since 7" is independent of w, and
since L=T+ N and L =T — N, we have

o,L = 0,N and 0,L = —0,N, (6.7)

which immediately yields (6.5). Furthermore, we have:

Y/ =Df + ;&(Df. L)L+ ;a(Df.L)L

where Df = —g®?9,(f)ds denotes the space-time gradient of f. Together with (6.5) and
the fact that [0,,, D] = 0, this implies (6.6). This concludes the proof of the proposition. B

Next, we consider commutators for P, ,-tangent vectorfields. Recall the definition of
the projection II of vectorfields on X, onto vectorfields tangent to P, ,:

X =X — g(X,N)N.
We have the following proposition:
Proposition 6.4 Let X a P,,-tangent vectorfield. We have:
0.V, X — Y, (M0.X)) = Yy X — g(V,(X), 0NN +Ex,N - g(X,0.N)eaea, (6.
and:

0.V X =V ((0uX)) = —VonX —8(VL(X), 0N)N + (Cx =€, )O.N (6.9)
—g(X, awN)(CA - §A>€A.

Proof We start with 0,Y; X — YV, (I1(0,X)). By the definition of V,, we have:

V. (X)=g(DrX, ea)ea.

Differentiating with respect to w and using (6.7), we obtain:

0u(V, (X)) =g(Dr(0,X),ea)ea+g(Da,nX,ea)ea+g(DrX,0.ea)ea+g(Dr X, €4)0€4
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which together with (6.1) yields:
0,V , X =g(DL(0,X),ea)ea + Vy nX —g(DrX,N)I,N —g(DX,0,N)N. (6.10)
Since X is tangent to P, ,, we have:
9,X = T(,X) + ¢(d.X, N)N = I1(9,X) — g(X,,N)N (6.11)
which yields:
g(D(0,X),ea)ea = g(DL(I1(0,X)),ea)ea — g(X,0,N)g(DLN,eq)ea. (6.12)

Now, using the Ricci equations (2.23) for DN and the fact that X is P;,-tangent, we
have:
g(DrN,ey) =€4 and g(DL X, N) = —g(X,D.N) = —¢x.

Together with (6.10) and (6.12), this yields (6.8).
Next, we consider 0, ¥, X — ¥, (II(0,X)). Similarly as before, we obtain the analog
of (6.10): - -

0.V, X = g(DL(0.X), ea)en — Vo n X — g(DLX, N)O,N — g(DLX,0,N)N.  (6.13)
and the analog of (6.12):
g(DL(0.,X), ea)ea = g(DL(I1(0,X)), ea)ea — (X, 0.N)g(DLN, ea)ea. (6.14)

Now, using the Ricci equations (2.23) for DN and the fact that X is P;,-tangent, we
have:

g(DLN,ca) = (4~ £,) and g(DLX, N) = —g(X,DLN) = —((x —&,).

Together with (6.13) and (6.14), this yields (6.9). This concludes the proof of the propo-
sition. -

Next, we consider commutators for P, ,-tangent tensors. Let F' a m-covariant tensor
tangent to the surfaces P,,. Then, J,F is not tangent to F;,. We denote by IIG the
P, ,-tangent part of G. We have the following proposition:

Proposition 6.5 Let Fy be an m-covariant tensor tangent to the surfaces P,,. Then,

OV Fa— YV I(0uF)a =Yy nFa— € (0uN)cFy, ¢4, +9€a,,00N)EcFs, ¢ a,,;
(6.15)
and:
oW Fa =V I0uF)a = —Vo,nFa—(Ca, =&, JOuN)cFy, ¢ 4,  (6.16)
+9(ea;; 0uN)(Ce =€) Fa, ca,,-
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Proof For simplicity give the proof for a P, ,-tangent 1-form F', the general case
being similar. We start with 0,¥,; F — YV, II(0,F). By definition, we have:

V.Fa=L(Fa) = Fy .
Differentiating with respect to w and using (6.7), we obtain:

0u(VL )4+ ViFosen = OuN(Fa) + LOuFa) + LFoues) = OuFyy (o) = Fy 7 e
= OuN(Fa) + Y (OF))a+ LFoe) = Fy iy -

which together with (6.11) with X = ey, (6.8), and the fact that ' and YV, F are P, ,-
tangent yields:

(VL F)a+ ViFn@wey = 0uN(Fa)+ YV (H0uF))a + L(Fu@,e,))
_FWL(H(&UGA)) — FWaWNeA —€esly, N+ g(eA, &JN)F €

= WawNFA + WL(H(awF))A + WLFH(awEA)
—€aFy N+ g(ea, 0,N)F - €

This concludes the proof of (6.15). The proof of (6.16) is similar and left to the reader. B

Finally, we consider the commutator of 0, with D.
Proposition 6.6 Let H a symmetric P, ,-tangent 2-tensor. Then, we have:
Ou(dj(H))a — di(II(0,H))a = —YVyHao,n + 9(0.N,ea)d - H (6.17)
+0o.nsHpa — 0apHpo,N — tr0Hap, N,
where 0 is the second fundamental form of P, in X (i.e. Oap = g(VaN,ep)).
Proof We first derive a formula for 0,(Vzea). We have:
0.(Vpea) = 0.(9(Dpea,ec)ec)

= gDy epeasec)ec + g(Dp(duea), ec)ec + g(Dpea, dyec)ec
+g(Dpea, ec)Oec.

Now, using (6.11) to decompose J,e4, we have:

g(Dpd,ea,ec) = g(Dp(1(0,e4)),ec) — g(0uN,ea)g(DpN, ec).
Furthermore, the analog of (6.1) for 2-tensors yields:
9(Dpea, dec)ec + g(Dpea, ec)Osec = —g(0.N, ec)(g(Dpea, N)ec + g(Dpea, ec)N).

Thus, we obtain:

9u(Vgea) = Vaeplea) + Vp(l(Osea)) — g(0,N,ea)g(DpN,ec)ec  (6.18)
—9(0.N,ec)(9(Dpea, N)ec + g(Dpea,ec)N)
- WaweB (ea) + Vp(l(Ouea)) — g(0uN, ea)0pcec + 0apd.N
—g(Dpea,d,N)N.

120



We now compute 0,(V,Hap). We have:

0u(VoHag) = Osec(Hap) + ec(0.Hap) + ec(Hoe,n) + ec(Hasyep) (6.19)
_awHchAB - a‘*’HAchB N Haw(chA)B B HchAa“’(eB)

_HAaw(chm - Haw<eA)Y70eB
= Yo((0,H))ap + Ouec(Hap) + ec(Ha,eu) + ec(Has,ep)

_Haw(chA)B o HWCeAaw(eB) o HABw(WCeB) o Haw(eA)chB
Using (6.18), we have:
Haw(chA)B + HAaw(chB) - HW%EC@AB + HAWMCEB + HWC(H(BweA))B

HH LY (ouen)) ~ 90N, ea)0cpHps
_g<8wN7 eB)HCDHAD + GACH&,NB + QBC'HAawN’

which together with (6.19) yields:

u(VoHap) = YVo((0uH))as + Vo, eoHas + Volnosens + VoHan@.es) — (6.20)
+9(0uN,ea)8cpHpp + g(0.N, ep)0cpHap — OacHo,n — 0pcHas,N-

Contracting (6.20), we obtain:

Qu(divHa) = dR(IL(OuH))a + Voo Hac + Vet ao,ec + VoHoeac (6.21)
+9(0uN,ea)0pcHep + g(0uN, ec)0cpHap — 0acHo,ne — tr0H 49, -

Now, the analog of (6.1)-(6.3) yields:
Voo lac + VoHaoee = =V yHaon

which together with (6.21) implies (6.17). This concludes the proof. n

6.2 Control of J,N, d,b, d,x and 0,,(

6.2.1 Derivatives of 0, N with respect to the null frame

We first compute the derivatives of d,/N with respect to the null frame.

Lemma 6.7

DL(QUN) = —XO6,NBE€B — 38wN — anNL, (622)
Dy (0,N) = 20.Caea+ xo.nBes + (6 +n7'N(n))o,N
+(ean +n Vo nn)L — 2¢s NN, (6.23)

D4(0,N) = Ouxapes — 9(0uN,ea)Cpep — €40,N —nag,NL — xa0,8N. (6.24)
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Proof We start with D (0, N). Using the Ricci equation for Dy L and the fact that
0,L = 0,N, we have:

D;O,N + Dy nL = —0,(6)L — 60, N. (6.25)

Now, we have: B
0.0 = 2ep,n, 000 = 2€9,8n — N Vg NN (6.26)

Also, the Ricci equations (2.23) and the fact that d,N is P, ,-tangent imply:

Do nL = xo,nBEB — €a,NL

which together with (6.25) and (6.26) yield (6.22).
Next we consider Dy (0,N). Using the Ricci equation for DL and the fact that
o,L =0,N and 0,L = —0,, N, we have:

D 0,N-Dy nL = 20, aea+2Cs,c,e4+2Ca00ea+ (0,041 Vo, yn) L+(6+n N (n))o,N,

which together with the Ricci equations (2.23), (6.1) and (6.26) yields (6.23).
Finally, we consider D 4(0,N). Using the Ricci equation for D4 L and the fact that
0,L = 0,N, we have:

D 40,N+Dg e, L = OuxaBeB+Xo,esBEBTXA0,es€B+XaB0weB—ko,naL—kno e, L—€40,N.
Using (6.11) with X = e4, we obtain:

DAawN_g(awNy eA)DNL — aWXABeB+XA8w€B€B+XABaw6B _kawNAL
+9(0,N,es)dL — €40, N,

which together with the Ricci equations (2.23) and (6.1) yields (6.24). This concludes the
proof of the lemma. [ |

6.2.2 Transport equations for J,x and 0,(
Lemma 6.8 0,x and 0,( satisfy the following transport equations:

YV.((0ux)as = =Y nXaB — (0uX)acxcs — Xac(0uX)cn — 00X aB (6.27)
+eaxo,nB + €sXa0,N — (OuN)axcsec — (0.N)pXxacec
—(2ea,n —n Vo nn)xan + (0uN)c(€ac *Be+ €pc *Ba),

Vo (I(0,0))a = =V, nCa+EaCon — (OuN)a€- ¢ — (kpo.N + 0uCB)XaB (6.28)
(awN)B
2

—(€g + (B)0uXan — (—aap + pdap + 30 €ap).
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Proof We start with the proof of (6.27). Note first from the definition of «, § and
the fact that 0,L = J,N:

Owaap = —(0.N)c(€ac "B+ €pc *Ba). (6.29)

Now, differentiating the transport equation (2.31) with respect to w, we obtain:

0V, x)aB = —(0uX)acxcB — XAc(0uX)oB — XA0,ec XCB — XACXduec B
_8w(5)XAB - 58wXAB - 8c,.)0514B-

Together with (6.2), the commutator formula (6.15), (6.26) and (6.29), we obtain (6.27).
Next, we prove (6.28). Note first from the definition of «a, 3, p,o and the fact that
0oL = 0,N,0,L = —0,N:

(awN)B
2

0,04 = (—OéAB + pdap + 30 EAB)- (6.30)

Now, differentiating the transport equation (2.30) with respect to w, we obtain:
0.,V {)a = —(0u€B + 0.CB)XAB — (€B + (B)OuXaB — (€dpep + Couen)XaB
—(€B + (B)Xa0ues — Ouba.

Together with (6.3), the commutator formula (6.15), and (6.30), we obtain (6.28). This
concludes the proof of the lemma. [ |

6.2.3 Estimates for J,N,0,b,0,x and 0,(

We first derive the L> bound (2.76) for 9,,N. In view of the formula (6.22) for D (0,N),
we have:

IDL@oNllize: < ll=Xo.nper — 00N + € N L 1212

< (Il + W02 + el 22) 0N

S el|0uN] Lo, (6.31)
where we used the estimates (2.70) (2.71) for y and the estimate (2.68) for § and € in the
last inequality. The estimate for transport equations (3.66) and (6.31) yield:

10N oo S 10N O) ooy ) + WL 0uN 252 S 1+ €l 00N ||

where we used the control of the initial data of d,N provided by (2.64). This yields the
L* bound (2.76) for 0,N:
[0LN |z S 1. (6.32)

Next, we derive an estimate for d,x. First, the fact that x is a P, ,-tangent 2-tensor
yields for any vectorfields X,Y on ¥:

Ouxxy = (0w X)nxymyy — 9(V, X)Xa,nmieyy — 9(N, Y )Xo, N1i(x)
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which implies:
10022, e S M@0z, e + gz, 23 ION o S @0 g2, 130 +2, (6.39)

where we used the estimate (6.32) for d,N, and the estimates (2.70) (2.71) for x. In
view of (6.33), we have to estimate ||H(8wx)||Li,Ltoo. The formula (6.27) for D (I1(d,x))
implies:
DL (I(0uX)) | 231, (6.34)
S WVanxllzzee) + 1000020 + 100X 2200, + [EX00 Nl 2, + 100 N xel 22000,
+|(2ea,8 — 1 Vaonn) X2 + 10N (€ac *Be+ €se *Ba)ll2 o)

(1 +[[0uN|lze) (HWXHL%M) + Haw(X)|’L§,L§°(|’X||L;<;L§ + HSHL;‘,’Lf)

A

FNLCOWAE) + Mot = 1)+ 11200 )
S e+ 5||aw(X)||L§,L§°a

where we used in the last inequality the estimate (6.32) for ,,N, the curvature bound
(2.59) for /3, and the estimates (2.67)-(2.71) for n, €,€,0 and x. The estimate for transport
equations (3.66) and (6.34) yield:

(80|22, 5o S ITL(OX)(O) | 2oy + IV LTLOX)) 2000y S € + €l 000X 22, 10
where we used the control on d,,x(0) provided by (2.62). Together with (6.33), this yields:
HanHLj,Lgo Se (6.35)

We now derive an estimate for 0,(. First, the fact that ¢ is a P, ,-tangent 1-form
yields for any vectorfields X on ¥;:

0.,Cx = H(awC)H(X) - 9(N7 X)Q)WN
which implies:
106022, 10 S @Oz, 10 + g2, 23 NON e S ITHOO g2, 10+, (6.36)

where we used the estimate (6.32) for 9,/V, and the estimate (2.72) for ¢. In view of
(6.36), we have to estimate [[I1(9,,()||z2, Lec. The formula (6.28) for D (II(9,()) implies:

1D (I(0.0)) 2221 (6.37)
S Vo nCllzzae,) + I€Caun 230,y + 1100NE - Cll 230, + | (kBaun + 9uCB)X || L2300
+1E + O)0uxllrz0,) + 100N (—aap + pdap + 30 €apllr2m.,)

S (A4 [10uN L) (||77C||L2<m) + NUENUC) + Ikl 2,50 + 1C1 22, e ) 1X | 22, £
(€l sz + NS o ) 0uxlzz, e + latllz2e,) + ol 20, + HUHLz(Hu))
S e +ell0u(Ollez e
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where we used in the last inequality the estimate (6.32) for J, N, the curvature bound
(2.59) for a, p and o, and the estimates (2.67)-(2.72) for €k, x and ¢. The estimate for
transport equations (3.66) and (6.37) yield:

M)l 22, e S NV IO |20y S € + €l10(O) |22, 150
which together with (6.36) yields:
10uCllz2, 0 S €. (6.38)

We now estimate d,,b. Differentiating the transport equation (2.27) for b with respect
to w and using the commutator formula (6.5), we obtain:

L(8.b) = =V, xb — 0,(0)0 — 0,(0)b = =V, xb — 0. (b)0 — (2e9,5 — 1" Vo, nn)b,
where we used (6.26) in the last equality. Since, Vb = b(¢ — €) from (2.26), we obtain:
L(0,b) = —bCs,n — Du(b)d — g, nb. (6.39)
This yields:
||L(awb)||L;<;L§ (6.40)
S ||bC8wN||L;‘,’L§ + Haw(b)gHL;?Lg + ||anNbHL;<;L,?
S 1+ 0N ) (|rb||mmu><||<|u;%g N ||awb||Loo<Hu>||5||L§Lg)
S €+ ell0u(0)ll o),

where we used in the last inequality the estimate (6.32) for ,,IV, and the estimates (2.67)-
(2.69) for n, €, and b. The estimate for transport equations (3.66) and (6.40) yield:

10ubll oo ) S 10b(O) [ Lo (P o) + (1E(0ub) o5 2 S € + €| 00Dl Lo (342
where we used the control on 0,,b(0) provided by (2.62). This implies:
10.bll 1) + I8 12 S = (6.41)

Next, we estimate ¥d,b. Recall from (2.26) that Yb = b(¢ — €). Differentiating with
respect to w and using the commutator formula (6.6), we obtain:

WAc“)wb = WawaN + Vnbo,N + 8wb(CA — EA) + b(awCA — kawNA)

which yields the estimate:
IVbllz, e S (1++ 10uN]|2e) (nwnLg,Lgo + MA@ NGE) + M) + 10uCll 2,

+HkuLg,Lgo)
S e+ Ni(dube, (6.42)
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where we used in the last inequality the estimate (6.32) for 0,N, the estimates (2.67)-
(2.72) for k, b, and ¢, and the estimate (6.38) for 9,,¢. Now, (6.41) and (6.42) yield:

||Wawb||L§,L§° Se. (6.43)
Finally, we estimate DO,N. In view of (6.31) and (6.32), we have:
”DL(awN)HL;?Lf Se (6.44)

Then, using the formula for Dy0,N and D40, N given respectively by (6.23) and (6.24),
we obtain:

IDLOMN) i+ IDA@N) 121
S 100000 + 1l + 101 (Il e+ 101,55
+Hn71vnHLi,Lg° + llellzz,zee + [1nll22, e + HCHLi,Lt‘”)
< g (6.45)

where we used the estimate (6.32) for d,N, the estimates (2.67)-(2.72) for n,d, €,n, x and
¢, the estimate (6.35) for d,x, and the estimate (6.38) for 0,(.

Finally, (6.32) yields the desired L* bound (2.76) for 0, N, while (6.35), (6.38), (6.41),
(6.43), (6.44) and (6.45) yields the desired estimate (2.77).

6.3 Control of YV, II(0,x)

The goal of this section is to prove the estimate (2.78) for YV, I1(0,x). We will use the
following lemmas. B

Lemma 6.9 Y _I1(0,x) satisfies the following transport equation

V(W I(00x) = =V (0uX) - x — x - VIH(0uX) + VI + 2, (6.46)

where Fy and Fy are P, ,-tangent tensors satisfying the following estimate
[Eu e 2y + 1 P2l p2m2, S e (6.47)

Lemma 6.10 Recall that v denotes the metric induced by g on P,,. Let M the P,,-
tangent 2-tensor defined as the solution of the following transport equation:

V. Map = Macxces, Map =vap on Po, (6.48)

Then, Mag satisfies the following estimate:

| M =yl + [V M| g0 S €. (6.49)
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Lemma 6.11 Recall that v denotes the metric induced by g on P,,. Let M the P .-
tangent 2-tensor defined as the solution of the following transport equation:

VLMAB = xacMcp, Mag = yap on Pou, (6.50)

Then, MAB satisfies the following estimate:
1 = Al + [V Ml < e (6.51)
Lemma 6.12 Let I' a P, -tangent tensor. Then, for any 1 < p < g < +00 and for any

7 >0, we have: |
||PjF||LfL;<; S 2]||F||L§Li,- (6.52)

Also, taking the dual, for any 1 < p < q < 400 and for any j > 0, we have
1Pl prz, S 2N Fllngss, - (6.53)

Lemma 6.13 Let F' a P, -tangent tensor. Then, for any j > 0 and for any 2 < p < 400,

we have: ‘ , (/Ot W(F)dt)

Lemma 6.14 Let F' a P, ,-tangent 1-form and 2 < p < 400 such that for all j > 0:

S 2 Fllnez,.
LrrL?,

|PiF g1z, S 2 + 2827 (u),

and let M such that:
M — ||~ + [[VM ||z S €.

Then, we have for any 2 < q <p and all j > 0:
|PM ) g2, S 2e + 23ey(u).
Lemma 6.15 Let F' a P, ,-tangent 1-form and 2 < p < 400 such that for all j > 0:
IPiFllpre, S 2e + 25er(u),

and let M such that: N .
[M =l + [V M||p0 S &

Then, we have for any 2 < q <p and all j > 0:

1Py (FM Y| o2, S 2e + 28ey(u).
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The proof of Lemma 6.9 is postponed to section C.1. The proof of Lemma 6.10 is
postponed to section C.2. The proof of Lemma 6.11 is completely analogous to the one
of Lemma 6.10 and left to the reader. The proof of Lemma 6.12 is postponed to section
C.3. The proof of Lemma 6.13 is postponed to section C.4. The proof of Lemma 6.14
is postponed to section C.5. Finally, The proof of Lemma 6.15 is completely analogous
to the one of Lemma 6.14, and left to the reader. We are now in position to derive the
estimate for ¥, II(0,x). Using the transport equation (6.46) for ¥, II(d,x), the transport

equation (6.48) for M and the transport equation (6.50) for M allows us to get rid of the
first two terms in the left-hand side of (6.46):

Y, (M -V, 11(d.x) - M)
= V(M) V,I(0.x) M+ M-V, (V,I(d.x)) - M+ M-V, I(d,x) V(M)

= M- (VEi+ F)- M
= Y(M-F -M)=Y(M)-F,-M—M-F-Y(M)+M-F,- M.
Let 2 < p < ¢ < +o00. This yields:

15 (M - W I1(8.x) - M)l g1z, (6.54)

p( [ vorm o) p ([ won - pi- i)

Pj</0tM-F1-y7(J\7)dt) Pj(/OtM-FQ-Mdt)

where the term 2%7(u) comes from the initial data term at ¢t = 0. Next, we estimate the
various terms in the right-hand side of (6.54).
We consider the first term in the right-hand side of (6.54). Using Lemma 6.13, we

< 25y(u) + '

.

LiL2,

+
L{r?,

?

+ ‘
Lir?,

have:
t —~ ) o~
\Pj( / W(M~F1-M)dt) < VM F M, (6.55)
0 LIL?,
< Ml | Pl | 7T
< e

where we used in the last inequality the estimate (6.47) for Fi, the estimate (6.49) for M,
and the estimate (6.51) for M.

Next, we consider the last three terms in the right-hand side of (6.54). Using the
dual sharp Bernstein inequality for tensors (6.53) and the estimate (3.66) for transport
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equations, we have:

‘ ( / V(M Mdt> ’ ( / M.F- )dt) (6.56)
LIL?, LiL?,
‘ ( / M- F- Mdt)
L,
< 9 ( / V(M Mdt) ( / M-F. )dt)
L§°L1 L;’OLi_,
+2 Pj(/M-FQ-Mdt>
0 LeLl,
S YIV(M) Py Mgy +2|M - By V(M) + 27| M - Fy - M| 1,
S 2V 2 1 Fr |2 |M || oo + 2 M || o< | Full 22320 [ VM || 2230,
F2 ([ M || oo || F2l| £1 32,) | M || 1o
S e,

where we used in the last inequality the estimate (6.47) for F} and F3, the estimate (6.49)
for M, and the estimate (6.51) for M. Finally, (6.54), (6.55) and (6.56) imply

1P;(M - Y T1(0x) - M)l gsz2, S 2% + 2%(u). (6.57)

Now, since we have chosen p < ¢, (6.57) together with Lemma 6.14 and Lemma 6.15
yields:

1PV ()12, S 208 + 227 (u),

for any 2 < p < +oo which is the desired estimate (2.78) for ¥ II(d,x).

6.4 Proof of the decomposition (2.79) for Y

To conclude the proof of Theorem 2.24, we still need to prove the existence of a decom-
position (2.79) for X. In view of the Codazzi-type equation (2.32) for X, we have:

. (1
X=D;" (§Y7trx—6-x—ﬂ),
and we choose the following decomposition:
~ (1 —1
X = X1 + X2 where x; =D, <§Y7trx —€- x) and yo = —D5 . (6.58)

Note that, by definition of D,*, x; and Y, are both traceless symmetric P,, tangent
2-tensors.

129



6.4.1 Estimates for y;

Estimate for ||[Vxi| 2(3,). We start by estimating ¥y;. Using the estimate (3.50)
satisfied by D, ' and the definition (6.58) of x;, we have:

(6.59)

1
Walr, 5 37—
LFL?,

HWtrX“Lt‘X’Li, + Ni(e)Mi(x)

S
S s

where we used the estimate (2.68) for €, and the estimates (2.70) (2.71) for y in the last
inequality.

Estimate for ||V x1llpecr2 11200,- Next, we estimate ¥, x1 and ¥ xi. Note first that
for any vectorfield X on M, we have:

¥Vx: Dy = =D, [V, Da]D;
which together with the definition of y; implies:

_ 1 _
Vo =07 (7 (7)) = D3V Pibs (6.60)
Let 2 < ¢ < 4. Applying (6.60) with X = nL, we obtain:

||Y7nLX1||L;>°L§,+L§Lg, (6.61)
S D (VW V) ez, + 103 (W, (€= X)) izie, + D2 [Vr, Delxallzrs,.

We estimate the three terms in the right-hand side of (6.61) starting with the first one.
Using the commutator formula (2.48) for [V, ;, ¥|try, and Remark 3.15 and the dual of
(3.50) for D', we obtain:

2> (WnLWtrX)HL;’OLi, 1D ([V,1., W]trX)HL;’OLi, + | D3! (WWnLtrX)HLgOLi,

07,0 el g + L0 e,

S Vel g +e

’

S
S

¢y
S ||”||L°°||X||L§°L‘;,||WUX||L;>OL§, te
S & (6.62)
where we used the estimate (2.67) for n, and the estimates (2.70) (2.71) for x.

Next, we estimate the second term in the right-hand side of (6.61). Using Lemma
3.17, and since 2 < ¢ < 4, we obtain:

1D (Vo (€ 0Xuzer, S 11D (Wn(€) - X)lnzee, + 1057 (€ W, 00l zee,

S IWas(e) -x||L%L§/ + [le- WnL(x)HLgLi

S IVar@lzzaenlixlzers, + lellzgers, W, 00l 20

S InllzeNi(Ni(x)

S 6 (6.63)
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where we used the estimate (2.67) for n, the estimate (2.68) for €, and the estimates (2.70)
(2.71) for .

Finally, we estimate the third term in the right-hand side of (6.61). Using the com-
mutator formula (2.48) for [V, ;,Ds|try, using Lemma 3.17, and since 2 < ¢ < 4, we
obtain:

1D [V,p Dolxallizes, S MW,z Delxal

N ||nXWX1H §+||7LX€X1|| %‘f'H nBxi||

I z

4
L2L3

273
L2L3,

< e (||x\|LgOL;,r|le||L2mu> s Nelscoen Il o
Bl s,
< M), (6.64)

where we used the curvature bound (2.59) for 5, the estimate (2.67) for n, the estimate
(2.68) for ¢, and the estimates (2.70) (2.71) for x. Now, (6.61)-(6.64) yield:

HVnLXlHL,?OLi,JrLgL;, Se+eN(x),

which together with the bound (2.67) on n and the bound (6.59) on ¥y, yields:

HWLXIHL;X’Li,JrLfLZ, Se. (6.65)

Estimate for ||V, x1l/ror2 11200,- Next, we estimate ¥, x1. Let 2 < ¢ < 4. Applying
(6.60) with X = bN, we obtain:

||Y7bNX1||L§>°Li,+L§LZ, (6.66)
S |’D51 (WbNWtrX)HLt"OLi, + ||Dzi1 (Vi (€ X))”L?Lg, + ||D;1[WbN7 DQ]XIHLng,-
We estimate the three terms in the right-hand side of (6.66) starting with the first one.

Using the commutator formula (2.50) for [V, ,, V]trx, and Remark 3.15 and the dual of
(3.50) for D5 ', we obtain:

||D2_1 (WbNWtTX)HLgOLi, S ||Dz_1 (Vo V]tTX)HL;”Li, + ||D2_1 (WWbNtrX)”LfoLi,
S MWy, Vitrx|l Leord + [ Wontoxllper2,
S ||n(x+77)Y7trX|| il +e
S lInllzee (xl pgers, + HkHLfoLi,)”WtrX”LgoLi, +e
S & (6.67)

where we used the estimate (2.67) for n, the estimate (2.68) for k, and the estimates
(2.70) (2.71) for .
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Next, we estimate the second term in the right-hand side of (6.66). Using Lemma
3.17, and since 2 < ¢ < 4, we obtain:

1Dy (Vo (€= x)lzzzr, < 11D (Won(€) - X)llzzs, + 1D2 (e - Wyn Ol 2s,
S IIWbN(E)-xHLQLS + e Ven OOl , 4
S Vvl z2ae) Xl zgers, + el s, Wy 0|22t
S bl e NNV N () 2600 + N OOV ()l 22 24))
S & (6.68)

where we used the estimate (2.68) for ¢, the estimate (2.69) for b, and the estimates (2.70)
(2.71) for x.

Finally, we estimate the third term in the right-hand side of (6.66). Using the com-
mutator formula (2.50) for [V, ,, Do]try, and using Lemma 3.17, and since 2 < ¢ < 4, we
obtain:

D3 [V DZ]XlHLzLZ, (6.69)
S ¥ Dbl
S It mTal g + e Ol s + Il g + v,
gl s
S Mol (llx Fllzgers, IWxall 2o + [Ixllzgers, € + Ellzsun Ixall 2o

e, il i
S e+ eNM(x),

Xl + 1Bl ez xall g rs, + ||é!|L2(m>|IX1||LgOL;,>

where we used the curvature bound (2.59) for 8 and 3, and the estimates (2.67)-(2.72)
for b,€,7, x,& and ¢. Now, (6.66)-(6.69) yield:

HWI;NXluLt‘X’Li,—&-LfLZ, Se+eNi(x),

which together with the bound (2.69) on b, the fact that L = L — 2N, and the bound
(6.59) and (6.65) on Yy yields:

HWLXIHL;X’Li,JrLfLZ, Se. (6.70)
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Estimate for ||x1[/;»,~. Using the property (3.16) of the Littlewood-Paley projections,
we have: :

X1l Lo (p.0) (6.71)
B 1
$ 2 |pon (5rim-ex)|
7, L>®(Py o)
y 1 i L _ 1
S D2 +274| Ko, + 2 q-1|yK|y;2(1Pt7u))’szlpj <§Y7trx—e.x)
7, L2(Pt )

1
S (UK (p,) D2
7,5l

1
PD;'P; <§Y7trx —c- x)

L2(Pyu)

where 2 < ¢ < +00 will be chosen later, and where we used the sharp Bernstein inequality
(4.37) for tensors. Next, we estimate the right-hand side of (6.71). Using the finite band
property for P;, and the inequality (3.50) for *D,, we have:

D3 Pl ez (penyy = 127Dy czepny S 27NV Dy czepny S 277 (6.72)

which together with the boundedness on L? of P, yields:

1 1
o (57— < |ptn (- ) (6.73)
2 L2(Py) 2 L2(Py)
, 1
S 277 ||P; (—Wtrx —€- X)
2 L2(Py)
We now derive a second estimate for HPlD;le (%Wtrx —€- x)HLQ(Pt ) Using the
finite band property for F;, we have: 7
—1 1 —21 —1 1
PDy P | 5Vtrx —€-x S277||ADy By ( 5 Virx —e-x (6.74)
2 L2(Py) 2 L2(Py)

Next, we estimate the right-hand side of (6.74). In view of the identity (3.40) for Dy, we
have:

HND?Pj (%Wtrx —e- x) (6.75)

LQ(Pt,u)

1
5 ms, (hpc-c-2)

1
“DyP; (§Y7trx —€- X)

LQ(Pt,u) LZ(Pt,u)

We now estimate both terms in the right-hand side of (6.75) starting with the first one.
Using the L? boundedness for F; and the finite band property for P;, we have:

< 97

~

L2(Py,u)

(6.76)

1
*D,P; <§Y7trx —e- x)

1
by <§Y7trx —€- X)

L2(Py,u)
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Next, we estimate the second term in the right-hand side of (6.75). We have:

S K z2(pr )

1
HKD21Pj (§Y7trx—e-x) -
L2(Py

1
‘Dglpj <§Y7U"X —€- X)

Lo (Py )

(6.77)
In order to estimate the L>(F;,,) norm in the right-hand side of (6.77), we use the estimate
(3.38). This yields

1
HDzle (§Y7tr>< —€- x> (6.78)

L (Pt )

2

2

1
< [wore (Grmc- e

1
D, ' P, (5%1”)( —€- X)

L2(P ) L2(P; )
1
+|wore (37— ex)
2 L2(Pru)
il (1 : 1 :
S 2|\ VDy By GVtrx — e x Py | 5¥trx —e-x
L2(P: ) L2(P )

i

1
by (5%1")( —€- X)

)
L2(P: )

where we used in the last inequality (6.72), the estimate (3.50) for YD, !, and the bound-
edness of P; on L*(P,,). In order to estimate the first term in the right-hand side of
(6.78), we use the Bochner inequality for tensors (3.7). This yields

HW2D21PJ (%Wtrx —€- x> (6.79)

L2(Pru)

_ 1
s [amre (Goem-ex)

+ 1K 22(py.0)

1
vo;17 (57 e

LQ(Pt,u)

1
‘Dz_lpj (§Y7‘3YX —€- X)

Lz(Pt,u)

+||K||%2(Pt,u)

LZ(Pt,u)
_ 1 1
< HADQ 1pj (ﬁvtrx —€- X) + ”K”LQ(Pt!u) P; (iytrx —€- X)
L2(Ptu) L2(Ptu)
. 1
27K N2 p, 0 [|1P5 | 5 VX — € X :
t,u 2 LQ(Pt,u)

where we used in the last inequality (6.72) and the estimate (3.50) for YD, '. Now, (6.75),
(6.76), (6.77), (6.78) and (6.79) imply

HWQDEIPJ- (%Wtrx —e- x) (6.80)

L2(Pyu)

< (2]' K 2 +2_j||K||%2(Ptvu>) ‘

1
P; <§Y7UX —€- X)

L2(Pt,u)
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Then, (6.74) and (6.80) yield

1
‘ PD; ' P (—Wtrx —€- X) (6.81)
2 L2(Pru)
- ; iy 1
S 2 (24 IR + 21K ) |7 (57— )
L2(Pru)
Also, using the finite band property P, and the estimate (3.50) for YD, !, we have
(1 y 1
PD; P; | =Vtrx —e€-x S27| P [ =Vtry —e- x
2 L2(Pyu) 2 L2(Pyyu)
Interpolating with (6.81), we obtain for any 0 <6 <1
1
o5 (S7mc-e-x) (682)
2 L2(Pru)
S5(1—j b 1
S 27270 (14 K e ) P;(—xnrx——e-x)
’ 2 L2(Pr )

In view of (6.71), and using (6.73) for | < j and (6.82) for [ > j, we obtain for any
2<qg<+ocandany 0 < <1

1
By <§77th —€- X)

1 T
||X1‘|L°O(Pt,u) S (1 ||K||L2(Pt,u))q71+26 E 2 S|i—jl
75l L2(P:4)

1
S (L K |2y

1
577131?(—6')(

B(Q),1(Pt,u)

where we used in the last inequality the fact that 6 > 0 and the definition (5.4) for the
Besov space Bj(P,,). This yields

_1 49§
il S QU H K@) (WX + lle- xlsg, p.)  (6:83)
_1 .95
S U+ 1K zp) = (e + lle - xllag, ()

where we used the Besov improvement (5.54) for Vtry. Let 2 < p < +o0o0. We choose
2<qg<+ooand 0 < <1 such that

1 2
5= Z
q—1 p
Then, (6.83) implies:
Rallzzs 5 (14 1K1, ) €+ e Xlirag, ) (654

S oetllexllzpy, p.)

where we used the estimate (4.29) for the Gauss curvature K. We now conclude using
the following lemma:
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Lemma 6.16 Let I, H two P,,-tangent tensors. For any 2 < r < 400, we have:
1E - Hlley sy, (P S NU(E)NL(H). (6.85)

The proof of Lemma 6.16 is postponed to section C.6. We now derive the estimate for
X1l r Lo (6.84), and (6.85) with r = 2p, F' =€ and H = x yield:

IxXtllerrs S €+ Ni(e)Ni(x) (6.86)

&,

AR

where we used the estimate (2.68) for € and the estimates (2.70) (2.71) for x. (6.86) is
the desired estimate for |[x1[1r .

Estimate for | Wx1l e rrpg , (p.)-  We will need later on an estimate for Wy in LY LY BY | (Pyu).
We proceed as for the estimate of x; in LY LS. In view of the definition (5.4) of the Besov
space By (P,,), we have

”WXl ||B8,1(Pt,u) 5 Z

gl

(6.87)

1
AYD; P (Ve - e-x)

L2(P: )

Next, we estimate the right-hand side of (6.87). The finite band property for P, together
with the estimate (6.72) yields

2[

AN

(6.88)
L2(Ptu)

1
PYD;'P; (§Y7U"X —€ X>

_ 1
Dy ' P (§Y7UX —€- X>

L2(Pru)

< 2

1
P; (577trx —€- X)

LQ(Pt,u)

We now derive second estimate for ||PYD;'P; (3¥try —€- x)
finite band property for P, and the estimate (6.80), we have:

< 97

HLQ(PM). Using the

(6.89)

1
PYD;'P; (ﬁvtrx —e x)

L2(P: )

_ 1
YD, 'P; (5%1")( —€- X)

L2(P:u)

< 24 K ) \

1
b (5%1”)( —€- X)

L2(Pru)

Also, using the boundedness of P, on L?*(P,,) and the estimate (3.50) for YD, !, we have

1
PYD; ' P, (§Y7trx —e x)

1
I (5%1")( —€- X)

L2(P ) L2(P )
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Interpolating with (6.81), we obtain for any 0 < § <1

| 0
< 93d) (1 + HKlliz(Pt,u)) ‘

(6.90)

1
PYD; ' P, (5Wtrx —€- X)

L2(P:u)

1
b (gvtfx —€- X)

L2(Pyu)

In view of (6.87), and using (6.88) for [ < j and (6.90) for [ > j, we obtain for any
0<do<1

IVxillsg Py S (1 1K 2P, )® Z 9—0li—jl

gl

1
b (5%1“)( —€ X)

L2(Pry)

S A+ 1K z20)*

~Y

1
§Y7U“X—€‘X

B3 1 (Peu)

where we used in the last inequality the fact that 6 > 0 and the definition (5.4) for the
Besov space B9, (P,,). This yields

(1 + 1K 22 (py)? (¥ 50 + [l - Xl 3, (pr.0) (6.91)
(14 1K z2p00)* (2 + lle - Xl sy, (p10)

IVl Bg, (.

ZANRZA

where we used the Besov improvement (5.54) for Vtry. Let 2 < p < +o00. We choose

0 < § <1 such that

1
20 = —.
p

Then, (6.91) implies:

1
I¥xillcesy, p S (1 + HKHZ?(M)) (et lle-Xllzzeny, ()
S e+ Ni(eN(x),

where we used in the last inequality the estimate (4.29) for the Gauss curvature K, and
the estimate (6.85). Together with the estimate (2.68) for ¢ and the estimates (2.70)
(2.71) for x, we finally obtain

HVXl”LfBSJ(Pt,u) Se, (6.92)

for any 2 < p < +o0.

6.4.2 Estimates for y,

In view of the decomposition (6.58), the estimates (2.70) (2.71) for x, and the estimates
(6.59), (6.65) and (6.70) for 1, we have:

Mi(x2) + IV xell2 o) S e (6.93)
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We now compute 0,,x2. We have:
0., D5 "] = =D, [0, Dol Dy !
which together with the definition of y, implies:

Oux2 = —Dy'T(0,8+ Oue-x +e€-0.x) — Dy 110, Dol xo (6.94)

O,N
= —D;l (%(—O{AB + pdap + 30 €Eap) +Oe- X+ €- 3@()

;! ( = Vn(x2)a.n + 90N, €4)0 X2 + Oanp(X2)pa — a5 (X2) poun

—tTQ(Xz)AawN) ;

where we used the formula (6.30) for 0,5 and the commutator formula (6.17) for [I10,,, Ds].
In particular, using the property (3.50) of D, ', we have the following estimate for Y, xa:

[¥V0uxallz2 ) (6.95)

O, IN
H% + || = Vi (x2) 0.5
L2(Hu)

+9(0uN,ea)l - x2 + 0o, n5(X2)Ba — OaB(X2)BOLN — tre(XQ)ABwN”LQ(Hu)

A

(—aap + pdap + 30 €ap) + 0pe- X + € OuX

S 0Nz (HO&HLZmu) ez + lollzan) + 110uellc2, e Xl Lo 2

0z, s llellzss iz + Va2t +N1<9>N1<><2>)
< e

where we used the curvature bound (2.59) for «, p and o, the estimates (2.68) (2.70) (2.71)
for €, x and 6, the estimate (2.76) for 0, N, the estimate (2.77) for 0,x and the estimate
(6.93) for xo.

Next, we plan to estimate the LY Lif—norm of O,x2 for 2 < p < 4+00. Our goal will be
first to show that the terms involving « in d,,x2 cancel each other. Applying (6.60) to x2
with the choice X = bN yields:

VinXxz = =Dy (Vyn(x - €+ 8)) = D3 ' [V Dalxe. (6.96)
In view of (6.96), we need to evaluate YV (x - € + ). We have:

V(- e8) = X Vo) + 5 (Fol0) - e+ V8 = ¥, (00 -~ ¥,6)

which together with the equation (2.31) and (2.40) for x, the Bianchi identities (2.51) and
(2.52) for (3, and the last equation of (4.62) for Ve yields:

2V y(x-e+B) = difa+b"'Vb-a—Vp— (Vo) +x- B+ (try — 2trx — 20)f8
—(e+30)p+(e=3 o — (x+2R)B+2V5 - x —2¢-V(+35 Vb x
—2b~' Wby — 20ex — ex(0 +n"'N(n)) — e¢ ® ¢ + exx. (6.97)
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(6.96) and (6.97) yield:

2Vyx2 = —a+ b—lpglb(w + (Vo)" —x - B — (trx — 2trx — 20)8 + (e + 3()p
—(e=3"Q)o+ (x +2X)B —2V6 - x +2¢- YV — 36 Wb X + 2071 Vbiy 4 20ex
+ex(0+n"'N(n)) + e ® ¢ - eyc) — 207Dy Wy Dalxo- (6.98)

Now, in view of (6.94) and (6.98), the terms in « cancel each other, and we finally obtain:

0,N
OuX2 = —’DEl (%(/)5,43 + 30 EAB) +0.€6-x+e€- an) (6'99)

+D;? ( — %bﬁ)ﬂy(% + (Yo)* — x - 8 — (trx — 2trx — 20)8 + (e + 3¢)p
—(e=3"Q)o+ (x +2X)8 — 2¥6 - x +2¢ - V¢ — 30b™ Vb - x + 2b~ ' Vbijx + 20ex

+ex(0+n'N(n)) + e ® ¢ — exx> + 071D, [V, Do) (X2) o
Adu,N

+9(0uN,ea)8 - x2+ O0s,n5(X2)BA — 0a(X2)BOLN — tr9(X2)AawN> -

We will use the following four Lemmas.

Lemma 6.17 Let F' a P,,-tangent I-form and let h a scalar function which denotes a
curvature term among (p, o). Then, we have the following estimate:

S ([Fllzee + [V F | 522, )e- (6.100)

ID5 (FW) ey <
Lemma 6.18 Let h a scalar function which denotes a curvature term among (p,o).
Then, for any 2 < p < 400, we have the following estimate:

D5 01Dy (bYA) <e. (6.101)

||L$L17 ~
Lemma 6.19 Let F' a P,,-tangent tensors and let H denote a term among (p,o, 3, 3)
and G is a P,,-tensor satisfying N1(G) < €. Then, for any 2 < p < +00, we have the
following estimate:

1Dy o™ (D (F - H) pr + 1D 07 (D (F - VG 0 SMN(F)e (6.102)

HLP
Lemma 6.20 Let F',G and H three P, ,-tangent tensors. Then, we have the following
estimate:

1Dy (FGH) S M(F)NL(G)NL(H). (6.103)

L°°L7N

We also state the following lemma which will be necessary for the proof of Lemma
6.17 as well as several places in this paper.
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Lemma 6.21 Let H denote a curvature term among (p,o,[3,3). Then, for any j > 0,
we have the following estimate:

1P H|| o2, S 2%e. (6.104)

The proof of Lemma 6.17 is postponed to section C.7, the proof of Lemma 6.18 to
section C.8, the proof of Lemma 6.19 to section C.9, the proof of Lemma 6.20 to section
C.10, and the proof of Lemma 6.21 to section C.11. We now derive the estimate for the
Ly Li,‘—norm of J,x2. We consider the various terms in the right-hand side of (6.99).
Lemma 6.17 and Lemma 6.19 yield!'®:

-{ux—zux—2®ﬁ+we+30p—(e—yoa+(x+2@g> )
Ady N

+

O,N
'D2_1 (%(p(SAB + 30 GAB))

D;! ( — b—lp;1b< —x-fB

4_
LyL

Ly
S e(l0uN Lo + [IVON || o2, + Ni(x) + N1 (0) + Ni(e) + Ni(C) + Ni(x))
S 6 (6.105)

where we used the estimates (2.68)-(2.72) for d,¢, v, x and ¢, and the estimates (2.76)
(2.77) for O, N. B

Using the commutator formula (2.50) together with Remark 3.15 for D, ! and Lemma
6.19 and Lemma 6.20, we obtain:

D2_1 (b—lpgl[ybm D2](X2)A8wN>

4_
2L,

AN

+
4_
YL ;

D! (blpz 'W(b(x + n)X2)AawN>

D! (bl% 'W(b(x + 77))X2)A8WN>

4_
2L

+ + (D5t (b_lpz_l((ﬁ + é)XﬂA&;N)

S (Na(b— 1)(Ni(x) +Ni(n)Ni(x2) +N1(X)(N11(3) + Ni(€))Ni(x2)
N ON(ON(x2) + eNi(x2)

S & (6.106)

D, (b_lpz_l((X(E +&+ XC)X?)A@WN>

4_
LIL

where we used the estimates (2.67)-(2.72) for b,7,€, x, x,§ and ¢, the estimate (2.76) for
J,N, and the estimate (6.93) for xo.

9Note that we apply Lemma 6.17 respectively with (h = p, F4 = (0,N)a) and with (h = 0, F4 =€ap
(0.N)B).
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Using Remark 3.15 for D, ! and Lemma 6.19 and Lemma 6.20, we obtain:

HDg‘l (b-lpglb( —2V§ - x + 2¢- V¢ — 350 Vb - x + 20 Vbipy + 296X> )
A0, N

4_
LiL,,

+ Dyt (b‘nglb<ex(5 +n'Nn))+e( @ — exx) )
AdLN

4_
LPL,

+ | Dyt (9(3&\7, ea)l - x2+ 0a,nB(X2)BA — Oa(X2)BOLN — tr@(Xz)A%N)

S Na(b = 1) (NM(GIN(x) + NM(ON(C) + NN (x) + (Ni(8) + Ni(0) +N1(n‘m1N(n))
FMQOINH(ON(X) + Ni(N(C)?) + (|0 N | N1 ()N (x2)
S & (6.107)

where we used the estimates (2.67)-(2.72) for n,b,m,€ X, Xx,0 and ¢, and the estimate
(2.76) for 0, N, and the estimate (6.93) for xs».

Using the analog of Lemma 3.17 for D, ', we obtain:

“D2—1 (8w€ "X te- auX)H

Jouex+ e,y

(6.108)

4_
LPL,

10wl gor2, I 5oz, + [lellzee s, 100Xl 5o 22,

&

AN AR ZA

where we used the estimates (2.67)-(2.71) for € and y, and the estimate (2.77) for 9, x.
Finally, (6.99), Lemma 6.18, and (6.105)-(6.108) yield for all 2 < p < 4o0:

el e S =
Using the Gagliardo Nirenberg inequality (3.3), (6.95) and interpolation, we obtain:

10wXall o (Ha) Se
Together with the estimates (6.59), (6.65), (6.70) and (6.86) for xi, and the estimates
(6.93), (6.95) for x2, we obtain the desired decomposition (2.79)-(2.82) for Y

6.5 Besov improvement for J,N and 90,

The goal of this section in to prove the following proposition.

Proposition 6.22 We have the following estimate:

IVOuN o + [T1(0ux) |0 < € (6.109)
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Proof The formula (6.24) for D4(0,N) yields:
Y 40uN = Ouxapen — (0N, ea)(pep — €40, N,
which together with the estimate (5.10) and the non sharp embedding (5.13) yields:
V0N |0 (x50 + 1100V - (€, €) 0 (6.110)
M)l + (V0N | o2, + 105N Loo)II(C, €) [0
ML Dux) 5o + ([VON | g2, + 100N | o ) (N1L(C) + Ni(e))
TI(0ux) |50 + €,

where we used in the last inequality the estimate (2.72) for ¢, the estimate (2.68) for e,
and the estimates (2.76) and (2.77) for J,,N.

In view of (6.110), it remains to estimate ||II(0,x)||go. We recall the structure of the
transport equation (6.27) satisfied by I1(9,x):

Y (I(0.x)) = =V v X — (2x+0) - (D x) + (4e—2e+n""Vn)-x-0,N+9,N - 8. (6.111)
Recall from (5.31) and (5.55) the following decompositions:
nB=VY, P+ E, Y(nx) =V, P+ Ey where N1(P;) + || E;||po S e for j =1,2.
Together with (6.111), this yields:
¥, (10.) = —@x+8) - T10X) + F- Vo (P)+ F- B, (6112)
where F', P and E are given respectively by:
F=nd,N, P=—P, + P,

AR AN VA4

and
E=—FE +E)+ (46— 2+n"'Vn) - x.
F satisfies:
M(F) + [|Fllpssrz S (Inllze +Ni(n))([0,N] e + N1(9uN)) S e, (6.113)

where we used in the last inequality the estimate (2.67) for n and the estimates (2.76)
and (2.77) for 9,N. P satisfies:

Finally, using the non sharp product estimate (5.15), E satisfies:
1E]lpo < 1110 + [ Eallpo + (N1 (&) + Ni(e) + Mi(n™'Vn))Ni(x) S e, (6.115)

where we used in the last inequality the estimates (2.67)-(2.71) for n,e,€ and x. Now,
(6.112)-(6.115) together with the sharp trace theorem estimate (5.22) yields:
IT@ox)llse < (N1(X) + NLO) + x50z + 101l osr2) - ITT(EX) [0 (6.116)
+(MN(F) + ||F||L;<;L§) - NU(P) + (M(F) + ||F||L;<;L§) I E ] po
S elll@ux)llpo + e,

where we used the estimate (2.67)-(2.71) for § and y in the last estimate.
Finally, (6.110) and (6.116) yield (6.109) which concludes the proof of the proposition.
|
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6.6 Estimate for N(-,w) — N(-,w')
The goal of this section is to prove (2.83). The following lemmas will be useful.

Lemma 6.23 We have:
[Q>1(N)[[= Se, (6.117)

where Q); s the geometric Littlewood-Paley decomposition on ¥, introduced in section 3.6.

Lemma 6.24 Let w and W' in S*. Let N' = N(-,w'), and let B® the Besov space defined
with respect to u(-,w). We have:

IVQ<1(N)lpo S e (6.118)

Lemma 6.25 Let w and w' in S?. Let N' = N(-,'), and let L*(H,,) defined with respect
to u(-,w). We have:
IDL(N) |2, S e (6.119)

The proof of Lemma 6.23 is postponed to section C.12, the proof of Lemma 6.24 is
postponed to section C.13, and the proof of Lemma 6.25 is postponed to section C.14.
We now prove (2.83).

Let us define the angle w; € S? as:

w—w

w1 = ‘w_w/|7

and let Ny = N(-,w;). In view of Lemma 6.23, we have:

19(0uN, N1) = 1z S [l9(0uN, Q<1 (N1)) — [z + [[g(0uN, Q51(N1))|[ 1o
19(0uN, Q<1(N1)) — Ulzee + |00 N || Lo [| Q1 (N1) || Lo
19(9uN, Q<1(N1)) = 1|~ + €, (6.120)

where we used the estimate (2.76) for 0, N.
Since g(0,N,Q<1(N1)) — 1 is a scalar function, we may estimate its L* norm using
(5.9):

S
S

19(0uN, Q<1(N1)) — 1| (6.121)
S 900N, Q<i(N1) = Ulpgerz, + [V(9(0uN, @<a(N1)) — 1)l
S 190N Ni) =1l pgerz, + (100N Lo 12 [|@51(N) | + [[W9 (0N, Q<1 (N1)) 50
S 119(0uN, Ni) = |zger2, + & + [[V9(0uN, Q< (N1)) ][0,
where we used the estimate (2.76) for 0, N and Lemma 6.23 in the last inequality.

Next, we estimate the right-hand side of (6.121) starting with the last term. Using
the estimate (5.10), we have:

IVg(0.N, Q<i(N1))llpe S (IVQ<1(N1)[Lger2, + |Q<1 (N1)[| 2o) VO N |30

+(IVOuNIgger2, + 105N | o) [V Q<1 (N1) || 0
€ (6.122)

AN
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where we used in the last inequality the estimates (2.76) (2.77) for d,N and the estimate
of Lemma 6.24 for Q<;(Ny).

We consider the last term in the right-hand side of (6.121). Let w” € S* on the arc
joining w and w’, and let N = N(-,w”). Then, with our choice for N, we have at t = 0
(see [21]):

19(0uN, N1) = 1| 12py ) S €+ Jw — o'l

which together with the estimate (3.66) for transport equations yields:

19(0u N, Ny) — 1||L§°Li/ (6.123)

S V(90N N2,y + € + |w — ]
S IDL0uN) 2, + DN 2@ 100N [z + & + [w — o'|
5 €+ ’w - w/‘a

where we used in the last inequality the estimates (2.76) and (2.77) for 0, N, and Lemma
6.25 for N;.
Finally, (6.121)-(6.123) yield:

lg(OuN, N1) = 1| S €+ Jw — o'l
for any N = N(-,w"”) with w” € S? on the arc joining w and «’. This yields:
lg(N = N',N1) = |w = o] S |w — w'|(e + |w — o))
Therefore, we have:
[N = N'| = [g(N = N, N1)| 2 |w = w'|(1 = O(e) = O|w = ') Z |w — ],

which implies the desired estimate (2.83). This concludes the proof of Theorem 2.24.

7 Second order derivatives with respect to w

The goal of this section is to prove Theorem 2.27.

7.1 Equation for D;92N,D40>?N,D 0>N, 9>¢ and 9*b
The following lemma provides the formulas satisfied by D;02N, D 492N and Dy 9> N.

Lemma 7.1 92N satisfies the following formulas:

Dy (9ZN) = —2(0.X)a.nBer — Xn@znpes + 2Xo.no, v N — (|0.N]*n" N (n)
+no.NouN + Emazn)) L — 00ZN — €9 nOuN + [0,N[*(pep, (7.1)

D4(O2N) = (92x)apes — (02N)aCgen — Xan@n)N — OuXao, v N — 2X a0, 80N
—(8WN)A (QawCBGB — 2CawNN + (anN + TL_IVQWNH) L+ 5(‘3WN)
—€402N — 2049, 80N — Namaz )L + €4|0.N|*N, (7.2)
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and

D.(02N) = 202C(gep — 40.Co,nN — 2@z nyN — |0.N[*Cpen + 20, x0,npes(7.3)
+xn@2nBeB — 2Xo,80,8N + (6 +n"'N(n))0ZN + (3es,n
+n" Vo, nn)0uN + (—|0,N6 + emazn) +n~ ' Vaznn)L.

Proof We first derive (7.1). We differentiate the equation (6.22) satisfied by 9,V
with respect to w. Using the fact that 0,L = 0,,N, we obtain:

D 0*N + Dy n0.N (7.4)
= —OwXo,NB€B — X1(82N)BEB — X0,NOwep€B — Xo.NBOwen — &U(E)QJN - 583N
— (ko noun + knozy —n ' Veann)L — €, nO,N.

We compute the various term in the right-hand side of (7.4). Using (6.1), we have:
X0uNo,ep€B T Xo,NBOweB = —Xa,No NIV (7.5)
Also, the formula (6.23) for D 4(0,N) yields:
Do, nOuN = Ouxo,nBeB — |0uN|*Caep — |0.N|*6L — xo,no,8N. (7.6)
Now, differentiating twice g(N, N) = 1 with respect to w yields:
02N =TI(0°N) — |0,N>N. (7.7)

Finally, (7.4), (7.5), (7.7) and the formula (6.26) for 9,0 yields (7.1).
Next, we derive (7.2). We differentiate the equation (6.24) satisfied by D 4(0,N) with
respect to w. Using the fact that 0,L = 9,N, we obtain:
DA(O2N) + g(d,ea, N)Dy(9,N) (7.8)
= 9xaes + 9(0uea, N)OuXNBEB + OuXaduesen + OuXapluen
—g(@i]\/, ea)Cpes — g(0.N,ea)(0.Csen + (o, BeB + (BO.ER)
—€a05N — 2049, NOuN — kasenL — Ouxao,n N — Xamozn) — Xa0,n0uN.

We compute the various term in the right-hand side of (7.8). Using (6.1), we have:

XAo,es€B + XapOues = —Xao,n N, (7.9)

and
Co.eB + (BOsep = —Co,NN. (7.10)

Using the equations (7.1) and (7.2) respectively for Dy (9,N) and D (0, N) together with
the fact that N = (L — L) yields:

DN<awN) = —acheB — Xo6,NBEB — 68WN — (anN -+ n71V3wNn) L -+ CawNN. (711)

Finally, (7.8)-(7.11) together with the fact that g(9,e4, N) = —g(0,N,e4) and O,xnp =
—X6,LNB yields (72)
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Last, we derive (7.3). We differentiate the equation (6.23) satisfied by D (0,N) with
respect to w. Using the fact that 0,L = d,N and 0,L = —0,, N, we obtain:

D, (0?2N) — Dy, n(0,N) (7.12)
= 2(92¢)aea + 20,Co a4 + 20,Ca00€4 + OuXo,NACA + XIT(O2N)ACA T X0y NOLes€A

+Xo,NA0uea + (6 + 0 N(M))OEN + (0,(6) +n Vo, nn)0.N

+(Mo,noun + koznn + 0 Veann) L+ (eg,n + 1 ' Vo, nn)0uN

—20,Co,8NN — 228y N — 2¢a,NOLN.

We compute the various term in the right-hand side of (7.12). Using (6.1), we have:
awCBMAeA + awCAaweA = _8wCNawN - 8w<8wNN = CﬁwNawN - awC&,NNa (713)
where we used the fact that 0,(ny = —(s,n. Also, contracting (7.9) with 0,N yields:

X0, Nowea€A + Xo,NaOwes = —Xa,No,NIV. (7.14)

Finally, (7.12)-(7.14) together with (6.26) for 0,(0), (7.6) and (7.7) yields (7.3). This
concludes the proof of Lemma 7.1. [ |

The following lemma provides the transport equation satisfied by T1(9%().

Lemma 7.2 TI(92¢) satisfies the following transport equation:

Y, (I(32¢)) 4 (7.15)

02N
= ~Xan0iCp — (€ + (p)0xan — VornCa ( B -

+ealmozn) — Xanpnezn) — (O5N)a€ - ¢ — 2V, yI1(0.,¢))a

+(0,N)a(V, Coun — XounBCs — 0Ca,n — 2€ - 0,C — Oa,n5CB — Mo nBCB)
—2(nBa,N + 0uwCB)O0uXxaB + 00,X a0.N — 2€40,Con + (—3Co N + €0, N — €a,N)XA0LN

(_CYAB + pdap + 30 GAB)

_ O,N|?
+|0uN*epxan + (Dao,n + Nouna — (0uN)a0)Co,n + | 2 | ba
awN * *
—l—'( 2 & ((awN)C(EAC Be+ €c "Ba) = 0ap(Ba.n + B, )

+; €ap ("Bo.n — *ﬁawN)).

Proof We differentiate the equation (6.28) satisfied by D (0,N) with respect to w:
- _aw(vawNC)A + (Nayna + 9(0uea, N)O)Co,n + €40.,Co, N + EACH(Q%N) — (aiN)AE -C

—(0uN) 40, (€ - Q) = Ou(kpa,n + 0.CB)XaB — (kBN + 0uCB)(OuXAB + XAdues)
—0,(€5 + (B)OuXxan — (€5 + (B)(O2XaB + OuXAdues)

O,N
-0, (—( 5 >B (—CY.B + ,05.3 + 30 E.B))
A
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We compute the various term in the right-hand side of (7.16). We have:

92Ca = u(T(8,¢)) 4 — Coun (0uNN) 4,
which yields:
Vo (0, ((0u0)))a = Vo (IH05))a — (V. 0a.n(0uN)a (7.17)
¥ (0. (04 = Cong(V1(0uN), ea)

= YV, ((32¢)a — (V{)aun(0uN) 4
+Xo.NBCB(0uN) 4 + 0o, N (0uN) 4 + CounXouna + 6Co,N(OuN) 4,

where we used the formula (6.22) for D, (9, N) in the last equality. Using the commutator
formula (6.15) together with (7.17) yields:

90 (Y, (I1(0€))) (7.18)
= WL(HawG_I(awC)))A + WawNH(awC)A - EA@wC&;N + (awN)AE : awC
= V,(I(020))a = (V.0)o.n(0uN) a + Xo.nBCB(0uN) 4 + 3Co,n (0uN) 4
+Co,nXauna T 06N (OuN )4 + Vo y11(0uC) a4 — €40uCaun + (0uN) 4E - DuC.

Next, we compute the term 0,(V,_y()a. We have:

00(Vo,nC4) = 0u(Do,n(Ca) = ¢y ..) (7.19)
= Dagzn(Ca) + Do, n(9.Ca) + Do, n(Ci(asen)) — 0sCY7 er ™ Sou(V, cen)
= Dazn(Ca) + Vo, (1(0uC))a + Da.n(Criores)) = Coup. e

Now, (6.18) implies:

aw(WaMNeA) = 0,((0,N)BYVgea)

= (0N)BYg(ea) + 9(0uN, 0ven)Vp(ea) + (0uN)5(Vo,, (€4)
+Vp(IL(0usea)) — (0uN)abpcec + 0ap0.N — (Dpea, 0,N)N)

= Ve (€a) = 10NV y(ea) + Vo n ([1(0uea)) = (0uN)abo,nceo
+046,80,N — (Dg,nea, 0,N)N)

= Van(ea) + Vo n((0uea)) — (0uN)abo,ncec + 0ao,nOuN
—(DawNeA, QJN)N),

where we used (7.7) in the last equality. Together with (7.19), we obtain:

aw(WawNCA) = WagN(QA + WawN(l_KawC))A + WawN(C)H(aweA)
+(0uN) a0, 8BCB — Oao,nCouN

which yields:

9u(Va,nC)a = Vozn(QOa + Vo, n(1(0u€)) a + (0uN) 4o, n5CB — Oao.nCoun-  (7.20)
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Next, we compute J,,(¢ - (). Using (6.1), we have:

0,(-C) = (Mons + Eknoyes — 1 'Va,esn)(n + €5(0.Ca + Coyer) (7.21)
= Mo NepCB — 0Co,N + € OuC.

Using again (6.1), we also obtain:

—0.(kpa,~n + 0.CB)XaB — (kBa,N + 0u,(B)(OuXaB + XA0,e5) (7.22)
—0,(€8 + (B)0wXxan — (€5 + () (02X a8 + OuXAdues)
= —(kpoen + 02C8)Xxan + (kno.n + 0uCn)Xa0.8 — (Mo + 0uCB)OuXaB
—(kounB + 0uC8)0uxan + (kny — n "N (n))duxao,n + (€N + Coun) DX an
—(ep + (B)I2xaB
= —(npn@zn) — |0.NPep + 02C8)XaB + (€a,n — Coun)X a0, N
—2(npo,N + 0.C8)0uXan + 00uX a0,n — (€a,n + Con)Xao,n — (€5 + CB)IoX aB,
where we used the fact that 0,(y = —(o,n, OuXan = —Xag,n and the decomposition of
O2N (7.7) in the last inequality.

Finally, we consider the last term in the right-hand side of (7.16). From the definition
of 8, p, o, and the fact that 9,L = d,N and d,L = —9J,N, we have:

1
Oup = —Boun = By y» Ou(€ 0)an = 5 €ap ("Ba.n =By ),

2
which together with the formula (6.29) for 0,a yields:
O,N
Ow (%(—Q.B + p5.B + 30 G.B)) (723)
A
1 O N|? ouN )
— SN (s + poan-+ 30 €an) — 604 P2 (0N )eleno "

+ €gc *Ba) — 0ap(Ba,N + Q&JN) + g €an ("Bo,n — *éawN))‘

Using (7.16)-(7.23) yields (7.15) which concludes the proof of Lemma 7.2. u

Finally, the following lemma provides the transport equation satisfied by 9%b.

Lemma 7.3 02b satisfies the following transport equation:

L(92b) = =V n(0ub) = b8.uCo,n — blrozn) — Ou(b)Co,n — O2(D)0 (7.24)
—0,,(b) (2e9,8 — "'V, yn) — ko, no,nb — Eazngb — €, n0ub,

Proof Recall the transport equation (6.39) satisfied by 0,,b
L(9,b) = —bCy,n — O,(b)6 — €5, Nb.

Differentiating with respect to w yields (7.24). This concludes the proof of the Lemma. B
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7.2 Estimates for 9>N,0%b, 0>y and ¢
7.2.1 Estimates for 9>°N
In view of the formula (7.1) for D7 (02N), we have:
HDL(@%N)HH(HU) (7.25)
S 0uxli2penllOuN ([ + (Il Loz + €l oz + HSHL;‘,’Lf)HH(aE;N)HLi,Lf"
+H(lIxllz2,) + 107" V0l 20, + 0ll200,) + 1l z200) + 1€l 200 100N ([
< et el T@EN) o

Y

where we used in the last inequality the estimates (2.67)-(2.72) for n,n, €0,y and ¢, the
estimate (2.76) for 0, N and the estimate (2.77) for d,x. Now, the decomposition (7.7)
for 92N yields:

D (9;N) = DL(II(9;N)) — [0.N’DLN — 29(9. N, D1 (9.,N))N,
which together with (7.25) and the estimates (2.76) (2.77) for 0,N yields:
IV, (@SN r2e,) S € + TSNl 2, 15
Together with the estimate (3.66) for transport equations, this implies:
||H(83;N)||L§,Lg° <1,

and using again the decomposition (7.7) for 9> N and the estimate (2.76) for 9, N, we

obtain:
HaiN”LQ,Lt‘X’ S L (7.26)

Finally, (7.25) and (7.26) imply:
IDL@ZN) 2, S e (7.27)

7.2.2 estimate for 92D
In view of the transport equation (7.24), we have
L(9?b) = f, (7.28)
where the scalar f is given by
f = =Yy n(0ub) = b0.Co,n — briazny — 0u(b)Co,n — O2(D)6
—0,(b)(2e5,8 — n_lyawNn) — ko, No,Nb — €z )b — €5, N O.b.
In view of the definition of f, we have
e S (0 10uNllge + Ibllze + 10621 + IClmzz + ellis )
< (1V0ubll 230,y + 10w 2230y + NOZN 2200, + 1l 22034,
Hn ™'Vl 2 + 1€ z2ee) + 101l zos 22 10200 223
e +l|020ll 123 (7.29)

AN
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where we used in the last inequality the estimates (2.67) and (2.68) for n, k, ¢ and 6, the
estimate (2.69) for b, the estimate (2.72) for ¢, the estimate (2.76) for d, N, the estimate
(2.77) for 9,b and 9,(, and the estimate (7.26) for 9>N. (7.28), (7.29) together with the
estimate for transport equations (3.66) yield

||aib”L;‘}Lf < €+ elloZdll 2
which implies
||ao%bHL;<,’L§ Se. (7.30)
7.2.3 Estimates for 9%y
In view of (7.2), we have:
9(Da(O5N), e5) = (07x) a8 + Fas, (7.31)
where the P, ,-tangent 2-tensor F' is given by:
Fap = —(92N)aCpen — 2Xa0,8(0uN) 5 — (0uN) 4 (20,(p + 26(0.N)5) -
I satisfies the following estimate:
I71,..,3

HOZN zger2 1€ e ns, + (IXllzger2, + 100 o2 MO NZoe + 10N |z 0Cll e 22,

€,

(7.32)
S
S

where we used in the last inequality the estimates (2.68)-(2.72) for J, x and ¢, the estimates
(2.76) (2.77) for 9,N and 9,¢, and the estimate (7.26) for 92N .
Using the decomposition (7.7), we have:

D4(02N) = DA(II(02N)) — 29(0,N,D40,N)N — |0, N|*"D,N
which together with the fact that D4 N = 0 gep yields:
g(VAL(O5N)). e5) = g(Da(O5N), e) + |0u N a5
Together with (7.31), this yields:
V(IL(0N)) = I(@2x) + F (7.33)

where F = F + [9,N[26. In view of (7.32) and the estimates (2.68)-(2.71) for 6 = y + 7,
we have: B
IFN o SHEN s+ 10l 2, 10N]7w S e (7.34)

Lers ™~ LgeL?
Using (7.33) together with the finite band property and the weak Bernstein inequality
for P;, we have:

1PN erz, S IBPAEEN) gz, + 1P Fliers, (7.35)
< PIM@N)llgrrz, +21F]_
< e
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where we used the estimate (7.26) for 92N, and the estimate (7.34) for F. (7.35) is the
desired estimate for 92x.

Remark 7.4 While F satisfies (7.34), we may also derive a second estimate. We have:

[E Nl S ||832N||Li,L§°HCHLi,L§° + (Ixllez, e 4 11022, 150 + ||9||L§,L;;°)HawN||ioo
H 0N o= 104 2 25
g, (7.36)

~Y

where we used in the last inequality the estimates (2.68)-(2.72) for 0,x,0 and (, the
estimates (2.76) (2.77) for O,N and 0,(, and the estimate (7.26) for O>N.

7.2.4 estimate for E)g(

In view of the formula (7.15) for ¥, (II(92¢)), the decomposition (7.7) for 92N, and the
decomposition (7.33) for 9%y, we have:

Y, (I320)) = —x - T20) + ¥(R) + B2~ 2y o), (737)

where the P, ,-tangent tensors F; and Fj are respectively given by:

Fy = —(e4¢) - T(82N) — 20,N - 11(9,,€)

and
— 2 — - |awN|2
(Fo)a = (V&) + V(Q) - THILN) + (€ +C) - I = Viygoz ) 6a + —5— V1 (C)
— (aiiv)B (—OéAB + )05AB + 30 EAB)

+ealmozn) — XaNsm@zn) — (02N) € - ¢ + 2diM(0,N ) (I1(9,.€)) a
+(0uN) a(V . Coun — XounBCn — 0Co,n — 2€ - 0uC — Oa,nBCE — No,nBCR)
—2(NBa,N + 0,CB)0uxAB + 00X a0,N — 2€40.,Co, N + (=3Con + €o.n

= O, N |?
—Eo,N)XA0uN + |0uNPenxan + (Oao,n + nouna — (0uN)a6)Co,n + | . | B4
0,N . .
+( . )5 ((a,,;N)C’(EAC B+ €pc *Ba) — 0ap(Bao,N +éawzv>

+; €ap ("Ba.n — *ﬁawN))

We estimate F} and F5,. For Fi, we have:

(fellzos e + NN o L) TN 12, e + 10N [ 22 T(0C) 2034,

I F Uz S
S & (7.38)
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where we used the estimates (2.67)-(2.72) for € and (, the estimates (2.76) (2.77) for 0, N
and 0,(, and the estimate (7.26) for 9>2N. For F;, we have:

HFQHLi,Lf (7.39)

(IVellz2en + NEILFLE + ISl s e 1 Fll e, e + 105N 122, 150 <HWCHL2(M>

AN

Hlallzgu) + o6 + lolli2eu) + N(ENIC +N1(X)N1(n)>
HIV0u Nl 2, o 10uC N 22,150 + ([0 N |7 (HVL(C)HLQ(Hu) + (Ni(x) + Ni(6) + N1 (6)
+N1(0) + N(0) + NMi(0)N(C) + (Nile) + Ni@)IN(X) + (18Il 20, + ||ﬁ||L2(Hu))

0N | oo (!lEI\L2<Hu>!\3wC!\L§,Lgo + (Il 2 ) + HSHLQ(Hu)>HanHLi,L;’O)

+H8wC||Li,Lt°°HﬁwXHLi,L;X’

€,

~Y

where we used in the last inequality the curvature bound (2.59) for a, 3, p, 0, 3 and j3, the
estimates (2.67)-(2.72) for €,€,7,6,0, x, 6 and (, the estimates (2.76) (2.77) for 9,,N, d.,x

and 9,,¢, the estimate (7.26) for 92N, and the estimate (7.36) for F.
We are now in position to derive the estimate for 9*¢. Using the transport equation
(7.37) for T1(9%¢) and the transport equation (6.48), for M allows us to get rid of the

troublesome term y - I1(92(¢):

V(M -1(050) = V(M) -1(950) + M - ¥, (I(95C))

0,N|?
= wyE) B - My
0N
= W(M'Fl)_W(M)'F1+M'F2—TM'WL@L
Let 2 < p < q¢ < +o00. This yields:
125(M - TH(O50) | e 2, (7.40)

< ||P; M - Fy)d P M) - Fid
- ’ ! (/0 4 % t) LgLi,+‘ ’ (/0 VM) By t) L{L?,

Y

LiL?,

P, (/OtM : F2dt) P, (/Ot |6“;V|2M . WL(()dt>

Next, we estimate the various terms in the right-hand side of (7.40).
We consider the first term in the right-hand side of (7.40). Using Lemma 6.13, we

i

i

L{r?,
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have:

< YIM - Fill2eu,) (7.41)

L{L?,

o ([ )

where we used in the last inequality the estimate (7.38) for F} and the estimate (6.49) for
M.

Next, we consider the second and the third term in the right-hand side of (7.40).
Using the dual sharp Bernstein inequality for tensors (6.53) and the estimate (3.66) for
transport equations, we have:

S 2|M]|ze || Full 2,
< e,

t t
Pj< / W(M)~F1dt) 'Pj( / M~F2dt> (7.42)
LiL?, 0 L{L2,
t
< 2 - Fydt + 27 /M-Fth
LeLl, LeLl,
S 2J||Y7 M) Fillpge,y + 2| M - Pl
S 2IV(M)llrzen, HFllle + 2| M| < || Fall 130,
S 2,

where we used in the last inequality the estimate (7.38) for F}, the estimate (7.39) for I},
and the estimate (6.49) for M.

Finally, we consider the last term in the right-hand side of (7.40). Using Lemma 5.14,
we have:

P ([ 2 vy

Now, using the non sharp product estimate (5.15), we have:

ONEM 0 S N @N)IMON ]ty + VM0 o
N1(OuN) (M| 2o N1 (0 N) + (|0 N[ oo [[ VM| £2(24,,))
1

S NOLN2M||po (26 + 28ey(u)).  (7.43)
L&L?,

N AN

Y

where we used in the last inequality the estimates (2.76) (2.77) for 0,N, and the estimate
(6.49) for M. Together with (7.43), this yields:
< Ve + 28y (u),

([ 825, )
‘Pj </0 2 M- Felo Ly L2,

which together with (7.40), (7.41) and (7.42) implies:
1P (M - T1(020)) | s12, S 2e + 2Eey(u). (7.44)

Now, since we have chosen p < ¢, (7.44) and Lemma 6.14 yield:
1P (@20 | zp 2, S 2e +22e7(u), (7.45)

for any 2 < p < +oo which is the desired estimate for 9%¢.
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7.2.5 Estimate for ¥ (I1(92N))
In view of the decomposition (7.7) for 9> N, we have:
D, (II(92N)) = DL(82N) + 29(9,N,DL(0,N))N + |0,N|?DN
which yields:
Y (I(ZN)) = T(DL(9ZN)) +[0.N[*TI(DLN) (7.46)
= H(DL(9N)) +[0.N*(Ca = &, )ea.
where we used the Ricci equations (2.23) for DN in the last equality. The formula (7.3)
for D1 (9>N) and (7.46) imply:
WL(H(Q%N)) = 202(per — |0.N|*Cses + 20.X0.NvBeB + Xn@2Nnpes + (0 +n 'N(n))
XI(O2N) + (3ea,n +n Vo nn)OuN + [N (Ca — € Jea.  (7:47)
Now, let 2 < p < 4o00. (7.47), the estimate (7.45) for ||Pj(H(8Z§))||LfL§,7 together with
the L? boundedness and the weak Bernstein inequality for P;, yields:
1P W L (LN )|z e, (7.48)
< IPI@2O a2, + 1P (N1 sz, + 1PN o1,
HIPOALOEN) e 2, + 125 ((8 + 0™ "N () IH(OEN) | e,
HIPi((dea,n + 1" Vo) 0N ez, + 1P (10N (€ = O)llpere,
e+ 25ey(u) + 10N P sz, + 10uX0uN |z, + 2HNI@2N) |

LeL?,

AN

+28(|(0 + n” N)IE@EN)I|

t
HINPC = ©)llrers,
e+ 2bey(u) + 10N 3 (I serz, + Nellzzerz, + I~ Vil gz, + €l 2,

4 T [(dean + n~ Vo, n1)0u Nl o2,

AN

i _
0N oo l|Ouxlgor2, + 22 (X zgors, + 6]l zors, + [Im 1V”HL§°L§,)”H(85N)HL;;oLi,
S Vet 2bey(u),

where we used in the last inequality the estimates (2.67)-(2.72) for n,d, €, x, & and , the
estimates (2.76) and (2.77) for 9,,N and 9y, and the estimate (7.26) for 02N. (7.48) is
the desired estimate for Y, (II(G2N)).

In view of the estimates (7.26), (7.27), (7.30), (7.35), (7.45) and (7.48), this concludes
the proof of Theorem 2.27.

8 Dependance of the norm L*L*(H,) on w € §?

The goal of this section is to derive the various decompositions of section 2.8. In section
8.1, we derive the basic estimates, first for scalars, and then for tensors using a scalariza-
tion procedure. In section 8.2, we obtain the desired decompositions for d, N, try and bP.
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In section 8.3, we provide variants of the results in section 8.1. In section 8.4, we obtain
the desired decompositions for y, X and X>. In section 8.5, we provide further variants
of the results in section 8.1. Finally, the desired decompositions for ¢, ¥b and J,b are
derived in section 8.6.

8.1 The basic estimates
The goal of this section in to prove the following proposition.

Proposition 8.1 Let f(-,w) a scalar function depending on a parameter w € S* such
that:

1o 2y + 1D Sfll ez ey + 10uf |20, S €
Assume also that the existence of a function v in L*(R) such that for all 7 > 0, we have:

1P (LD )| 220y + I P (L) |20y S 206 + 25y (w)e.

Let w and ' in S?. Let u = u(t,z,w) and v’ = u(t,z,w’). Then, for any " in S* on the
arc joining w and W', and for any 7 > 0, we have the following decomposition for f(-,w"):

few") = Py (f(w) + f3
and where fg satisfies:
131l ie 2 € 2756 + o — o[ 22e.
As a corollary of Proposition 8.1, we obtain:
Corollary 8.2 Let F(-,w) a tensor depending on a parameter w € S* such that:

1E oo 20,y + IDF 2wy + 10 F | Leer20) S &5 1 lln200s S 1.

Assume also that the existence of a function v in L*(R) such that for all j > 0 and for
some 2 < p < 400, we have:

125 (V1 (O F))l iz 2, + 1PV L (OoFDl1g12, S 26 + 25y (u)e.

Let w and W' in S*. Let u = u(t,z,w) and v’ = u(t,z,w’). Then, for any " in S* on the
arc joining w and W', and for any 7 > 0, we have the following decomposition for F(-,w"):

F(,w") = F] + FJ
where Ff does not depend on w and satisfies:
1 oo by S IF oo, 00,
and where Fj satisfies:

1FS || poe £2310) S 27%e + |w — w'|221e.
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The following lemmas will be useful for the proof of Proposition 8.1 and Corollary 8.2.

Lemma 8.3 Let w and w' in S*. Let v = u(t,z,w) and v’ = u(t,z,w’). Then, for any
tensor F', we have:

1
1\ 2
2

B 1 ut|w—w’|
HFHLZS’LQ(H“/) S F | pge 2, Hw—w'|# HFHigoLQ(Hu) sup (/ HDFH%Z(HT)dT>

Lemma 8.4 Let f a scalar function and w,w’ in S*. Then, for any 1 > 0, we have:
_ 1,1
1P Az, S 270+ |w = o [2272) (| fll g r2an) + 1Dl peez2000))-
Lemma 8.5 Let f a scalar function and w,w’ in S®. Then, for any 1 > 0, we have:

1 P<tfllLos 23,
1.1 1 L
S (4w = w'222)[| fllzeerze) + 1w — W1 E L2

1
2

el
x sgpzl</u (”PQ(nL(f))H%Q(HT)_'_||PQ(bN(f))H%2(’HT))> dr

Lemma 8.6 Let f a scalar function and w,w’ in S®. Then, for any 1 > 0, we have:

1[0, P<il fllzos 22634,y S (DS || 5o r2(30.)-

Lemma 8.7 We have:
IDrQ<1(N)|lzser2(s,) + |VDrQ<1(N)| Leor2(n) S €

Lemma 8.8 Let N; = N(-,w;),j = 1,2,3 where w; € S* are given respectively by wy =
(17070)7 Wy = (07 170) and w3 = (07 07 1) Then; QSI(N1)7Q§1<N2> and QSl(N?)) form a
basis of the tangent space of ;.

We also state the following lemma which will be used in the proof of Lemma 8.6. Note
this lemma, together with Lemma 8.3, is at the core of all decompositions of section 8.

Lemma 8.9 Let w and w' in S*. Let u = u(t,x,w) and v’ = u(t,z,w’). Then, for any
tensor F' and any 2 < p < +00, we have:

1—1 1
T e Tl FRCANUN ) 22 A

The proof of Corollary 8.2 is postponed to section 8.1.2, the proof of Lemma 8.3 is
postponed to section D.1, the proof of Lemma 8.4 is postponed to section D.2, the proof
of Lemma 8.5 is postponed to section D.3, the proof of Lemma 8.6 is postponed to section
D.4, the proof of Lemma 8.7 is postponed to section D.5, the proof of Lemma 8.8 is
postponed to section D.6, and the proof of Lemma 8.9 is postponed to section D.7. We
now conclude the proof of Proposition 8.1.
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8.1.1 Proof of Proposition 8.1

We decompose f(-,w”) as:

flu) = PLUC)+ D R (8.1)
l>3
— P;g(f(.7w/))_’_/[ }&upgi(f( /H))dw/" +ZPIH W
o - l>3
= P;;(f<-,w’))+/[/ ]( P, (0u£)(w") + [0, PL1f(0"))dw” (' = o)
+> PIf(wW"),
1>

where w” denotes an angle in S? on the arc joining w’ and w”.

Next, we estimate the last two terms in the right-hand side of (8.1). Using Lemma
8.4, we have:

_ 1 _1
SIPFCwNerrzon S 27+ 10" = w2272) (I fllzer2en) + IDFllrerzee)
1>1 1>1
< (278 4w —w]227 ), (8.2)

where we used the assumptions on f in the last inequality.
Using Lemma 8.5, we have:

12 (D ) (s ™)l e 20 (8.3)

1 1
< (L " — w20 F i + 16 = w10 F 1o

W=
N

ut|w—w'’|
X Supz </ (1P (nL O D Z2 31, + Hpq(bN(awf))H%Z(HT))dT>

a<i

< (14 | — w]220)e + |w — w”|ie?

[ I
N

ut|w—w'’|
x SUPZ (/ (1P (L DT, + HPq(bN(awf))H%z(m))dT> :

a<i

where we used the assumptions on 0, f in the last inequality. Now, the assumption on
L(0,f) and L(d, f) together with Lemma 5.12 yields:

1Py (LD T2,y + 1 Py (0N (D f ) 172031,
(Inllzee + [[¥Vnllpo + [[bll e + [[WD]lp0)*(2°9€® + 277(u)?)
22422 4 2q7(u)2,

AR ZA
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where we used in the last inequality the estimate (2.67) for n and the estimate (2.69) for
b. Together with (8.3), this implies:

||P’S”%-(awf)(-,w”’)HLgoLz(Hu) < (14 |[w" —w]725 + " — w]227)e (8.4)

)e.

NS

< (L4 " — w22
Using Lemma 8.6, we have:
1100, PZ1F w2y S D lleerze) S & (8.5)

where we used the assumptions on f in the last inequality.
In view of (8.1), we have f(-,w") = f} + fJ where f{ is defined as:

fjl = Pé%(f('aw/))’ (86)
and f7 is defined as:
= /[ (PO ")+ [0, PLIF (@) de" (@ = W) Y B (f( ") (87)
w 1>

Using (8.2), (8.4) and (8.5), and the fact that w” is on the arc of S? joining w and ', we
have the following estimate for ff

~Y

T PXIEES /[ (1wl i2heds "l — o] 4 (27 4 o — w2 e

< 1+ — w|%2%)|w’ —wle+ (2_% + | — w|%2_i)5
< 278w — w|221e. (8.8)

This concludes the proof of Proposition 8.1.

8.1.2 Proof of Corollary 8.2

Using Lemma 8.8, it suffices to prove the decomposition of Corollary 8.2 where F'(w”,.) is
replaced by g(F(-,w"), Q<1(N;)) for I = 1,2,3. Since the proof is identical for [ = 1,2, 3,
we simply take [ = 1. Therefore, it remains to prove that the following decomposition

holds g(F (-, w"), Q<1(N1)):

g<F('7w”)a Qﬁl(Nl)) = PS%(Q(F(',W/), Qﬁl(Nl))) + fga (89)
where the scalar function fJ satisfies:
13200y S 275 + |w — of]F20e. (8.10)

In particular, FY is connected to the first term in the right-hand side of (8.9), which does
not depend on w and satisfies the following estimate

| Py o(P (), @) S 1F e, ) [Qr (V) S 1P|z, 0,

Lee (Pt,u’)
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where we used the fact that P_; is bounded on L*(F; /) and the fact that Q< is bounded
on L. ’

Let f = g(F(-,w),Q<1(N1)). In order to prove the decomposition (8.9) (8.10) for
g(F(-,w"),Q<1(N1)), it suffices to show that f satisfies the assumptions of Proposition
8.1. First, we estimate Df. We have:

IDflleeer2ot) S IDF|e 20 [Q<i(N) oo + [1Fl 2o IDQ<t (N e r2,
S e+ DQa(N)llzpere,

where we used in the last inequality the assumptions on F', and the fact that QQ<; is
bounded on L*. Using the functional inequality (3.74), we obtain:

IDQ<1 (N 1502, (8.11)
IDQ<1(N1)||zeer2(s) + [[VDQ<i (N1) || per2(sy)

HVQSl(Nl)HL?"LZ(Et) + ||DTQ§1(N1)||L§°L2(&) + ||V2Q§1(N1>HL§°L2(Et)
+[|VDrQ<1(N1) || oo 2 (x,)

IVQ<i (N ||z 2,y + 1DrQ<i (N1) | oo r2(sy + VD1 Q<1 (N1) || Lge r2(5)

8’

AN

A N

where we used the Bochner identity on ¥, (3.81), the finite band property for Q<;, and
Lemma 8.7. Finally, we obtain:

IDfllzoc 22, S & (8.12)

Next, we estimate J, f. We have:

a.uf = g(awFa QSl(Nl))a
which yields:
100 fllLeor2 ) S NOuF | oo 21 [|Q<1 (N1) || Lo S € (8.13)

where we used in the last inequality the assumptions on J,F, and the fact that )<; is
bounded on L.

Finally, we estimate L(0,f) and L(0,f). The estimate for L(d, f) being similar, we
focus on L(0,,f). We have:

D (0.f) = 9(DL(9uF), Q<1(N1)) + g(0, F, DLQ<1(N1)). (8.14)

The estimate (6.118) yields:
IVQ<1(N)l[po S &

which together with Lemma 6.14 and the assumption for D10, F' yields:

1P;(9(DL(OZN), Qar (N))) 223, S P + 22y (u). (8.15)
Furthermore, using the dual of the sharp Bernstein inequality (4.32), we obtain:
15:(9(0F. DLQas(N)D 2wy S 2900 F DLQar(N))l 2, (8.16)
S 2000 F | g r20) IDLQ<t (ND)) | e,
< e
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where we used in the last inequality the assumptions for J,F, and the estimate (8.11).
Now, (8.14)-(8.16) yield:

IP{(L(Ou )| 2000y S 2 + 22e7(u).

The corresponding estimate for L(J,,f) may be obtained in the same way and is actually
easier. Thus, we obtain:

|2 (L@t D200 + 1P L@ )220 S 2+ 237(w). (8.17)

In view of (8.12), (8.13), and (8.17), f satisfies the assumptions of Proposition 8.1, which
in turn yields the decomposition (8.9)-(8.10) for g(F(-,w"), @<1(N1)). This concludes the
proof of Corollary 8.2.

8.2 Decompositions involving J,N, try and b’

In this section, we obtain the proof of Proposition 2.31, Proposition 2.32 and Proposition
2.33 as a consequence of Proposition 8.1, Corollary 8.2, and Lemma 8.9.

8.2.1 Proof of Proposition 2.31

We have:
N —N'= / DN (-, W) dw" (w — ). (8.18)
[w,w]

We denote 9,N"” = 9,N(-,w"). Now, in view of the estimates (2.76) and (2.77) for 9,N,
and (2.84), (2.85) and (2.87) for 9> N, 0, N satisfies the assumptions of Corollary 8.2, up
to the fact that some of the estimates are controlled by < 1 instead of < €. Thus, the
conclusions of Corollary 8.2 hold with € being replaced by 1, i.e. we have the following
decomposition for 9, N”

O,N" = F! + FJ, (8.19)
where the vectorfield Ff only depends on w’ and satisfies:
1F7 ||z S 10N ||z S 1 (8.20)
in view of (2.76), and where the vectorfield FJ satisfies:
1FS N Lo 2ty S 277 (8.21)

Injecting the decomposition (8.19) in (8.18), and in view of (8.20) (8.21), we obtain the
desired decomposition for N — N’. This concludes the proof of the proposition.

8.2.2 Proof of Proposition 2.32

In view of the estimates (2.70), (2.77) and (2.78) for try, f = try satisfies the assump-
tion of Proposition 8.1. Thus, in view of Proposition 8.1, try(:,w) satisfies the desired
decomposition with

H = Py trx(-, ).

There remains to prove the L estimate for ff which is an immediate consequence of the
estimate (2.70) for trx and the fact that P_; is bounded on L*(F,,). This concludes the
—2

proof of the proposition.
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8.2.3 Proof of Proposition 2.33
We have

pr(7w) — bp(-’w/)’|L30L2(Hu) S (/[ ]pr1(.’w//)awb(,7w//)“L?LQ(Hu)dw//) ’w . w/‘

AN

(/ H@wb(, W”)HL;iOLQ(Hu)dW”) |CL) — LL)/’, (822)
[w,w']

where we used in the last inequality the estimate (2.69) for b. Now, using Lemma 8.9
with p = 2, we have

10,00, W) Lo 20200) S N0ubll L2 L2340y + 11 W0l Lo 23y S €

where we used the estimate (2.77) for d,,b in the last inequality. Together with (8.22), we
obtain
[07(.w) = 07 (-, ) Lo L2y S lw — W'le,

which concludes the proof of the proposition.

8.3 A first variant of Proposition 8.1

We start with the following refinement of Lemma 8.9:

Corollary 8.10 Let w and w' in S*. Let u = u(t,r,w) and v’ = u(t,z,w'). Then, for
any tensor I, and for any 2 < p,q < +00, we have:

1 1
||F||L37L2(Hu/) 5 HFH[Q/];LZIHVFHZ%IL‘],%I
€T

Proof For w € §? let ®;,, : 3; — R? defined by:
D, ,(t,x) = u(t, z,w)w + dyu(t, z,w)

which is introduced in (D.1). See the beginning of section D.1 concerning the fact that it
is a global C"' diffeomorphism from 3; to R?® and satisfies (D.2), i.e.

Hd@;iHLw S 1, f[[det(Jac®yy,)| — 1|oe Se.

Let f a scalar. Then, using a standard estimate in R?, we have the analog of (D.63)

/ sup | (@ (s 1, 42)) P
Yy

1 Y2
1—1
q

AN

(/!f(q%,i(u,yl,yg))\qdyldyz>q (/\ayzf(q)t,i(u,yl,yQ))\qzldyldyz)

( / fqdut,u>; ( / |Wf|13dut,u> g
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Together with (D.62), this yields:

up+|w—w’| % . 17%
2 < Tty Ty dudt
Mo S e ([ [ IR A N A I

S I llzprs, HWH 2y b

LL‘,

Since this holds for any real number ug, we take the supremum which yields:

1o r2at, ) S I lepes, ||Y7f|| e

IE/

Finally, let F' a tensor. Applying the previous inequality to f = |F|, we obtain

1 ) S I sz IV

This concludes the proof of the corollary. [ ]

We will need the following refinement of Corollary 8.2:

Corollary 8.11 Let F(-,w) a tensor depending on a parameter w € S* such that for any
2 <p< +oo:

1E N e 2y + 1F [ prs + IDF g2y + 100 F | o200 S €

~

Assume that there exists two tensors Hi and Hy such that
(9WF = H1 + HQ,

such that we have
| Hil e r2 ) + 1 Hollzoor2mn) S €

and there exists a function v in L*(R) such that for all j > 0 and for some 2 < q < +00,
we have:

1P (Vo (HO) | gzz, + 1Py (VL (HO)lzgrz, S 2 + 22y (u)e,
and such that Hy satisfies for some 2 < q < 400

2y + IV oy s S

x

~

Let w and W' in S*. Let u = u(t,z,w) and v’ = u(t,z,w’). Then, for any " in S* on the
arc joining w and W', and for any 7 > 0, we have the following decomposition for F(-,w"):

F(,w")=F +FJ
where Ff does not depend on w and satisfies such that for any 2 < p < 4o00:
J
| FY HLZ‘ZJ,L%’LOO(PLH/) Se
and where I} satisfies:

1 F3 || poe £2300) S 27%e + |w — w'|221e.
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Proof Using Lemma 8.8, it suffices to prove the decomposition of Corollary 8.11 where
F(w",.) is replaced by g(F(-,w"),Q<1(N;)) for [ = 1,2,3. Since the proof is identical for
[ = 1,2,3, we simply take [ = 1. Therefore, it remains to prove that the following
decomposition holds g(F(-,w"), Q<1(N1)):

g(F(w"), Qi (N1) = fl + f3, (8.23)
where ff does not depend on w and satisfies such that for any 2 < p < +o0:
||ff.||Lz<,’LfL°°(Pt’u/) Se, (8.24)

and where the vectorfields fJ satisfies:
1Al 20y S 273 + w — w/[327e, (8.25)

Let f(-,w) = g(F(-,w),Q@<1(N1)). Arguing as in the proof of Corollary 8.2, and using
the assumptions for F', we have the analog of (8.12) and (8.13):

IDfllrger2m,) S e (8.26)

and
100 f oo 2y S € (8.27)
Also, in view of the assumptions for F' and the fact that ()<; is bounded on L*, we have
1o Msaneir, oy S IF G isiriin, Qe (N)lie Se (3.28)

In order to prove the decomposition (8.23) (8.24) (8.25) for g(F(-,w"), Q@<1(Ny)), we follow
the proof of Proposition 8.1. In particular, we recall the decomposition (8.1) of f(-,w"):

P = PG+ [ (PLO0E" + [0 P ) )
+ 3PS w), (529

where w” denotes an angle in S? on the arc joining «’ and w”. Also, in view of the estimate

(8.26), we have the analog of the estimate (8.2)

S (fC D ez S (272 + | — w|227H)e, (8.30)

>4
and the analog of the estimate (8.5)
118.; PL G0N r2in S e (8.31)

Also, using (8.28) and the fact that P_; is bounded on L**(F,,/), we have for any 2 <
p < +o00: o

Ly (FCa)| S- (8:32)

LS LEL°(Py 1)
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In view of (8.29), we have f(-,w") = f} + fJ where f] is defined as:
fjl = P;%(f<7w/))a

and f7 is defined as:

7=+ (8.33)
with
fa= [ (PHODE ) (5.34)
and
fla= [ 10 PN )+ RS
w’w// —2 l>]

In view of the definition of f7, fiZ and the estimates (8.30), (8.31) and (8.32), f{ does
not depend on w and satisfies for any 2 < p < +oc:

Hff”L?LfLOO(Pm,) SéE (8.35)
while f] satisfies: _ ‘
fj LeL2(H g 27?‘3 + (W — w’ %Qié‘. 8.36
2,211 L3 L2 (Hu)
We still need to estimate fgl We have:

8wf = g(awF7 Qﬁl(Nl))

and thus
O,f = h1+ ho (8.37)

where
h‘] = g<Hj7Q§1(N1))7 .] = 1727
Since the assumptions for H; in Corollary 8.11 are the same as the assumptions for 0, F
in Corollary 8.2, we obtain the analog of (8.13) and (8.17) for hy:
1hillpge e, S €,

and
1P (L(h)) |2y + 1P L)) 2,y S 26 + 22ey(w).

Thus, the estimates for h; in Corollary 8.11 are the same as the assumptions for J,, f in
Proposition 8.1, and we obtain the analog of (8.4)

P2, ha () ez S (14 [ — w|22%)e. (8.38)
Next, let 2 < ¢ < 400. We have in view of Corollary 8.10

HP”’ o( W MLeer2ny) S HP<Jh2H2 8|\Y7P<]h2H r,8 (8.39)

:c x!

S lhs? §\|Y7hz||2%1 8
LiL? LITLS

$/
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where we used in the last inequality the finite band property and the boundedness on
L*(P,,) of P_;. Now, in view of the definition of hy, we have
=2

s + I Vhall ooy s (8.40)

/

1z

LqL3
fl)

S HQ<1(N1)HL00(HH2H g+||77H2H ) I, 8HY7QS1(N1)HL50L;

S et €HY7Q§1(N1)HL§°L;,7

where we used in the last inequality the assumptions on H, and the fact that Q< is
bounded on L. In order to estimate the right-hand side of (8.40), we use the estimate
(3.80). We obtain

IVQ<1(N1)Lgers, IVYQ<1(N)l e L2z + V@< (M) o2z (8.41)

S
S L

where we used in the last inequality the estimate (C.96). Together with (8.40), this yields
Iall g5 + 1¥hal ger 5 S

LqL3 L5
In view of (8.39) we deduce

1P ha (s )| ige r2at) S & (8.42)
Now, (8.34), (8.37) and (8.42) imply:
1Al r20) S lw —ole. (8.43)
Finally, (8.33), (8.36) and (8.43) imply
13l o) S 2782 + |w — w324,

which together with the decomposition f(-,w”) = fj1 + f] and the estimate (8.35) yields
the conclusion of the corollary. [ ]

8.4 Decompositions involving yx

The goal of this section is to prove the decompositions of Lemma 2.34, Proposition 2.35,
Proposition 2.36, Proposition 2.37 and Proposition 2.38. The proof of Lemma 2.34 is
given in section 8.4.1, the proof of Proposition 2.35 is given in section 8.4.2, the proof of
Proposition 2.36 is given in section 8.4.5, the proof of Proposition 2.37 is given in section
8.4.6, and the proof of Proposition 2.38 is given in section 8.4.8.

We will need the following product lemma.

Lemma 8.12 Let F' and H P,,-tangent tensors on H, such that for any 2 < r < 400
we have
IE |z + IV by, Py + 1H 2y + IV H | 1 pg ) S €

Then, we have for any 2 < r < 400 we have

IFH | Lyros + [ V(EH) || ymy, () S €
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We will also need the following consequence of Corollary 8.11 and Lemma 8.12.

Corollary 8.13 Let w and ' in S®. For any j > 0 and any integer | > 2, we have the
following decomposition for xi(-,w)':

Xl('aw)l = Flj +F2j
where Ff does not depend on w and satisfies for any 2 < p < 4o00:
HFlj'”Li?LfLOO(Pt’u/) Se,

where Fj satisfies: | |
“Fg”LfLQ(Hu) <270 4 |w— w’\%ﬁg.

We will need the following consequence of Lemma 2.34 and Corollary 8.13:

Corollary 8.14 Let w and ' in S®. For any j > 0 and any integer | > 1, we have the
following decomposition for x1 (-, w)'xa(-,w):

X105 w)'x2(,w) = X ) F] + xa (W) EY + FY
where Ff does not depend on w and satisfies for any 2 < p < 4o00:
HFlj'”LZ‘;LfLOO(Pt’u/) Se,
where F and FJ satisfy:
| llager200) + 1 Flliger20n) S 27% + o —of|32%.
Finally, we will need the following consequence in particular of Lemma 2.34:

Corollary 8.15 Let w and W' in S?. For any j > 0, we have the following decomposition
fO’I“ Xl(" w)XQ(" w)Q:

X1(5 w)x2 (- w)? = x2 (-, )2 4 xa (-, w2 F) + xo(-, ) F] + F]
where Ff does not depend on w and satisfies:
||F1j||LZ‘;L§L°°(Pt7u/) Se,
where F and FJ satisfy:

i 1 _J 3 7
13 | oo r2000) + 1 FYlpsor2grny S 277 + Jw — o[ 221,

and where F} satisfies . .
IE 2oy S €277

The proof of Lemma 8.12 is postponed to section D.8, the proof of Corollary 8.13 is
postponed to section 8.4.4, the proof of Corollary 8.14 is postponed to section 8.4.5 and
the proof of Corollary 8.15 is postponed to section 8.4.7.
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8.4.1 Proof of Lemma 2.34
We have

Ix2(w) = X2( W)l poe 2 300y S (/[ /}HanQ('awu)HLﬁoLéL (Hu)dw”) lw—w'|.  (8.44)

Now, using Lemma 8.9 with p = 4_, we have

||8wX2('7W”)HLgoL4— (Hu) S ||an2”L3°L6—(Hu) + ||Y78wX2||L3°L2(Hu) Se

where we used the estimate (2.81) for d,x2 in the last inequality. Together with (8.44),
we obtain

Ixa(w) = X2 (s W) Lo 1 a0y S w0 — W'l

which concludes the proof of the lemma.

8.4.2 Proof of Proposition 2.35

In view of the decomposition (2.15) of x in its trace part try and traceless part Y, in view
of the decomposition (2.79) of X in the sum of x; and x», and in view of the decomposition
of Corollary 2.32 for try, it suffices to obtain the following decomposition for x;

x1(-,w) = F/ + Fj, (8.45)
where the vectorfield Ff only depends on (¢, x,w’) and satisfies for any 2 < p < +oc0:

IEY s prroe (e, ) S € (8.46)

and where the vectorfield Fj satisfies:

J

1FS |20y S 27 %€ (8.47)

Now, in view of the estimates (2.80), (2.81) and (2.82) for x1, F' = x; satisfies for any
2 <p< +o0:

1E e 20y + 1 Flzpros + IDF | e 2y + 100 F ooy S €

Also, we have
&JF = Hl + H2 with Hl = &j(\ and H2 = —0OwX2,

and H; and H, satisfy the assumption of Corollary 8.11 in view of the estimates (2.77)
and (2.78) for d,X and the estimate (2.81) for d,x2. Thus, in view of Corollary 8.11,
X1(+,w) satisfies the decomposition (8.45) and the estimates (8.46) (8.47). This concludes
the proof of the proposition.
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8.4.3 Proof of Proposition 2.36

In view of Corollary 2.35, it suffices to prove the decomposition for y»:
Xo(-w) = F{ + F
where 7 does not depend on w and satisfies:
||F1j||L;<;L°<>(PtYu,)L§ Se,

and where FJ satisfies:

1FS | g 2oy S 272
We choose
F = xo(-,w') and F = x2(-,w) — xa(-,o).
Then, the estimates for F/ and FJ follow from the estimate (2.80) and the Lemma 2.34
for xo. This concludes the proof of the proposition.

8.4.4 Proof of Corollary 8.13

In view of the estimates (2.80), (2.81) and (2.82) for 1, F' = x| satisfies for any 2 < p <
+-00:
1F e 2y + 1 Fll oo + IDF |2ty + 100 F [ Leer20,) S €

Also, we have
0,F" = Hy + Hy with H; = lxll_lawjg\ and Hy = —lel_lanQ.

Lemma 8.12, together with the estimates (2.81) and (6.92) for x; yields for any 2 < r <
400
IXT ez + 1V 0A ey 8g, Py S €

Together with Lemma C.1 and the estimates (2.77) and (2.78) for d,,X, we obtain:

1PV, (H) wgsz, + 1P (VL ()l grz, S 2e + 25y (u)e.

Also, H, satisfies the following estimate

[Hall , 5 +IVH: , s

L3L, LL},

S I s loaxel s + 10 egers, V00Xl g 120
t g

+”Xl1_2HL§°L;? 1V x1 ||L;>°L§, ”8wX2HL§L;§
67

~

where we used in the last inequality the estimate (2.81) for x; and 0, x2.

Finally, we have proved that F', H; and H, satisfy the assumption of Corollary 8.11.
Thus, we may apply Corollary 8.11 to obtain the desired decomposition \}(-,w). This
concludes the proof of the corollary.
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8.4.5 Proof of Corollary 8.14
We decompose x1(-, w) xz2(+, w) as
X1 w) xa (5 w) = x1(5w) xa (5 ') 4+ xa (5 w) (el w) — xa(,w'). (8.48)

In view of Lemma 2.34 and the estimate (2.81) for y;, we have

(5 w) (2 w) = X2 (-, W)z £20) (8.49)
S HXl('?w)HngOLGZ(Hu)HXQ('>w) - XQ(',UJI)HLgom(Hu)
< |w=We.

Finally, in view of the decomposition for x;(-,w)’ provided by Corollary 8.13, (8.48) and
(8.49), we obtain the desired decomposition for y;(-,w)"x2(:,w) with F} and Fj defined
in the statement of Corollary 8.13, and

F?f = Xl('vw)l(XQ('vw) - XQ('vw/))'

This concludes the proof of the corollary.

8.4.6 Proof of Proposition 2.37

In view of the decomposition (2.80) for X, we decompose X (-, w)? as

55('790}2 = Xl('ﬂw)Z + 2X1<'7W>X2<'7w) + XQ('7M)2‘ (850)

We have
Xa(-w)? = xa(, ") + 2x2 (- W) (xa (- w) = x2(-, ") + (o w) = xa(- @))% (8.51)

Now, we have in view of Lemma 2.34 and the estimate (2.81) for ya:

Ix2(,w) = xa (s ) lgeraiy S lw —le and [[(xa (-, w) = X2, W) 2oy S lw — w'fe.

(8.52)
Finally, in view of (8.50), Corollary 8.13 with [ = 2, Corollary 8.14 with { = 1, (8.51) and
(8.52), we obtain the desired decomposition for Y.

8.4.7 Proof of Corollary 8.15
We decompose (-, w)x2(-,w)? as
X1(whxa(w)? = xalsw)xe(w)? + 2xa(w)xe (@) (xa (- w) — xa(- W) (8.53)
+X1('7w)(X2('7w) - X2('7w/))2'
In view of Lemma 2.34 and the estimate (2.81) for xi, we have
X1 (5 w) (X2 (- w) = Xa(+ W) Lo 2 () (8.54)

HXl('vw)HLﬁoLG(Hu) X2('7w) - X2('7w/>||L3°L3(Hu)
lw— W'|e.

S
S
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Also, in view of the estimate (2.80) and (2.81) for x; and x2, we have®
S HX1<'7W>HL6+(M)HX2('7w) - XQ(”WI)”iG—(M)
S w—w'e. (8.55)

X1 (5 w)(x2(s,w) — X2<'7w1))2”L2(M)

Finally, in view of the decomposition for x;(-,w) provided by (8.45) (8.46) (8.47), (8.53),
(8.54) and (8.55), we obtain the desired decomposition for xi(-,w)x2(-,w)* with F{ and
FJ defined in (8.45), ,

F = xa(,w) (xa(yw) = x2(, ),
and ‘

Fl = xa(,w)(xa (-, w) = x2(-, )%

This concludes the proof of the corollary.

8.4.8 Proof of Proposition 2.38

In view of the decomposition (2.80) for X, we decompose Y(-,w)? as
5(\('7 w)?) - Xl('v W)S + 3X1(" W)X2(" w)g + 3X1('7 w)2X2(" w) + XQ('7 w)3' (856)
We have

Xa(w)? = xa(- W)+ 3x2(, W) (xa (- w) — Xl W) + 3x2(- W) (X2 (- w) — X2+ w))?
+(x2(-w) = x2(- W)™, (8.57)

Now, we have in view of Lemma 2.34 and the estimate (2.81) for yo:

Ix2(,w) = xa ()2 S lw —le [(xa(w) = x2(, @) 2oy S Jw — w'fe,
and || (xa(+,w) = xa( &) [l 2 () S Jw — /. (8.58)

Finally, in view of (8.56), Corollary 8.13 with [ = 3, Corollary 8.14 with [ = 2, Corollary
8.15, (8.57) and (8.58), we obtain the desired decomposition for 3.

8.5 A second variant of Proposition 8.1

We have the following variant of Proposition 8.1

Proposition 8.16 Let f(-,w) a scalar function depending on a parameter w € S? such
that:

1/l L2y + N1 (F) + AT (Von )]

2ONote that we first choose 6_ such that d,,x2 € L5~ (H,) in view of (2.81), then 6, such that

LL2(Hy) T ||awf|\Lg°L2(Hu) 5 €.

1,2 1
6, 6_ 2

and finally, we choose p = 64 in (2.81) so that x; € Lf*L;‘,’.
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Let w and ' in S?. Let u = u(t,z,w) and v’ = u(t,z,w’). Then, for any " in S* on the
arc joining w and w', and for any 7 > 0, we have the following decomposition for f(-,w"):

F,w") = Py (F(0) + f3
and where f] satisfies: , ‘
153 2y S 277 + 2w — e
As a corollary of Proposition 8.16, we obtain:
Corollary 8.17 Let F(-,w) a tensor depending on a parameter w € S? such that:
1F || g 234,y + NU(F) + 100 [ e r2m,) < €
Also, assume the existence of tensors Hy and Hy such that

< e.

~Y

Vo ' = WHy + Hy with || Hy|ee 234, + || He|

23
L3L%,

Let w and W' in S*. Let u = u(t,z,w) and v’ = u(t,z,w’). Then, for any " in S* on the
arc joining w and W', and for any j > 0, we have the following decomposition for F(-,w"):

F(-,u")=F] + FJ
where Ff does not depend on w and satisfies for any 2 < q < +o00:
1Y 2o, ) S NE N Lo, 05

and where FJ satisfies: | |
1F |22,y S 270e + 25w — o'le.

The following lemma will be useful for the proof of Proposition 8.16 and Corollary
8.17.

Lemma 8.18 Let f a scalar function and w,w’ in S?. Assume that f satisfies

11| Lo r2300) + NL() + AT (Von )l Lo r20) S €

Then, for any | > 0, we have:

i
1100, Pil fll 2,y S 22€.

The proof of Corollary 8.17 is postponed to section 8.5.2 and the proof of Lemma 8.18
is postponed to section D.9. We now conclude the proof of Proposition 8.16.
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8.5.1 Proof of Proposition 8.16

We decompose f(-,w”) as:

flw") = PL(f( N4 PI(f(w (8.59)
l>7
_ P/ (f( w/)) +/ o P///_(f( ///))dw/// +ZP//
S% ’ [w/’w//} © S% ’ ! 7

l>7

= PL(f(e) + / (P, (D) (") + [0 PL)F (0" (o = o)

[w w'']

+ZPI// . //

l>7

J
2

where w” denotes an angle in S? on the arc joining w’ and w”.
Next, we estimate the last two terms in the right-hand side of (8.59). Using Lemma
8.9 with p = 2, we have:

1 1
YIRS Nzerzon S D MNPF G 12000 VP 1 e 120

l>J >3

_1
S 1 Do2 | IV e reon

1>1
< 27de, (8.60)

where we used the finite band property for P, and the assumptions on f. Also, using
Lemma 8.9 with p = 2, we have:

||P,H ( )( ,”)“LooLQ('Hu) 5 ||P§%awf||[§,3°[/2(’}-[u)||Y7P§%8wf||zgo[’2(%u) (861)

S 20100 f 1l pee r2 ()
< 2t

where we used the finite band property for P_; and the assumptions on f.
=72
Using Lemma 8.18 together with the assumptions on f, we have:

18, PZLF (0" Dllnge r2) S 2%e. (8.62)
In view of (8.59), we have f(-,w") = f} + fJ where f] is defined as:
fj = PLy(f( ), (8.63)

and f7 is defined as:

12 = /W]< P2 (0u) (") 4 00y PLF (00" A" (@ =) Y B (f(,0")- (8.64)

l>J
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Using (8.60), (8.61) and (8.62), and the fact that w” is on the arc of S? joining w and w’,
we have the following estimate for fj2:

1£71
This concludes the proof of Proposition 8.16.

i i
Lerey) S 2 i+ 2% |w —uWle.

8.5.2 Proof of Corollary 8.17

Using Lemma 8.8, it suffices to prove the decomposition of Corollary 8.17 where F'(w”,.)

is replaced by g(F(-,w"), Q<1(N;)) for I = 1,2, 3. Since the proof is identical for I = 1,2, 3,

we simply take [ = 1. Therefore, it remains to prove that the following decomposition
1

holds g(F(-,w"), Q<1(Ny)):

(
g(F(-,w"), Qx1(N1)) = P_;(9(F(-,0), Q<1(N1))) + f3, (8.65)

where the scalar function fJ satisfies:
1 lzr00y S 274 + 24w — wle. (8.66)

In particular, Ff is connected to the first term in the right-hand side of (8.65), which
does not depend on w and satisfies the following estimate for any 2 < ¢ < +o0:

‘ P_i(9(F (o), Q<1(N1))) S| rap, @<t (ND L S N Fllacp, )

where we used the fact that P_ i is bounded on LY(P; /) and the fact that ()<; is bounded
on L.

Let f = g(F(,w),Q<1(N1)). In order to prove the decomposition (8.65) (8.66) for
g(F(-,w"),Q<1(Ny)), it suffices to show that f satisfies the assumptions of Proposition
8.16. This was already done in the proof of Corollary 8.2, up to the estimate of Vyy f
which is the only one for which the proof has to be adapted. We have:

AT (Von ) || peo 22 300) (8.67)
S AT Q< (V) Yy Pl e 2y + 1A H(&(Wyn Q<1 (N1), F)) | e 221,
S AT (8(Q<u (M), VHL + Ha))ll g r2,) + 1]l |V y @1 (N1 e, [1F Ml 224,
S AT (g(Q<a(N), VH) g 2y + 1A H((Q<1 (N1), Ho)) |l e 2220,) + €,

where we used the fact that A~! in bounded on L?*(P,,,), the assumptions on F' and in
particular the decomposition for ¥, F, the estimate (2.69) for b, and the estimate (8.41)
for ¥ Q<1(N1). We consider the first term in the right-hand side of (8.67). We have

g8(Q<1 (M), VH:) = V(g(Q<1(N1), H1)) — g(VQ<1(N1), Hy)

[

and thus
1A~ (g(Q<1 (M), VH)) | e 230, (8.68)
< IATV(g(Q<t(N1), Hi))ll g r2gey + AT (&(VQ<1 (N1), H)) e 2200,
S 1Q<t(N)llzee [ Hallzge 20y + IWQ<r (Nl o ns, 11 || e 234,
S e
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where we used the fact that A™'¥ in bounded on L?*(P;,,), the fact that A~ is bounded
from L%(Pt’u) to L*(P,,), the assumption on Hy, and the estimate (8.41) for YV Q<1(Ny).
Next, we estimate the first term in the right-hand side of (8.67). We have

A (@(Q<t(N), Ho)ll Lo r2 () S 1@<t (N)llp< [ Hall , 4 (8.69)

$l

S 6

where we used the fact that A=* in bounded from L3 (P, ,) to L*(P,,,) and the assumption
on Hy. In view of (8.67), (8.68) and (8.69), we finally obtain

AT (Von )|z r2 ) S €

Together with the other estimates for f which may be derived as in Corollary 8.2, we
obtain that f satisfies the assumptions of Proposition 8.16, which in turn yields the de-
composition (8.65)-(8.66) for g(F(-,w”), Q<1(Ny)). This concludes the proof of Corollary
8.17.

8.6 Decompositions involving ¢, Vb and 0,b

The goal of this section is to prove Propositions 2.39 and Proposition 2.40. The proof of
Proposition 2.39 is given in section 8.6.1, and the proof of Proposition 2.40 is given in
section 8.6.2.

We will need the following two lemmas.

Lemma 8.19 YV, Vb and ¥, ( satisfy the following decomposition.:
Vin Vb, ¥yn¢ = Yhi + Ha,

where the scalar hy and the tensor Hy satisfy

1z 2 + [[H:]]

B3
h
L

Lemma 8.20 There holds the following estimate
AT (Von8b) | Lo 12y S &

The proof of Lemma 8.19 is postponed to section D.10, and the proof of Lemma 8.20
is postponed to section D.11.

8.6.1 Proof of Corollary 2.39

In view of the estimate (2.72) for ¢, the estimate (2.77) for 0,¢ and Lemma 8.19, ( satisfies
the assumption of Corollary 8.17. Also, in view of the estimate (2.69) for b, the estimate
(2.77) for 0,b and Lemma 8.19, Vb satisfies the assumptions of Corollary 8.17. Thus, the
desired decomposition of Corollary 2.39 for ¢ and Yb follows from Corollary 8.17. This
concludes the proof of Corollary 2.39.
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8.6.2 Proof of Corollary 2.40

We have:
b(-,w) —b(,.w') = / Db(+, W) dw" (w — ). (8.70)

[w,w’]

We denote 0,b" = J,b(-,w”). In view of the estimate (2.77) for d,b, the estimate (2.86)
for 92b and Lemma 8.20, 0,,b satisfies the assumptions of Proposition 8.16. Thus, we have
the following decomposition for d,,b”

A" = fl + 13, (8.71)

where the scalar ff only depends on w’ and satisfies:

1Al S N0ubll= S & (8.72)
in view of the estimate (2.77) for 9,,b, and where the scalar f] satisfies:

173 per2e) S 27 e (8.73)
Injecting the decomposition (8.71) in (8.70), and in view of (8.72) (8.73), we obtain the
desired decomposition for b(.w) — b(, .w'). This concludes the proof of Corollary 2.40.
9 Additional estimates for try

The goal of this section is to prove Proposition 2.41 and Proposition 2.42.

9.1 Commutator estimates between P, and V,, V¥

Proposition 9.1 Let F' as tensor on M. Let a real number a such that 0 < a < ;11.
Then, we have 4
o PPN, 3 S 2NV Pl 91)
Proposition 9.2 Let a scalar function f on H,. Then, we have for 1 >0
1oN, P fll e 20, + 27 I VION, P f |l r20) S eNL(F), (9-2)
and
[nL, P fll e r2aay + 27 IWIRL, Pl ise r2aa) S N1 (). (9.3)
Proposition 9.3 Let f a scalar on M. Then, we have
[[nL; Po] fllzee 20y + NON, Pol fllpeer2 ey S 27 f e 2004 - (9.4)

The proof of Proposition 9.1 is postponed to section E.1, the proof of Proposition 9.2
is postponed to section E.2, and the proof of Proposition 9.3 is postponed to section E.3.
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9.2 Commutator estimates acting on try
Proposition 9.4 We have the following commutator estimate
2\[[nL, Piltrx|| iz, + VL, Piltrx iz, S e (9.5)
Proposition 9.5 We have
23|[bN, Pyltrx 2,y + 27 2IVIN, Piltrllozren, S & (9.6)

and _ _
23||[nL, Pjltrx||Leer2(3,) + 27 2|V L, Piltrx|| e o) S € (9.7)

Proposition 9.6 We have the following commutator estimate
IV, Byltrxlezes, S e (9.8)
The proof of Proposition 9.4 is postponed to section E.4, the proof of Proposition 9.5

is postponed to section E.5, and the proof of Proposition 9.6 is postponed to section E.6.

9.3 Additional estimates for Pjtry

The goal of this section is to prove Proposition 2.41 and Proposition 2.42. Note that the
finite band property for P; together with the estimate (2.70) for try yields

1Pyerxl g2, S 27| Wtrxll e, S 277 (9.9)
Also, the boundedness on L*(F;,,) of P; together with the estimate (2.70) for try yields

1 .
HWPSJ'tYXHLtDOLi, = ”(—AVPSJ'UXHL?@, N HWtrXHLt‘X’Li, S 270 (9.10)

In order to prove Proposition 2.41 and Proposition 2.42, we need in particular to obtain
(9.9) and (9.10), where the norm L{*L?, is replaced by its stronger version L2 L°. We
will need the following lemmas.

Lemma 9.7 Let h a scalar on P,,, and let F' a tensor on P, ,. Then, we have

I[P, P<j(R)Fl2py S IVl L2 1] 22(Py ) - (9.11)

Lemma 9.8 Let h a scalar on P, ,, and let F' a tensor on P;,. Then, we have

IV}, P<j(h)Fll2(p) S 2 (IVR I 2(pn) + 1K 2pon 10l c2pe I F Nl 2Py (9:12)

Lemma 9.9 Let h a scalar on P,,, and let a > 0. Then, we have

11P<j, V1Al 22y S I EK z2pn) IK 22 1Pl 220y + 1A R 2P0 )- (9.13)

Lemma 9.10 Let h a scalar on P,,, and let a > 0. Then, we have

IV[P;, VIR 2cp) S 2 WK 2p) KK 2epe [Pl 2P0y + IAR) 2205,0)- (9.14)
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Lemma 9.11 Let f a scalar on P,,,. We have

1 1
IVl pi S A2 HIVA 2o, MV A 22, + 1S 2P i [V F 2Py - (9-15)

In the subsequent sections, we provide a proof of Proposition 2.41 and Proposition
2.42. The proof of Lemma 9.7 is postponed to section E.7, the proof of Lemma 9.8 is
postponed to section E.8,; the proof of Lemma 9.9 is postponed to section E.9, the proof
of Lemma 9.10 is postponed to section E.10, and the proof of Lemma 9.11 is postponed
to section E.11.

9.3.1 Proof of Proposition 2.41

Using the estimate (3.66) for transport equations, we have

1Ptz S 1Pt + InLPe, o (9.16)
S 270Vexllzan + 1P (nLtr) e,y + 0L, Piltrx|l 2, oy
S 1B L)l + 27,

where we used the estimate (9.5) and (2.62) in the last inequality. Now, (2.91) follows

from (2.92) and (9.16). Thus, it remains to prove (2.92).
Next, using the Raychaudhuri equation (2.28), we have

(o e,
v <n <%(tr><)2 - Strx>)

where we used the finite band property for P; in the last inequality. Together with the
estimate (2.70) for try, the estimate (2.67) for n, and the estimates (2.67) (2.68) for ¢,
we obtain

Bl S IR+

S HPj(an)HLi,Ltl +277

Y

L2(Hy)

1Py (L) 2,1y S NP (IR 2,1 + 27,

Thus, it remains to prove
||Pj(”|5<\|2)||L§,Lt1 S 27 (9.17)

We have A .
Pi(n|x]*) = 272 AP;(n|XI*) = 27 ¥ diM(V P;(n[X]*)).

Thus, we deduce
1P (X1l 22, pr S 27 [ ARP V(IR 22, g + 272 ARV, Pl (I e 2. (9.18)
Now, in view of (9.14), we have for any a > 0

1Y, P (IR 22y S 2K 2y (HE N z2gpen IR 2 ) + A (IR [22(P) )-
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Taking the L} norm, we obtain
I, PR ez, S 21K Nz (Kl z2gun Il IR e 1, + 1A (UKl 22000,)
S e+ AR z2n), (9.19)

where we used in the last inequality the estimate (4.29) for K, the estimate (2.67) for n,
and the estimate (2.71) for . Now, choosing 0 < a < %, the non sharp product estimate
(5.15) yields

IA* (IR 20y S IR e (9-20)
S MUkl + 1V (X012 6e.)
<

&

where we used in the last inequality the estimate (2.67) for n, and the estimate (2.71) for
X- Together with (9.18) and (9.19), we obtain

1P IRz 1 S 22 AR, T (IR 2 01 + 277, (9.21)
Next, we estimate the right-hand side of (9.21). We have

XYl 20y S IVl lIXZ g0, < & (9.22)

where we used the estimate (2.67) for n and the estimate (2.71) for X. Together with
(9.21) and the finite band property for P;, we obtain

1B IR 12,11 S 22 IAKPy (0% - Tz + 27, (9.23)
We define a scalar h and a vectorfield F' by

~

h=|x| and F = n% - VX, (9.24)
and we decompose

Note in particular in view of the estimate (2.71) for X and the estimate (2.67) for n that
we have the following estimate for h and F

Ni(h) + [|Pll sz S € and [[Flz2,) S e (9.26)
We have

[ARP; (P (h) F)| 2, 1 [dRP; (P (h) F)| 122,

S
S 2UP(Ps; (W F)l1e,

where we used in the last inequality the finite band property for P;. Together with the
dual of the sharp Bernstein inequality for tensors (4.37), we obtain

1% PPy Pz i S 22+ K e ) IPss D F el
S 29 Poy() Pl + 21 200 | Pog () Fll 2,

S (2P-s 0l 2wy + 2N ) | Pos () o2, ) 1P 2t
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Together with the finite band property and the boundedness on L*(P,,) of P;, we obtain

1Py (Pos )z S 2 (¥l 2t + 1K ezl 2, ) 1 F 2oy

2e, (9.27)

AR A

where we used in the last inequality the estimate (4.29) for K and the estimate (9.26) for
h and F'
Next, we evaluate the first term in the decomposition (9.25). We have

[P Py P2 1y S P (AR, (Pl 13 + APy, Py (W] Fll e (9:28)
In view of (9.12), we have

[ Ps, Pej(R)]Fll Ly r2, 27|V Al 2, + 1K 2o Il 2 ) E 2 ||

S
< YUIVhlz2ge) + 1K 200 1l 22 EF Nl 226
< e, (9.29)

where we used in the last inequality the estimate (4.29) for K and the estimate (9.26) for
h and F'. Next, we consider the first term in the right-hand side of (9.28). We have

1P<; (M) AP (F) 2,11 S ([PARP;(E) 2,11 + [[P5 (R)AWL;(F) 2, 1t (9.30)
The first term in the right-hand side of (9.30) is estimated as follows
WPy (F) iz s S 1A 0P, () o (9.31)

S
S 2|kl 2 Fll ez
<

e,

where we used the finite band property for P; and the estimate (9.26) for h and F. Next,
we estimate the second term in (9.30). We have

1P () AP, (F)[ 2. [P (R)|| 4Py, o) | AW (F) || 4P ) (9.32)
1 1
1P ()32 ) |V P () 2o IV (E) 1,
b 3
S NP W s IV Py EM 2, 22 1P (F) 3o,

AN N

where we used the Gagliardo-Nirenberg inequality (3.3) and the finite band property for
P;. Using the Bochner identity for tensors (3.7), we have

IV Py (F)l2(p.0)

IAP; (E)l 2Py + 1K 220
(2% + | K L2 p I Fll 2 ),

N VP (F)llzapi) + 1K 22 o 1P (F) |2
<
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where we used in the last inequality the finite band property for P;. Together with (9.32),
we obtain

| P> (R)diF P (F)| 22 (p,.0)
37 J
P55 (M) e )22 1 F |22 pny + P55 (M) 2o 22 1 K | 22 1F Nl 22y

L 37 7
S (Z 22 HBhHLQ(Pt,u)) 22 ||Fll2(py + 1Bl 22 (1K | 2 | Fll 2P )

I>j

AN

_1 37 7
< ((ZQ 2) VA 2P, .22 +22HKHLZ(Pt,u)HhHL‘l(Pt,u)) [ F | 22(py.0)

I>j

fi 2J (||Wh||L2(Pt,u) + HKHLz(Pt,u)

h||L4(Pt’u)) ||F||L2(Pt,u)7

where we used Bernstein, the boundedness on L*(P,,,) and the finite band property for
P,. Taking the L; norm, we obtain

1Pos (AR PPz, S 2 (IWRlz200) + 1K lzzgeo IRl s, ) IF sz,
< 2, (9.33)

where we used in the last inequality the estimate (4.29) for K and the estimate (9.26) for
h and F. Now, (9.30), (9.31) and (9.33) imply

1P<; (R)ARP; (F) 2,1 S 2.
Together with (9.28) and (9.29), this yields

1P (P (h) ) 2, S 2.
Together with (9.25) and (9.27), we obtain

AP (R - Y)llzz g S 2.

Together with (9.23), this yields the desired estimate (9.17). This concludes the proof of
the proposition.

9.3.2 Proof of Proposition 2.42

Using the estimate (3.66) for transport equations, we have

IVP<trxlce, e S IIWP<strxlracr.) + 1V VPt 2, 1

S IWP<j(nLtex)|rz, oy + W, WIP<jtrxllzz, oy + [IVInL, Pejltrx|lzz, oy + €
S IIWP<j(nLtrx) |2,y + InxVP<jtrxlrz ) + €

S IVP<j(nLtrx)llzz, oy + Inlloe Xl o 12| W P<jtrxllzz, oy + €

S ( )

IV P<j(nLtrx) 2, + el VP<jtrxl ez, pee + ¢,
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where we used (2.62), the commutator formula (2.48), the commutator estimate (9.5),
and the estimates (2.67) for n and (2.70) (2.71) for x. Since € > 0 is small, we obtain

”WPSjtrXHLi,L;’O S ||Y7P§j(”Lt1"X)||Li,Lg +27. (9.34)
Now, (2.93) follows from (2.94) and (9.34). Thus, it remains to prove (2.94).
Next, using the Raychaudhuri equation (2.28), we have

_ 1 .
PPl S I9PolR o + 7P (n (G0 + ) )

L, L}

Y

~ 1 _
. ||Y7P§j(n|X|2)||L2,Lt1 + [V [ n [ =(try)? + otry
= 2 L2(H)

where we used the finite band property for P; in the last inequality. Together with the
estimate (2.70) for try, the estimate (2.67) for n, and the estimates (2.67) (2.68) for 9,
we obtain

IV P<;(nLtr )|z, S IV P<; (IR, 01 + e
Thus, it remains to prove
IV P (IR 2,1 S e (9.35)

In view of (9.13), we have for any a > 0

1V, P<s] (X1 22y S K N2y 1K 2o IR N 22y + TA" (IR 2220 )

Taking the L} norm, we obtain
IV, P<il(nlXzizz, S 1K 20 (KK 20 1)l IRz 1, + 1A (IR 1 2200¢,)
~Y 87

where we used in the last inequality the estimate (4.29) for K, the estimate (2.67) for n,
the estimate (2.71) for ¥ and the estimate (9.20) with the choice 0 < a < i. Thus, we
obtain

IV P<; (X1 122, 10 S I1P<; V(IR 22,1 + e (9.36)
Next, we estimate the right-hand side of (9.36). In view of (9.22) and the boundedness

on L*(P,,) of P<;, we have
IV P (IR 2,y S 1P (X - VR 2, + e (9.37)
Now, recall the definition (9.24) of the scalar h and the vectorfield F', the decomposition
(9.25) of nx - VX and the estimate (9.26) for h and F'. Using Bernstein for P<;, we have

|P<i(Pos(W)F)llrie S 23(1Ps; ()P, 4 (9-38)

173
tLI/

S 25(|Psihll s, [ F L2

J 2
< 2 (Z22|!BhHL2<Hu)> 1 2274
[>j
J _L
< 9% (Z2 2) VRl 222y 1F [ 234.,)
[>j
N
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where we used Bernstein and the finite band property for P, and the estimate (9.26) for
h and F.
Next, we evaluate the first term in the decomposition (9.25) of ny - V. We have

1P<j(P<j(h)F)|lz2,1 S [[P<j(h) P<j Fll 12,11 + [[[P<j, P<j ()] )| 11, 12 (9.39)
Since [P<j, P<;(h)] = [P}, P<;(h)], we have in view of the commutator estimate (9.11)
I[P<js P<j (M) 2, = Psj, P<i(R)]F) Iz re, (9.40)
S |||W7h|\L2(Pt,u)HFHLQ(Pt,u)HLg
S VA2l Fll2 6

where we used in the last inequality the estimate (9.26) for h and F. Next, we consider
the first term in the right-hand side of (9.39). We have

1P<j(h)P<j(F)l12,10 S [1PP<; (F)| 2,1 + 1P (h) P (F)l 12,1 (9.41)
The first term in the right-hand side of (9.41) is estimated as follows
1P ()t S Il Pes(F)l 2o (9.42)
S Allsczll Pl
S 6

where we used the boundedness on L?(F;,,) of P<; and the estimate (9.26) for h and F.
Next, we estimate the second term in (9.41). We have

1P (h) P<j(F)ll2py S 155 ()| e 1P<i (F) | o)

1 J
S (Z QQHBhHLZ(Pt,u)) 22| F |l 2p, )

I>j

_1 J
S (ZQ 2) VAl 2P )22 | Fll 220

I>j

S O IVAl L2 1| 2(py)

where we used Bernstein for F; and P;, and the finite band property for F;. Taking the
L} norm, we obtain

1P (h) P (F)l s 22, IV 200 | Fl 22 34

S
NI (9.43)

where we used in the last inequality the estimate (9.26) for h and F. Now, (9.41), (9.42)
and (9.43) imply
[1P<j(h) Pj(F)lz2,11 S &

Together with (9.39) and (9.40), this yields

1P<j(Pej(R) )l 2,11 S &
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Together with (9.38) and the decomposition of ny - YX given by (9.25), we obtain
| P<;(nX - W@”Li/@ Se

Together with (9.37), this yields the desired estimate (9.35). This concludes the proof of
the proposition.

A Appendix to section 4

A.1 Proof of Proposition 4.11
Recall from the Gauss equation (2.38) that:

1.0 - 1
K = §XABXAB — Ztrxtr& —p.
First, remark from (3.58) that:
| 1
SXABX ;5 — ~trxtry Sxliers SMKX)? S e (A1)
2 4 L?OL2/ t !

Furthermore, from the assumptions on the curvature flux (2.58) (2.59), we have:

ol L2,y < € (A.2)

(A.1) and (A.2) imply (4.29).
We now concentrate on (4.30). We assume:

S OINPE s, + [P0 s, S B2, (A3)

>0

where F is a large enough constant. We will then try to improve (A.3). Note that (3.36),
(3.37) and (A.3) yield for any scalar function f on P ,:

2
IV f 2 S WA L2p,.0) + (Be + E* OVl 22p,.)- (A4)

In view of (A.1), we just need to bound HA’%pHLtooLz/. Note from (3.37) that it suffices
to bound:

HP@p”%f’Li, + Z 2_j||Pjp||%t°°Li/'

Jj=0
The term ||P<opl| z2, is easier to bound, so we concentrate on estimating the sum
x

> 502 1 Pipllpeer2,- We will use the following variant of (3.62) where we do not yet
use Cauchy-Schwarz in ¢ for the integral containing Dy F":

1
17 pe 2, S / IDLF 2 (py ) IF Nl 2yt + 1 F |20, (A.5)
® 0
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Using (A.5), properties (ii) and (iii) of Theorem 3.10 for P;, the bound on p given by
(2.59) and the bound on n given by the bootstrap assumption (4.1), we have:

22’jllﬂplliﬂg,

320

1
S D2 (/0 IIPjPIIL2<Pt,u>IIDLPjpllm(Pt,u)dt+IIPij%Q(Hu))

J20

We have:

as 4 (A.6)
S X2 ([ 1ol IDePolo o) + 32 ol
320 0 320
!
S S0 ([ 1Rl ot Polion, i) +2-
>0 0
nLU(T)p =U(m)nLp + V(1) (A.7)
where V(1) is satisfies:
(0 = M)V (7) = [nL, AJU(7)p, V(0) = 0. (A.8)
Using (3.15) and (A.7), we obtain:
nLPjp = PjnLp +/ m;(T)V (7)dr. (A.9)
0

We now estimate ||PynLpl|2(,). We may assume the existence of };j with the same

~ 2
properties than P; such that P; = P; (see [10]), and for simplicity we write P; = P?.
Also, using the fact that AA™' = I and that A commutes with P;, we obtain:

P, = APPA™, (A.10)

which together with property (iii) of Theorem 3.10 for P; yields:

I1PinLpllr2me,) S AP (PAA™ nLp) || 20, S 2| PAA™ nLp|| 1234, (A.11)

Using the Bianchi identity (2.53), we have:

nLp=df(nB) — F(n)5 — 5ntrp —

n

SX-atn(e—22) B, (A.12)

Together with properties (3.25) and (3.27) of A, this yields:

A 'nLpll 2y S

N

AN ZA

HnﬂHLQ(Hu) + H—W(n)ﬂ — gntrxp — gz o+ n(e — 2?) . B o
213,

€+ HW(H)HL?"Li, 18] L2(2.) + HtrXHLt‘X’Li, o1 2 (340

XN zgora, lell L2,y + 1€ = 2€l g s, 18] 2221

e(1+Ni(V(n)) + Mi(X) + Ni(e) + Ni(€))

g, (A.13)
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where we have also used (3.58) to bound the L$°L%, norms, (2.59) to estimate «, 3, p, and
the bootstrap assumptions (4.1)-(4.5). Now, (A.11) and (A.13) yield:

> 2Pl < D IPAT Ll S IA Lol S (A1)

j=0 j=20

Property (ii) of Theorem 3.10, (A.6), (A.9), (A.2), (A.11) and (A.13) imply:

S 2 Pl £ 3027 ( / 1Py pllusyInLP -pnp(pt,u)dt)ﬂ?

7>0 7>0

<D 27N Ppll e | PinLpl 2

7>0
b/n 7n] T

+223</ 1P;pll 2y dt>+52
§>0 L2(Pru)
S ZHPJPHL%HU) + Z 272JHP'an“L2
7>0 (A“15)

+ 32l / m(r

j=>0

2
< (Z 2-J||1%p\|LgOLg,>

§>0

+ &2

LtlLi,

1
2
(Z?’ / IVl >+
7>0 L(0,1)
which yields:
2
S 2Py, S 327 / my (M) () 2 dr bt (A16)
>0 >0 L'(0,1)

In view of (A.16), we have to estimate ||V (7)|/12(p,.). Let a,p real numbers satisfying:

1 2 8
0<a< 3 2 < p < 400, such thatp<min(1 ,§> (A.17)
—a

(3.30) implies:

A=V (7 )|’L2(Ptu)+/ VA=V (T)[22(p, 7"

//p A2V () [nL, AU (") pdps dr’. (A.18)

Let p be defined in (A.17), and let p’ such that %—l— 1% = 3. Using the commutator formula
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(2.49), , and integrating by parts the term Y>U(7)p yields:
/ / A2V () [nL, AU () pdjrg adr” (A.19)
Pt u
IV x| z2(p,.) + [I0(2XE — etrx — Virx) || L2(p,.,) /0 VU)ol Lo )

<AV ()| o, d7" + ||nXHLp'(pt,u)/o IVU (7)ol o, VATV (T) | 2(p, 0 d
In view of (3.3) and the fact that 2 < p’ < 400, and (3.23) and (3.22), we have
||A_2av(7'/)||m’(pt,u) + VA2V () 2

> >
S A2V o VA2V adp oy + [PAV () 22010
S ATV |z + IVAT* V() 2p)

S ATV ) )

S AV IV,

Together with (3.3) and (A.4) we infer:

/O IVU () pllzr o [A V() ot T + /0 IVU () pllzr o IFATZV ()| L2, dr”

T 2 1—2
< / IOl 2 1T (ol 200

A= V(N g2, AV 2, AT

S B [ ITUE AUl IV, IV (e
s B [ 19Ul ) (W'M(T’Wih%mﬂ ’
$ (TN (i) NV,
;
< (B8 [IVUE 0l e+ 80D [l )

1
2

= HA—QV(T’)Hig(ﬂ’u)dw) (A.20)

—a T _p=2
X (5/0 A V(T/)H%Q(Pt,u)d'r,‘i‘/o 7'

which together with the estimates for the heat flow (3.8), (3.10) implies:

/0||Y7U(T')PHLP(P,:,“)HA_ZQV(T/)||Lp/(pt,u)d7'+/0 IVU () pllo ) IVA>V (7] 2By T

1
2

1 ! —a ! —p=2 —a
S Ez|pllrae.., (/0 |A! V(T’)HiZ(pt,u)dT’Jr/o T ||A V(T’)I!iz(pt,u>d7’)

S E2lelm(pt,u)</0 A=V ) I2p, ) + IVAT V()2 p, )T

+/0 T/_(Lp||A_aV(7J)||%2(Pt7u)d7J> (A21)
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where we used (3.23) in the last esimtate.
Finally, the choice of p (A.17), (A.18), (A.19) and (A.21) yield for 0 < 7 < I:

||A_GV(T)||%2(Pt,u) + /0 ||WA_GV(T,)||%2(Pt,u)dT/ (A.22)
S E(|V(0)ll2(p,) + 12X = etrx — Verx) |2 ep,) 00 F2p,)-

Using the interpolation inequality (3.22), we obtain:

2(1—a)
/ IV, < / IV () ot IFAV () 22
< B (V0 i + In(2RE — oy — Wtrx)Hszm)) ol

which together with the bootstrap assumptions (4.1)-(4.5), the estimate on p (A.2), and
the fact that m is supported in (0, 1) yields for 7 > 0:

Yoo 1 ) 3
‘ / my (M) IV () 2 dr ( / |yV(T)||gg(Pt,u)dT)
0 LY( 0 L1(0,1)

< 2 BHMO)WT) + 1l 0) + 1] 200 N QO €) + MO 200
< 2aF3e

(A.23)

< 9ja
0,1

(A.24)
In turn, we obtain together with (A.16) and the fact that 0 < a < %:
> 2P il Tz, S > 2779M0Ee? 4 &% < Ee’. (A.25)
Jj=0 Jj=0
Using (A.1), we obtain for K:
Y 2 PK ey, S EE (A.26)
7>0 :
which is an improvement of (A.3). Thus, we have proved:
Y 2K g2, S €% (A.27)
720 :
which together with (3.37) concludes the proof of (4.30).
A.2 Proof of Lemma 4.14
First, note that
[ Fave)|dus [ 6 FYG]S [Pl |Gl <+
R|JP, St
so that we have
lim inf/ F(u, )YG(u,-) = 0. (A.28)
U—>—00 Pin
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Next, let ug < u;. We have

/Pt F(uy,-) - YG(ui,-) = /P F(uo,.)y(;(um.H/u:l a, (/PFWG> du

o, (/ F-WG)
Pt,u

S [ Plu)¥G.) + [
P
Letting ug — —o0, using (A.28), and taking the supremum in u,, this yields

an ([ rve)s [l ([ rovo)

Together with (3.77), this yields®!

sup ( [ r m)

/ / WVNF - VG + F -V VG +tr0F - YG)dyu ,

du.

du.

N

du

du.

< / / WV F - VG + F - YY\G + F - [V, VIG + ti0F - VG,

Decomposing
F WWNG = dip(F - WNG) — VE- WNG

and integrating by parts the divergence term on P ,, we deduce

an [ #ov)
S //P ‘WNF VG —YF -VyG=b"'Vb-F-VyG+F - [Yy V|G + tr0F - YG|bdp . du,

which in view of the coarea formula (3.76) yields

sup </P F- WG) (A.29)

/ W F - YC —VE VG~ b7 Vb F - VG + F [V, YIG + t6F - Y5,

IVEN 2o IVGllzay + (67 Wl sy + [0l a1 2o VGl 2,
HIF s iy VIG5,

21Recall that F - YG is a scalar by assumption so that we may apply (3.77) with f = F - YG. Recall
also that the definition of Vy and of ¥, coincide on scalars so that Vy f =YV F-YG + F - Y, VG.

N

AN
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The commutator formula (2.47) implies??

||[WN:W]G||L§(Et)
< (7Bl sy + Il oy + 10l VG2,
+(IR | r2cze) + (Il 2o + el oy + 1€l s + X sy + 1< zas)) DI s

which together with (A.29) and the Sobolev embedding (3.71) on ¥, implies

sup (/P F- WG) (A.30)

< (1 + 107 Wb | Lagsy + XNy + [0l + (IR ez + (Il s + [Ellzas,)

Il 2o + Xl za + ||C||L4(Et))2> I F ez =) |G a0

where we used in the last inequality the definition (4.61) of € in the last inequality. Now,
in view of the embedding (3.58), we have

15~ Wl sy + Ixllzacsm + Inllzaes) + €l o + 1€y + Ixllzas,) + ¢l i)
HbilybHLgOLi, xlegers, + Il gers, + €l gors, + 1€l egers, + xllegers, + ¢l pgers,

<
S NOTV0) + [ltrxll e, + Ni(R) +Ni(k) + ([0 Wl e s, +N1(Q)

where we used the identities (2.25) for £ and for x, as well as the definition (2.21) of n
and € in terms of k. We deduce

||b_1y7b||L4(Et) +Ixl ey + Illzasy + €l ey + 1€l ey + [IXllzasy + K] zan
N1(b7YD) + [trx | pors, + N1(X) + Ni(k) + anWnHLgoLi, + N1 (€)

Na(b = 1) + [ltrxl peere, + I Wtrx| ez, + N1(X) + Ni(k)

+IVnllerz, + HWQnHL,?OLi, +Ni(¢)

1, (A.31)

AN AN

N

where we used in the last inequality the bootstrap assumptions (4.1)-(4.6) for b, n, try,
X, k and (. Finally, (A.30), (A.31) and the assumption (2.59) on R yield

u

Sup (/P F'WG> S ||F||H1(Et)||G||H1(Et))

which is the desired estimate. This concludes the proof of Lemma 4.14.

*?Recall that by definition, ||R||2(s,) controls the L?(X;) norm of any curvature component, and in
particular of § and 3 appearing in (2.47).
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A.3 Proof of Lemma 4.24
—1

Using the formula (3.54) for the commutator [*D; ", ¥V, |, we have:
D V(B) = =D DL Y, (D ()

which in view of Lemma 3.17 yields:
1D Vo) Bz, + 1D Tl (D, (4.32)
S Dy, Y, 0D N(B)) 3+ IFDy, Vo DL O 5

‘ | L2L LiL2

Now, from the commutator formula (2.48) and the fact that *D;*(3) is a scalar, we have

D1, ¥, )P (B)) = nx - V(D1 (B))
which together with (A.32) implies:
DT Vo) (B)llzzes, + 1P Vord ()l iz,
I - W(*Dfl@)llﬁﬁ + [Inx - W(*Dfl(é))HL%L%
Iz (ol ge s, + X0 2228 NIV CDT (B)l p2)
(M) + ltrxllzors, + 198Xl o2, ) 18]z,
De?

<,

AN

AN

AR AN ZA

where we used the bootstrap assumption (4.1) for n, the bootstrap assumptions (4.4)
(4.5) for trx and X, the curvature bound (2.59) for 3, and the estimate (3.50) for *Dy .
This concludes the proof of Lemma 4.24.

B Appendix to section 5

B.1 Proof of Lemma 5.6

We decompose ||Pj(H - F)| 12(x,) using the property (3.16) of the geometric Littlewood-
Paley projections:

1P;(H - F)llc2w) S WP (H - PeoF) |20,y + ) _IPi(H - PF) || 1200,)- (B.1)

>0

We focus on the second term in the right-hand side of (B.1), the other being easier to
handle. We start with the case | < j. Using the assumption (5.81) for F', the Sobolev
inequality (3.58) and the weak Bernstein inequality iv) of Theorem 3.10, we have:

IB,(H - PiF)lzouy S IH - AF o,
18l | AF s,

<

1
S MNU(H)22||PF| 124,
< NU(H)(2'Cy + 22Cy),
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which yields:

S NP(H - PiF) 200, S MH)(2'CL+ 2:Cy) SNI(H)(20 +25Cy).  (B.2)

I<j I<j
We now focus on the case [ > 7. We further decompose:
1P;(H - BF) |20,y S 1Py (P<iH - PF) | 1230,) + (|1 P(PoiH - BF) |2,y (B3)

We evaluate first the second term in the right-hand side of (B.3). Using the dual of the
sharp Bernstein inequality (4.32) for scalars, we obtain:

|Pj(PsiH - PF) |2y S 2j||P>zH'PlF||L§L;, (B.4)
2j||P>zH||L;><>L§, | P F|| 234,
23N (H)(Cy +275C,),

AN AN

where we used the assumption (5.81) for F' and the estimate (5.87) for H.

We now consider the first term in the right-hand side of (B.3). We use the existence of
a Littlewood-Paley projector P, associated to a function m satisfying the same properties
than m, such that

P =2"%AP, (B.5)

see Theorem 5.5 in [10]. Using the identity (B.5), (5.88) with p = %, the dual of the sharp
Bernstein inequality (4.32) for scalars and (5.87), we obtain:

| Pj(P<iH - PF)| 1203, (B.6)
= 27%||Pj(P<H - APF)| 12(34)

S 2P AP H - VEE) |20,y + 2 | P{(VP<tH - VB ||z,
S 22N PaH YRE g +2 VPl - YRF |,

o434 5 —2l+j P,
S 2 H s IVPF 2wy + 27|V P<tH e, | VB 2200
< (T 4 2N (H)(Cy+272Cy).

B.2 Proof of Lemma 5.7

We decompose || Pj(hf)||1rr2, using the property (3.16) of the geometric Littlewood-Paley
projections: :

Hpj(hf)HLfLi, S HPj(hP<of)HLfL§, + ZHPj(hPlf)”Lij,- (B'7)

1>0

We focus on the second term in the right-hand side of (B.7), the other being easier to
handle. Using the L*-boundedness of the Littlewood-Paley projection P;, we have:

1
|B, (P P)llsrz, S IBPlipsz, S o= (21 + 25 C) (B.)
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which gives the desired estimate for the term
> NP (APl prz,-
I<j

We now decompose [|P;(hPf)||rrz2, again using the property (3.16) of the geometric
Littlewood-Paley projections:

1B, (P gz, S IPPoW P D lizaz, + SIB PP azz,.  (B)

q>0

We focus on the second term in the right-hand side of (B.9), the other being easier to
handle. We have:

PP R e, S P IPR) g, (B.10)
S 2P (M) ez, 1P () pre,

< Y20 +22)| Py(h) ez,

where we used in the last inequality the assumption (5.83) for f.

We now derive a second estimate. Using the properties of the Littlewood-Paley pro-
jection P;, we have:

IPAP (WP sz, S 2 2P (P AR g, (B.11)

S 2 AP PP gz, + 22 PRV PR) Pz,
272 Py (AP P g

S P PR gz, + 2 VR P lipes,
+27 2 APy (R) Pif |l oy,

S AR el gz, + 22UV P (W) szers, | P s,
2P ) e, | P e,

S (PR, + 2 I RO TR0

i 3L ; _
12 E VB () ez, + 2% 2’\|Pq<h>uLtng/) 1P g,
< (9L E T ) Py (h) e, (2 + 256 (w),

where we used the dual of the sharp Bernstein inequality (4.32) and the finite band
property for P;, the weak Bernstein inequality for P, the Gagliardo-Nirenberg inequality
(3.3), the Bochner inequality (4.34) for scalars, the finite band property and the sharp
Bernstein inequality (4.32) for P,, and the assumption (5.83) for f.

Then, using (B.10) when ¢ > [, and (B.11) when ¢ < [, we obtain:

D P PO Pf)prz, S hlls (27C1 + 23 ()

q,l>j
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which together with (B.9) yields:
SR (P Ipse, S Mkl (27C1 +25C). (B.12)
1>

Finally, using (B.8) when [ < j and (B.12) when [ > j, we obtain:
S PPz, S (hllpe + [1hlls)(27C1 + 22 Ch),
I

which together with (B.7) implies:
1B (h)lzz22, S (1ol + [h]lm)(2Cr +23C). (B.13)

Now, the embedding (5.9) applied to h together with (B.13) concludes the proof of Lemma
2.7.

B.3 Proof of Lemma 5.8

Let f the scalar function on H,, defined by f = D;(F'). The assumption (5.85) now reads
for all 7 > 0: '

1P fll 2oy S 27C1 +22C (B.14)
where (1, Cy are constants possibly depending on u. From the definition of f, we have
F = D;'(f). We decompose the norm ||P;F||2(,) using the property (3.16) of the
geometric Littlewood-Paley projections:

1P Fll 2 S NP Pao( A2 + D NP Py(H)llz20- (B.15)
q>0

The first term in the right-hand side of (B.14) is easier to handle, so we focus on the sum
in ¢q. We have:

1B D Py(f)llezowy S 27 IVDT  eacmnan IPal )2 S 277(27C) +22Cy), (B.16)

where we used the finite band properties of the Littlewood-Paley projection P;, the esti-
mate (3.50) for D;' and (B.14). We now derive a second estimate. Using the properties
of the Littlewood-Paley projection P, and the identity (3.39) for D;, we have:

I1P;Dr Py(f)ll z230) 27 Py AP ()l 2 (B.17)
272 Py D1 Py(f) |2y

272 Py( Pl z2(py

20720(210 + 23 (),

AR IR IA

where we used the finite band properties of the Littlewood-Paley projection P; and (B.14).
We now use (B.16) for ¢ < j and (B.17) for ¢ > j to obtain:
D MNP PNy S D27 (210 +28Co) + ) 27210 +22Cy)
¢>0 q<j a>j
< O +2720,

~Y

which together with (B.15) concludes the proof of Lemma 5.8.
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B.4 Proof of Lemma 5.9
First, from the finite band property of the Littlewood-Paley projection P;, we have:
IVP,F s, S 2P Fllggers, (B.18)

so that we only need to estimate the first term in the left-hand side of (5.87).
Using (A.5), properties (ii) and (iii) of Theorem 3.10 for P;, and the L* bound on n
given by (2.67), we have:

SV IPF s

>0 o
$ T2 ([ IR Pl VPPl ot + 1P o )
7>0 0
1
< Y ( / tuFuLz(pt,u)||WRLPjF||L2<pt,u>dt)+Zzﬂuwniw
7>0 0 3>0
< S VP 1PV Fllecun) + S 2P Fll e P, Vo Fll g, + NG (F)?
7=>0 7>0
: :
< (szr|aFuigop,) (sz\rm,mL]Fuiw,> NP
3>0 ’ §>0 ’
which yields:
S VIBF e S S 2BV, IR, + M(FP (B.19)
7=>0 7=>0

Now, the commutator estimate (5.24) and (B.19) yield
D YIPF|Gere, S D Y2 UNUF)? + MI(F) S
>0 T>0

which together with (B.18) concludes the proof of Lemma 5.9.

N (F)?

B.5 Proof of Lemma 5.10

By duality, it suffices to prove for any scalar function f on F;,, for any 2 < p < 4+o00 and
for all 7 > 0 the following inequality:

_ 1y
VP fllzocpiny S 2007 )| Fll 2 epin- (B.20)

Now, using the Gagliardo-Nirenberg inequality (3.3), the Bochner inequality for scalar
functions (4.34), and the property iii) of Theorem 3.10 for Littlewood-Paley projections,
we have:

5 1—-2 2
IV lrn S UV P st VP Uiy + VP e

1—2

2 .
AP fll2cpi) +IVE; Fllzenn) IV Pl 2, + 2 1 Fll220e0
2707 fll 2
which is (B.20). This concludes the proof of Lemma 5.10.

S
S
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B.6 Proof of Lemma 5.11
We first decompose f using the property (3.16) for the Littlewood-Paley projections P,.

We have:
F=>F (B.21)
1

where f; is the solution of the following transport equation:
nL(fl) = 07 fl = -PlfO on PO,u- (B22)

Using the L? boundedness of P;, the equation (B.22), and the estimate (3.66) for
transport equations applied to f;, we have:

1P filliers, S Wlliers, S Wfilliz e S IPfollizrn S €25, (B23)
Next, we derive a second estimate for || P} fi| o 12,- We define v; as
v =—2""Afi + [,
which in view of (B.22) satisfies the following transport equation:
nL(v)) = —27%nL, Alfi, v = 0 on Py,,. (B.24)
The definition of v; yields:

Pi(fi) = 27" Pi(Af) + Pi(w)

which together with the finite band property for P; implies:

1z, S 22 2 W filligerz, + 1Pz, (B.25)

p ([ r.sim)

where we used the estimate (B.23) for f;, and the transport equation (B.24) for v; in the
last inequality. Next, we estimate the second term in the right-hand side of (B.25). The
commutator formula (2.49), written schematically, implies:

|2 ([ i) b ([ awonwm)|

P ([ @t x e wnyn)

< %50 427

)

L L?,

<

L L?,

1

L L2,

which together with Lemma 5.16 and the dual of the sharp Bernstein inequality (4.32)
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for P; yields:

2. ( [ r.ain)

2 \lnx - Y fill 2,y + 2

(B.26)

/0 (n(Vx + x - (6 +n"' Y)Y 1)

2|In|| XN 2o 22 W fill L2y + 27 |n(Yx + x - (€+n ' Y)YV fill 1 (340
2J:5||y7fl”L2(Hu) + 27 ||n|| oo ([ VX 2340) + N1 () N1 (E) + My (0 V) IV fill 231
22|V fillL2310)

where we used the estimate (3.66) for transport equations, and the estimates®® (2.67)-
(2.71) for n, x, and €.

In view of (B.26), we need to estimate ||¥ fi||2(3,). In view of the transport equation
(B.22) satisfied by f;, we have:

nL(Wfl) - [nva]fh Wfl - Wjjlfo on PO,u~

Together with the estimate (3.66) and the commutator formula (2.48), this yields:

Vil S IWEfolle2r) + I InLs Vil
< 2IPSfollar,. + Inx - Vhillez, oy

31
S 220+ [Infleelixlzes 2 W Aill L2
<

3l
22C + ||V fill L2 ()

where we used the finite band property for P, the assumption on fy, and the estimates
(2.67)-(2.71) for n and x. Since ¢ is small, we obtain:

N

LyeLl,

AR A

31
IV fill 2.y S 22C. (B.27)

Finally, (B.26) and (B.27) imply:

t
o ([ wzan)|  seres
0 LyoL?,
which together with (B.25) yields:
1P (fllpgerz, S 24750 + 2775 Ce. (B.28)

23For n, note

Ni(n™'Y¥n) I~ Wnll e, + IV W)l e, + VL (7 W0) g2,

[Vnl[per2, + HV2”||L§°L2, + IVDrn|[peo 2,
xT xT xT

I /ANRIZANRYAN

€.
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Now, using (B.21), and summing (B.23) for | < j and (B.28) for [ > j, we obtain:

HijHL?"Li, S ZHPj(fl)HLfoLi, S C2?
!
which yields the conclusion of Lemma 5.11.

B.7 Proof of Lemma 5.12

We decompose || P; <f0t(f,u1)d7'> || 2(3,) using the property (3.16) of the geometric Littlewood-
Paley projections:

([l
. ‘ P (/Ot(fP<0M1>dT> P (/Ot(fplﬂl)dT>

We focus on the second term in the right-hand side of (B.29), the other being easier to
handle. Using the L? boundedness of the Littlewood-Paley projection P; and the estimate
for transport equations (3.66), we have:

(B.29)

)+Z

>0

L2(Ha L2(Hu)

In( (Pu)ar) < | [ vrmar (B.30)
0 L2(Hy) 0 L2(Hy)
N Hf]Dl/MHLi,Ltl
S HfHL;?Lprl,UlHLQ(Hu)
< De?2 + De?22(u),

where we used the estimate (5.93) for p1 and the assumption of Lemma 5.12 for f.
We now make another decomposition using the property (3.16) of the geometric
Littlewood-Paley projections:

b ()],

‘ & (/ot(P <o(f>Pl(u1>>dT>

We focus on the second term in the right-hand side of (B.31), the other being easier
to handle. Using the dual of the sharp Bernstein inequality (4.32) and the estimate for
transport equations (3.66), we have:

2 ([ enmgur)

(B.31)

+3|le ([ @nniar)

L2(Hu) >0

L2 (Hu) ‘

< o / (B,(f)P())dr (B.32)

L2(Hy) L7LY,
S 2B Bl o

5 2J||qu‘|L2(Hu) |Plf||L2(Hu)
<

. 2
27 (2" + 222y (u))[| Py f |l 230




where we used the estimate (5.93) for p in the last inequality.
We now derive a second estimate. Using the property of the Littlewood-Paley projec-
tion P, we have:

2 ([ Bt

L2(Ha)
< o |n ([ ane)|
< gullp ( / ABLF)P)Vdr )LWM 2 ( / Ak (Y(P <>>Pl<m>>d7) .
w2 ([ <4A<Pq<f>m<m>>df) "

which together with Lemma 5.15, Lemma 5.16, the dual of the sharp Bernstein inequality
(4.32) for P;, and the estimate for transport equations (3.66) implies:

‘ P ( / <Pq<f>Pl<u1>>dT)
0 .Lz(Hu)
B ) Pl + 2 DD P, + 22 NAP) P,

PN Py () pay | P oy + 22 IV () | oo s,
FP AP ) 20 l| Pl 20

25402 By )|z | Pl 20+ 2547 2Dl x| B 200
+27202 P ()] 1234 P2,

< (22j+q—2l+2%+q—%l +21+2‘1_21)(52l—|—EZ%W(U))”Pq(f)HL?(Hu)?

(B.33)

N

AN

N

where we have used the weak Bernstein inequality (see Theorem 3.10) for P, and B}, the
sharp Bernstein inequality (4.32) for P,, and the estimate (5.93) for p.
Then, using (B.32) for ¢ > [ and (B.33) for ¢ <[, we obtain:

I ( / t(Pq(f)Pz(ul))dT)

q>0

S (@4 287%)(e2 + e229(u) (ZQqHP HL?Hu)

q>0

L?(Hu)

+2/(De + D2~ 2y(u <Z2 20| Py (f )HLQ(Hu)>

q>0

< (2272 4 995 )(De2l + De22y(u))e

+27(De + D=2 2y(u <ZQ 2 Py( )l p2 3t > ,

q>0
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where we used the bound on ||V f||po given by the assumptions of Lemma 5.12 in the last
inequality. Together with (B.31), we obtain:

p ([ (rruir)

< (2572 4 2% 79)(De2l + De227(u))e (B.34)

L2(Hu)
+27(De + De2 2v(u)) (Z 9~ la=llga|| p( f)HLz(Hu)> .
q=0

Finally, using (B.29), (B.30) for [ < j and (B.34) for [ > j, we get:

P; (/Ot(ful)dT)

< (De2 + De2ivy(u))e (B.35)

L2(Hu)
+(De2 + De23(u (Z 27197129\ P, ()| L2 a1 )
1,q>0
S (De?’ + De2iy(u))(e + ||V f|s0)
S (DY + De*229(u)),
where we used the bound on ||V f||po given by the assumptions of Lemma 5.12 in the last
inequality. This concludes the proof of Lemma 5.12.

B.8 Proof of Lemma 5.13

We have
p([ vy, <c>>df) - (B.36)
< n ([ asrvonr)| - oln ([ @rmiow)|
< o ([ i, G0 I TG MR AT I
elm ([wuom)|
< |m ([ asr-waonr)| 1P
eln ([ v, sn ([ @m0

where we used the assumption of Lemma 5.13 YF =V, ,(P) + E, and then where we
integrated by part in ¢. Since ||E|po S € and Y, (¢) satisfies (5.92), the fourth term in
the right-hand side of (B.36) is estimated using Lemma 5.14:

< D=7 4 De22%y(u). (B.37)

‘ by (/ot(E ' WL(O)dT> L2(Hu)

Next, we estimate the first, the second and the third term in the right-hand side of (B.36).
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B.8.1 Estimate of the first term in the right-hand side of (B.36)

We decompose
| P; (fo dif(F - V(¢ ))dT) | 2(3,) using the property (3.16) of the geometric Littlewood-
Paley projections:

o ([awirwcnar) | s e ([ e poviopr)| e
X n ([ o no)]

We focus on the second term in the right-hand side of (B.38), the other being easier
to handle**. Using the L? boundedness of the Littlewood-Paley projection P;, the weak
Bernstein inequality for P;, and the estimate for transport equations (3.66), we have:

([ asr vy (339
0 L2(Hy)
s m([or mvgen)| |m ([ @ vrygem)
L2(Hy) 0 L2(Hy)

< 2| [iwr-ngor| | [ @ vrw, e

L7LZ, 0 L2(Hay)
S BIYF BTNy, +IF AVl
< HIVF e 1PV L (Ols, + 1P s 2 VAT, (Oll 2o
< 2815 (D2 + D22 2y(u)) + De2! + De222~(u),

where we used the finite band property for P, the weak Bernstein inequality for P, the
estimate (5.92) for ¥ (¢) and the assumption of Lemma 5.13 for F.

We will need another estimate for || P; ( fot dif(F - PV (¢ ))dT) | 22(3,)- We decompose
| P; (fot dif(F - PZWL(Q))dT> || 2(3,) using the property (3.16) of the geometric Littlewood-

24The terms involving the projection on low frequencies P are always significantly easier to estimate.
In the present case, the first term in the right-hand side of (B.38) can be estimated exactly as (B.39)
with [ = 0, i.e. we obtain

([ st Py (<ir)

which immediately yields the desired conclusion (B.55) for this term (with 2% room) without having to
go through (B.40)-(B.54). In the sequel, we will consistently leave to the reader this type of terms.

< 24(De? + Dety(u)),

~

L2(Hu)
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Paley projections:

| ([ i pvsionar)| s ([ et regor)| e
D HGRIIRE AT

We first estimate the second term in the right-hand side of (B.40). Using Lemma 5.16
with p = %, we have:

\

AN

n( (P (F) AY,(O)r ) 24 P (F) - Y, (O]

4
L3I}
37
2% | Py(F) | 200 | IV L (O 2214,

8, L
22 27V F | 2022 [0V L ()| 22030,
27 ~"2¢(De + De2 2y (u)),

L2(Hu)

AR AR A

where we used the finite band property for P,, the weak Bernstein inequality for P}, the
assumption on F' and the estimate (5.92) for ¥, (¢). This yields the following estimate
for the the second term in the right-hand side of (B.40):

D

a>1

<27 2¢(De + De2 2y(u)). (B4
L2 (Hu)

([ anem) vy )

We now estimate the first term in the right-hand side of (B.40). Using the property
of the Littlewood-Paley projection P, we have:

S 272l

Ay A(P(F)- PY,(C)ir

L2(Hu)

P, ( /Ot dif(P<(F) - MVL“))C”)

L2(Hu)

5 2—2l

([ asenipatr)-vRY,0)0r )

L2(Hy)

+2—2l

([ awwratr)-vRY,0)r )

L2(Hu)

which together with Lemma 5.15 and Lemma 5.16 with p = % yields:

' b </ot dip (P (F) - PlWL(O)dT) 12(3.)

S P Pa(F) - YRV lsz s + 22 VP (F) - YRV

(B.42)

31
L3 L}
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Using the fact that P<(F) = F — Ps,(F), we estimate the first term in the right-hand
side of (B.42) as follows:

|P<(F) - YRV (Ollez (B.43)
S IF YRVl e + D IPAF) - YAVl ez 12
q>l
S WPl VR (Ol 0w + D || 1P E)sscp IVAY (Ol e,
q>1 t
S <2(De + 2 Der(w) + 3 IR (Flscr ) IVAY L Ollscr |,

q>l

where we used the finite band property for P, the assumption on F' and the estimate
(5.92) for ¥, (¢). We consider the second term in the right-hand side of (B.43). The
Gagliardo-Nirenberg inequality (3.3), the Bochner inequality for tensors (3.7), and the
weak Bernstein inequality for P, yield:

IVEV L(Olzap..) (B.44)
< IV BN IR (Ol oy + VAT (Ol 22000
(IARY (O lz2(r + 1K e VAT Ol 2cr
SRTSTEAN 2> AN C ] AN 125 (o L
1
BTl 2 BT L Fagp, + 2 IAT O 200,
22| PV ()l (p)-

Now, (B.44), the weak Bernstein inequality for P,, the finite band property for P,, and
Lemma 5.9 imply:

N

m\»—‘

1 3
< (@4 2b KL, )P

1P VRV L(Ollscpun | (B.45)
1.1
S IR E s 2+ 250K >222|\BWL<<>||L2<B,“> B
3l 3l 3
S NP ezs 22 IRV (Ol 200y + 1P (F) s, 2% 1K o 1PV () 200
S 27| WF e, (De + De22y(u) + 278 TN (F)et (De + De2 2y(u)
S @Y 21D 4 D2 by (w)

where we used the bound (4.29) for K, the assumptions on F' and the estimate (5.92) for
V. (¢). (B.43) and (B.45) yield:

1P<i(F) - VRV L(Ollzz,r S (2Z+Z )) (De? + D27 24(u))

q>l

< De*2b 4 D822%7(u). (B.46)
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Next, we estimate the second term in the right-hand side of (B.42):

IVP<(F)-VEYL(Oll 4, < I¥VP<2(F)zes, WPV (Ol 220 (B.47)

L3 Ly
_L
S <§ IV Ey(F |L2L4> '(De + De2727(u)),
q<l

where we used the finite band property of P, and the estimate (5.92) for ¥, ({) in the last
inequality. We estimate ||V FP,(F)| 14(p,.,) using the Gagliardo-Nirenberg inequality (3.3),
the Bochner inequality for tensors (3.7), and the weak Bernstein inequality for P:

IVPA oy S IFPPE 2 IV B Ear, oy + IV PAE) 2
S O (IAP ()l 2p) + 1K lL2p ) VP () 22(py0)

K ey | oM 200 22 1 Po () ) + 2B (F) 2
S @+ K32, ) 228 | Py(F) | 20

which together with the finite band property for F,, and Lemma 5.9 implies:

3q q
IVE,(F)l 2212, 22 || Py (F)ll 2y + 1K [ 2 (priy 22 1 By (F) | o2, (B.48)

N
S 28|\ V| ey + NI (F)
<

q

22¢

where we used the bound (4.29) for K and the assumptions on F. (B.47) and (B.48)
yield:

IVP<i(F) - VEYVL(Oll 4 | S <2236> 2!(De + Dz2"27(u)) (B.49)

L3I}
® q<l
S 2%(D52 + D522*%7(u)).
Finally, (B.42), (B.46) and (B.49) imply:
‘ < (22j71+2%’%)(D52+D522’%’y(u)). (B.50)
L2 (Hu)

Now, (B.40), (B.41) and (B.50) yield:

| ([t mwcner)

Using (B.38), (B.39) for [ < j and (B.51) for [ > j, we obtain:

|2 ([ awir-w,0nar)

which is the desired estimate of the first term in the right-hand side of (B.36).

P, ( /Ot dif( P<i(F) - PZVL(OW)

< (2¥7142772)(De + D22 2y(u)).  (B.51)

L?(Hu)

< De*2 + D522%7(u), (B.52)

L?(Hu)
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B.8.2 Estimate of the second term in the right-hand side of (B.36)

We decompose || P;(P-V(C))l|£2(3,) using the property (3.16) of the geometric Littlewood-
Paley projections:

125 (P - V()2 S NP Peo ¥ (O)llz2a) + D P (P - PV ()220, (B.53)

1>0

We focus on the second term in the right-hand side of (B.53), the other being easier to
handle. Using the weak Bernstein inequality for P;, we have:

IB(P - POl S 22NP - AVLQ 4 (B54)

J

S 25||P||L§°L‘;,||]DZY7L(C)HL2(H1L)

< 25N, (P)(De + D2 2 (u))
< 25(De® + De27 3y (u)),

where we used the assumption of Lemma 5.13 for P and the estimate (5.92) for YV, (().

We will need another estimate for ||P;(P - BY,(C))|lr2(,). We decompose || P;(P -
BY ()l 2(3.) using the property (3.16) of the geometric Littlewood-Paley projections:

1B5(P - BY (Ol 20y S NP (PP - BV ()2 + NPy (Po(P) - BV L) l223)-

q>l
(B.55)
We first estimate the second term in the right-hand side of (B.55). Using the dual of the
sharp Bernstein inequality (4.32), we have:

1P{(Py(P) - PV (O lz2ey S 2 NP(P) - AV L(Olliser,
2| Py(P)llge 2, 1BV L (Ol 22034,
275 N (P)(De + D2 2(u))

2=3(De? + D522_%7(u)),

AR VAR VAN YA\

where we used Lemma 5.9, the assumption of Lemma 5.13 on P and the estimate (5.92)
for ¥, (¢). This yields the following estimate for the second term in the right-hand side
of (B.55):

S IB(By(P) - BY ()20 S 272 (De? + De*2735(w)). (B.56)

g>l

We now estimate the first term in the right-hand side of (B.55). Using the property
of the Littlewood-Paley projection P, we have:

1P (P<i P - PV ()l 2(31.,)
27| Py(P<P - ARY ()21
27| Pidif (PP - YR Y (Ol 2y + 272 | Pj(VP<i P - YRV L (O) 2234.)

IANRZA
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which together with the property (4.36) of P; with p = % and the dual of the sharp
Bernstein inequality (4.32) yields:

|2 (P<iP - BV (O)|l L2 (B.57)
2%_2l||P§lP'VPzVL(C)HLQL% +2j_2l||VP§lP'VPlWL(C)HLgL;,

37 _ i
22 7 PP oo 1 IV RV L (Ol £2600) + 277 [V P<iPll o2, I VRV L (O 22034,

IN N

N

37 _ i
222 Pll e s, 2N PV (Ol 20,y + 277 (Z 2q||PqP||LgOL§,) 2PV (Ol r2¢)

q<l

N

2# N (P)(De + De2~#9(u)) + 27~ (Z 23N1<P>> (De + D=2 /(w)

q<l

< (2%_1 + 274_%)(D<€2 + D522_%’y(u))

where we used the finite band property of P, and P,, the embedding (3.58), Lemma 5.9,
the estimate (5.92) for ¥, (¢), and the assumption of Lemma 5.13 for P.

Finally, (B.55), (B.56) and (B.57) imply:
IP;(P - P ()20 S (277 +2772)(De? + De?2725(u)), (B.58)
Using (B.53), (B.54) for [ > j, and (B.58) for [ > j, we obtain:
1P (P V()2 S D2 + De*284(u)), (B.59)

which is the desired estimate of the second term in the right-hand side of (B.36).

B.8.3 Estimate of the third term in the right-hand side of (B.36)

We start by deriving an equation for V,; ¥ (¢). Differentiating the transport equation
(2.30) satisfied by ¢ with respect to L, we obtain:

WLWLQA = _(EB + CB)WL(XMB - (WL(E)B + WL(C)B)XAB - Wg(ﬁ)A

which together with the commutator formula (2.46) and the Bianchi identity (2.52) yields
after multiplication by n:

Y, ¥.¢ = (0 = x)V.(¢) + B = ¥(np) — (V(no))” (B.60)
where the 1-form B is given by:

B = —n(6+n"'Nn)V,(C) —2n(¢ = ¢) - V¢ +2n(C AC+ € *0) - ¢
—n(C+€) -V, (x)— nWL(E) X +ntrxB —2nX - f —2n(6 + n~'N(n))p — ng - a

=3n(Cp+"Co) + V(n)p + V(n)o.
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4
We estimate the L?L? norm of B. We have:

1Bl , 4+ S ”n”L‘”<||5+n_lN(n)HL;’OLi,||Y7L(<)||L2(Hu)+||C_£||L§°Li,||y7§”L2(Hu)(B'Gl)

L7L3,
HIEACH € ol Il ers, + 1€+ €llpers [V, 00 | 2200)
‘l'HWL(E)HL?(Hu)HX”Lf"Li, + ”trXHL;”L‘;,||ﬁHL2(Hu) + |W\|L§°L§,||ﬁ||L2(Hu)
6+ 0 N @)l s, 18200 + Il e, Nl 2

HCl e, (1ol 2200y + ol z20)) + 17 Yl e s, (ol 22030) + HUHB(HU)))

AN

2l e (N1<<>2 + ML) + Ny(Vi)? + Mo + Mi(@)° + NMi(x)? + N (6)?
IV 0000 + 0@ a0ty + 0120000y + 1212200 + 181220

Hlallzgs + 121,
S &
where we used the curvature bound (2.59) for «, 8, p,0 and 3, and the estimates (2.67)-
(2.72) for n,d,€ ¢, x, € and ¢.
We have the following estimate for the third term in the right-hand side of (B.36):

o ([ @ wumuiner) (B.62)
0 L2(Ha)
< |n([or 6-vmer) LQ(HU)+]PJ-( [ ) -
t|es ([ 9t + (71001 )ar)
0 L2(Hy)

We estimate the three terms in the right-hand side of (B.62) starting with the first one.
The non sharp product estimates (5.14) and (5.15) imply:

[P = x)llpo £ Na(n = DIPQ = X)[lpo S Na(n = NL(P)N1(0) + Ni(x)) S €

which together with Lemma 5.14 yields the following estimate for the first term in the
right-hand side of (B.62):

To estimate the second term in the right-hand side of (B.62), we use the dual of the sharp

P; ( /O t(nP (6 — X~)y7L(g))dT) < D + De25y(u). (B.63)

L2(Hy)
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Bernstein inequality (4.32) and the estimate for transport equations (3.66). We have:

'Pj (/Ot(P : B)d7> /Ot(P . B)dr

2| P - Bl 134,

PIPluzas, 1B, 4

N

27 (B.64)

L2(Hy,) 3L,

AR

29 N1 (P)e?

e,

AR

where we used the assumption on P in Lemma 5.13, and the estimate (B.61).

We now focus on estimating the third term in the right-hand side of (B.62). Using
the decomposition of V(np) + (V(no))* given by Lemma 5.17, we estimate the third term
in the right-hand side of (B.62) as follows:

|2 ([ 2 @00 + (90001 (B.65)
0 L2(Hay)
SN GRS E T L2M+\Pj( [ e pytinyr) -

Next, we estimate both terms in the right-hand side of (B.65) starting with the second

one. We have:
t
P ( / di/(/(P-H)dr)
0

’ P (/Ot(P - *Dl(H))dT>
p,( [ o)

which together with the finite band property for P;, the sharp Bernstein inequality (4.32),
and the estimate for transport equations (3.66) yields:

<

~Y ‘

L2 (Hu) L2 (Hu)

i

L2(Hu)

‘Pj (/t(P-*Dl(H))dr) < 2 /t(P-H)dT + 27 /t(WP-H)dT
0 L2(Ha) 0 L2(Hy) 0 L7L},
< Y|P Hllgye, + 2 (VP - Hlpou)
S 20 Pllszes 1H | 2es, + 2NV Pl 2w | Hl 200,
< e, (B.66)

where we used the estimate (B.97) for H, and the assumption of Lemma 5.13 on P.
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We turn to the first term in the right-hand side of (B.65). We have:

In( t(P-*Dl-J-*Dfl(WnL@))dT) - (B.67)
< P(/t< Y, Di T D; <ﬂ>>dr) "

+\%(/Ot<P-[*Dl,w )

elm ([wmesro g
S IBP DT DI (D)o + \P( [ 021202 @)0r) N

i

AN M dT)

p ([ pisop, nL]@)dT)

i

L2(Hy)

Next, we estimate the four terms in the right-hand side of (B.67) starting with the first
one.
Using the dual of the sharp Bernstein inequality (4.32), we have:

1P;(P "Dy J - Dy ()23 20| P-*Dy - J D (B) sy, (B.68)
21| Pl ez, "Dy - T - Dy (B)ll 23
2N1(P)IBl 2.

27¢?,

AR ZANRZANR YA

where we used the estimate (3.50) for *D; ', the assumption of Lemma 5.13 for P and the
curvature bound (2.59) for f.

We now consider the second term in the right-hand side of (B.67). Using the dual of
the sharp Bernstein inequality (4.32) and the estimate for transport equations (3.66), we
have:

t
] P, ( [P D1 *DH@)dT) (8.69)
0 LQ(Hu)
t
< / (V,,(P)-"Dy - J - D (8))dr
0 L7LL,
< DY,,(P) Dy T Dy (B) iy
S 2|V (P2 || Dy - J D (B) |2 )
< PN(P)Bll
< v
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where we used the estimate (3.50) for *D; ', the assumption of Lemma 5.13 for P and the
curvature bound (2.59) for f.

We consider the third term in the right-hand side of (B.67). From the commutator
formula (2.48) and the fact that D;'(f) is a scalar, we have

(D1, Vol - J - (D (B)) = nx - V(Dy(8))

which together with the dual of the sharp Bernstein inequality (4.32) and the estimate
for transport equations (3.66) yields:

2J

2 ([ (P D) D ) )

L2(Hu)

N

P ([P v @)ir)

L2(Hu)

AN

/0 (P-nx - V(D (8)))dr

2P -nx - VDBl e

2N\ Pl Il oo 1 22 I W C DY (B 2234

2N (P)N1OONIBI 23

272 (B.70)

2L,

AR YA ZANRZA

where we used the estimate (3.50) for *D; !, the assumption of Lemma 5.13 for P, the
curvature bound (2.59) for 3, and the L> bound for n provided by (2.67).
We now consider the last term in the right-hand side of (B.67). We have:

which together with Lemma 3.17, the dual of the sharp Bernstein inequality (4.32) and
the estimate for transport equations (3.66) yields:

PRI MIET

L2(Hu)

p ([ ase 0o w0 @0) p ([ wprorw@r)

.

L2(Hu)

o ([ 2 pi 1D @)

L2 (Hu)

< 2P T DLV Bllere, + 22NVP - T DY Vo (B) )

< PP 2rs DT Vo) Bllzzre, + 2NV P I 2ae) P Vo) (Bl 2200

< 2N(P)e

< 20g% (B.71)

where we used Lemma 4.24 for the commutator term, and the assumption of Lemma 5.13
for P.
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Finally, (B.67), (B.68), (B.69), (B.70) and (B.71) imply:

o ([ @pesor @) gz
0 L2(Hy)
Together with (B.65) and (B.66), we obtain:
2 ([ @ + Raoyar)| e (B.7)
0 L2(Hy)
Now, (B.62), (B.63), (B.64) and (B.72) yield:
‘ P; (/ > W,LLWL@))dT) < Ve + D + De*23y(u), (B.73)
0 B L2(Hy)

which is the desired estimate for the third term in the right-hand side of (B.36).

B.8.4 End of the proof of Lemma 5.13
(B.36), (B.37), (B.52), (B.59) and (B.73) imply:

2 ([ wwycnr)

which concludes the proof of Lemma 5.13.

< 20 4+ D2 + De*2i(u), (B.74)
L2(H,)

B.9 Proof of Lemma 5.14
We decompose || P; <f0t(F : WL(C))dT> | 22(2,) using the property (3.16) of the geometric

Littlewood-Paley projections:

1

P

([ wunr)

’S ’

o ([ P (B.75)

2

>0

LtooLi/ LtooLi/

p ([ ryycner)

We focus on the second term in the right-hand side of (B.75), the other being easier
to handle. Using the weak Bernstein inequality for P; and the estimate for transport
equations (3.66), we have:

o ([ & pwsicner)

L°L?,

ls.

A

2 (B.76)

3
cor 2
L°L2

/O (F - BY,(0))dr

LeL?,

N

2F - RYLQI

7
25| Fll 2 a1V L (Ol 215,

J

izl
2823 ¢|| BV (Ol z2 (0.
2575 (De® + De?2 2 7(u),

AN N N
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where we used the weak Bernstein inequality for P}, the estimate (5.92) for ¥, (¢) and
the assumption of Lemma 5.14 for F' B

We now make another decomposition using the property (3.16) of the geometric
Littlewood-Paley projections:

7 ([ormwuonar)| s ([ eatn rmom)| @
S |p ([ oo row)]

We focus on the second term in the right-hand side of (B.77), the other being easier to
handle. Using the property of the Littlewood-Paley projection P, we have:

o ([ Bie) - my, 00

LPL?,

s 2 |n ([ oun-sryom)|
< o |n ([ awcnir - yrvgour)| o e ([ onm - vrvyom)

which together with Lemma 5.16 with p = %, the strong Bernstein inequality (4.32) and
the estimate for transport equations (3.66) yields:

|2 ([ e nw,iner) (B.78)

L°L?,

33 -

S 2EHIPE) - TRV, 4 2 ITEE) - VAT LO lviw)

S 2V PP s IRV L) 200y + 22 VP ()l 2200 IV RV () 2000
349 g

< @2 R 2PN P 2 e 1P Y L (O 2230

S ¥4 9| By(F) |12, (De + De2 3y (w),

where we used the weak Bernstein inequality for P, the finite band property for P, and
P, and the estimate (5.92) for ¥ (¢). Similarly, we may exchange the role of [ and ¢ and

obtain:
2. ([ eim) - mw, o))

< (2%+é—q + 270 Py(F) || 1230,y (De + DEZ_é’Y(U))‘

~Y

(B.79)

LyoL?,

211

Ly L?,



Now, using (B.78) for ¢ <1 and (B.79) for ¢ > [ and assuming [ > j yields:

2.

n(f (B(F)- Py, ()i

1>5,¢>0 L&L?,
. |i—q| . ]

S Y @7 w2 )| By(F) |2, (De + De27 by (w))

1>3,4>0
< (ZH%(DHLQ(M)) 29(De + De2"3(u))

q>0

< ||Fllpo2 (De + D2~ %~(u))
< De*2 + De?23(u),

where we used the definition of P° and the assumption of Lemma 5.14 on F. Together

with (B.77), this yields:

>|p ([ @ nviow)

1>j
Finally, using (B.75), (B.76) for I < j, and (B.80) for | > j, we obtain:
P

o ([ wior)

which concludes the proof of Lemma 5.14.

< D&% + De223~/(u). (B.80)

LioL,

< De2 + De22%(u),
112,

B.10 Proof of Lemma 5.15

Since P; is selfadjoint, since the dual of difdit acting on P, , tangent 2-tensors is given by
WQ acting on scalars, and since the dual of f(f is ff, we infer by duality that the second
estimate of Lemma 5.15 is equivalent to the estimate:

([0

for any scalar function f on H, and any 7 > 0. Similarly, we infer by duality that the
first estimate of Lemma 5.15 is equivalent to the estimate:

([ )

for any scalar function f on H, and any 7 > 0. This estimate is actually implied by
(B.81), and hence we focus on the proof of (B.81) from now on.
Let w the solution of the following transport equation:

S 2701f |z (B.81)
L2, L3°

< 27| fllz2ge
L% Lge

nL(w) = P;jf, w=0on P ,. (B.82)
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Then, (B.81) may be rewritten as:
IV *wll12, 5 S 2711 Fll 23t (B.83)

From now on, we focus on obtaining (B.83). We first derive an estimate for ||Yw||pe.
Differentiating (B.82) with respect to ¥ and using the commutator formula (2.48), which
in the particular case of a scalar function w is given by

[W’ WnL]w = nwi,
we obtain:
V.. (Yw) = nxYw + YP; f, Yw =0 on P,
which together with the estimate for transport equations (3.66) implies:

IVwllze S Inxlless 2 Wwllzoe + 1VE; fllzyros-

Using the L* bound for n given by (2.67) and the trace bound for x given by (2.70)
(2.71), we get:
IVwllzee S VP fllLyrss- (B.84)

In view of (B.84), we need to estimate ||V P;f||11.. Using the L> bound (3.38) for
tensors on P, with the choice p = 2, we have:
3 1 1

IVP e S IV P s IVP s, + I Pill e
3 1 j 1
S IV Pl zep, 22 1B 2, ) + 1P f 2 + IV F; fllL2p)
J 3 1 1 .
S 22y ij”i?(Pt,u)“sz?(Pt,u) + 27| fll 2P (B.85)

where we used the Bochner inequality (4.34), and the L? boundedness and the finite band
property of P;. In view of (B.85), we need to estimate HW?’ijHLz(ptyu). Using the Bochner
inequality for tensors (3.7), we have:

IV Py fll 2 e (B.86)

S NAVP fllzapn + K 2o IV Pif 2 + 1K G2, IV P fll 2,
S A VIl + VAP fll e,

HIE N r2p ) AP fll ey + 1V fllz2epnn) + 1K 122 p, 0 2 NPy f L 22p)
S A YIP iz, + 271 f e + 27 1K 2l fll 22

+2 | K12 oy 1 f 22

where we used the Bochner inequality (4.34), and the L? boundedness and the finite
band property of P;. Now, for any scalar function f on F,,, there holds the following
commutator formula:
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which together with (B.86) yields:

IV*Piflezeny S WKV fllzmn. + 270l + 291K | 2ol F 22,
+2jHKHi2(Pt,u)Hf”m(a,u)
S MKz IVP fllzepon + 271 2(p) + 271K | 2epn [ 1122
T2 K72, 1 Fll 2010 (B.88)

Now, (B.85) and (B.88) imply:

i 1 1 1
IVPiflleepy S 221K 22 p, MV Bz o, 1A 22,
+27 (1+ | K |2 ) 22

which yields:

IVP; fllrepy S 27 1+ 1K |2 ) 1 22 - (B.89)
Integrating (B.89) and using the bound (4.29) for K, we obtain:
IVP; fllzirss < 27 (14 1Kl 21 f 22y S 27112200, (B.90)

Next, we come back to w. (B.84) and (B.89) yield:

IVwllze < 2% fllz2(,)- (B.91)

Using twice the commutator formula (2.48), we have schematically

V... Viw = (V... VIVw+ V[V, Vw
(nxV + nxe +np)Yw + V(nxVw)
= nxYVw + (V(nx) + nB + nxe)w.

Differentiating (B.82) with respect to ¥, we infer:
Vo (V'w) = nx¥Vw + (nxe + V(nx) + nf)Yw + V°P;f, ¥'w=0on Ry,

which together with the estimate for transport equations (3.66) implies:

IV wliz e S llnx ¥ wlliz, i + [ (nxe + V(nx) +n8) Vel szgu) + 1V Pifll2)
S lnllze o 22 1 Vol 230,y + Il [ W20l e (ML (0 + N3 (6)?
+NL(VR)? + 11Bll220)) + AP fll 2y + IV P fl L2,

where we used the Bochner inequality (4.34) in the last inequality. Now, using (B.91),
the L? boundedness and the finite band property of P;, the bound (2.59) for §, and the
estimates (2.67)-(2.71) for n, x and €, we obtain:

2 2 ;
IV wllze, e S llV w2y + 27 1 fll2)-

This yields (B.83) which concludes the proof of Lemma 5.15.
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B.11 Proof of Lemma 5.16

Since P; is selfadjoint, since the dual of dif acting on P, tangent 1-forms is given by ¥
acting on scalars, and since the dual of fot is flt, we infer by duality that the conclusion
of Lemma 5.16 is equivalent to the estimate:

([ )

for any scalar function f on H,, any 2 < p < +o0o and any j > 0. Consider again w the
solution of the transport equation (B.82). Then, (B.92) may be rewritten as:

< 290D fll e, (B.92)
LP, Ly ‘

i(1—1
IVwllze, oo S 2902 fll e, - (B.93)

From now on, we focus on obtaining (B.93). Differentiating (B.82) with respect to ¥ and
using the commutator formula (2.48), we obtain:

WnL(Ww) - TLXW@U + W‘F)]fu Ww =0 on Pl,u
which together with the estimate for transport equations (3.66) implies:
||77w||L§,Lg° S ||nX||L;<,>L§HY7w||LZ,L§ + HWijHL%LZ,‘

Using the L* bound for n given by (2.67) and the trace bound for x given by (2.70)
(2.71), we get:
¥l i < IV P g, (B.94)

In view of (B.94), we need to estimate ||V P f[|11.r,. Recall (4.35):

(11
VP ey S 220 Fllaean- (B.95)
Integrating (B.95), we obtain:
(1-1
IVPfllcier, S 2721 f Iy,

which together with (B.94) yields (B.93). This concludes the proof of Lemma 5.16.

B.12 Proof of Lemma 5.17

Recall that J denotes the involution (p, o) — (—p, o). Then, YV(np) + (V(no))* may be
rewritten as:

Y(np) + (V(no))* = "Dy - J(np,no).
Now, in view of the Bianchi identity (2.57), we have:

(np,no) = *D;* (Wn (B) = ¥(n)p+ V(n)o +ntrxs —2nx - B — ngﬁ + 3n(Cp — *£0)>
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which yields:

Y(np) + (V(no))* ="Dy - J - "Dy (V,,(B)) + "Di(H) (B.96)
where H is given by:

H=J *D;! ( — V(n)p + Y(n)o + ntrx — 2nx - 8 — ndS + 3n((p — *Qa)).

Now, using Lemma 3.17 with p = %, q = 3, we obtain for H the following estimate:

||H||L§L§, (B.97)
S HJ Dt ( —V(n)p+V(n)o +ntrxB —2nX - f — ngé +3n(¢p — *§0)>
LPL3,
< |-V e+ V(n)o +ntex — 20% - 5 —ndf +3n(Cp = "Co)] , 4
thor
S IVnllngrs lollzzg) + 1Vnllers, ol 20, + [Intexl e s, | Bll 2

HInRll g rs, 18Il z2e) + 100l o, 181l 223y + Il gers, ol 22y + €l o s ol 220y
< g2

~Y

where we used the curvature bound (2.59) for 3,p,0 and 8, and the estimates (2.67)-

(2.72) for n,0,X and ¢. (B.96) and (B.97) give the conclusion of the proof of Lemma
2.17.

C Appendix to section 6

C.1 Proof of Lemma 6.9
Recall the transport equation (6.27) satisfied by II(d,,x). We have

YV ((0ux)as = =V nXaB — (0uX)acxcs — Xac(0uX)cn — 00uXan
+eaxo.ng + €sXao.N + (0uN)axcsec + (0uN)pXacec
—(2ea,n —n Vo nn)xan + (0uN)c(€ac *Bp+ €pc *Ba).

Differentiating with respect to WL , this yields, schematically

VL (VL ((0.x)) + [V, ¥ ] (T1(0.x)) (C.1)
= —V,I0x) X — X V(X)) — 0V (I(0uX)) + 0uNY B + V(Fs) + Fi,

where the tensors F3 and F}j are given schematically by

F3 - awNWLX7

and

Fy = W(awN>WLX - WWAQ"NX - (&uN)[WQ VIx — dux - WLX - WLX OuX — L(g)aWX
LT ENON + 2V, (00N + BTN — (g — Vo xn) ¥,
—(2VL(€)0uN + 26V 0uN — ¥V (n"'Vo,nn))x + V,0.NB.
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F3 satisfies the following estimate

1Bl e 20y S N10uN 2o |V X g 200y S €5 (C.2)

where we used in the last inequality the estimate (2.76) for 0, N and the estimates (2.70)
(2.71) for x. Also, F} satisfies the following estimate

||F4||L§Li, (C.3)
IDOLN [ Lger2, DXl ge 23ty + N0uN 2o I[¥ 1y WiXllzzzr, + 00X pge 12 IV X Lo L2031

FILO) g2 [OxX Lo 2, + 100 N[ 2 <HY7L(E)HL;’OL2(Hu)HXHL§’°Li,

AN

el e 2 1V, 0O e r2ey + 107 Vil e 2, HWLXHL;T’LQ(”H@)
el pge o, 1 o 28, 1V L0 N | e 2200, + 1V (07 Vaunn) e 20 X e 22,
Fllelgors, XN gera 1YWL 0uN o2y + WL 0uN o2, 118l e 2230,)
S e+ VL Vixleze,,
where we used in the last inequality the estimates (2.67)-(2.71) for x, 6, €, and n, the

assumption (2.59) for g, the estimate (2.76) for d,/N, and the estimate (2.77) for 9,N
and J,x. Now, in view of the commutator formula (2.45), we have

10V, VXl ez,
S (HXHLgOLi,+||§||LgoLi,+||b_1Wb||L§°L§,)||DX||L3°L2(Hu)
_'_(HX”L;)OL‘;,(HEHL;’OLZLC, + H§HL§OL§/)+ ||XHL;;°L;,||C||L;;°L3_/)<||5
< g,

L2y T 1Bl Leer2(2))

where we used in the last inequality the estimates (2.67)-(2.71) for x, x, §, b, and ¢, and
the assumption (2.59) for 8 and . Injecting in (C.3), we obtain

||F4||L§L;, Se (C4)

Next, we estimate the commutator term in the right-hand side of (C.1). In view of
the commutator formula (2.46), we have

[V, V. J((0ux)) = 0¥, (T1(0.X)) + V(F5) + Fs, (C.5)

where the tensors Fy and Fg are given schematically by

Fs=(C— g)H(an>>

and

Fy = (6 +n" ' N(n))V,(I(0ux)) + (V¢ = VOI(Qux) + (¢ + o) (TH(3X)).

F5 satisfies the following estimate
VBl 2 S UlClless 22 + Gl o )12, 10 S (C.6)
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where we used in the last inequality the estimate (2.68) for ¢, the estimate (2.72) for ¢,
and the estimate (2.77) for d,x. Next, we estimate Fiz. We have

||F6||L§L;, (C.7)
S (0llzgerz, + In~ N )l o2 IV L (OX)) | 2e 230 + (IVC e L2

HIVC e 2ty + 1<l e Lo I e Loy + ol e 2 ) 1X Lo 2,
S e+ IV 0w 2

where we used in the last inequality the estimate (2.67) for n, the estimate (2.68) for &
and ¢, the estimate (2.72) for ¢, the assumption (2.59) for ¢ and the estimate (2.77) for
0. X- Now, the estimate (6.34) for YV, (TI(d,)) together with the estimate (2.77) for 9,
implies

1V (X)) | 5o £2030,) S -

Injecting in (C.7), we obtain
||F6||L§L;, Se. (C.8)

Next, we evaluate the term involving ¥, in the right-hand side of (C.1). In view of
the bianchi identity (2.52), we have a

NV B = V(F7) + L5, (C.9)
where the tensors F; and Fy are given schematically by
F;,=0,Np+ 9J,No,
and
Fs=YOo,N(p+o)+ awN<trXB +XB + (0 + n~'N(n))p +&-a+(p+ *(o—).
F satisfies the following estimate
1Pl sy S 10N i (ol e 220y + Il e p20) S < (C.10)
Next, we estimate Fg. We have
HFBHLELi, S (HWawNHLgOLi, + ||awNHL°°<||trX||LgOL§, + HS(\HLtOOLi/ + ||5||Lg°L§, (C.11)

+||n_1N(n)”L§°Li, + “éHLgOLi, + ||C||L§°L§,)) (e, B, p, 7, B) || Lo L2(30.)

S 6

where we used in the last inequality the estimates (2.67)-(2.72) for try, X, d, n, { and ,
the assumption (2.59) on (o, 3, p, 0, 8), and the estimates (2.76) (2.77) for 9,N.
Finally, in view of (C.1), (C.5) and (C.9), we obtain

Vo (VL ((0ux))) = =V I(0ux) - x = x - V,(I1(0uX)) + V(F1) + F3,
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where the tensors F; and F;, are given by
Fy =F5+ Fs+ F; and F, = Fy + Fs + F.
In view of (C.2), (C.6) and (C.10), we have
1 F1llLger2e,) S €
Also, in view of (C.4), (C.8) and (C.11), we have
||F2||L%Li, Se.

This concludes the proof of the lemma.

C.2 Proof of Lemma 6.10

Applying the estimate (3.66) for transport equations to the transport equation (6.48) for
M, we obtain:

[M]] [l e Py + 1M - Xl oo s

S
S 1+ HMHL"OHXHL;?Lf

where we used the estimates (2.70) (2.71) for y in the last inequality. This yields:
M|z S 1. (C.12)
Now, since Y,y = 0, we may rewrite the transport equation (6.48) for M as:

V. (M —~)ap = Macxcs, (M —v)ap =0 on Py,

Together with the estimate (3.66) for transport equations, the estimates (2.70) (2.71) for

X, and the estimate (C.12), this implies:
IM =Ale S M- Xllrosrs (C.13)

S HMHL“’HXHL;‘,’Lf

S e

Next, we estimate YM. We rewrite the transport equation (6.48) for M as:
VoM =nx - M, Map = vap on Fy,,.

Differentiating with respect to ¥ and using the commutator formula (2.48), we obtain
schematically:

YV, (VM) = [V, VIM+ VY, M
= nx -YM+ (nx-€+n8+V(ny)) -M
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Together with the decomposition (5.31) for n and the decomposition (5.55) for Y (ny),
we obtain:

Y. (VM)=nx -YM+ (nx-€+V, ,P+E)-M, (C.14)

where P and F satisfy:
Ni(P) + ||Ellpo S e. (C.15)

(C.14) and the sharp trace theorem for transport equations (5.22) imply:

VMg < (Ni(nx) + lInxlzscz) IV M || po (C.16)
HNU(M) + [|M ]| o 2) - (N(P) + ([ E]lpo + [Inx - Ellpo)
S e+ ellVM|lpo,

where we used the estimates (2.67) (2.70) (2.71) for n and x, the estimate (C.12) for M,
the estimate (C.15) for P and F, and the estimate:

Inx - €llpo S Na(n = DM(X)M(E) Se,

which follows form the non sharp product estimates (5.14) (5.15) and the estimates (2.67)-
(2.71) for n, € and y.
Finally, (C.16) yields:

IV M||go <
which together with (C.13) yields the conclusion of Lemma 6.10.

C.3 Proof of Lemma 6.12

(6.52) follows immediately from the sharp Bernstein inequality for tensors (4.37). Then,
(6.53) follows immediately from (6.52) by taking the dual. This concludes the proof of
Lemma 6.12.

C.4 Proof of Lemma 6.13

It suffices to prove the dual inequality. Let H the solution of the following transport
equation:
Y. (H)=FF, H=0on P,. (C.17)

Then, since P; is selfadjoint, since the dual of YV acting on P, tangent tensors is given

by —V, and since the dual of fot is flt, we infer by duality that the conclusion of Lemma
6.13 is equivalent to the estimate:

IV H 2, S 21 Fllipe, (C.18)

forany 1 < p < 2.
From now on, we focus on proving (C.18). Note first from the estimate on transport
equations (3.66) and the transport equation (C.17) satisfied by H:

|E e S 1Pl S 2IF] e, (C.19)
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where we used in the last inequality the sharp Bernstein inequality for tensors (6.52).
Next, we differentiate the transport equation (C.17) for H with respect to V-

Vo (VH) = [V, VIH + YV, (H)
= nx-YH+ (nx-e+np) - H+ YP;F,

where we used in the last equality the commutator formula (2.48). Together with the
estimate for transport equations (3.66), this yields:

||Y7H||L§°L§, (C.20)
S lnx - VH + (nx-€+nf)- H+ VP21
S nllzee (e 2 I VH |20y + NViOONE) + 1Bl 20 ) I1H 1) + VP F |y e,
S ellVHz20u) + 21 Flpre,
where we used in the last inequality the estimates (2.67)-(2.71) for n, € and x, the estimate

(C.19) for H, and the finite band property for P;.
Finally, (C.20) yields (C.18) which concludes the proof of Lemma 6.13

C.5 Proof of Lemma 6.14
Using the product estimate (5.10), we have:

V(Mg = [[M(YM)M™"| g0 (C.21)
S (VMg + M7 |1 )? [ VM | 50
S (VM| oz, M7 7w + M7 o) [ VM || 50
< e

where we used in the last inequality the fact that [|[M — 7|z~ + [[VM ||z < e from the
assumptions of Lemma 6.14. Then, in view of (C.21), Lemma 6.14 is an immediate
consequence of the following slightly more general lemma.
Lemma C.1 Let I' a P, ,-tangent tensor and 2 < p < +oo such that for all j > 0:
|PiFllrpez, S 2'e + 22ey(u).
Also, let H a P,,-tangent tensor such that for any 2 < r < 400, we have
1H || pyros + IVH £ypg (p) S 1

where B | (Pyy) has been defined in (5.4). Then, we have for any 2 < q < p and all j > 0:

| Py (HF) g1z, S Ve + 2 ().
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We conclude this section with the proof of Lemma C.1. Using the property (3.16) of
the Littlewood-Paley projections, we have:

1Py (HF)|par2, S D IP(HPF)|pare,. (C.22)
l

We estimate the right-hand side of (C.22). Using the L? boundedness of P;, the assump-
tion ||H|[zrzee <1 on H with 7 large enough, and the assumption for F:

|Py(HEF) gz, S W o | PFlrz, S 2 + 25ey (). (C.23)

We will need a second estimate for the right-hand side of (C.22). Recall from (B.5)

the existence of a Littlewood-Paley projector P, associated to a function m satisfying the
same properties than m, such that

P = 2_21A]3l' (0-24)
We infer:
| Py(HEF) | a1, .
= 2*2lHPj(HAf’zF)||L§L§/
< 272l||dej/(/(Hy7ﬁlF)”L‘t’Li, + 272l||Pj<WHWEF)HL§Li/
S 2N BAHEF) iz, + 27 | PAR(THBF) g2z, + 27 B(VHVPE) 122,

Next, we bound the three terms in the right-hand side of (C.25) starting with the first
one. Using the finite band property for P;, we have:

1P AHPF)|| a2, S 2%|[HEF|are, (C.26)
S 2|\ Hl|npos 1P |1z,

< (et 2er(u)),
S

where we used the assumption |[H||z;ze < 1 on H, the fact that we may choose r large

enough, and the assumption for F.
Next, we estimate the second term in the right-hand side of (C.25). Using the property
(3.16) of the Littlewood-Paley projections, we have:

| PV (H)PF) 512, S D 1P, P (VH) )| g2, (C.27)

Using the finite band property for P;, and the weak Bernstein inequality for 131 and P,,,
we have:

| PP (PP 2, S 2P (VH)RF gz (©.23)
2| P (VH)
igm o 1 =

2J+2+2HPm(WH)HLQLi,||PZF||LfLi,

P | P (VH) 11z, (22 + 2527 w),

LyLY, ||PZF”L§’L1,

N AN AN N
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where we used the assumption for F.
We will need another estimate for the right-hand side of (C.27). First, let ¢, such
that ¢ < ¢4+ < p— < p. Using the finite band property for P;, we have for 7 large enough:
| P;dife( P (WH) P F Wiserz, S 2NPn(VH)PF| o (C.29)
< PIPuVH) 02, 1BFl -1
f, 2j+lHPm(WH)HL;L§,||]31F||L,€Li,a

where we used in the last inequality the sharp Bernstein inequality for tensors (6.52).
Also, using again (C.24), this time for P,,, we have:

1P dife( P (VH) PF )||L2<lit,u)
= 2727|| Pidif(A( m&WH>)PlF2|’L2(Pt,u) N -
< 27| PdWdiM( V(P (VH)) PF) || 22(p,.0) + 272" (| P AV (Po(VH)) VY EEF) || 2P -

Together with the finite band property for P;, this yields:

1Py dif(Pon(VH) PLF) | 12

2- 2”‘HP<111/</011/</||c<L2<Ptu>||Y7( o (VH))BF || 12(p,0) + 2" |V (B (VH)) VB F || p2(p, 1)
27V P ccozm i | V(P (VH)) | 2, | P
+27 2V (P (VH)) | 3P VP | 2P

27" | V2 Py cqrz(pra | P (WH)HLQ Po) HPzFHLoo (o)

272 (VBT oy |V PP g,y + 1T P PH 20,0

< (19" B oy | VB U o,y + IVPF lm,0) ).

AR

L (P )

AN

where we used in the last inequality the Gagliardo-Nirenberg inequality (3.3) and the
finite band property for ]3l Finally, using the Bochner inequality for tensors (3.7), the
sharp Bernstein inequality (4.37) for tensors, and the fact that p > 2, we obtain for r
large enough:

1Py (P WH) B | 12, S (27077 4277555 | B (WH) 22, | BF 112,
which in the case j < [ < m implies:
| PR P (TH) B 12, S 255 B (VH) Ly, 1B 1, (C.30)
Since 1 < ¢ < ¢+, we may interpolate (C.29) and (C.30). We obtain for j <1 < m:

| PP (VD B9z, S 27 | P (W ED gz | BeF pprz,  (C.31)

N
< Qiti=(m=4 | P (VH )| £y 12, (2 + 2587(“))»
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where we used the assumption for F'. Now, using (C.27), (C.28) for m <[ and (C.31) for
J <l < myield for any j < [:

| B (VH) Pz, S > 20 | B (VH) |11z, (21 + 2227(w). (C.32)

The the third term in the right-hand side of (C.25) satisfies for r large enough the
following estimate:

- o .
1P{(VHV Pl oz, S 27| P (WH) | 112, (2' + 2267(w))- (C.33)

The proof of (C.33) is similar to the proof of (C.32), so we skip it.
(C.25), (C.26), (C.32) and (C.33) yield for any j < I:

1P (HPEF)|| a2, S 2972 + 2229(u)) (C.34)
+ 3 2T | B (WH) [ 12, (21 + 2227(w)),

where r is large enough. Finally, summing (C.22) for [ < j and (C.34) for [ > j implies
for r large enough:

D NP HPF) |2, S U+ (IVH 1y, (5 (278 + 222y(w)),
I

which together with the bound (C.21) for H and the inequality (C.22) yields:
1P (HF)||par2, < 20 + 25e(w).

This concludes the proof of Lemma C.1.

C.6 Proof of Lemma 6.16
Using the property (3.16) of the Littlewood-Paley projections, we have:
1F - Hllrpy, pouy S D _IPH(Py(F) - B(H)) 122, (C.35)
Jal

Note first that (6.85) is symmetric with respect to F' and H. Thus, we may assume for
instance | < ¢ in (C.35). We will estimate the right-hand side (C.35) in the two cases
q < 7 and ¢ > j starting with the first one. We have:

IP{PA(F) - P 12,
S 2 BAPF) - PO e |
S 2 BAR(TPF) - FCH)leace, + 2 PAR(R,(F) - PR 120,
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which yields:
| P(Py(F) - PUH)) 12 (C.36)

27N\ Pydil ez (. z2pry | IV P(F) - PUCE) o) + 1Po(F) - WB(H))HLp(Pt,w)

AN

AN

L2 P (Ptu)

27| Pydifl| e (), 22 (Pr)) (HVP( ez B HED L 2o
IR, IR i

. _2 _2 .
< 27 (2D L 9P Pidif]| 1o (), 22(Pea) | Pa(F) 22 (p s | PCED) | 22 0Py

where 1 < p < 2 will be chosen later, and where we used the finite band property for
P, and P,, and the weak Bernstein inequality for P, and P,. In view of (C.36) we need
to evaluate || P;dit|z(ze(p,.),22(P.))- Let p' the conjugate exponent of p, i.e. 119 + 1% = 1.
Using the Gagliardo-Nirenberg inequality (3.3), we have:

||WP'F||LP’ (P

S IVPFllZs, W PF VP Fllacen

< 2 BF| Pm)(nAijua(pt,u) (1K 2 + 1K g, VP Fll 2
HIE oy | P 2rn) 7 + 2P Flliae, 0

S A+ UK 2P B F ), (C.37)

where we used the weak Bernstein inequality and the Bochner inequality for tensors (3.7).
In view of (C.37), we have:

125 M e oo pa 22 p) = IV Pl eiracp, .0 Py S (1 HKHLz 027,
which together with (C.36) implies:
155 (P (F) - PU(H)) [ L2(p )
S 2 BTl 9G4 HKHL2 b 1P (E) 2 | ECHD) 22

We fix p = % which satisfies 1 < p < 2. Using the estimate (4.29) for K, and the fact

that [ < ¢ < 7, we obtain:
(L Iy (L 1y q 1
1P Py(F) - P(H) | 112, S 277200 Gmoli 02 | By (F) || o 12,22 | Bi(H) ) | e 12, (C-38)

Next, we consider the case ¢ > j. Using the weak Bernstein inequality for P; and P,
we have:

1P (P(F) - Bi(H) | r2(py S 28|By(F) - B(H))|

N

3

L3 (Prw)

J

25| Py(E)l 2 (p | ELCH) | o )
g2l

2575 || Py(F) |2 1P (G| 2P

li—al _|l— J| q

_li=al =gl L
27 22| Py (F)l2(p o 22 (1L CH) [ 22

AN IANRIA
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where we used the fact that ¢ > j and ¢ > [. This yields:

li—al 1=l g

155 (Py(F) - P(H)) [ perz, S 270 7 % 22| By(F) [ per2, 22 (| P (H) || pgerz,- - (C.39)
Recall from (5.87) that:
22‘1“]3 HL°°L2 ? and ZQlHPI HL°°L2 SN(H). (C.40)

(C.35), (C.38), (C.39) and (C.40) imply (6.85) which concludes the proof of Lemma 6.16.

C.7 Proof of Lemma 6.17
Since h = (p, o), Lemma 6.21 yields:

[ Pih| pgerz, S £22. (C.41)
We estimate the quantity ||P;Dy " (F Ph)|| 1ot Using the weak Bernstein inequality and
t Mg
the finite band property for P;, we have:
_ ik _
12D (FP) s S 270 WD (FRR) ez, (C42)
S 2D PR e,
1
< 277G +HFHL°°”PthL°°L2
S 2@ P e

where we used the estimate (3.50) for D, ' and the estimate (C.41) for h.
We derive a second estimate for ||P;Dy " (F - BPh)| o s We have:
12Dy (F Pih)

HL;”L‘;,‘

= 27| P Dy (FARR)

||L°°L4_
S 2 IPD ARFTRN) e +2 PP (VFVPR) s,

which together with the weak Bernstein inequality for P; yields:

IR0 (FPR o (49
S 20Dy (P YRR Wllizzz, + 2D (VEVAR) 112,
< YO NEYPh| sz, + 2D VEVRA
S PO NPl | PPl sz, + 20V ggerz, VAR 2
< DD D (|| F|lp + [VFll ez, )e,
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where we used the estimate (3.50) and Remark 3.15 for D, ', the Gagliardo-Nirenberg
inequality (3.3), the Bochner identity for scalars (4.34), and the estimate (C.41) for h. In
the last inequality, note that as soon as 4_ is fixed in the L;’OLif norm, then ( %)_ is fixed
in j(3)-. Let us fix j(3)_ = j(5 —a) for some a > 0, then we may choose I(3)_ = (3 — %)
in order to obtain:

9i(5)-=U(3)- _ 9i(5-a)~l(5-%)

which together with (C.43) yields:
| D (PR peyon S PG D(|F |l + [V Fllesz ). (C4d)

Summing on j and [ and taking (C.42) for [ < j and (C.44) for [ > j, we obtain:

1D (FW)lleyi < SOIPDS (FAB),

gl

< <22—j<;>++;+Zgj<;—a>-z(§—;>) (1Flls~ + |V F 12, )e
I<j I>j

S (e + 1VF| 252, )e

which yields the conclusion of the Lemma.

C.8 Proof of Lemma 6.18
Since h = (p, o), Lemma 6.21 yields:

1P| e 2, S £23. (C.45)
We have:
Dy 67Dy l(bWh>||L§L47 S 1D DI ((YVb)h) et + 11Dz "Dy (W(bh) It
(C.46)

Lemma 6.19 applied to the first term in the right-hand side of (C.46) with F' = ¥b and
H = h=(p,0) yields:

1D o7 Dy (Vo)) S Ni(VD)E S e (C.47)

where we used the estimate (2.69) for b.
Next, we evaluate || P(bP;h)| 12, Using the L* boundedness of Fj, we have:

|POPR) ez, S (bR, (C.48)

S
S bl l[P3hll g2,
S

2%

)

where we used the estimate (2.69) for b and the estimate (C.45) for h.
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We derive a second estimate for || P(bPjh)|| 2, We have:
1P OGP sz, S 27 PBAP) | pore,

27| P (DN Pih) | ez, + 277 (| P(VOV i) || e e,

I ZANRYAN

which together with the finite band property and the weak Bernstein inequality for P,
yields:

9 Lo
1POP) I pere, S 2770V P Al o2, + 2272 || WOV Pi| (C.49)

L$L§
S XV bllem P PAlszmre, + 257 Wbl [ PPz
S 2| Phll ez, + 22 NGO Pl e e,

< 9lthe,

where we used the finite band property for P, the estimate (2.69) for b and the estimate
(C.45) for h. Finally, (C.48) for j <[ and (C.49) for j > [ yield:

PO 22, S S IIPIOPR) | pger2, S 22e. (C.50)
J

In view of (C.46), we need to evaluate || D, '6~'D; ! (V(bh)||

have the following commutator formula:

_. Note first that
L ote first that we

D,'V—-VD;' =D, KDy
which yields:

D5 "6 Dy (Y (bh) | < Dy b~ WDy (bh)]|

4_ 4_
YL~ YL ;

+ D3 o D KD (bR o
(C'51)
We first evaluate the first term in the right-hand side of (C.51). Using the weak Bernstein

inequality for P;, we have:

1Dy b~ WDy Pi(bh) | (C.52)

4_
LyL

< 21| Dy WD R (bR) | oo 2,
< PO D YO D PN ez, + 2Dy (FODT POM) e
S VD0 = 1D BOR) ez, + 2 [ VODI ROD g
.1 _ _ — ’
S PO o+ IVO D lager DT PUOR) o2,
< 213)-—5g

where we used the estimate (3.50) and the Remark 3.15 for D, !, the estimate (3.50) for
D; !, the finite band property for P, the estimate (2.69) for b, the estimate (C.50) for bh,
and the estimate (3.51).
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We derive a second estimate for || PyDy 'b~1¥D; ! P, (bh) [y
t Hyr
stein inequality and the finite band property for P;, we have:

. Using the weak Bern-

| PyD; ' b~ WDy Pi(bh)| (C.53)

L,?OL:_

9i(3)- Hij;b*lWDfle(bh)HLgOLi/
27 | YD; 6 WD B (bh) | e e,
2@ |7 o | D1 PLBA) | e 2,
2-i(2)+ [P (0R)]| pge 12,

1 !
2*](§)++§57

U AN AN AN A

where we used the estimate (3.50) for D, ', the estimate (3.50) for D;', the estimate
(2.69) for b, and the estimate (C.50) for bh. Summing (C.52) for j < [ and (C.53) for
J > [ yields:

(2 R UDI RS <N 2 4 Y ol < (C.54)
1<l >l

Next, we evaluate the second term in the right-hand side of (C.51). Using Remark

3.15 for Dy, we have:
D5 b Dy KD (O] o S 107 oo D2 KDy (0Bl e, (C.55)
< Dy KD () oz,

Using Remark 3.15 for D, !, we have:

13" (KD B iz, S IPS(E)DE BB 1, (C.56)
S B gy 17 BOR) ez,
< 2j<0>+||Pj<K>||zQ<Hu)||Pj<K>||L;ii/2—lua<bh>||mg,
S VDK A 2 Fe
< 2]’(2)7—%57

where we used the weak Bernstein inequality for P;, (3.51) for B, the estimates (4.29)
and (4.30) for K, and the estimate (C.50) for bh.
We derive another estimate for ||D2_1Pj(K)D1_1Pl(bh)||L§>Lz/. We have:
1Dy Py (K) Dy Fi(bh) | pre,
22| [D3 AP (KD (b)) 1712,
S 279Dy dw(V P (K) Dy Pubh)) || pp e, + 277 |Dy " WP (K) YDy Pu(bh) || r e,
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which together with the estimate (3.50) and the Remark 3.15 for D, yields:

D5 Py (KD PO 1, (C.57)
S 2 UYR KD RO iz, + 2 P VP (K)TD RO 0
< 2 YITRE) (nD;lPl(bh)n m+||wzla<bh>u%,>
® LtooLm,
. 1_21 2
< 272 (1P PR s 19RO, + VPR e, ) DA e,
i 1
S 272 | Py(K) pre,e
1 l 2 1 1-2
5 2*](§)++§HKHEQ(Hu)HA*?KHLwPLQ8

where we used the finite band property for P;, the estimate (3.50) and the Remark 3.15
for D!, the Bochner inequality for scalars (4.34), the estimates (4.29) and (4.30) for K,
and the estimate (C.50) for bh, as well as the estimate

1 _1
| P K || 2P0 A2 PJA™2 K || p2(p, )

1o —Llo.n3
S IAPAT2 K[ Eyp, MIPA2 K| fop,
_1 -1 1 Y alE
S IPA 2K 2, + IVEA 2K 12p, )2 |1 BA 2 K f2p,
N 2%HA*%KHLQ(P,W) (C.58)

which uses the finite band property for P;, the fact that P; commutes with any power of
A, and the properties (3.22) (3.23) of A.
Using (C.55), and summing (C.56) for j <1 and (C.57) for j > [ yields:

ID; 67 Dy KD ) e S 2/0)-"z¢ 4+ Y 97+t e, (C.59)

J<l j>l

Finally, (C.46), (C.47), (C.51), (C.54) and (C.59) yield the conclusion of Lemma 6.18.

C.9 Proof of Lemma 6.19

Since H = (p, 0,3, ) and N1(G) < €, the curvature estimate (2.59) and the finite band
property for P yield:

1P H | 220, S € and [|PGllr2n,) S 27 (C.60)
while Lemma 6.21 and Lemma 5.9 yield:

|BH | sz, S 22 and | PG| o2, S 27 2 (C.61)
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Using Remark 3.15 for D, !, we have:
D5 6™ (D H(F - H)) pp - + D207 (D (F - VG oy (C62)
S TN DHF - H)pie, + 107 (D (F - VG))lapre,
S DN E - H)gpre, + 1Dy (F - YVG)llnprz,.
where we used the estimate (2.69) for b in the last inequality.

Next, we estimate the two terms in the right-hand side of (C.62). Using Remark 3.15
for D, ', we have:

1D (PAF) - BH) 12, + D5 (By(F) - YRG0, (.63
S ||Pq(F) ' BH‘|LfLi7L + ||Pq(F) ' WBG”LI:L;F
< B R e+ NP, VP2
S 2R (2O NRH s, + [ IFAC s IR, + TR | )
LP(0,1)
q 1—2 2
< 22N1(F)<2l(°’+HBHHL?fLi,HPzHHZz(H (ARGl 2(r,)
1_7
IR N2 IV ) + 1K sgey | BGl ip22) 5 2 PG,
+2'| PG 2, ) )
12(0,1)
< P32t 21-gp)
< AN R+ K s e
S 2!(%)7_%/\/’1(}7)5,

where we used Lemma 5.9 for ||[FP(F)||pe 2, the Bochner inequality for tensors (3.7),
(C.60) and (C.61) for G and H, and the estimate (4.29) for K. We also used the fact
that once p < 400 is fixed, we may choose 2, > 2 such that 1 — % — % < 0.

We derive a second estimate for | Dy (P,(F)-P.H) HLfLi/ and ||Dy ' (P,(F)-YPG) ”LfL’;,'
We have:

1Dy (Py(F) - PH) |12, + 1Dy (Py(F) - VRG) |21,

< 27Dy (Py(F >-4AB zezz, + 1D3 Ak (Py(F) - PG|y,
+D5 (VP (F) - PG)l 112,
S 27Dy AP (F) - VRH) || prz, + 272 | Dy (VP(F) - YRH) | p 12,

HIDy k(P (F) - PGz, + Dy (VP(F) - PG e,
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which together with the estimate (3.50) and Remark 3.15 for D, ! implies:

ID3 (Py(F) - BH) |l 1312, + D5 (By(F) - VEG) | o, (C.64)
27| Py(F) - WPZHHL;Lg, + 27| VR(F) - YPH||
HIP(F) - PG prz, + IVE(F) - PG 1
2N Py (Mg | WP H | ez, + 27 IV (FO 2 VR | e,
HIZ (g |1 PG ez, + IVE(E) 24 1PG | pere,

AT pMHWP( )I!Lz (o)

AN

1
pr-+
Ly Lx,

AN

1
272 €

Lr(0,1)

AN

23

N

(IAPF || 2(p,.0y + 1K || 22 (P,

1—-2
VEF |12y + 1K L2 p, o 1PaF llpr2, ) 7

21| P, F||L2 - e

L?(0,1)

< 200N (F)e,

where we used Lemma 5.9 for ||[F(F)]| e 12,, the finite band property for F; and F}, the

Bochner inequality for tensors (3.7), (3.38) "to bound the L>(P,,) norm of P,(F), (C.60)
and (C.61) for G and H, and the estimate (4.29) for K.
Finally, summing (C.63) for [ < ¢ and (C.64) for [ > ¢ implies:

1D (F - H)llgazz, + D5 (F - V)l gp12, SN (F)e

which together with (C.62) yields the conclusion of Lemma 6.19.

C.10 Proof of Lemma 6.20

Lemma 3.17 implies:

1Dy (FGH)| IFGH]|

perts S 3
t Lo L°°L
HFHLgOLi,||GHL;;°L1,||HHL;>OL§/

<
S ME)WNI(G)N(H),
which concludes the proof of Lemma 6.20.

C.11 Proof of Lemma 6.21

Note first from the curvature bound (2.59) for 8, 3, p,o that H satisfies the following
estimate:
| H||2(,) < €. (C.65)

232



The proof follows the same strategy as the one of Proposition 4.11. However, one has
to be more careful since § and ( are tensors unlike K. In particular, using the estimate
(A.5), the L? boundedness of P;, and the estimate (C.65) for H, we obtain:

1PH s (C.66)
1
< ( / uPJ-HuLz(pt,u)WMPJ-HHLz(B,u)dt) P H e
1
< P H e 1PV, H 2y + ( / Hzﬂjﬂrum,u)mbijum,wdt) Lo

1
< P, Hl i + ( / HPJ-HHLz(pt,UWnL,mHHLz(pt,wdt) e

Now, the Bianchi identities (2.51), (2.53), (2.55) and (2.57) for ¥, (5), L(p), L(c) and
V..(B) have the following structure:

V. H = (dife), div(8), cufl(B), Vp, Vo) + F - (o, 8, p, 0, )

where in view of the estimates (2.67)-(2.72), F satisfies V1 (F) < e. Thus, using the finite
band property and the weak Bernstein inequality for P;, we obtain for ¥; H the following
estimate:

IBY, Hllny S 208,00, 8) 20 + 251 - (0. 8.0, 0. B), 5 (C67)

e + 25N (F)e
e,

AN A

where we used the curvature bound (2.59) for «, 8, p,o and 3. (C.66) and (C.67) imply:

1
IPH T2, S (/ 1P H | 2P [WnL>Pj]H||L2(Pt,u)dt) +27¢?,
z 0

which yields: _
1PiH |52, S W [Wopo PilH | 322, + 22¢. (C.68)

We now evaluate the right-hand side of (C.68). Again, let us say that the difference
with the proof of Proposition 4.11 is the fact that H is a tensor unlike K. Using the
definition (3.15) of P;, we have:

V... Pj]H = /OOO m;(T)V (7)dr, (C.69)
where V(1) satisfies:

(0r = Q)V(7) = [V, AU(T)H, V(0) = 0. (C.70)
(C.69) yields:

(C.71)

NV, PIH g2, S ] / my (M () g2

L1(0,1)
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In view of (C.68) and (C.71), we have to estimate ||V (7)||2(p,,)- Let a,p real numbers
satisfying:
1 4
0<a< Y 2 < p < 400, such that p < SR (C.72)
—a

The energy estimate (3.30) implies:

AV + [ IPA Ve

//p AT V() [V, AU (T Hdpy,udr'. (C.73)

We need to estimate the commutator term [V, ,, AJU. Using twice the commutator
formula (2.48), we have:

V.., AU = FY*U + GYU + Y(GU) (C.74)

where the tensors F' and G are given by F' = ny and G = nye+n*[. Using the curvature
bound (2.59) for § and the bound (2.67)-(2.71) for n,e and y, we obtain the following
bound for F' and G:

IE N 2ty + IV E 200 + G20 S € (C.75)

Let p defined in (C.72), and let p’ such that %—l—}% = % Using the commutator formula
(C.74), and integrating by parts the terms YU (7)H and Y(GU) yields:

[ [ AV AU Hl i
Ptu

S UPFlzn +1G1m0) [ V0 H o AV 0
Wﬂmmu/ﬂwf)mWaMWA%W)hme

HIG 2P0 / U (7" H|| Lo () | VATV (7)) 2Py 0 T
0
S (HFHLQ(H,U) +IVE z2(p,0) + 1G22 (p0))
X/ (YU () H || 1o(p,0) + IVU (T H || 2P,y + U () H | 2o (0, ) IVAT2V () || 2P0 A7
0

(C.76)

where we used the Sobolev embeddings (3.3) and (3.4) in the last inequality.
Next, we concentrate on the first term of the right-hand side of (C.76), the other one
being lower order and left to the reader. The Gagliardo-Nirenberg inequality (3.3), the
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properties (3.23) and (3.22) of A, and the Bochner inequality (3.7) for tensors yield:
VU 0 |92V (s, cm)
S [ INU 0, PO, WAV [PA™V 5,y
S /0 ||WU(T/>HHZ2(Pt7u)(HAU<T,)HHL2(H,“)+HKHLQ(PM)HWU(T/)HHH(Pt,u)
B sy IV H i) AV () Sy IVAV ()50, dr

< ( VU () H32p, . d7" + / TIIAU (T H |2 2p, , d7’
0 0
%

+HKH%2(Ptu) /0 T/HWU(T/)H||%2(Pt,u)dT,>

1
2

1 T A—av N2 d/ T I—Z(Z;;2> A—av AN d/
“\3 ) 1V (T z2p, 0 d + T | (T z2(p, A7

which together with the estimates for the heat flow (3.8), (3.10) and (3.29), implies:

YU (") H | o, VA2V (7) | 2, A7
0
S H 2 + 1K 2o IA H e, ) (1+ 7)) 1 (C.78)

([ 1PV aitr+ [ 75 A )

Finally, the choice of p (C.72), (C.73), (C.76) and (C.78) implies:

2

AV (O + [ IPA Ve 7
0
S 1+ DV Flzacery + 1G 2o U o + 1K L 1A H22m,,0)

(C.79)
Using the interpolation inequality (3.22), we obtain:
1 1 B 2(1—a) ) ,
/ VW S [ TNV i [FAV (e 50)

S (IWVE 20y + Gl 2 (IHH | 22(py ) + 1K 22p ) |AT 1HHL‘Z (o))

which together with the estimate (C.65) for H and the estimate (C.75) for F" and G yields

for y > 0:
+o0 . 1 2 2
[ @l s | ([0l ,0)
LY(0,1) 0 LY(01)  (C.81)

S 2°(IVF 200 + Gl e2000) (IH 20y + 1K 200 1A Hl| o2, )
5 V(14 |A- 1HHL§°L§,)7
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where we used the fact that m is supported in (0, 1), see Lemma 3.8. Now, (C.68), (C.71)
and (C.81) imply:

1P H o2, S 2% +27%(1+ AT H| o2, (C.82)

<
< 2%e 4 25| AT H | e 2,

where we used the choice of a (C.72) in the last inequality. Finally, from the properties
of A and P;, we have:

IAT Hl[per2, S [1P<oA™ H||pep2, + ZHPjA_lHHL;;OLi,
Jj=0

S [Pl |[pger2, + 22_j||PjHHLt°°Li,

Jj=0
S [P<oH|| g2, +sup 272 |1 P5H || Lo 2,
i §>0 :c
which together with (C.82), and an easy estimate for |[P<oH|| 2, left to the reader,

implies for j > 0: _
A
||PjHHLt°°L§, S 2%e.

This concludes the proof of Lemma 6.21.

C.12 Proof of Lemma 6.23
Using the L* estimate (3.83), we have:
[Qs1N|e S Q@51 N eor2zy + [[VQs1 N o2z, + [[VV Q51 N Lo p2(sy)
S IIVN|lpseresy + IVVN|| ez, + [[VVQ<i Nl Lor2(s,,  (C.83)

where we used in the last inequality the finite band property for (), of Theorem 3.35,
and the decomposition N = Q<1(N) + Q=1(NV).

We now evaluate the various terms in the right-hand side of (C.83). Since N =
+(L — L), the Ricci equation (2.23) imply:

VAN = HABeBa VNN = —b_IVb. (084)
(C.84) implies:

IVN||Leor2(s) + [[VV N Lor2s,) (C.85)
- .
S N0l 20 + V0l g2y + 10 Vbl ge L2y + 107 VOl F oo pagssyy + 107 Vbl e 1203 -

Furthermore, the Bochner inequality (3.81) and the finite band property for Q<; imply:

IVVQ<iN etz S IVPQ<N|nser2sy) (C.86)
S 1AQ«a N oLy
<

IVN||Leor2(s,)-
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Now, (C.83), (C.85) and (C.86) yield:
Q51N S 100l eorzcsn) + V0 oo r2s) + 110 Wbl oo 125, (C.87)
+||b_1y7b||%§°L4(Z}t) + ||b_1W2b||L§°L2(Et)~

In view of (C.87), we need to estimate b and 6 on 3;. So far, we only proved regularity
estimates on H,. In order to transfer them to ;, we consider the structure equation for
the foliation generated by w on ¥ (see [4] p. 56):

b 1Ab = —Vntrf — |0)? + Ry,
WBé\AB = %VAU'Q + RNA'

Recall from the definition of 6 (4.61) that trf is given by:

(C.88)

tré = try — o

where we used the fact that the time foliation is maximal (2.2). In view of the estimate
(2.68) for § and the estimate (2.70) for try, we obtain:

1600]| Loe 2Py + W20 oo L2(p ) + IV N oo L2, 0y S € (C.89)

~Y

Furthermore, using the definition of 6 (4.61) and the Sobolev embedding (3.58), we have:
0P e r2(pry S N0 La(r ) S M1 (0)* S NL(X)* + Ni(n)* S €7, (C.90)

where we used the estimate (2.68) for n and the estimates (2.71) (2.70) for x. Also, using
the Sobolev embedding (3.62), we have:

VOl Lo 2(pyn) + 1Vl oo 22y S N1(VD) Se, (C.91)

where we used the estimate (2.69) for b.
Next, we estimate || V|| Ler2(s,)- In view of the Bochner inequality (4.34), we have:

2
IV Ollerezy S 1A Lserasy + VOl Lser2(sy) (C.92)
S bl (IVatrl]| e r2csy) + 1161 oo r2s) + 1R Lser2(sn))
+[| V0| oo 2(x,)
67

AN

where we used in the last inequality the curvature bound (2.59) for Ry, the estimate
(2.69) for b, and the estimates (C.89)-(C.91) for § and b.
Next, we estimate ||| z=2(p, ). in view of the Hodge estimate (3.50), we have:

IVOllroerozy < IIVEO||Loro(s,) + | Ran o2z, (C.93)
< ¢

where we used in the last inequality the curvature bound (2.59) for R4x and the estimates
(C.89) and (C.91) for 6 and b.

Finally, (C.87), (C.89), (C.91), (C.92) and (C.93) yield (6.117). This concludes the
proof of Lemma 6.23.

237



C.13 Proof of Lemma 6.24

We estimate the following quantity:

“WQSl(N/)HLtOOL?(Et) + ||VWQ§1(N/)||L§°L2(Et) (C.94)
IVQ<i (Nl zzere(sy + IVVQ<1t (N ge 2z + IV, ValQ<t (N) Lo L2 (1)
HVN/HL;”LQ(&) + HVQQQ(N/)HL?L?(&) + HW, WN]QS1<N/)HL,?°L2(E,5)
||VN/||L§°L2(Zt) + ||AQ§1(N/)||L;>°L2(&) + [V, VN]QSI(N/)||L§°L2(&)

VNIl r2(my + 1V Val Q<1 (N) | e r2(x,),

AR VAR VAR AN

where we used several times the finite band property for ()<; and the Bochner inequality
(3.81). Now, for any tensor F, the following estimate is a immediate consequence of the

proof of (3.83) (see (3.86)):
IV, VN]E o120 S ellVVE |25y + €l Fl 2o (C.95)
Using (C.95) with F' = Q<;(N’) yields:

11V, VN]Q<1(N')| oo 2(s) elVVQr(N) g r2(si) + e Qi (N Lo
el V*Qur (N5 r2(si) + el N[l
el AQ<1(N') | oo 2y + el N'[| oo

ENVN'|| oo 2(s,) + €l N'||Los

A XN N A

where we used the L> boundedness of Q)<;, the Bochner inequality (3.81), and the finite
band property for ()<;.
Note from the proof of Lemma 6.23 (see (C.85) the following estimate:
HVN/HLtOOLQ(Zt) < E.

~Y

Together with (C.94) and (C.95), this implies:

IVQ<1 (Nl r2(m) + IVVQ<t (N )l r2sy S IIVN'[poer2(my + €l N'|| 2o
S e (C.96)

We will prove for any tensor vectorfield F' the following non sharp estimate:
[ Flso S Fllzeerzcsy + IVEF Loz (C.97)

(C.96) and (C.97) immediately yield (6.118).
In order to conclude the proof of Lemma 6.24, it remains to prove (C.97). We estimate
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|PiF|?,> . In view of (3.79), we have:

LyoL?,
1P FIE s s (C.98)
< oo ([ 1A Flln 1o Pl )
+sup (1680l s | Py F 22 I P e
< NPl o0 | PV Flli sy + ( / |uDjF||L2<pt,u>HmN,PjJFHLQ(Pt,wdu)
+2%5”PJ‘F||%§OL2(2t)
S 20IVEILe ey + 1P F gz Vo BN 4,
< 2_j||VF||%§>oL2(Et) + ”PjFH[%,gOL?(Pt,u)||‘PjF||Ié,§°L2(Et)||[WbN’Pj]FHLq‘%LQ(Ft’u)
S 2NV sno + 2B g TP W sy s P g

where we used the estimate (C.89) for trf, the Bernstein inequality for P;, and the finite
band property and the L? boundedness of P;. (C.98) implies:

1P Fl sz, S 272V Flleracs) + 27 5[V P (C.99)

Fl 4
L3 L2(Pr )
Now, (C.99) and the commutator estimate (9.1) imply:
1PjFllpperz, S (272 + 2745 )|V F | ere,,

where 0 < a < 1. In view of the definition of B°, this yields (C.97). This concludes the
proof of Lemma 6.24.

C.14 Proof of Lemma 6.25

In view of the Ricci equations (2.23), we have:

IDL(N)egny S IX N2y + X 1200y + €2 ) + 110122020,y (C.100)
¢ 20y + IV vnl 2y + 1€ 2600

where x', X', ", C,é’ are the Ricci coefficients associated to u(-,w’). We only estimate (’
since it is the worst term in (C.100). In view of the computations (3.56) and (3.77), we
have for any scalar function f:

L < fd,ut,u> = / (L(f) + trXﬂd#t,u-
Py Py
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Together with the coarea formula (3.55) and the fact that ¢’ vanishes at infinity, we obtain:

10y S / / (DLC) - ¢+ [CP(trx + b Dy (b)) dHodu (C.101)
S | [ Due)- camtaan] + 1 irlisn + 157 DL®) o)
< D.(¢') - C'dHoudul + ¢

uJ Hy

where we used the estimates (2.69)-(2.72) for ¢’,b and try.
Next, we estimate the right-hand side of (C.101). Decomposing L on the frame
L' L' ¢}, e, we have:

D (¢) - ('dHydu (C.102)

AN

g(L,L")Dp(¢') - ¢'dH du

i // 9L ¢4)De;, (¢') - ('dHdu

9(L, L')Dp(¢') - ('dHudu

Uu

u

S VLl + IV Lz IS T2 +

/u / 9L YD () -

<

Y

9(L, L')Dp(¢') - ('dHudul

u

where we used the estimate (2.72) for ¢’ in the last inequality.
Now, we estimate the right-hand side of (C.102). Using the Littlewood-Paley decom-
position, we have:

(PD(C) - P(g(L, L) dH udu

HP,DL’ ()2 M>HP’( (L, L)) z2m

27|V (g(L, L)) |2y

e270([V' ¢z + 1Der, (L)) 2200y + D, (L)) 22000))
ez’j(\!W/C’l\Lz ) ¢ Nz (DL sty + DL |24 any))
g“2™/

(C.103)

AR AR AR AR IA

where we used the estimate (2.74) for Dy/(¢’), the finite band property for P;, the estimate
(2.72) for (', and the Ricci equations (2.23) together with the estimates (2.67)-(2.72) of
the Ricci coefficients to estimate DL and DL'.

Finally, summing with respect to j in (C.103), together with (C.101) and (C.102)
yields:

1< E2ea) S €

The estimates of the other Ricci coefficients in the right-hand side of (C.100) are easier,
and we obtain in the end:

IDLN)2gen) S &
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which concludes the proof of Lemma 6.25.

D Appendix to section 8

D.1 Proof of Lemma 8.3

We have constructed a global coordinate system on ¥; in section 4.2.2. We will need
another global coordinate system. Let w € S?. Let @, : 3; — R? defined by:

D, (1, x) == u(t, z,w)w + Jyu(t, z,w). (D.1)

Then we claim that @, , is a global C"! diffeomorphism from X; to R? and therefore provides
a global coordinate system on ;. The proof has been done in [21] for the particular case
t = 0 of a global coordinate system on ¥,. The proof for ¥, is completely analogous
an we refer the interested reader to Proposition 2.9 in [21]. The proof also provides the
following bound for dCID . as well as the determinant of its Jacobian:

[d®; e S 1, ||det(Jac®y )| — 1|~ Se. (D.2)
Recall from (6.31) that we have [|Dr(0,N)|[p =2 < e This yields:
DL (9(0uN, 0uN) — )HL°°L2 Se

which together with the estimate for transport equation (3.66) and the corresponding
estimate at initial time (see [21]) yields:

1g(AuN, BN — Iz < e. (D.3)

Consider the global coordinate system on X; provided by ®; L(u,y'). Then, for any scalar
function f on 3, one easily derives the following formulas:

of of
ou oy’
where we used the fact that g(N,d,N) = 0, Vu(t,z,w) = b"'N, Vou(t,z,w) =
—b20,bN + b7 1O,N, ||b — 1|z~ Se, [|0.0]| 1+ < € and (D.3).
Finally, v being fixed, ®;, L(u,y") provided a coordinate system on P, such that the
following estimate holds for the induced metric 7 in the coordinate system:

=g(N+0(),Vf) and =g (0.N+0(¢),Vf), (D.4)

rap(PEE” — [P SeléP, uniformly for all p € B2, (D.5)

We evaluate | F|r2(5,). Using the global coordinate system on P, provided by

®; L (u,y'), we have:

IF o, = / / F(®; L (u, ) y/Fdy/dt (D.6)
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where we used (D.5) in the last inequality. Let (¢,z;) a point on X;. Let 0 < o <1
parametrize the arc on S? joining w and w’, and let w, € S? corresponding to o. Let
Uy = u(t, Ty, w,) and Juu, = O u(t, x4, wy). Let p a positive smooth bounded function on
R vanishing in the neighborhood of 0. We consider the following integral:

(o) = /0 1 / F@; (= gy )P (Ot — Duy)dydt. (D7)
We have:
- [ 1@ = w P 2 o B s, (09
where we used (D.5) and (D.6), and where «' = u(-,.,w"). We also have:
10 = [ [ 1R = w DR iy D9

A

1
| [ iree=uyryadya
0
S N FI L 2ot

using again (D.5) and (D.6).

Next, we evaluate %:

dl ! - / d — / — / /
o= 2 [ DP@ () [0 )| P8, o Dot~ D)
o 0 o

1
— / / |F(D, L, (u= e, y))[PO%usp (Buu — Dpuo)dy' di. (D.10)
0

Now, we have

% @, (s )| = do~! (% (@] 0 <1>—1> (tlg, ) + dD; (%,y) ,
a2~ (| £ 21

)
1050l Lo + [|Ouel| Lo
1 (D.11)

which yields:

dug
do

Loe ’

AN ZANVAN

where we used (D.2). Also, differentiating twice the Eikonal equation with respect to w,
we obtain:

L(9%u) = —b'g(0,N,0,N).

Since ||[0,N ||z~ < 1, the use of the estimate for transport equations (3.66) together with
a corresponding estimate at initial time (see [21]) yields:

10Zullzo < 1.
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Together with (D.10) and (D.11), we obtain:

/ / IDE@7 (u, Y DNIF@L (g Dlp(@ — D) (D.12)
R @, (o y DD Ot — Bug))y

In view of (D.8), (D.9) and (D.12), we obtain:

||F\/,08 u — O,yug HLQH/_u
< NP s + / / / IDF@7L, (ry IF (@7, (10, DDt — D)
+|F (@) (us, y')) PP — Oy, ))dy'dtdo. (D.13)
Next, we consider the change of variables (o,y’) — (u, z’) where:
u=u(t,z,w), y = dyu(t,r,w,) and 2’ = J u(t,z,w).

Given (t,x) € %, there is only one o(t,z) such that u(t,z,w,) = u,. o(t,x) is given
implicitly by the following equation:

u(t, x,wy) = u(t, ro,w)
which after differentiation provides the formula:

Vu(t, x)
Ou(t, v, wy) — Opu(t, r,wy)’

Vol(t,z) = (D.14)

Also, we have:
Vu(t, z,w,) = b, ' N, and VO, u(t, z,w,) = —b,20,b, Ny + b, '0,,N,, (D.15)

with the notation N = N(¢,z,w), b = b(t,z,w), N, = N(t,x,w,), and b, = b(t,r,w,). In
view of (D.4), the Jacobian J of the change of variable (o,9') — (u, 2’) in ¥, is the 3 x 3
matrix given by:

g ( g(N +0O(e),Vo(t,x)) g(N 4+ O(e),Vo,ul(t, z,w,)) )
g(0,N 4+ O(e),Vao(t,x)) g(0.N + O(e), Vo,ul(t,z,wy)) |

Together with (D.14) and (D.15), this yields for the determinant |J|:

b3
Il = Du(t, r,ws) — dyult, z,ws) (D-16)
g(N +0(e),N,)  g(N+0(e),-b;'0,b,Ny + 0.,N,)
g(0,N +O(e),N,) g(0,N,—b;'9,b, N, + O,N,)

Now, recall that:

”b— 1”Loo g 1, ||8wbHLoo § € and H(?wNHLoo g 1
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which together with (D.16) yields:
1

t7 z, WU) - awU(O, Zo, WU) .

<
S o (D7)

Now, recall that p vanishes in the neighborhood of 0, which together with (D.17) implies:
1p(Ou — Dyug)|J|| + |0 (Ouu — Dpuy)|J|| S 1. (D.18)

Next, we consider the range of u(t, z,w) in the domain of the integral in the right-hand
side of (D.13). We have:

lu(t,z,w) —uy| S |ult,z,w) —u(t,z,w,)| + |u(t, z, wy) — ty| + |ty — ug| (D.19)
S Jult,z,w) —ult, zyw,)| + |u(t, 2, we — ult, x, w)|
S 0wull e lws — wl
S ‘w - oj’?
where we used the fact that u(t,z,w,) = Uy, U, = u(t,zs,0), vy = u(t,z,w) and

10wl < 1.
In view of (D.18) and (D.19), the change of variables (o,y’) — (u, z') in (D.13) yields:

||F\/,0(3wu - awUO)H%Q(Hu/:uO) (D.20)

1 puitjw—uo’|
S WPlo [ [ [ IDP@2 @y DIF@ )y deda

1 pur+jw—u’|
L / / / IDF (@ (u, )| F(B (. )| dy dtdu
ul
ut|w—w’|  pl
S WPl +sw ([ [ [IDP@ ey )IF@ )y

1 3
1 _
S NF e r2ga + lw — /|7 sup (/ /IF(CI%J(M y’))IQdy’dt)
u 0

1
ut|w—w’|  pl 2
X sup (/ / /|DF(@L$(u,y’))\2dy’dtdu) )
u u 0

Now, we have:

1 1
1Pl = | [ 1F@R @) PyAayaez [ ] 1F@y)Fayar
where we used (D.5). Together with (D.20), this yields:

VPV p(@ts — Bu) g, (D.21)

1

ut|w—w’| 2

S |IF

~

1
teor20t) T 1@ = 2 Flle 2, | sup (/ HDF”%Z(Hu)dT)
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Now, (D.21) holds regardless of the choice (¢, ;) on P ,,. Also, O,u as a map from P, to
the tangent space T,,S? is a C! diffeomorphism (see [21] Proposition 2.8 for a completely
analogous proof in the case ¢t = 0 of Fy,,). Thus, we may choose p, and two points (¢, z})
and (t,2?) on P,,, sufficiently far from each other such that for all (¢,z) € P,,, we have:

p(Oult, z,w') — Ou(t, z}, ') + p(O,ult, z,w') — du(t, 27, ') > 1.

Together with (D.21), we obtain:

N[

. Ut |w—w’|
1N Z2 00,0y S I N0 20 Hw =0 12 I F o2 | sup </ IDE[IZz 3y, d7

Taking the supremum over uy implies:

N[

) ut|w—w’|
HFH%Z?B(HM,) S |’F||%3°L2(Hu)+|w_w1’2HFHL3°L2(Hu) sup (/ HDFH%‘Z(HU)dT )

which concludes the proof of Lemma 8.3.

Remark D.1 The change of variables (o,y') — (u,z') in (D.13) is singular at (t,z) =
(t,xt) in view of the determinant of the corresponding Jacobian (D.17). This is also the
case in the flat case where u(t,z,w) = t + x - w and where P,,, are parallel planes in
R3 orthogonal to w. In this case, the corresponding change of variables corresponds to a
change of variable in the plane of R spanned by w and w' passing through x; from polar
coordinates with origin at x; to cartesian coordinates. This explains why the singularity
at (t,x;) in the change of variables (o,y') — (u, 2') in (D.13) is natural. Fortunately, one
has the freedom to chose the point (t,x;) around which we rotate the surfaces P, which
allows us to tackle this issue by considering successively two point in 3y (t,z}) and (t,z7)
as preformed in the end of the above proof.

D.2 Proof of Lemma 8.4
Let us apply Lemma 8.3 with F' = P, f where f is a scalar function. Then:

1P| zos 2234, (D.22)

N

1
. 1 ut|w—w’| 2
S IRz + o~ FIE s, sm)</ HDBfmmH”m>

_ _l 1 1 1
< 2NV azren + 22w — IV 1o ID P e 120

where we used the finite band property for P, in the last inequality.
In order to prove Lemma 8.4, it is enough in view of (D.22) to prove:

IDP flleer2a) S IDSf|lLer2(aa)- (D.23)
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Furthermore, (D.23) for D = V¥ follows from the properties of P, so we may focus on the
case of L and L, or even L and N. Also, the case of L being easier, we focus on the case
of N. Thus, the proof of Lemma 8.4 reduces to:

IN(Pif)lreer23n) S 1D fllneer2 - (D.24)
Since [[b — 1|z < e, we have:
NPz S NON(P)Lee 2
S O NPON) ez + 11BN, Pl f e 22 ()
S IDfllzee e + 0N, Pl fll e 22 (30),

where we used the L?*(P;,) boundedness of P in the last inequality. Together with the
commutator estimate (9.2), we obtain the desired estimate (D.24). This concludes the
proof of Lemma 8.4.

D.3 Proof of Lemma 8.5
Let us apply Lemma 8.3 with ' = P<;f where f is a scalar function. Then:
1 P<tfllzosr230,.) (D.25)

1
2

i 1 ut|w—w’|
< NPaaf sy + 1 — I Petf ey [ 510 ( / ||DP<zf||%2<HT>dT>

1
1\ 2

f 1 ut|w—w’| 2
< Wl + 1o — 1y | 500 ( / ||DP<zf||ig(HT)dr>

where we used the finite band property for P<; in the last inequality. Now, we have:

IDP<fllrzpey S IIVP<flleze) + 1L(P<f) | 26e,) + IN(P<if )l 2260,y (D-26)
S 22 + InL(P<if) 26 + BN (P<i )|l 2230.),
where we used the finite band property for P, in the last inequality. Also:
InL(P<i )| 2234, + DN (P<if)l L2(31.)
S NP<L))zzn) + 1P<i(ON ()l 22200y + 1Ly P<a] fll 20,y + 0N, P<t] fll22(21)
S D P L2 + 1P ON ()20 + WLy Pl f ez + BN, P f lz200)) »

q<l

which together with the commutator estimate (9.4) implies
[nL(P<if)[ 20 + 16N (P<if) |20 (D.27)
S D IR L2 + 1P, ON (I 22y + 220 e 120))

q<l

S D IRz + 1PN (N)lzz00) + 211F |z r200-

q<l

Finally, in view of (D.25)-(D.27), we obtain the conclusion of Lemma 8.5.
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D.4 Proof of Lemma 8.6

Lemma 8.9 with the choice p = 2 yields the following estimate for any a > %:

Il 200 < D 1P lrsizonn
J
1 1
< D NP 2o VP e 1200
J
< D 2Pl o)
J

i(—a a
< (Z 2/ )> A" fll e £2 (74
i

< A" fllpoo 220

(D.28)

where we used the finite band property for P; and the analog of (C.58) which yields for

any 0 <a <1
1P fllezerzieny S 27 NA" fllpe 2.
Next, we evaluate [0, P</|f. We have:
U(r)f = U(T)0uf + W(7)
where W (7) satisfies:
(0r = PW(7) = [0, AJU(7) f, W(0) = 0.
Using the definition of P, (3.15) and (D.30), we obtain:

(0w, Pyl f / mg(T

Together with (D.28), this yields for any a > %:

100, Pl flemrzonny S ||D_[0u: Pl

q<l

LSL2(H,)

< / (qu )nAaW( iy dr
q<l Lee
< / (qu > T> SUpl| AW ()| 200
q<l T
< ‘supHA“W(T)HLz(H)
T L’io
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(D.30)

(D.31)
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Let
—<a<l.

The energy estimate (3.30) implies:
AW ey + | IPAW ()

/ / /PMAQGW oy NU (') fdpuy  dtdr’

S /OIIA”“W(T)IILzmu)IIA 0w, AJU(T) fl L2t dr’

S /OIIWA“W(T’)HL%M)IIA”a[@mA]U(T’)fHLZ(Hu)dT’,

N

where we used the property (3.23) for A. Thus, we obtain:

A W) 1230, + /0 IVA W (T[22 0,007 S /0 A= [0, AJU(T) f 1220, 07
(D.32)
The following formula has been established in [21]:

[&07 A]U(T)f = _2Y78WNVNU<T>JC + 29(&0]\]7 WU(T)f) - treW&,NU(T)f (D 33)
—0,tr0V U (T) f, '

where 6 = x + n has been defined in (4.61). The estimates (2.68)-(2.71) for 0, (2.76) for
0,N and (2.77) for 0,trf together with the Gagliardo-Nirenberg inequality (3.3), the fact
that a < 1, the estimate (3.28) for A~ and (D.33) imply:

IA™ [0, AU (7) fll 224, 119, AU FIl 2

VYV NU(T) fll 2234 100N || Los
+110l[Lge 4, 110, NHLwWU( ) fllezes,
+|0. treHL"OLQ IVV NU(T) fll L2342

IV?U (7 )f||L2(Hu + IVVNU(T) fll230,)-

Together with the Bochner inequality for scalars (4.34) and the estimates for b (2.69), this
yields

IZANRZAN

AN

IA=10,, AU(T) fll20n S NAUT) fllzon, + ¥V U (7) fll 2. (D.34)

Together with the definition of V:

(0 = M)V (7) = [bN, AlU(7) f, V(0) =0, (D.35)
which yields

VinU(r)f = U(r)Venf +V(7),
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we infer

A7 100 MU 200y S 1AV 1200 + IVUE) o flzzoe + IFV (2.

(D.36)
Using the Heat flow estimate (3.9), we have:
IVU(7) fl1Z2 31 +/OT||AU(T)f||%2(Hu)dT S IV zz00,)- (D.37)
Using the Heat flow estimate (3.8), we have:
IU(T) VN £l 220, +/OTHY7U(T)VNJ”H%2(M)CZT SIVN iz, (D.38)

The estimate (E.17) for ¥V (note that V' in (E.17) is defined as in (D.35), so that (E.17)
applies), (D.36), (D.37) and (D.38) imply:

/O IA 400, AU () 20,07 < DS oo

which together with (D.32) yields:

||AaW(T)H%2(Hu)+/O VAW ()22 00,47 < ID Sz 22000, (D.39)
Since (D.39) holds for any 1 < a < 1, we obtain together with (D.31)

10w; P<i] fll2osr2634,) S (D fllLger23e)-

This concludes the proof of Lemma 8.6.

D.5 Proof of Lemma 8.7
We have:
IDrQ<1(N)|lzer2(s,) + IVDrQ<1(N)| Lo 25,

S IDurQ<i(N)lzeer2sy) + IVDarQ<i (N) | o2z, + [V Lo 3w [DrQ<1 (N) || oo Lo (s,
S IDarQ<i(N)llzeerzcsy + IVDurQ<i (V)| Lo L2 (sy),

where we used in the last inequality the estimates (2.67) and (4.47) for n, and the Sobolev
embedding (3.71) on ¥;. This yields:

IDrQ<1(N)llzzer2(s) + IVDrQ<1 (N)][ 5o r2(5:,) (D.40)
S NQ<i(DurN)llzerzcsy + IVQ<1(Dnr N)| Lo 2w,y + [[[Dar; Q<) (N)|[ 2o 25
+IV[Dyr, Q<1)(N)| Lo L2 (s,)
S DarN|zer2cs,) + [I[Dar: @<t](N) e r2s) + [V Dar, Q) (V) || e 22(5,)-

Now, we have in view of the Ricci equations (2.23), we have:

DN =n"'"N(n)T + (Ca —n~ 'V n)ea
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which together with the estimates (2.67) for n and (2.72) for ¢ yields:
IDnr Nz Loy S I1Vallierze) + ICleree) S e
Together with (D.40), this yields:

IDrQ<i(N)|lzser2(z,) + IVD7Q<1 (N)|| oo £2(x,) (D.41)
S Dz, Q<) (Nl 2z, + IV[Dnr, Q<i](N)| Lo 2, + €.

Next, we estimate the commutator terms in the right-hand side of (D.41). Using the
definition of @);, we have:

D,r, Q;]N = /Ooo m;(T)Z(7)dr, (D.42)
where Z(7) satisfies:
(0r — A)Z(7) = [Dpr, AlY (7)N, Z(0) = 0, (D.43)
with Y (7)N the solution of:
(8, — A)Y(r)N =0, Y(0)N = N.
In view of (D.42), we have:

”[DnT;Q<1]( )||L°°L2 t) +||V[ nT=Q<1]( )HLOOLQ(Et) (D-44)

I PR ZC T

Our next goal is to evaluate the right-hand side of (D.44). Multiplying (D.43) with
Z (1) and integrating on ¥; and with respect to 7 yields:

S

sup(|Z(7) || z2(sy)
t

1Z(r HLQZﬁ/Hvz 2o, dT’<// NDor, A]Y (F)NdSydr'.  (D.45)
P

In view of the commutator formula (3.95), we have, schematically:

[D,r, AlY(7)N = nkV?*Y(7)N + (nR + kVn + nVk)VY (7)N
+(VEkVn + kAn)Y (1)N + V(nRY (7)N).
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Integrating by parts, this yields:

//zt D7, A]Y (7)) NdS,dr’

= / / nkV Z(r VY (r')NdS,dr' + / / N(nR + kVn +nVk)VY (') Nd,dr'
Zt Et

/ / N(VEVn + EAR)Y (7) NdSydr’ + / / WRYZ (7)Y (') NdSdr’
St 0 o

A

/0 IV 220 (IFY () s Ikl s + 1Y () e R ] s
12 a0 (I9Y ) o (IR xs + [InVExcs + 169l zxcs,)
HIY (P eoo Ikl g o+ BRI o, ) )

: / Hvzwng<uw<T'>umm Y () lmg)

HNZ(T) o) VY () sz + 1Y (7)o, )dr’

where we used in the last inequality the estimates (2.67) and (4.47) for n, the estimate
(4.42) for k, the curvature bound (2.59) for R, and the Sobolev embedding (3.71) on ;.
Together with the Sobolev embedding (3.71), the L* estimate (3.73), and the Bochner
inequality (3.81) on ¥, we obtain:

/ / NDor, AlY () NdSdr' < ¢ / IV Z( ) 20 (IAY () 22w +HIVY () 22
P 0

which together with (D.45) yields:

HZ(T)Hiz(ztﬁ/O HVZ(T')Hiz(zt)dT’S/O (AY () Z2 (0 HIVY (7 L2 (s, )dr'- (D.46)

Now, usual Heat flow estimates for Y (7)N yield:

A

/0 IAY ()2, + IVY (F)Ili2(s,))dr" < IDN|12s,) S e, (D.47)

where we used in the last inequality the Ricci equations (2.23) to compute DN in function
of the Ricci coefficients, and the estimates (2.67)-(2.72) to estimate the ricci coefficient in
L L2, which embeds in L°L*(%;). Finally, (D.46) and (D.47) yield:

1Z() 22y, + / IV Z() 22 dr S
which together with (D.44) implies:

[[Dnr, Q<] (N) g2z, + [IV[Dar, Q<i](N)| 2o r2(s) S €
In view of (D.41), this yields

IDrQ<1(N)|lzser2(z,) + [IVDrQ<1(N)|[ Lo r2(n) S €,

which concludes the proof of Lemma 8.7.
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D.6 Proof of Lemma 8.8
Let 5{ = 1if j =1 and 0 otherwise. Our goal is evaluate the L* norm of

9(Q<1(N), Q<r(N))) — 6.

The L estimate (3.73) on ¥; together with the Bochner inequality (3.81) on ¥; yields:
l9(Q<1(N}), Q<1 (VD) — & || = (D.48)
S N9(Q<a(Ny), Q<a (VD)) — &l o r2s) + IV (9(Q<1(N;), @<t (N)) | 1ge 12(s5,)
< 119(Q<a(N;), Q<1 (V) — 8[| zeeracs) + 19(AQ<1 (N}), Q<1 (N)) || o r2s)
S 19(Q<a(N), Q<i(ND) = 6] lge 25,y + DNl e L2 ID Nl 5o 125,
| Njl[ Lo IDN| £ge 252y + DN || 5o 22 [ Nill 2o
S 19(Q<a(N), Q<i(ND) = 6] | e r2(s,) + &,

where we have used the finite band property for <1, the boundedness of Q<; on L>(%;),
the Ricci equations (2.23) to compute DV in function of the Ricci coefficients, and the es-
timates (2.67)-(2.72) to estimate the Ricci coefficient in L$° L2, which embeds in L L?(%;).
Now, we have:
l9(Q<1(N;), Q<1 (VD) = 6] [l e 12(0)
S 9(N;, N = 67 |zerzsn + [19(Q<1(N;), Q1 (V) | e r2(5)
+HQ(Q>1 N;), Q<i(N)lpgerzcsi) + 19(Q51(N), @1 (N) lpge 23
S 9N, N = 6] [l 1220 + [N [z ID Nl e 2250y + DN | e L2y | N oo
S Ng(N;, N = 8 |l o2 + €,
where we have used the finite band property for ()1, the boundedness of Q<; on L>(%;),
the Ricci equations (2.23) to compute DN in function of the Ricci coefficients, and the es-
timates (2.67)-(2.72) to estimate the Ricci coefficient in L° L2, which embeds in L{°L2(%,).
Together with (D.48), this yields:
l9(Q<1(N}), Q<1(ND) = & oo S Mlg(Ny, Ni) = 6] || L2y + € (D.49)

Next, we have:
lg(Nj, Ni) = 6 | ge 2
S lg(N;, N = 0/l 220y + Drg (N, No) 22
19(Nj, Ni) = 6] |r2(20) + [ Njl| oo DNy || oo 25,y + [IDN (| oo 225 || N o
S 6
where we have used in the last inequality the estimate on g(N;, N;) on X, derived in
[21], the Ricci equations (2.23) to compute DN in function of the Ricci coefficients, and

the estimates (2.67)-(2.72) to estimate the Ricci coefficient in L$°L2, which embeds in
L®L*(%;). Together with (D.49), we obtain:

19(Q<1(N;), Q<1 (M) — 6] || S e

This proves that Q<;(N1), @<1(N2) and Q<1 (N3) form a basis of the tangent space of ¥;.
This concludes the proof of Lemma 8.8.
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D.7 Proof of Lemma 8.9

Let (¢,%) the spherical coordinates on S? such that 1) measures the angle in the plane
spanned by w,w’, and ¢ measures the angle with the axis w A w’. Then, we have in
particular:

dpw - (w—w') = 0. (D.50)

Now, we claim that we have the analog estimate:
9(0,N, N = N)| S |w — &'|(e + |w — ']). (D.51)

Indeed, we have:

g(0,N,N — N') = / G(0,N, 0y N")dw" (W' — w),

[w,w']
where Oy N" = 0y N (-,w"). This yields:

9(0,N,N = N')| S |w—w'| sup [g(d,N,0,N"),

w' €lw,w’]
and (D.51) now follows from:
sup  [g(0,N, 0y N")| S e+ |w — . (D.52)
w' €[w,w’]
Now, let w; € S? defined as:
w—w
w1 = .
jw = w'|
Arguing as in the proof of (2.83), we have:
lg(OyN", N1) — 1|z S e+ |w — ). (D.53)

The choice of w; and the fact that ¢ measures the angle with the axis w A w’ implies
Opw - wy = 0.
Arguing again as in the proof of (2.83), we obtain:
19(9p N, N1l S € + Jw — o',

which together with (D.53) yields (D.52). This concludes the proof of (D.51).

Now, we consider the coordinate system on H,  consisting of the functions ¢, u and
Oyu, where v = u(t, z,w) and dyu = Jyu(t,z,w). The fact that it is indeed a coordinate
system on H,, follows from the fact that (u, 0, u) is a coordinate system on P, ,». The later
claim follows from the invertibility of the corresponding matrix of the metric coefficients
in the coordinate system (u, d,u) which we check now. Using the fact that g(N,0,N) = 0,
we easily compute the following identities for the coordinate system (u,d,u) on P,

0 b 1

14 ! bg<N7N/)g(atpN7N/)
— = — (N—q(N.N' )N _ N.
u = 1= g e NI NN S e (a“’b* —gnnp )%
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and:

a b
d0,u  g(0,N,0,N)
Let 4" denote the induced metric on P,,,. The previous identities yield the corresponding
coefficients for 7/ in the coordinate system (u, d,u):

0N,

(0 DN B (2N NN\ ON)b  29(N,N) (0N, N
T\owou) T 1-g(N,N)? 9(0,N,0,N)b 1— g(N,N')2 ’
(D.54)
(0 N bogb
7 (aa¢u’%) = 9(0,N,9,N)’ (D-55)
and 3 3
/ _ 12
y (aa@u’ 88¢u> = . (D.56)

Note that we have:

N—N',N—N)g(N+N',N+N
2 2

which together with (2.83) and the fact that ||0,N||r~ S 1 yields:

1= g(N, M) = (1 — g(N.N)(1 + g(N, N)) = &

1—g(N,N')? ~ |w— ) (D.57)

Now, since ||g(0,N,0,N) — 1|z~ S, [b— 1|z S e, [|0ub]l L~ S €, and in view of (D.51)
and (D.54)-(D.57), we have:

N A R A N N
7 <%’%> w—wp ! (8(9(pu’8u> = 0() (88¢u’83¢u> =1+0().

This yields the following estimate for the determinant |v'|:
1

Y —.
lw — w'|?

7] (D.58)

Since || # 0 in view of (D.58), (u,0,u) is a coordinate system on P, ,,. Note also
that this coordinate system is global. Indeed, ¢, v and 0, u are defined everywhere on M,
and thus everywhere on H,/, so we only need to show that (¢, u, 0,u) is one-to-one on H,, .
t and u being fixed, this is equivalent to check the injectivity of d,u on P, N P, /. Next,
we check the injectivity of 0,u on P,,, N P, ,s. Let ¢ a curve in P, N P;,, parametrized
by arc length. We have:

d .

25 deulllo),w)] = g(VO,u,{) (D.59)
= g(~=b"%9,bN +b7'9,N,{)
= b 'g(d,N,?),

where we used in the last equality the fact that ¢ is a curve in P,,, N P, which yields:

g(¢, N) :g(&N’) = 0.
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Note that this implies the fact that:
r / )
N, N'—g(N,N )N7 J
V 1 _g(NaN,)2

forms an orthonormal basis of ;. Now, we have:

g(aSONa N) = 0
and:
g(N,N")g(0,N,N' — N)
1 —g(N,N")?

< e+ jw—d,

Y

g QON,N — g(N,N")N
1_g<N7N,)2

where we used (D.51) and (D.57) in the last inequality. Since ¢(9,N,0,N) =1+ O(e),
and since

N’ — g(N, N')N

N7 )
V1=g(N,N')?

forms an orthonormal basis of >;, we deduce:

g(&pN,é) # 0

which together with (D.59) and the fact that b ~ 1 yields:

i[(‘L,lb(@(a),(.u)] # 0 for all o.
do
In particular, O, u is one-to-one along ¢ which implies that d,u is one-to-one on any connex
component of P, N P, .
Thus, to conclude that J,u is one-to-one on P, ,NF; v, is suffices to show that P, ,NFP; .
is connex. Assume for some 0 < ¢, <1 that P, N P, . is connex. Note that on H,/, we
have:

Ou
ot

where we used (2.83) in the last inequality. Thus, we have:

1
:‘g(LaL/)‘:1_9(N7N/):ig(N_NlaN_N/)z’w_w/‘Z

ou
a7

and the implicit function theorem implies that in a neighborhood of t = ¢, of size depend-
ing only on |w — w'|* (but not on ty), P, N P, is the image of Py, , N P, .+ by a smooth
map. Thus P, N P, is connex for ¢ in a neighborhood of ¢t = ¢, of size depending only
on |w — w'|?. Therefore, if Py, N Py, is connex, applying the implicit function theorem
successively O(|w — w'|72), we obtain that P, N P, is connex for all 0 < ¢ < 1. Now,
Py N Py, is connex as an easy consequence of the construction in [21] on the initial slice
t = 0. Therefore, P, N P, , is connex for all 0 <¢ < 1.
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Finally, we have obtained the fact that (¢, u, d,u) is a global coordinate system on H,,.
Now, we use it to estimate the norm of a scalar f in LP(H, ) for 2 < p < 4+o00. Let uy a
real number. We have:

1
17, = / [ 1510V ld0uduas (D.60)

1
o _1 ¥ </ /|f|pd8¢ududt) ,
0

where we used (D.58) in the last inequality. Note that we have on u' = g the estimate:

<

|u = uo| = u— /| < [[Ouullp>|w — | S |w— |

which together with (D.60) yields:

up+|w—w’|
1A e 0,0, ) S ‘w % (/ / | /\fypda ududt) (D.61)
ug—|w—w’

Next, recall the global coordinate system ®;, on ¥; introduced in (D.1). Since d,u =
(Opu, Oyu), we have in view of (D.61):

up+|w—w’|
1) S (/ Lo s;p|f<<1>;,5<u,yl,y2>>|pdy1dudt>. (D.62)
ug—|w—w’ Y1 Y2

From a standard estimate in R?, we have:

/ sup | F(@7 (s 1, 42)) Py (D.63)

1 Y2

1
2

%
< ( / | f(@;;@,yl,yg))|2<p—1>dy1dyg) ( / I%f(fbt‘,i(myl,yz>>|2dy1dy2)
Y Y
1

1
5 (/ ‘f|2(p1)dlﬁt,u> (/ ’Wf|2dﬂt,u)
Py Py

where we used the estimate (D.5) for the coefficients of the induced metric v on P, in
the global coordinate system ®; L(u,y1,12). Together with (D.62), this yields:

wote] 2(p—1) : 2 :
Mo 5 i ([ () ([ o) s
17117 (Hor—ug) |w cu| S Pt,u| | Hi - W1 dpe

1 up+|w—uw’|
S o LI 19 e

0—|w—uw’|
S I s | Pl 2000

Since this holds for any real number ug, we take the supremum which yields:

Hf”iz;mv(y ) S ||fHLooLp 1( u)||WfHL30L2(Hu)'
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Finally, let F' a tensor. Applying the previous inequality to f = |F|, we obtain
||F||L°°LP o) < HF”LooLp 1(Hu)Hy7FHLg°L2(Hu)‘

This concludes the proof of Lemma 8.9.

D.8 Proof of Lemma 8.12

Let 2 < r < +00. Then, we have
IEH] Ly S 1F N g 1H ([ p2rres S €

Thus, it suffices to bound FYH and HYF in LB (P.,). These terms are treated
exactly in the same way, so we focus on FYH. We have

1B (EVH) |71, S ZHP (FP(YVH) 22, (D.64)

Next, we estimate the right-hand side of (D.64). Using the finite band property for
P;, we have
||Pj(FPl(WH)HL{Li, (D.65)
29| V(EATH) iz,
2N\ V(E)R(VH) |y 2, + 277 | FVER(VH)) | 1y 22,
2NV a2, 1PV H) | g o + 277 Fll g o [ WPV HD) || 2 e,
2 BT H) s,

AR VAN VAR AN

where we used in the last inequality the finite band property, the sharp Bernstein inequal-
ity for tensors (4.37) for P, the bound || K||12(5,) S € for K, and the assumptions on F.
Also, we have

HPj(FPI(WH)HL{Li, S 2_2l||Pj(FAPl(WH>HL§Li,
S 2B AW(FYR(VH)| 2, + 27| P (VFYP(VH)
<

P EYR(VH) 131, + 22 [FVPVH)| 1,

LyL?,

where we used in the last inequality the finite band property, the dual of the sharp
Bernstein inequality for tensors (4.37) for P; and the bound || K| 2y, S € for K. We
obtain

| Py(FP(TH) 12, (D.66)
S P Fll sy IVPUTH) ez, + 22 IVF o2 IV PUVH) 32,
S P PUVH) sz,
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where we used in the last inequality the finite band property for P, and the assumptions

on F. Finally, using (D.65) for [ < j and (D.66) for [ > j, we obtain
1Py (FR(YVH)|| e, S 277 el BVH) |12,
which together with (D.64) and the assumption on H implies

||FWH||L§Bgﬁl(Pt,u) Se

This concludes the proof of the lemma.

D.9 Proof of Lemma 8.18

Note that it suffices to prove for any [ > 0 the estimate

1
10w, Pl fll s 2,y S 2%,

provided f satisfies the assumptions of Lemma 8.18. Let W (7) solution of

(0r = PW(7) = [0, AJU(7) f, W(0) = 0.

WWMfz/mWMﬂWTdT
0

Assume that we have the following decomposition for W:

Then, we have

W = Wl + W27
where W, and W, satisfy respectively for 0 <7 <1

WA (D) 200 + VWL O)lz2200) S €

and
IWa(T) |20y + VTNV Wa ()] 20040 S €

(D.67)

(D.68)

(D.69)

(D.70)

(D.71)

(D.72)

Then, (D.70), (D.71), (D.72) together with (D.69) yields in view of the fact that [ > 0

and m is supported in (0, 1):

W%MNwﬂ%)SSW/‘WUWWﬂWwﬂT
0

u

AN

A

[ o

€,

AN
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sup [ @I szt + sup [ om0 it



and

1V[0w, Pl f || oo 2 (340) (D.74)
sup / () [FW () | 200

u

N

AN

1 1
sup [ mu(DIVWi ()2 dr +sup [ () [FWa (o),
u 0 u 0

> (/01 ml(T)%zT)é + a/olml(r)f—édf

< 2k,

N

(D.73) and (D.74) together with Lemma 8.9 yield

1 1 1
1[0, Pl fll s 2200, S 0w PN Foc 1220,y 1V [0y P e p2 30,y S 276

which is (D.67). Thus it remains to prove (D.70) (D.71) (D.72).
We first precise our choice for W7 and Ws. Let h a scalar on function on ;. Then,
we have the following commutator formula

[0, Alh = =2,y Vvh + 20(0,N, Yh) — tr0V,, yh — 0,tr6V yh. (D.75)

.75) is in the spirit of section 6.1. We refer to section 5.1.1 of |21] for a proof. We have
D.7 h f We ref f f f. We h

VonU(7)f =U(T)Ven f + V(7), (D.76)

where V(1) is the solution of

(0 = V(1) = [Von, AlU(7) £, V(0) = 0. (D.77)
In view of (D.75) and (D.76), we deduce
O, AIU(T) = =2,y (b U(T)Ven f) = 2V, 5 (b7 V(7)) +20(0.N, YU (7))

—tr0Y, U (T) [ = b 000U (1) Vin f — b~ 0,6V (7). (D.78)

We choose W and W5 solution of the following equations

(0 = HWi(1) = =2diR(QNOU(T)Vin f) = 2V, x (b7 V (7))
+20(0,N,YU(T)f) — trGWawNU(T)f — bilawtrHV(T),
Wi(0) = 0, (D.79)
and
(0 — MWa(1) = b (2dM(O,N) — Dtrf)U (1) Vin f, (D.80)
Wz(o) =
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In view of (D.68), (D.78), (D.79) and (D.80), we have (D.70). Thus, it remains to prove
the estimate (D.71) for W, and the estimate (D.72) for W,. We start with the estimate
(D.71). The energy estimate (3.12) implies:

IIWl(T)IIiz(Hu)vL/O IIWWl(T')II%Q(Hu)dT’Z/O Wi(r)(0r = AW (T dpss udtdr'.

Hu
(D.81)
In view of (D.79), we obtain after integration by parts

/T Wi (') (0, — DWi(T) fduy ndidr’
0 Hu

S 00N [ IVWA 0o IV () Vi
0
I N (10N e + NN sz, + 10500 1)

X/O VWA 2 e IV (7)) 220 A7

0N Wlss, | IPWAlau,
0

IVU(T') fll 22y d’
S /0 IVWA(T) 22000 U () Von fllz2ge) + 1PV ()N 2ae) + IVUE) fll2 g dr
where we used in the last inequality the fact that 8 = x + n (see (4.61)), the estimates

(2.70) (2.71) for x, the estimate (2.68) for k, the estimate (2.69) for b, the estimates (2.76)
(2.77) for 0,N, and the estimate (2.77) for 0,x. Together with (D.81), we deduce

Wi g+ | VWA 7 (D.82)
S /UT(IlU(T')Vbelliz(Hu) + YV ()20, + VU () fll 2200, 7"
Next, we evaluate the right-hand side of (D.82). The heat flow estimate (3.8) yields
J IR0 gr’ S 120y 2 (D.83)
where we used in the last inequality the assumptions on f. A heat flow estimate yields
/OT||U(T')VbeH%2(HU)dT' SIAT (Ve DIz 20, S €% (D.84)

where we used in the last inequality the assumptions on f. Also, as a consequence of the
estimate (E.17) which will be proved later, we have

/O 1YV () 2oy’ S M) S <2, (D.85)

where we used in the last inequality the assumptions on f. Finally, (D.82), (D.83), (D.84)
and (D.85) imply the desired estimate (D.71).
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It remains to prove the estimate (D.72). Using (D.80) together with Duhamel’s for-
mula, we have

_ / U(r — o) [ (2dik(8,N) — 8,610)U(0) Vo f] do. (D.86)
0
Using the Gagliardo-Nirenberg inequality (3.3) and the heat flow estimate (3.10), we have

for any scalar h and any 2 <p < +ooand 0 <7 <1

1
|U(T)Ptepny S —— 1Pl 2(py0)- (D.87)

T2 P

In view of the formula (D.86) of W5, and using the dual of (D.87), we have:

IWa( s < / \U(r — o) b (2dik(0,N) — B,60)U (0)Vion ][22, do

T2 (9uN) = 0utr0)U (o) Vin f]| 2490

’

N
o\
=)

|
q

?

CC

T 1 .
/ —( 1671 (2dik (9. N) — Outr0)|| o2 1U(0) Von fl 1214, do
0

J gl G

where we used in the last inequality the fact that

=0 (§)v(3)

(D.87) with p = 4, the fact that 6 = x + n (see (4.61)), the estimates (2.70) (2.71) for ¥,
the estimate (2.68) for k, the estimate (2.69) for b, the estimates (2.76) (2.77) for 0,N,
and the estimate (2.77) for d,x. The heat flow estimate (3.29) and (D.88) yield

AN

AN

L. do, (D.88)
L2(Hu)

T 1
IWa(T)ll2mny S € (/ ——d0> IA™ Ve fll20) (D.89)
0 (r—o0)iol
S &
where we used in the last inequality the assumptions for f. Next, we estimate Y.

Using the fact that
T O T o
Utr-0)=U(5-3)V(3-3):

we obtain
IYWalr)ll 200, < /TWU(T—U) (b7 (2dit (0 N) — 0tr0)U(0) Vi f] | 2230, do

o (5~ 5) I at.) — 2.4e0)0 () un ]

N

=

L2(Hu)
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do,



where we used in the last inequality the estimate (3.10) for the heat flow. Then, arguing
as for the proof of (D.89), and noticing that we have:

IVWa(r) 2, S T2 (D.90)

Finally, (D.89) and (D.90) imply the desired estimate (D.72). This concludes the proof
of Lemma 8.18.

[NIE

do <7172,

Q
PNV =

we obtain:

D.10 Proof of Lemma 8.19
We start with the estimate for ¥b. We have

VbNVb = W(VbN(b)) + [WbN? W]b, (D-91)

with
hl = VbN(b) and H2 = [WbN’ W]b

In view of the commutator formula (2.50), we have

1Pl e 20 + || Hal S DOl g2, + 100 + k) WO

i
Dbl e 20, + 10l zoe (Xl ez, + Kl o2 IVl 220
£, (D.92)

LfL%,
S
S
where we used in the last inequality the estimate (2.69) for b, the estimate (2.68) for k

and the estimates (2.70) (2.71) for x.
Next, we consider the estimate for ¢. In view of the identity (2.26), we have

VinG = YVhs + Ha, (D.93)
with
hy =b'Vin(b) = b 'hy and Hy = b [V, VIb+ Vyne = b Ha + Y, ye.
We have

—1 -1
sl + NHll g S I Aalligragny + 107 BBl g+ 1Fel,

x

N

167 | o (1l ge 23ty + o]l , 4 ) + 110l oo [I¥ nell 2
thor

e, (D.94)

A

where we used in the last inequality the estimate (2.68) for € and the estimate (D.92) for
hy and Hj. Finally, (D.91)-(D.94) yields the desired decompositions. This concludes the
proof of Lemma 8.19.
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D.11 Proof of Lemma 8.20
Recall the transport equation (6.39) for d,b

L(84b) = —bla,n — 0.(b)d — €o,N.
We differentiate with respect to L. This yields

L(LAD) + L, LJ0b = =DV 1Con = L(b)Coun = by 5y = L(0(8))d — 0(B)L(9)
Vb =y, b EaunL(b).
Together with the commutator formula (2.46), we obtain
L(LOLY) = Y o + /. (D.95)
where the scalar f is given by
f= —L®oy =Ky~ Du(OLE) = Vyonb =y, b= EnL)
—(0 +n"'N(n))L(9,b) — 2(¢ — ) - YO,b.

f satisfies the following estimate

| f1l oo L2 (340) (D.96)
<HL(b)HLi,L§° + ”DawNHL;,L;;o + ||L(awb)HL§,Lg° + ||Vawb||L§,Lg°>

AN

(1 [z + Iell oz + 10lless 2 + ™ N()le + 11l a2

X (14 10uNllzoe + 6l + 1)l ) + V52l 23 120000 10Nl 1] ¢
S 6

where we used in the last inequality the estimates (2.67)-(2.69) for n, €, §, ( and b, the

estimate (2.72) for ¢, the estimate (2.76) for d,N, and the estimate (2.77) for d,N and

Db

In view of the identity (2.26), we have
bWLC&JN = bWL(bflvb—l—E)awN (D.97)

= (V.Vb)o,n = b°L(D)V,,nb + Vpeo,n
= dM(L(0)I.N) + fi,

where the scalar f; is given by

fi= (V. VIb)a.n — LO)AK(O,N) — 072 L(b) Yy, nb + Vyca.n-

In view of the definition of f;, we have

/1] S MWL WL, 4 100N Lo + |L(O) | 2o 1, |AR(ON) | Lo r2,

L2L3 L2 3
+[b2, Numuu >|\LgoLg,Wme¢, 1V el e 2o 10N
S IV, Vbl

2L3
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where we used in the last inequality the estimate (2.69) for b, the estimate (2.68) for e
and the estimates (2.76) (2.77) for 9, N. Together with the commutator formula (2.45),
we deduce

1A, g % N0 &b V0l bl s, +2 (D.98)
< e

where we used in the last inequality the estimates (2.67)-(2.72) together with the identities
(2.25) for b, x and &.
In view of the transport equation (D.95) and (D.97), we have

nL(LO,b) = —dif(nL(b)0,N) + fo, (D.99)

where f5 is given by
fo=L(b)Vy yn—nfi+nf.

In view of the definition of f5, we have

12l 31 S IO ouynl g+ Inill g +lnl, g (D.100)
A1, )

S ILO)zgerz [Wnll s, 100N o + [0 o= ([ f1]

&

273 273
L3L?, L3L3,

AN

where we used in the last inequality the estimate (2.69) for b, the estimate (2.67) for n,
the estimate (2.76) for d,N, the estimate (D.96) for f and the estimate (D.98) for f;.
In view of the transport equation (D.99), we have

t t
Lo =t~ [ dRLOLN + [ 12 (D.101)
0 0
where by is the solution to
TLL(bO) = O, bQ(O) == L@wb,

where by(0) satisfies

1P;00(0) | z2(m,,0) S 2%¢
in view of (2.63). This implies for j > 0

J
||ijO||L;>°L§, S 2%¢
in view of Lemma 5.11, and hence

||A_1b0||L§;°L§, Se. (D.102)

+|A? (b t >
LyeL?, H /of2

(D.101) and (D.102) imply

A 020 s, S 2+ 47 (0 [ azmam)

LyeL?,

(D.103)
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Using the estimate (3.27) for A™! and the estimate (3.66) for transport equations, we have

AR A A

where we used (D.100) and the estimate (2.69) for b in the last inequality. Finally, we

define .
- / A (L(b)0.N)

and the tensor W solution to the following transport equation

S % < D.104
opg STl g 5 (D.104)

V. W —nx - W =L(0b)0,N, W=0on Py,.

Then, Lemma 5.2 implies

V)~ w3 S elLB)N s, (D.105)
< bl 0Nl
< -

where we used in the last inequality the estimate (2.69) for b and the estimate (2.76)
for ,N. Also, in view of the transport equation satisfied by W, the estimate (3.66) for
transport equations yields

IWllesrz < llnx - Wiz, + [|1L(0)0u Nl 2, 1y
172/l o< Xl 2os 22 Wl 2230 + IL(O) | o 22, 100 NV | e

S
S 5||W||L§°Li, +¢,

where we used in the last inequality the estimate (2.67) for n, the estimates (2.70) (2.71)
for y, the estimate (2.69) for b and the estimate (2.76) for 9,/N. We deduce

Wilggerz, S e (D.106)
Using the estimates (3.25) and (3.27) for A~!, we have

AT Ow)llgerz, S 1A (0w — diF(W)))ll g2, + |A (bA(W)) [l 5o e,

< bw = ARV g + 1A TO) - W)llierz, + 1A RO e,
S bl = ROV g +IF0)- W g+ 10Wgere

< bl ool — dif(W >|r R P HWHM Bl 1V e
< e -

where we used in the last inequality the estimate (2.69) for b and the estimates (D.105)
and (D.106). In view of the definition of w, and together with (D.103) and (D.104), we

finally obtain
AT (LAY || o2, S & (D.107)
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On the other hand, we have

||A_1(bLawb>||L;’°Li, ||bLawb”Lt°°Li/ (D.108)

S
S bllzee [ LAl 5o 2,
S

g,

where we used in the last inequality the estimate (2.69) for b and the estimate (6.41) for

0,b. Recall that

1
N=-(L-L
2( —)’

which together with (D.107) and (D.108) implies
[ATHONOD)[| 5o 12, S -

This concludes the proof of Lemma 8.20.

E Appendix to section 9

E.1 Proof of Proposition 9.1
Using the definition (3.15) of P;, we have:

(Von P / m; (T (E.1)
where V(1) satisfies:
(0r = Q)V(7) = [Vyn AU(T) E, V(0) = 0. (E.2)
(E.1) yields:
IS | AEHCTICC T ®3

In view of (9.1) and (E.3), we have to estimate ||V (7)||12(p,,). Let a,p real numbers
satisfying:

1 8 4
0<a< 7 2 < p < 400, such that p < min (?E) ) (E.4)

The energy estimate (3.30) implies:

AV + [ VAV e
/ /p ATV (7) Wy AU (7)) Felprg,dr'.
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We need to estimate the commutator term [V, y, AJU. Using the definition of 6 (4.61),
we may rewrite the commutator formula (2.50) for any m-covariant tensor 114 tangent to
P, as:

VeVonlla = VinVplla = b0pc¥Vclla (E.6)
+ bZ(—HBcb‘l%b +0pcb™' Vb — kagkon + kpckan
1 .
—5 €ac (B + Bo)A, ¢4

Using twice the commutator formula (E.6), we have:

Vyn: AU = HY'U + GYU + V(GU) (E.7)

where the tensors H and G are given by H = b0 and G = 0-YVb+k -k +b*(5+ ). Using
the curvature bound (2.59) for 3, 3, the L> bound (2.69) for b, the estimate (4.43) for &
on ¥, and the bounds (C.89)-(C.91) for b and € on %;, we obtain the following bound for
H and G:

IVH | roer2m) + 1Gllrseresy S 102 | VO|| oo r2zyy + 101 oo a(mn) || VO] oo Lo s,y (E-8)

&N o s,y + 10l zoe (18] Lo L2y + 18]l e 22(50))
< e

Notice that the structure (E.7) (E.8) is completely analogous to (C.74) (C.75). Therefore,
proceeding as in (C.76), we obtain:

//I3tu A2V [V, AU (7)) Fdpg udr’

(E.9)
S UV H N0+ [Gllize) [ 1TVl ol AV ()

The Gagliardo-Nirenberg inequality (3.3), the properties (3.23) and (3.22) of A, and the
Bochner inequality (3.7) for tensors yield:

/ IVU () o VAV () 120,y
/ IVU) 5o | VU (7 >||L2(Pm||A V) PNV,
N/O YU (r )||L2 oy IAU () 22(pr0) + 1K | 2(p ) VU (7)) 220, 0

1-2 a a a
HIKN L2 (p, 10U () z2pin) 7 IV N o, VATV (s, A7

1
2(1 2 2
(LIS [ 190 Ep e+ [ 18U, e

1

1 » - e ’
(5 [ IPAV s’ + [ 7 AVl

(E.10)
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which together with the estimates for the heat flow (3.8) and (3.10) implies:
/ VU () oo WAV () 2 T (E.11)
S (1 IR ) 1Pl

X (/o ||Y7A“V(T’)H%Q(Pt’u)df—i-/o 7'~

Finally, the choice of p (A.17), (C.73), (C.76) and (C.78) implies:

1
2

“v<f'>||%m,u)df')

HA“V(T)Hia(pt,u)ﬂL/o VA=V ()IZ2p, 7

0z (E.12)
< (IVH ixcern) + 1G] rny) ( K2 ) T
Using the interpolation inequality (3.22), we obtain:
e 2 ! —a / 2i-a) —a AN /
/0 IV, dr S / WV Nl 1AV e’
E.13
2(1-2)
S AP0+ 1) (14 VKIS ) 1Pz
The estimate (E.8) for H and G and the choice (E.4) for p, yields:
400 ) +o00 2 2
| V@l odr| |, s2° ( / ||v<f>||zz<pt,u>df)
0 L3 0 Lg
. : (E.14)

S 2 VA sz + G res) (1 1K s
< VUVl 0

) IV Pl 2o

(E.14) and (E.3) yield

1[Von: BIEN 4 S 20| VE

) 2 .
LSLQ(P Linfty, L2 (Pyu)

Taking the supremum in ¢ yields the desired estimate (9.1). This concludes the proof of
the proposition.

E.2 Proof of Proposition 9.2

The proof of the estimate (9.3) being similar and slightly easier than the proof of (9.2),
we focus on (9.2). In view of (E.1) (E.2), we have:

[bN, P f / (7 (E.15)
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where V(1) satisfies:

(0- = V(1) = [bN, AlU(7) f, V(0) = 0. (E.16)

Assume that V satisfies for all 7
V()220 + /0 IVV ()22 e d7" S e*(NL())™. (E.17)
Then, in view of (E.15), we obtain

I[bN, P) f || 2240) + 27 I WION, P f || 12300

$ [ @IVt + 2 [ i@V inde
< a0 ([ imar 2 ([T war))
S eMNi(f),

which after taking the supremum in w yields (9.2). Thus, it remains to prove (E.17).
The energy estimate (3.12) implies after integration along null geodesics:

V() oo,y + / 19V () ooy dr” < / / NN, AU fdjigudr’.  (E18)

We need to estimate the commutator term [bN, A]JU. Using twice the commutator formula
(2.50) together with the fact that U(7)f is a scalar function, we have:

[bN, AU = HY’U + GYU (E.19)

where the tensors H and G are given by H = b(x + k) and G = bYx + bVEk + (x +
E)Yb+ x(e+ &) + x¢ +b*(8+ B). Using the curvature estimate (2.59), and the estimates
(2.67)-(2.72) for k,b, x, ¢, € and y, we obtain the following bound for H and G:

NH) + |Gl zer20n) S M0llzee (N OO + Ni(R) + 1L Wbl zrs, (Xl e, + 11Kl Lgers,)

+||XHL§°L‘;,(||€||L§°L§, + ||§||L;’°Li/) + ||XHL§°L;,||CHL;;°L§,

Bl Leo L2ty + 1Bl Leo L2 (34
< e (E.20)

~
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Using (E.20), we obtain:
/ / ) [N, AU (7") fdp dr’
S [ Ul 10 i IV () 1,07
- 1 / G IFU () s IV () sy
[ 1P U o IV gy

N

1

s :
([

e / IV2U () iz IV () 2oy

Lo
( [ IV e
L \Jo

where we have used in particular the following inequality

HIGllz2 2t

\ L IR e

N

+e

N——
[NIES

/0 IVU ) 24

1 T
/0 / 1G 2o IFU () Lzt V()| ' dt
1 T
_ / TP, / IV () fll s IV () | gpydedt

S NGz (/01 </OTY7U(r/)J"‘L4<p,t,u>V(T’)|LALUDt’u)dT/)QC%)é
L A A f||L4<ptu ([ ') )
L IR 1 07 ( [ (Wi, dT,dty
: (e sy 7)

=

N

S G2

= [Gllz230)

/0 IVU ) 1 a7

Together with (E.18), we infer:
V() o + / 19V () 2230, 7" (E.21)
< 2 / IV () f gy + €2 / VU1

0

L

Y
o
Lt

< & / VAU (F) (27" + €2

/0 IVU ) gy
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where we used the Bochner inequality for scalars (4.34) in the last inequality. Now, the
energy estimates (3.8) and (3.9) yield:

/OIIAU(T’)fIIia(Hu>dT'+ /0||Y7U(T’)f||i4(pt,u>d7’ S V200 + 1F s, S V1)),

L

Together with (E.21), we obtain

||V(T)||%2(Hu>+/0 IVV ()2, dr" S €2 (N())

which is the desired estimate (E.17). This concludes the proof of the proposition.

E.3 Proof of Proposition 9.3

The estimate of the first term in the right-hand side of (9.4) being similar and slightly
easier, we focus on the estimate of the second term involving [bN, P,]f. In view of (E.15)

and (E.16), we have:
/0 () IV () 2

(0- = V(1) = [bN, AlU(7) f, V(0) = 0. (E.23)

In view of (E.22), we have to estimate ||V (7)||z2(3,)- Let a, 0 real numbers satisfying:

16N, Pyl fll o2y S , (E.22)

where V(1) satisfies:

1 1
§<a<1,and0<5<a—§. (E.24)

The energy estimate (3.30) implies:
1AV () s, / VA=Y () g,
(E.25)
/ / / 2‘1\/ )ON, AJU(T') fd s wdtdr'.
Ptu

As in (E.19), we need to estimate the commutator term [bN, AJU. Using twice the
commutator formula (2.50) together with the fact that U(7)f is a scalar function, we
have:

[bN, AU = HY?U + V(HYU) 4+ GYU (E.26)

where the tensors H and G are given by H = b(x +k) and G = (x +k)Vb+x(e+&) +x{+
b*(B8 + ). Using Lemma 5.9, Lemma 6.21, and the estimates (2.67)-(2.72) for &, b, x, ¢, §
and x, we obtain the following bound for H and G:

sup (24|12 H ez, +27 3| PG o1, ) (E.27)
J

< NABOx+ ) + I¥Blzis (s, + ler) + Il Clellzzess, + I€lLese)
+||X||L;>OL;,HCHL;>°L‘;, +e
.

AN
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Using the property of P;, and in view of (E.26) and (E.27), we have:

I, /PMA-%vww S0 it

N Z/ / /p (V(VU fAT2V () + Py(H) Py (YU fYAT**V(7")))dps dtdr’

/ / /p Py(YU fATV (1)) dp o dtdr’

S 22 26/ (IP(V (VU FA V(D) 23y + 1P (VU VATV (7)) [l L2030, )T’

+222€/0 1P (WU FAT*V (7)) |2, dT-
J

(E.28)

In order to estimate the right-hand side of (E.28), we derive three product estimates.
Let hq, ho two scalar functions. Let § > 0 a small constant to be chosen later on. Using
the finite band property for P;, the weak Bernstein inequality, the Gagliardo Nirenberg

inequality (3.3), and the Bochner inequality for scalars (4.34), we obtain:

L5

| P ((Fh)he) 52 2
S IBYTh) R 2, BV (TR ko)l
S @RI 2 (py, + 20 (TR TR |2 5, @ TR R 2,
SR L (N PR /Y PSP B[ £ PPN b /¥ P
e TR A LT A o7

Also, the weak Bernstein inequality, the Gagliardo Nirenberg inequality (3.3), and the

Bochner inequality for scalars (4.34) yields:

155 (Wha) (Who)) | 2(puy S 2“%"”I|(Y7h1)(Y7hz)HLéu (Pou) (E.30)

A

e Vh | s 5y | ¥ 02l 220

Lis 16
S YENV LG, HWhlIILQ(pM IVha| r2(p,.)
lis 1
S 2G| Az, IV |2, o | VR2l 22,
Finally, we have:
125 ((Vh)ho )|l 2P0y S ZHP (Bi(h1)) Py(ho)) |22, - (E.31)

If j > max(l, ¢), we obtain using the finite band property for P;, P, and P,, the strong
Bernstein inequality (4.32) for P,, the Gagliardo Nirenberg inequality (3.3), and the
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Bochner inequality for scalars (4.34):

155 (W (Pr(ha)) By (o))l 2 ) (E.32)

S 270V (R(h)) Py(ha)ll2p) + 272 | V(B (h)) T (Py(h2) |l 2.0
< 2—3H572(}%(h1))”L2U%M)”}z(hg))HLawf%m)<+-2_JH57(f%( O 2o IV (Py(h2)) || L3 ()
. .1 4q 51
S @I 2T B () nae0 | Pahe)ll 2
1 1.5 ——6
S (277G o G ARy |12, VA Zap, ) IV Pallz2m )
Bt 30
S 2 ](QM)HAhIHL? (Peu) [ Vhall7- (Pe,u) I¥hellz2p..

Next, if [ > max(j, ¢), we obtain using the finite band property for P; and P}, the strong
Bernstein inequality (4.32) for P,, the Gagliardo Nirenberg inequality (3.3), and the
Bochner inequality for scalars (4.34):

1525 (W (Fi(h1)) Py (h2)) || 2 ) IV (Fu(h1) Py (h2)ll 2 ) (E.33)

<
N HV« (hﬁﬂh%au|U)Uwﬂhw1%u
<

1
|| A2 P IV Eop, VRl 2P -

Finally, if ¢ > max(j,/), we obtain using the finite band property for P;, P, and P,,
the weak Bernstein inequality for P,, the Gagliardo Nirenberg inequality (3.3), and the
Bochner inequality for scalars (4.34) :

1P (V(P(h)Py(ha))| 2 (py S IV (P (1)) Pyho) || c2(py )
S VP (RO)) | Loy | Pa(ho) | L3 (py 0
< 2 %%lnmhnum Po || Palh) 2Py
_2q 1_ +5 —75
< 27 G| ARy 12, ||Wh1||L2(Pm)||thuLz Fiu)
1+6 15
< ok | PM>||W||L2 b, o IVhall2m,

which together with (E.31)-(E.33) yields:

_ Lis 15
1P ((Wh)ho)l|2(p, S 279G+ Aby |2, P I VRl o p, I Whel 2P0 - (E.34)

Now, we use (E.29) (E.30) and (E.34) with hy = U(7)f and hy = A2V (') to
estimate respectively the first, second and third term in the right-hand side of (E.28). We
obtain:

/0 T / 1 /P ATVEN, AU fdpdts e

AN

(Z?‘)f AU () £ IV ) 50 IVA2V (1) 200,07

15

S /MU VAl IO ) 2o VAV ) e AV ()12 34,
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where we used the interpolation estimate (3.22), (3.23), and the fact that 6 > 0 in the
last inequality. Next, (E.25) and (E.35) yield:

I\A“V(T)I\%zmuﬁr/o VA=V (1) |72 30,y
1is 1-5 —a —a a
/IIAU VAN 2230 INU () 1200 VATV (T 20y ATV (T T2 30, AT
1 15
8/0 (VT NIAU () fllz2000) P IVU (F) 1l 0,

N

AN

e
<NVA™ V() 2y (72 ATV () 2200,) d T

T i+% T
s( /0 T’||4AU(T’)fII%2(Hu>dT’) ( / ||VU(T’)f||2dT’)L2(Hu)
x( /0 ||Y7A_“V(T’)||%Q(Hu)> ( /0 -4 V(T )||%2<Hu)d7') .

Using Gronwall and the restriction (E.24), we infer for 0 < 7 <1

N
N[

A

N

||A_av(7—)||%2(%u)+/0 VA=V () [z 0,7 (E.36)

< e / (VAU () 230, + € / IVU ()0,
S 5||f||%2(7{u)>

where we used the heat flow estimates (3.8) and (3.10) in the last inequality.
Using the interpolation inequality (3.22) and (E.36), we obtain:

1 2 2(1—a)
JRLC PR / AV ()i IV ()]s T
0

S €Hf||230Lz(Hu)~

Together with (E.22), we obtain, in view of the fact that m is supported in (0, 1), for all
q > 0:

1N, P f s riny < H [ IV @ luin (E.37)
0 L
1 N 5
< ( / ||v<f>||zQ(Hu)dr)
0 oo

u

S 2"l 2

Since a < 1 in view of (E.24), (E.37) yields (9.4). This concludes the proof of the
proposition.
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E.4 Proof of Proposition 9.4
In view of the analog of (E.1) (E.2), we have:

[nL, PjJtry = /000 m;(T)V (T)dT, (E.38)

where V(1) satisfies:
(0- — AV (1) = [nL, AU (T)tryx, V(0) = 0. (E.39)
Assume that U(7)try satisfies the following estimates
IXNV*U () trx e rirzi2m) S & (E.40)
and
HWU<T>trXHL3°LfL$L°°(Pt,u) Se (E.41)
Then, in view of the commutator estimate (2.49), we have
I[nL, AJU(T)trx | et 22 22(,.0) (E.42)
S nllze (||XV2U(7')UXHLgOLtngm(Pt,u) + (||X||L;;°L3, HEHL?L‘;,

+||77J_1Y7”||L;>°Li, [trxlze + HVU"XHL;”L;)||Y7U(T)UXHLgoLtngLoo(Pt,u)>

S 6

where we used in the last inequality the estimate (2.67) for n, the estimates (2.70) (2.71)
for , the estimates (2.67) (2.68) for €, and the estimates (E.40) and (E.41). The energy
estimate (3.11) implies

HWV(T)Hé(Pt,“)JF/O HAV(T/)H%%Pt,u)dT/S/O H[nL,NU(T/)UXH%Q(PW)CIT/-

Taking the L°L}! norm, and using the estimate (E.42), we obtain
||VV||LgOLt1LgoL2(Pt,u) Se,
which together with (E.38) yields the second part of the estimate (9.5)
9L, Pz, S (.43)
Also, the energy estimate (3.12) implies
VWoir+ [ 1PV e S [ IV iz L AU,

(E.44)
Let

Y(r) = /0 V(2o linLy AU () erx | L2p, o dr"
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Then, (E.44) yields
V(1) S VY@L, AUT)trx 2(p)-

Integrating in 7 and using Y (0) = 0, we obtain

V()2 §/ linL, AU () texlz2p, 0 dr' S V7L, AU (x| ze2p, .)-
0

Together with (E.38), this implies

H [nL7 -Pj]trX||L2(Pt,u) SJ (/ mj(T)\/FdT) || [nL, A]U(T)trXHL%m(Pt,u)
0
< 279 [nL, AU (C)trx| 2 eep, .-

Taking the L°L! norm, and using the estimate (E.42), we obtain the first part of the
estimate (9.5) _
[[nL, Pltrx|[riz2, S 277e. (E.45)

Finally, (E.43) and (E.45) yield the desired estimate (9.5). Thus, it remains to prove the
estimates (E.40) and (E.41).
We start with the proof of (E.41). We have

VU () trxll e ey S Y IPYU(T) Pitex|| o p..)- (E.46)
j.l

We first consider the case j < [. Using the sharp Bernstein inequality for tensors (4.37)
and the finite band property for P;, we have

| P;YU(T)Pitrx|| Lo () S 2j(1 + 1K | 22p ) 125 VU () Pitrx || 2, )
227 (1 + | K || 22¢p ) U (T) Prtrx || 22py -

AR

Taking the L?L? norm, we obtain

12U () Pitrxllizrzep,y S 27 (14 1K g 2au) 1UC) Pl cz e, )

S
S 22jHA71PltrXHL;>°L2,:

where we used in the last inequality the estimate (4.29) for K and a heat flow estimate
for U(7)try. Together with the finite band property for P; and the assumption j < [, we
obtain

1P YU () Pitrxlzzioe(po S 272120 Pritrxl e 2,)- (E.47)

Next, we consider the case [ > j. Using the sharp Bernstein inequality for tensors (4.37)
and the finite band property for P;, we have

. 1
1B VU (T) Pitex|[coepy S 2/ (0 (KN Lo gp, JIEVU(T) Prtrxllizge,.) - (E-48)
1
S (LUK, IV U (D) Pitex| 2,

S (K ap, PIAU(T) Pitrx| L2p,.),
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where we used in the last inequality the Bochner inequality for scalars (4.34). Also, using
the sharp Bernstein inequality for tensors (4.37) and the finite band property for P;, we
have

| P,YU () Pitrxl e e (E.49)
S DA+ Kz, )IB YU ) Pyl e,
S 29+ K s, ) | BAAVU () Prtridl o)
S 2K 2, ) IVAU ) Prtrxdliae, ) + 1P (A, VIU ()Pt i)

Using the commutator formula (B.87), the Bernstein inequality for P;, the Gagliardo-
Nirenberg inequality (3.3), and the Bochner inequality for scalars (4.34), we obtain

IB(EYU MR p S 2HIEYUM P, g,
< 28K g2p, ) IVU (1) Pt zage,.
< DK IV2U(7) Pt 2, VU (F) Prtexl e
< 23| K| |AU () Pt VU () Prtrdl -

Together with (E.49), this yields

. 1
[P VU(T)Pitrx||poepr) S 27](1+||K||iz(pt,u))<\|Y7AU(T)BtFX\|L2(Pt,u)
j 1 3
+22 (| K| 2P, ) |AU (T) Pitrx | 725, WU(T)BU‘XHZz(m))-

Interpolating with (E.48), we deduce

j 1 1
1B WU(T) Pitrxlzeep) S 2_§<1+HKH[?,?(P,S’H))||AU(T)PltrX||[2/2(Pt’u)(”WAU(T)PltrX“LQ(Pt,u)

N[

j 1 1
+22HKHLQ(Pt,u)||4AU(T)PZ’GI"X||iz(pt,u)||77U(T)Btrx|liz(pt,u)) :
Taking the L?L? norm, we obtain

155 VU () Pitrx|l 2 2 o= (p..)
_J 1 1
S 2 2<1+HKH[Q/ZOLQ(HH))HAU(T)PItrXH[21t00L72_L2(Pt7u)(HWAU(')PltrXHL}X’LELQ(Pt,u)

-

i 1 i 2
+22 HKHLﬁoLQ(Hu) ”AU<')PltrXHzgoLgm(Pt,u) HWU(T)PIUXH%OLEH(H,U))

N|=

_J 1 J 1 1
S 24| VRex e, (I8P 200 + 22 IV REX o, I BN ey )

where we used in the last inequality the estimate (4.29) for K and a heat flow estimate
for U(7)try. Together with the finite band property for P; and the assumption | < j, we
obtain

[1=3l
4

1P WU () Pitexl gz o (py S 27 © (2 Pitrxlloperz,)- (E.50)
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Finally, (E.46), (E.47) for [ > j and (E.50) for [ < j yield

INU(r)trxll 2z pr) S 22‘* 2| Ptrxlese,) S lltrxlls, (E.51)

where the Besov space B! has been defined in (5.5). Now, in view of the estimate (5.9),
and the estimates (2.70) (5.7) for try, we have

lerxllsr S Ntexll e sz, + [[Wtrxllse S e

Together with (E.51), this implies (E.41).
Next, we prove (E.40). Recall the Bochner identity for scalars on P, which is a
2-surface. For any scalar f on P,,, we have

ANVIIP) = V(AS) -V + KV + |V

Choosing f = U(7)try, multiplying by |x|* and integrating over P, yields

/P PANYU ()

- /P PYAU ()Y - YU+ | K PIPU)ix® + / XPIPRU (),

Pt,u

which implies after integration by parts

2
IXV U (T)tex[122p, .

= IXAU(7)trxl|Zep,.,) — K|xPIYU ()trx|* + 2/ X - VXAU (7)try - YU(T)try
Pt,u Pt,u
2 [ % VPU YUy
Pt,u
We deduce

IXVU M texliep.y S IXAUM) x|, + 1K 2, X e 21, IVU () trx e
FIXAU(T)trx | 2(p, o IV X 2, ) [ WU (T) X Lo )
HIXV?U (P trxll 2 b 1VX N 228 VU (7)trx | oo ),

which yields

2 1
IXVU () erxl 2.y S0 IXAUT) Xz, + 1K Z2p, ) IVU (T) X Lo p0)
+HIVxlL22 ) IVU (T)trx || oo (P

where we used in the last inequality the estimates (2.70) (2.71) for x. Taking the L;L?
norm, we obtain

INVU (7)texl| 22 12p) (E.52)

1
N HXAU(T)trXHLtILELQ(Pt,u) + HK”zgoLz(Hu)HWU(T)UXHL%LZLOO(Pt,u)
HIVx e 2 VU (T)trx | 2 p2 e py )
S HXAU(T)JMXHL%L%LQ(Pt,u) +é,
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where we used in the last inequality the estimates (2.70) (2.71) for x, the estimate (4.29)
for K, and the estimate (E.41) for YU(7)try. Next, we estimate the right-hand side
of (E.52). We multiply the heat equation satisfied by U(7)try by |x|*AU(7)trx and we
integrate over F;,. We obtain

1d
5 7= IXVU )eexa, o HIXNAU (P orxe e, ) = =2 / X-Vx- VU () trx-AU (1) trxdpiy .

Pt,u
This yields
||XAU(')UXH%3L2(Pt,u)
S IXVeexlzam, + VX 22, VU C)texll e poe (e IXAU () texll 2 22 p0)-

We infer

IXAU()trxlrzraep.y S IIXVirxllzece.,) + 1V 22ep o VU (O trxp2 e p.)
and hence, taking the L} norm

IXAU ()trxlpirzrecp,y S €+ el VU)X zrz (e, (E.53)

where we used the estimates (2.70) (2.71) for x which yield in particular

S IXVtrxl 2,
N HX”LZ?L%”WtrXHLi,L;”
S e

IXWtrxlzs e,

Together with (E.41), we infer

IXAU (trxllpizerep,) S €
Together with (E.52), we finally obtain
||XY72U(T)trX”L}LELQ(PLU) Se.

Taking the supremum in u yields (E.40). This concludes the proof of the proposition.

E.5 Proof of Proposition 9.5

The proof of the estimate (9.7) being similar and slightly easier than the proof of (9.6),
we focus on (9.6). In view of (E.1) (E.2), we have:

BN, PJtry = /0 (1) (), (F.54)

where V(1) satisfies:
(0. — AV (1) = [N, AJU(7)try, V(0) = 0. (E.55)
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Assume that V satisfies for all 0 < 7 <1
V(T2 S €74, (E.56)

N

and
A2V (7)[12203,) + / VARV () 2 gadr S &2 (E.57)
0
Then, first note in view of the interpolation inequality (3.22), that
1 1 1 1
19V () l2pny S TNV IVARV (O
which together with (E.57) implies

1PV )l zar2nn S A2V (- )HLooLz o VATV O)IZ2 20, S & (E.58)

Then, in view of (E.54), (E.56) and (E.58), we obtain for j > 0, using also that m is
supported in (0, 1)

23(|[BN, PjJtrx[|r2(,) + 27 2| VION, Pltrx|l 2

< 2%/0 |mj(7)|||V(T)||L2(Hu)dT+2—%/0 [ (DIIVV (7))l 230 d7
n [t
= 2 [ @IV O leoudr+ 27 [ @IV oo
j 1 1 J ! 4 %
5 22¢ </ |mj(7-)|7'4d7'> + 27 2¢ </ |mj(7-)\3d7'>
0 0
S e

which after taking the supremum in u yields (9.6). Thus, it remains to prove (E.56) and
(E.57).
We start with the proof of (E.56). The energy estimate (3.12) implies

V) s + / IV () 2o 7 < / /P VON, AU )trxdpne.  (E.59)

We need to estimate the commutator term [bN, AJU. Recall from (E.19) and (E.20) that
we have

[bN, AU = HY?U + GYU (E.60)
where the tensors H and G satisfy
Ni(H) + |Gl g2, S € (E.61)

In view of (E.60), and integrating by parts the term 77 U, we obtain:

/ / VBN, AU+ )trydn.udr
Ptu
U, POl [V () i,

+/0 IV HI| 2P, ) + G2 DIV (T )X 2o [V (7)o dr"
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Together with (E.59) and the Gagliardo-Nirenberg inequality (3.3), as well as Gronwall’s
Lemma, this yields for 0 < 7 <1

||V(T)Hi2(pt,u)+/0 1YV (T)Z2 T (E.62)
S (HHI o pa, + IVHZ2p, ) + ||G||%2(pt,u))/ IV U (") texl 2, | VU (7Y trx | 22 A7
g 0
S (€2+WHH%%pt,u)Jr||G||2L2(pt,u))/0 |AU (7)) trxl| L2, I VU (T trxl | 22, d'

where we used in the last inequality the estimate (E.61) and the Bochner inequality for
scalars (4.34). Now, the heat flow estimate (3.9) yield:

VU (7)trxlzap, ) +/0 IAU () erx|22p, 7" < (IWtrX o2, S €% (E.63)

where we used in the last inequality the estimate (2.70) for try. Together with (E.62), we
obtain

T 1
||V(T)||22(Pt,u) "‘/ ||WV(T,)||%2(Pt7u)dT/ Selri(e+ ||Y7H||2L2(Pt,u) + ||G”%2(Pt,u))-
0

Integrating in time, and using the estimate (E.61) yields (E.56).
Next, we prove (E.57). The energy estimate (3.30) implies:

1 i 1
HAQV(T)H%Q(Pt,u) +/0 ||WA2V(T/)||%2(Pt,u)dT,
=[] AN, AU
0 Pt,u

A2 ([N, AU (') erx) | 22y A"

s [ IAVE .,
S [ VAV o . AT 3,7
where we used (3.28) in the last inequality. This yields
IV + [ VAV pie’ S [ NN AU, e’ (B4

In view of (E.60), we have

1N, MU ) el g,

2
S M H oo IV U)Xl 2 + 1Gl 2 i VU (T trx o e )
2 2 2 1
S H o IV U)X L2p) + Gl 2 o VU)X 22 p,  IVU (T ) 00X 22
2 1
S H o AU Xl 2 + 1G 2 e, o AU (T x| ze p, VU (F)texl|Z2p, )
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where we used the Gagliardo-Nirenberg inequality (3.3) and the Bochner inequality for
scalars (4.34). Taking the L2 norm and using (E.63) implies

BN, AU x5 S S 5000y + 1G Lz
Now, taking the L? norm and using (E.61) yields

I[bN, AJU(7') Se. (E.65)

trXHLngL%(Pt,u) ~
Finally, integrating (E.64) in ¢, and injecting (E.65), we obtain (E.57). This concludes
the proof of the proposition.

E.6 Proof of Proposition 9.6

We have: -
[W,Pj]trX:/O m;(T)V (T)dT, (E.66)

where V(1) satisfies:
(0 = AV (7) = [V, AlU(7)try, V(0) = 0. (E.67)
Assume that V satisfies for all 7
ATV ()] 2, S e (E.68)

Then, using the Bernstein inequality for P;, the properties of A and the finite band
property for P;, we have

Vllzzrs, S DBV s,
j
S D 2BV ()l
j

7 _3 3
S 22N P e 1AV () 220

j
; 1
< Z 22 ||Pj||z(L2(Pt,u))

J

S (Z 2_i> [AZV ()] L2(30.)
i

&

_ 2 3
A 1Pj||z(L2(Pt,u))||A4V(T)||L2(Hu)

Y

where we used in the last inequality (E.68). Together with (E.66), we obtain

IV, Pyltrxl s, §/0 [ (MIIV(T)lzz16 d7 S €,

which is the desired estimate (9.8). Thus, it remains to prove (E.68).
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The energy estimate (3.30) implies:
3 T 3
ATV () 2o, + / IVATY (7)) |22, 7
= [ [ AR AU
0 Py
< / IA 2V ()| 2 gpy |A™ TV, AU (P )0rx) | 12,0y T

S /0 VATV ()2 pn IV, AU teX 5 4, AT

where we used (3.28) in the last inequality. This yields

3 a3 T
V@ p+ [ IV e’ S [ 19 AU, e’ (£69)
0 0 b
Now, in view of the commutator formula (B.87), we have

IV, A]U(T')UXHLg(PW) S HKWU(T/)U"XHLg(Pt’u)
S K2 IVU () trx || iogp, )
) 4 1
S N2y IV U)Xl 2o p, ) IVU (60X 22,y
4 1
S K 2@ 1AU () trx| 22 p, ) IVU (T)0X 22, -

where we used the Gagliardo-Nirenberg inequality (3.3) and the Bochner inequality for
scalars (4.34). Taking the L? norm and using (E.63) implies

T T T PP
Now, taking the L? norm and using the estimate (4.29) for K yields
/
7. AU 25, S (E.70)

Finally, integrating (E.69) in ¢, and injecting (E.70), we obtain (E.68). This concludes
the proof of the proposition.

E.7 Proof of Lemma 9.7

In this section, we will use the fact that the function m in Lemma 3.8 can be constructed
such that

/OOO |m>;(7)|dT + /OOO |m<;(T)|dT < 400 (E.71)

for any j. Indeed, following the construction in Lemma 5.4 of [10], we may choose m such
that

m(1) =¢'(1), (1) =¢(1) —d(471), ¢(1) =1for 7 <1, ¢(7) =0 for 7 >4,
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where ¢ is a smooth function. Then, we have

my(7) = - (6(27),

and since we have for 0 < 7 < 400

Z w(22l 22] Z w 221 (22] )

1>j I<j
we infer on (0, +00)
ms; (1) = 2%¢/(2%7), m (1) = —2%¢/(2%7).

Hence, we have

+oo +o00 +00
2J dr = <J dr = ' d
/0 |m>,;(T)|dT /0 |m<;(T)|dr /0 | (T)|dT < +o0

since ¢’ is compactly supported in (0, +00). This shows that this m satisfies indeed (E.71).
We are now ready to start the proof of Lemma 9.7. We have:

[P Po(WIF = [ eV (r)ar (£.72)
where V(1) satisfies:
(0r = V(1) = AP<;(R)U(7)F + 2V P<;(h) - YU(T)F, V(0) = 0. (E.73)
Assume that V' satisfies for all 7
IV e S 0+ 2VT+ 2270 [ Vhllp | Flize,.o- (.74)

Then, (E.72) and (E.74) imply in view of (E.71)
11Psj. Pey(W)Fi2gpiy < / s s (OV () | gy

< ( JACIRE Ve
0

SO VR| e,

which is the desired estimate (9.11). Thus, it remains to prove (E.74).
The energy estimate (3.12) implies

IV ()Z2 e, + /O TWV(T');@Q(PMW
/ /P AP<J( )U(T)F+WP§j(h>-WU(T)F)de

w1

>dr) VA llzm 1Lz

Fllr2p,.0)

AN

S /0 IAP<;(P)||Lap, ) NU(T) 'l Lap, ) 1V [ 22(py ) + IV P<i (B) | ap ) IVU(T) Fl 222 ) [V [ L3Py )
T 1 1
< / IVAP< ()3 ) | AP (D) o
0
T 1 1 1 1
+/0 W(‘)ng(h)l\iz(pt,u)HWst‘(h)Hiz(pt,u)HWU(T)FHLQ(P@u)IWVHZQ(pt,u>HVHiz(pt,u)

1
U(T)FH[?,?(Pt’u)||V||L2(Pt,u)

1
WU(T)FHE%HW)
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where we used in the last inequality the Gagliardo-Nirenberg inequality (3.3). Together
with the Bochner inequality for scalars (4.34) and the finite band property for P;, we
obtain

IV + [ 19V e

2 [ 1900 IV, WO P, [V 8,

- / AP (W 1901 s IFU ()P 2t g 19V IV W
2% /0 PR [V F W 10V s IV 2

224 [ I9M 2 PP L IV e IV

0¥ /0 S <G Yol AN 1oicaY oy AN L

+27 /OTHWHLz(pt,u)HWU(T)FHLZ(B,H)||VHL2(Pz,u)

+/ VAl L2 ) IVU (T) Fl| 2P i) WV | 2P0
0
This yields

V(DI Py

S IV | IVl

’ y 3 3 -
+ / 19011222, (2% VU (1) F g, 10 () F e,y + 2 IVU () F i ) IV Iz

N

A

AN

which together with the heat flow estimate (3.8) and the fact that U(0)F = F' implies

IV ()ll2p,.0)
S 2Rt P TR

T 3 1 1 .
[ 19l (2H VU sy [0 Pl + 2 IFU ) Pl ) IV a2,
Integrating this differential inequality, we obtain

VO S IV, 1F 122, (E.75)
2
. T 1 1
2| VhlE e, ( / (VU )Pl o, U () F g, + ||WU<T>F||L2(pt,u>))
S VR b, 1 F N Z2p, )

+22f||vh||iz<pt,u>r< | @IPUE Pl [0 Pl + ||WU<T>F||%2<H,“>)).
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Now, the heat flow estimate (3.8) and the fact that U(0) = F implies
/0 (2IVU ) Fllzp i U () Fllapn) + VU () F s, )
S 2Vrsw U () laem ( / WU(r)FH%Z@,u)) + 1F 2,

< A+ 2VDF22p,.

which together with (E.75) yields the desired estimate (E.74). This concludes the proof
of the lemma.

E.8 Proof of Lemma 9.8
Let V(1) defined in (E.73). Assume that V satisfies for all 7

i i 1
IVV (T )llr2p S 2((+22750) VA 2(p,) + K 22000
Then, (E.72) and (E.76) imply
IV[P>j, P<j(h)]Fl| 2P, )
| mes eV @i

]

J 1
(/ ms;(T 2279)[|Vh| r2p,) + 1K || L2(Py ) ||h||L2(Ptu))dT) 1| 2P0
< Y(IVRl 2wy + 1 K 2 |2 2 IF | 22(p0)

which is the desired estimate (9.12). Thus, it remains to prove (E.76).
The energy estimate (3.11) implies

hl 2, )1 Fl 2P,y (E.T6)

A

AN

9V W+ [ AV g
s [ [ AVE)(APSIUEIF + TP () - VUGF )diur
This yields
IV () o,
S [ (PO s y IU P+ 9P (W e, U F )
N /OT (HWAPSJ(h)HLQ(Pt,u)HAng(h)HL?(Pt,u)HVU(T)FHL?(Pt,u)”U(T)FHLQ(Pt,u)
IV P () e IVU ) F

where we used in the last inequality the Gagliardo-Nirenberg inequality (3.3). Together
with the Bochner inequality for scalars (4.34) and the finite band property for P;, we
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obtain

IV S [ (NP VU Lot oIV (Pl
HIV Py (1) e IV ) F i )

Together with the heat flow estimate (3.8) and the fact that U(0)F = F, this yields

9V S 2NV Pl Pl ([ 19000 )
HIVP<j (M2 (b, ) 1F 12250
S (VAT + TP (Wi ) NP oy (BTT)
Now, using (9.15) with the choice f = P<;(h) yields

||Y7P§j(h)||%oo(pt,u) S NAP<i(M)lz2py + IVAP<j (W25, ) IV P<i (M) 172,
(Pt,u) (Pt,u)
I K2, [V P<j (R) || 2P0

S 2j<|’77h|’L2(Pt,u) + HK”LQ(Pt,u)“hHLQ(va“))’

where we used in the last inequality the finite band property for P;. Together with (E.77),
this yields the desired estimate (E.76). This concludes the proof of the lemma.

E.9 Proof of Lemma 9.9

We have: .
V. Pejlh = / mey(T)V (r)dr, (E.78)

where V(1) satisfies:

(0r = AV (7) = [V, AlU(7)h, V(0) = 0. (E.79)

Assume that V satisfies for all 7 and for all a > 0

IV (Dl S 1K 20 (K 20pn Rl 22(e,0) + 1A 2] 22(8,0))- (E.80)

Then, in view of (E.78) and (E.71), we obtain for all a > 0

+o00
1[P<j, V1Al 2P0 5/ im<; (DIV ()l 2P dT
0

+oo
N (/ |m<j(7)!d7> I K| 2oy 1K [ 22y 1] 2Py ) + AR 22 )
0
SOz KK 220 1Rl 22cp0y + AR 2P, )

which is the desired estimate (9.13). Thus, it remains to prove (E.80).
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The energy estimate (3.12), together with the commutator formula (B.87), implies

IIV(T)||%2<pt,u)+/ IVV () Z2 . d"
0
S /0HV(T')||L2<Pt,u>||K||L2<Pt,u>IWU(T’)hllLoo(Pt,u)dT’-

Integrating this differential inequality, we obtain

T T 2
VO [ IV S 1 TRsn ([ 190G A0 YESD
T iss
S 1K p [ 7 IVUE A
0

where 0 < § < 1 will be chosen later. In view of the estimate (9.15), we have

/ YU (7 Yl (E.82)

0

Tols

< / AUl Zaqpy + WAVl 2o, [PV (Yl 220
K oy [FU B2, )

< / PN AT (VR dT / B WAL (b2
K o) / 10 ()R,

0

< / AU (VBB / 27 AR (s, T

(0 I o) o

where we used in the last inequality the heat flow estimate (3.8).
Next, we estimate the two first terms in the right-hand side of (E.82). We have

1
([ 180, )

0
- :
< Z( | ||4M%U<r'>h||%z(a,u>df’)
=0 N0
< Z( / T/r|4M%U<T'>hH%2<pt,u>dT’) ( / HMUW’)hH%a(pt,u)dT’)
>0 N0 "
< ZHPthILE?pw)||y7Pth§L2(Pt,u)7
720

where we used in the last inequality the heat flow estimates (3.9) and (3.10). Together
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with the finite band property for P;, we obtain

1
(/ T/HMU(T’)hH%Q(H,u)dT/) < Y29l (E:83)

Jj=0

S (Z 26j> A% Rl 2, )

Jj=0
S NIAZR] 2p,)-
Also, we have

T 226 3
( |+ wvU<T'>hn%2(pt,u)dr’)

1
2

! 2
< ([ e U )
520 N0 ’
T 1;25 - g
< ([ CrIvanve i o) © ([ IPARTC M e )

7=>0
S Y PRl AP 2p, .,

>0

where we used in the last inequality heat flow estimates. Together with the finite band
property for P;, we obtain

1
T B 3 2 .
(/0 " 25!14&2U(f)huizwt,u)dT') SEDBE L e (E.84)

320

S <225j> IA® Rl 2P, .

j20
< AR 2 p,)-

Finally, (E.82), (E.83) and (E.84) imply for all 0 < § < 1

T o1ss
/0 T NVU ()R oo by @7 S IAP R 2 5,y + 1K G2 p 1B 12, - (E.85)
Injecting (E.85) in (E.81), we obtain
IV ()l e2eprny S WK p2epn) (1K 22(p 1ol 220p ) + AR 22, 0))- (E.86)

Choosing § = § in (E.86) yields the desired estimate (E.80). This concludes the proof of
the lemma.
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E.10 Proof of Lemma 9.10

We have: -
[W,Pj]h:/o m;(T)V (T)dr, (E.87)

where V(1) satisfies:

(0, — BV () = [V, AlU()h, V(0) = 0.
Assume that V satisfies for all a > 0
—+00 %
( / vaw%z(pt,u)m) <K o (1 ez B2 e + AR e (E89)

Then, in view of (E.87), we obtain for all a > 0

+oo
IV1E; Whll 2P, ) 5/0 [ (DY ()20 dT

1
+00 2
(/ mj(T)sz) 1K | 22y (K| L2y ) 1] 2By ) + [[A“R] 2Py )
0

< K| 2y 1K 2o |2l 2P0y + 1AR 2200 )

which is the desired estimate (9.14). Thus, it remains to prove (E.88).
Injecting (E.85) in (E.81), we obtain

N

+o0
/0 1YV (Oza,0dm S I L2 p,0 (K T2,

Choosing ¢ = £ in (E.89) yields the desired estimate (E.88). This concludes the proof of
the lemma.

hZep + 1A R L2 p,,). (E.89)

E.11 Proof of Lemma 9.11
We have in view of (3.38)

3 s 1 2
IV lerin) S 9 s IV sy + 192 L2 (E:90)

Now, using the Bochner inequality for tensors (3.7), we have

3 2
IV ey S AV 2 + 1K 2@olIV Fllze + 1K 7m0 IVl 2050

S VA2 + IV, Al 2. + 1K
HIK L2 p 1V N2

In view of the commutator formula (B.87), we obtain

IV ey S IVA ez + 1KV iz + 1K 20 1V fllz2e.)
HIK N2 p, ) |V F 22

S IVAflz@. + K2
HIKNZ () IV S 2P0
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which together with (E.90) yields

1 1 1 1 1
IV fllepn)y S IVAEm MV 22, + K 2o, MV 2 ) W20
2
IV fllz2prn) + 1K 2o |V f |l 22(P0)-

We deduce

1 1
3 3 2
VSl S IVAL2p ) IV L2, + IV Fll2epn + 1K 220 1Vl 20,

which together with the Bochner inequality for scalars (4.34) yields (9.15). This concludes
the proof of the lemma.
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Bochner identity on P, 32

coarea formula on H,,, 42
coarea formula on ¥;, 46

electro-magnetic decomposition, 68
Gagliardo-Nirenberg inequality on P, 31
maximal foliation, 10

null decomposition of R, 12
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Ricci coefficients in the time foliation, 12

Sobolev embedding on >3, 46
Sobolev inequality on H,,, 42

volume radius, 7
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