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Abstract: This paper investigates path planning strategies for additive manufacturing processes such as pow-
der bed fusion. The state of the art mainly studies trajectories based on existing patterns. Parametric optimiza-
tion on these patterns or allocating them to the object areas are the main strategies. We propose in this work
a more systematic optimization approach without any a priori restriction on the trajectories. The typical op-
timization problem is to melt the desired structure, without over-heating (to avoid thermally induced residual
stresses) and possibly with a minimal path length. The state equation is the heat equation with a source term
depending on the scanning path. First, in a steady-state context, shape optimization tools are applied to trajec-
tories. Second, for time-dependent problems, an optimal control method is considered instead. In both cases,
gradient type algorithms are deduced and tested on 2-d examples. Numerical results are discussed, leading to
a better understanding of the problem and thus to short- and long-term perspectives.

Keywords. Path planning, Additive manufacturing, Laser based powder bed fusion, Electron beam powder
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1 Introduction
Additive manufacturing (AM) consists in building structures layer by layer. This concept has been developed
for different materials such as plastic and metal, with an adaptation of the process. Among processes, powder
bed fusion builds objects according to the following scheme: powder is regularly distributed and a source
of thermal energy, moving along a planned trajectory, selectively fuses the material. Solidification comes
from the cooling and a new layer of powder is coated to repeat the process. After all layers have been built,
removing the powder reveals the structure which, very often, requires some post-processes (like cutting it
from the baseplate and surface treatment). Breaking with traditional manufacturing, such a process presents
many advantages in different industrial fields such as aeronautics and biomedical engineering. Reducing
the topological constraints, the manufactured shapes can be more complex than before and better achieve
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functional requirements. Unlike molding, producing a wide range of different items is easy, saving the mold’s
material and machining time and thus reducing time to market [9, 22, 50, 57].

As promising as this process seems, some issues yet need to be solved. Many thermal, mechanical and
metallurgical phenomena occur, affecting the object’s quality [14, 19, 33, 34, 38, 46, 58]. The kinematics of the
scanning head, and especially the control of the manufacturing time, must also be mastered. Therefore, there
are many ongoing research on various topics, including modeling of the physical phenomena and control of the
scanning path. With so many nonlinear phenomena at stake and four material phases involved (solid, powder,
liquid, gas), high-fidelity simulations are highly problematic in terms of predictability and computational cost.
Simplifying ingeniously the problem and developing more efficient tools are thus studied [16, 19, 21, 37,
38, 47, 53]. From these models, the process can be improved by optimizing the powder quality, the process
parameters (velocity, power, layer thickness) and the scanning strategy (path, hatch distance) [27, 49]. Finally,
the design of the object itself can be adapted. Topology optimization is tightly related to AM. Indeed, this
process allows for the building of the complex objects designed. This optimization can also include some
process constraints: optimization of supports [4, 30, 39], minimization of the residual stresses [5], dealing
with the anisotropy [32].

In this work, we focus on optimizing the heat source path for each layer. In powder bed fusion, the
scanning path’s design impacts directly the heat distribution and thus the final quality of the part [18, 27, 35].
These questions were studied even before AM, with pocket machining [8, 12, 28]. In these works, paths are
studied based on existing patterns, split in different categories [20, 33]: zigzag (simple to program but creating
thermal defects [27]), contour (based on an offset of the object boundary), spirals, hybrid (mixing contours and
zigzags), continuous (among them fractal paths), medial axis transformation. Strategies in which the object
is split in cells were also developed [27, 40] with, for example, genetic algorithms which allocate patterns to
each cell [40]. A recent track consists, starting from a chosen initialization, in adapting the path ”on-line”,
while manufacturing the object [48, 54]. Finally, coupled optimization of the object and of a contour path has
been considered to deal with anisotropy [32]. These references are not specifically dedicated to powder bed
fusion but they present interesting ideas in path design.

Departing from the traditional literature, where paths are based on patterns, the goal of the present study
is to optimize paths scanned by a moving source, without any restriction on their shape. To the best of our
knowledge, this is a new approach and we know only one other recent work dealing with the topic [1], which
applies an optimal control approach to path design. The major difference between our work and [1] is that
our building constraint is based on physics (the temperature must attain a melting value in the built structure)
while theirs is based on geometry (a tubular neighborhood of the path must cover the built structure). Such
an optimization could seem too costly to be used straight in the industry. Indeed, compared to the patterns
enumerated before, generating an optimal path would have a higher computational cost and would be difficult
to modify on-line. However, it may give some intuition about the paths to choose, validating some patterns or
creating new ones related to the object design.

Section 2 presents the model used for this study. As already mentioned, modeling and simulating additive
manufacturing processes is a research field in itself. To optimize the path, we need to simulate the manufac-
turing process. Since it is to be included in an optimization loop, such a simulation must not be too costly.
This leads to the choice of a macroscopic scale model, considering only powder and solid and forgetting about
the liquid and gaseous states. Whereas this approach should allow for controlling both the thermal expansion
and the residual stresses, we choose here to focus on the thermal effects only, avoiding the resolution of the
mechanical problem. Yet, we can optimize the built area as well as the thermal expansion, through a control of
the maximal temperature. This model is simplified again by considering only a two-dimensional layer (details
about this modeling process can be found in [11] or in the Appendix 8). If not fully realistic, this simple
formulation allows us to test our optimization algorithms and it could be enriched in the future.

Section 3 simplifies further the problem by considering a steady state version of it, where the path is seen
as a hot thread. Representing the path as a line in the plane, it is amenable to classical shape optimization tools,
like Hadamard method of shape differentiation. Therefore, for various objective functions or constraints, either
geometric (length of the path) or physical (maximum or minimum temperature thresholds), the path can be
optimized by means of a gradient descent method. In the steady case, our work is related to various interface
optimization problems, as [44] for imperfect interfaces in heat transfers, [7] for crack propagation, [2, 5, 43]
for material interfaces. Note, however, that in our model the line is not an interface but just the support of
a source term, which is a simpler problem. Our numerical results match physical intuition and validate the
algorithm, highlighting the non-uniqueness of the minimum and thus the non-convexity of the optimization
problem. The steady state model can be seen as a toy model, far from reality, although it may make sense for
electron beam processes where the beam travels much faster than for a laser. However, it is computationally
cheap and allows for quite a fast testing of several technical ingredients. It is thus a convenient first step to get
insight before adressing the true unsteady problem.

Section 4 focuses on the more realistic unsteady model. Shape optimization theories [3, 25] are not fully
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adapted to this problem and they must be complemented by optimal control ideas: the path is now characterized
by its tangent direction and the optimization variable is the angle between this tangent and the horizontal
axis. The control variable is the path angle and the controlled state is the temperature, solution of the heat
equation. Therefore, there is a coupling between a Partial Differential Equation (PDE) for the temperature and
an Ordinary Differential Equation (ODE) for the path evolution. If there exist well developed theories about
both the optimal control of ODE [23, 51] and optimal control of PDE [26, 31], not so many works focus on
mixing both [17, 29, 56, 55]. This coupling leads to the introduction of two adjoint states, one for the PDE
and another one for the ODE, which allow us to compute derivatives of objective functions and to propose a
gradient-based optimization algorithm. Section 5 discusses the numerical results of this method, enlightening
its assets and drawbacks. Finally, Section 6 gives concluding remarks and perspectives.

2 Model presentation of the powder bed fusion process
Modeling the powder bed fusion process is a research problem in its own. Indeed, from the energy absorp-
tion by the powder to the liquid melting pool and finally the solidification, many physical and mechanical
phenomena occur. The works [19, 37] give a large overview of these different issues. Two distinct model-
ing approaches could be considered. The first one consists of a high-fidelity model, with a microscopic and
complete physical description of the process. It includes phase changes, melting pools and a gaseous phase.
The second approach is macroscopic and relies on many simplifications which make it economical in terms
of computational cost for simulation. Here, because an optimization loop is involved, we follow the second
approach.

2.1 Two dimensional thermal model
The objective of this work is to optimize the scanning paths to improve the quality of the final part, while
keeping a relevant manufacturing time. Focusing on the macroscopic scale, this amounts to controlling the
thermal expansion and the thermally induced residual stresses. The latter requires the resolution of a me-
chanical system, which is costly and complicated. However, residual stresses are mainly due to the spatial
temperature gradient and to thermal expansion [19, 38, 53]. To simplify the resolution, we thus focus on the
thermal problem and thermal expansion only. Considering a full thermo-mechanical problem is part of our
perspectives.

We consider one layer at a time and, assuming a vertical build direction ez, the working domain Σ is chosen
as a two dimensional horizontal cross-section of the build chamber. At the initial time t0 = 0, the domain is
maintained at a fixed temperature Tinit . A source q is switched on and moved along a trajectory Γ until the
final time tF > 0. Conduction only is taken into account, forgetting about convection and radiation. Because
the working domain is surrounded by low conductivity powder, its boundary ∂Σ is assumed to be adiabatic.
Even if the powder can melt and solidify, the density ρ, the heat capacity c and the conductivity λ are assumed
to be constant in time and space. Removing this assumption is part of our perspectives. Finally, because of
the restriction to space dimension two, the heat conduction along the vertical axis must be considered and a
corrective term (similar to a heat sink) is added to the model. The resulting heat equation is given by (1), with
a coefficient β > 0, defined in Appendix 8, and L a characteristic length related to the vertical direction. More
details about this model can be found in Appendix 8. The temperature T is the solution of:

ρc∂tT (t,x)−∇ · (λ∇T (t,x))+
β

L
(T (t,x)−Tinit) =

q(t,x)
L

in(0, tF)×Σ,

λ∂nT (t,x) = 0 on(0, tF)×∂Σ,
T (0,x) = Tinit(x) inΣ.

(1)

To ease the notations, in the following we set ρ̃ = ρc, β̃ = β

L , q̃ = q
L .

Following most macroscopic models [19, 37, 53], the source is considered to be a Gaussian beam, given
by (2), with P > 0 an effective power and rC > 0, a parameter related to the focusing of the beam:

q̃(t,x) =
P
L

exp
(
− 1

r2
c

r(x, t)2
)
, 0≤ t ≤ tF . (2)

The quantity r(x, t)≥ 0 is the distance of the point x to the source center u(t) which is defined as the solution
of the following ordinary differential equation, defining the trajectory:{

u̇(t) =V τ(t), 0≤ t ≤ tF ,
u(0) = ũ, (3)

with constant velocity V > 0 and tangent unit vector τ(t). The initial condition ũ is the starting point of the
path. The family of points u(t) for 0≤ t ≤ tF defines a curve (the scanning path) which is called Γ.
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2.2 Objective and constraints
In this work, the source is assumed to move at constant speed V and it is not allowed to be switched off and
on during the building process. Therefore, the length of the path is proportional to the final time tF . There is
no reason to fix the path length. Therefore, both the path Γ and the final time tF are optimization variables.
To simplify, in the following, by a slight abuse of language, we shall say that Γ varies when actually both the
path itself and the final time tF vary. Let us introduce the various constraints and objective functions used in
the sequel.

• Control of the solid region. Assume that ΣS ⊂ Σ is the part of the layer that must solidify. Then,
∀x ∈ ΣS, there must be a time t ∈ (0, tF) (depending on x) such that the temperature is above the fusion
temperature, T (t,x)> Tφ. Therefore, the following constraint

Cφ(tF ,T ) =
∫

ΣS

[(
Tφ− max

t∈(0,tF )
T (t,x)

)+
]2

dx,

with the notation (.)+ = max(0, .), has to vanish to ensure that the desired solid region is built with a
given path Γ. In the following, we need to differentiate this function with respect to tF and T . Since the
maximum function in time is not differentiable, it is approximated by a Lp-norm in time. An effective
version of the constraint is given by:

Cφ(tF ,T ) =
∫

Σs

[(
Tφ−Np(tF ,T )(x)

)+]2
dx, Np(tF ,T )(x) =

(
1
tF

∫ tF

0
|T (t,x)]pdt

)1/p

(4)

• Control of the maximal temperature. If the region ΣS must solidify, the rest of the working domain
should not. This can be controlled by setting a maximum temperature TM,Σ\Σs in the region Σ\Σs, such
that TM,Σ\Σs < Tφ. Moreover, recall that thermal stresses are typically computed like σth =C (T −Tinit)I2
with C a material parameter (related to thermal expansion), Tinit the initial temperature and I2 the identity
matrix. Hence, to minimize the thermal stresses induced by the source, one can impose a maximum
temperature TM,Σs > Tφ in the region Σs. The maximum temperature TM is thus space dependent, defined
by:

TM(x) =
{

TM,Σs x ∈ Σs,
TM,Σ\Σs x ∈ Σ\Σs.

(5)

This maximum temperature should be imposed everywhere and at any time. Of course, the choice of
the precise numerical values of TM has a strong influence on the resulting optimized paths. Converting
this pointwise constraint into an integral one, the maximum temperature constraint is then:

CM(tF ,T ) =
∫

Σ

∫ tF

0

[
(T (t,x)−TM(x))+

]2
dxdt (6)

Indeed, the choice of these maximum temperature inside the Σs (TM,Σs ) and outside (TM,Σ\Σs ) will impact
the results. The temperature TM,Σs must be chosen related to the physics. The temperature TM,Σ\Σs should
be taken equal to Tφ. However, to make sure that the powder will not melt out of Σs, we could also choose
TM,Σ\Σs < Tφ.

• Control of the execution time tF or equivalently of the path length LF (since the velocity is constant):

LF =V tF .

Remark 1. The function z+ = max(0,z) is not differentiable at 0. However, its square z→ (z+)2 is indeed
differentiable at 0 and is thus amenable to gradient-based optimization. The square function has been chosen
here but it could have been any smooth increasing function f , positive on R+ such that f (0) = f ′(0) = 0.
Other choices are possible for replacing a pointwise constraint with an integral one.

Remark 2. In our model, the phase change is instantaneous. This is inaccurate since, in the reality, the
temperature must stand above the change of phase temperature for a small amount of time δtφ, which would
need to be modeled. This issue could be addressed in a simpler way by stating an effective change of state
temperature Tφ,e f f such that Tφ,e f f > Tφ. Thus, since the temperature varies continuously in time, it would
remain above Tφ a bit longer.

Recalling that the notation Γ denotes both the scanning path and the final time, the optimization problem
is finally:

min
Γ

J (Γ) = LF such that
Cφ =CM = 0,
T solution of (1). (7)
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3 Steady case: shape optimization of the path
To simplify further the analysis, we consider a toy model, obtained by assuming a steady state configuration.
This model is not realistic but it gives, at a very low computational cost, some insights on how to consider the
optimization problem as well as some intuition on the results.

3.1 Steady case settings

3.1.1 Model

In this time-independent model, the source is no longer moving. Instead, the energy is applied on the whole
trajectory Γ as a hot thread, which would be the case in electron beam powder bed fusion with regard to
scanning speeds. The steady source is hence given by Q = PQ1Γ, with PQ a constant linear power divided by a
characteristic path length and 1Γ the Dirac mass for the path Γ (the source is carried by a line and its thickness
is neglected). The steady case heat equation reads: −∇ · (λ∇T (x))+ β̃(T (x)−Tinit) = Q(x) = PQ1Γ(x) inΣ,

λ∂nT (x) = 0 on∂Σ,
T (0,x) = Tinit(x) inΣ.

(8)

Equivalently, the temperature T ∈ H1(Σ) is the solution of the variational formulation: ∀φ ∈ H1(Σ),∫
Σ

(
λ∇T ·∇φ+ β̃(T −Tinit)φ

)
dx−

∫
Γ

PQφds = 0. (9)

The corresponding steady objective function and constraints are:

• control of the solid region: the phase-change constraint becomes ∀x ∈ ΣS, T (x)≥Tφ resulting in

Cφ(T ) =
∫

ΣS

[(
Tφ−T (x)

)+]2
dx.

• control of the maximum temperature: the constraint becomes ∀x ∈ Σ, T (x)≤TM(x), resulting in:

CM(T ) =
∫

Σ

[
(T (x)−TM(x))+

]2
dx.

• control of the path length: the final time does not mean much while considering the steady state. The
length of the path is considered instead, given by:

LF =
∫

Γ

ds.

3.1.2 Optimization problem

The steady state model leads to the statement of an optimization problem. The path length is minimized under
the phase-change and maximal temperature constraints. Since these two constraints are similar, namely they
are non-negative quantities which must vanish, they are gathered in a single constraint C, with positive weights
lφ, lM > 0. The optimization problem boils down to:

min
Γ

LF =
∫

Γ

ds, such that

{
C(T ) = lφCφ(T )+ lMCM(T ) = 0,

T solution of (8).
(10)

3.2 Optimization tools
To solve the optimization problem (10), a gradient descent algorithm shall be used, hichhich requires comput-
ing derivatives of the objective function and of the constraints with respect to the line Γ.
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3.2.1 Path representation: front tracking methods

Along the iterations, the path is modified and the temperature is evaluated. The choice of both the meshing
process and the line representation are crucial since they impact the computational time and the accuracy.
Discretizing a line or an interface is a very classical problem in many fields of science and engineering.
Following [52], our method is based on two different meshes: one, called ”(physical) mesh”, for the heat
equation in the working domain and one for the path Γ, referred to as “discretized path”. The mesh is kept
fixed whereas the discretized path (and especially its nodes) moves along the optimization iterations (Figure 2).
This method creates oriented trajectories very easy to handle. In the present work, the path is discretized using
segments and is thus represented by a broken line (Figure 1). This representation is very convenient because it
keeps the mesh fixed, thereby considerably reducing the computational costs. Moreover, the discretized path
allows for a full control of the line topology (no uncontrolled changes in the number of connected components).
However, there are two technical issues to be discussed [52].

Figure 1: Front tracking meshes Figure 2: Advection of the discretized path

First issue, related to the path description: at each iteration, the path discretization’s nodes are advected,
modifying the length of each element. To keep a relevant representation, the discretization must be adapted
[36, 52]. The resulting line is re-discretized to control each segment’s size of the discretized path, removing
and adding points to ensure each segment length to be in the range [dlower,dupper]: if the length of a segment
is above the upper bound, the middle point is added to the discretization (points added equidistantly here but
other means, such as Legendre methods, could be used) whereas for an element size under the lower bound,
one of the segment end points is simply removed. These bounds are chosen so that dupper = 2dlower = 0.7∆x,
with ∆x the characteristic physical mesh size.

During the optimization process, the tangent, normal and curvature of the line at each node point are
required. Yet, considering a broken line, approximations are required. Consider a steady path Γ. Following
the broken line representation with N nodes, this path is fully described by the oriented sequence of points
(u0, ...,uN−1), or equivalently by the starting point u0, a sequence of length (l0, ..., lN−2) and an oriented
sequence of tangent vectors (τ0, ...,τN−2) (τi = (ui+1−ui)/li). The normal to a segment nsi is naturally defined
as the normalized vector so that the basis (τi,nsi) is orthonormal and positively oriented. The normal to a point,
nui , is then defined by the average between the normals to both neighboring segments, weighted by their length.
The normals to the starting and last points are respectively given by the normals to the first and last segments.
As for the curvature, different approaches (Gauss curvature, osculating circles and using the length variations)
giving similar results have been tested and Gauss curvature has been chosen [10, 45]. Let αi be the angle
between the horizontal and the vector τi and let ψi be the angle between the vectors τi and τi+1 (see Figure 3).
Then, ∀i ∈ 1, ..,N−2,

ψi = αi−αi−1 =
∫ ui

ui−1

κ(s)ds.

Choosing a linear interpolation for the curvature (for the segment i, κ(t) = (1− t)κi−1 + tκi), one gets that,
∀i ∈ 1, ..,N−2,

ψi =
∫ 1

0
(1− t)κi−1 + tκidt = li

κi−1 +κi

2

Finally, from the closing property of curvature,
∫

κdl = ∑
N−2
1 ψi, one can deduce the curvature ∀i ∈ 1, ..,N−2

(see [10])

κi =
2

li + li−1
ψi.
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Figure 3: Computation of a discrete curvature

Second issue, interpolation between the physical mesh and the path discretization Both meshes hold
information, that must be shared with each other.

• heat source: the path, defined by its discretization, carries the heat source. For each cell of the physical
mesh, the length of the path is computed. To obtain a source term in the cell, this length is divided by
the cell area and multiplied by the source power P, which yields a P0−source function (Figure 4). The
thickness of the source’s carrier should thus not exceed one element.

• derivative and physical quantities: the advection velocity, (see Section 3.2.2) is determined from physical
quantities, defined on the physical mesh. The P1−functions are first turned into P0−ones, by assigning
to each cell of the physical mesh the average of the values at its nodes. These P0−functions are used at
the nodal values of the path.

(a) Source line (b) Source, P0−function

Figure 4: Discretized path (left) and corresponding heat source (right)

3.2.2 Advection method: shape optimization of lines

A representation of the line having been chosen, the optimization problem can be solved, using a descent
gradient method. The line nodes are iteratively moved, improving the objective function. The remaining
task is to characterize this variation, determining an advection velocity at each node. This is done by using
Hadamard method of shape differentiation [25, 41].

Consider a smooth reference set Γ0. Any admissible shape Γ is assumed to be related to the reference
shape through a perturbation θ such that:

Γ = {x+θ(x) such that x ∈ Γ0}.

To have smooth enough shape deformations, the vector field is taken in W 1,∞
(
R2,R2

)
(the space of Lipschitz

functions). A definition of shape differentiability can now be stated [3, 25].

Definition 1. A functional J : R2 → R is said to be shape differentiable at Γ0 ⊂ R2 if the application θ→
J ((Id +θ)(Γ0)) is Fréchet-differentiable at 0 in the Banach space W 1,∞

(
R2,R2

)
, i.e.

J ((Id +θ)(Γ0)) = J(Γ0)+DJ(Γ0)(θ)+o(θ) with

lim
θ→0

|o(θ)|
‖θ‖

= 0,
(11)

where DJ(Γ0) is a continuous linear form on W 1,∞
(
R2,R2

)
.
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Lemma 1. Let Σ be a bounded open set of R2, and Γ0 ⊂ Σ an oriented and Lipschitz curve with end points
A and B. Its unit tangent vector τ is defined with respect to its orientation, and its normal n is set so that, at
each point, the couple (τ,n) is a direct orthonormal basis of R2. Let J be a differentiable function at Γ0 and
θ ∈W 1,∞

(
R2,R2

)
. Then [25, 41], there exist a function vn : Γ0→ R and real numbers vτ(A),vτ(B) such that

DJ(Γ0)(θ) =
∫

Γ0

vn(s)θ(s) ·n(s)ds+ vτ(B)θ(B) · τ(B)+ vτ(A)θ(A) · τ(A). (12)

For f ∈W 2,1
(
R2
)
, consider

J(Γ) =
∫

Γ

f (s)ds .

Then, J is differentiable at Γ0 and, denoting by κ the curvature of Γ0, for all θ ∈W 1,∞
(
R2,R2

)
,

DJ(Γ0)(θ) =
∫

Γ0

[∂n f +κ f ] (s)θ(s) ·n(s)ds+ f (B)θ(B) · τ(B)− f (A)θ(A) · τ(A). (13)

From the very general formulation given by (12), an advection velocity must be chosen. In other words, a
vector field θ is looked for such that DJ(Γ0)(θ)≤ 0. Such a θ is a descent direction for the minimization of J.
Ignoring smoothness issues, an obvious simple choice is:{

∀s ∈ Γ0 \A,B, θ(s) =−vn(s)n(s),
θ(A) =−vτ(A)τ(A)− vn(A)n(A), θ(B) =−vτ(B)τ(B)− vn(B)n(B).

(14)

It is not clear that (14) defines a smooth vector field θ ∈W 1,∞
(
R2,R2

)
. However, we shall see in Subsection

3.3.3 that another choice of the descent direction θ is possible by introducing a different scalar product for
identifying the linear form DJ(Γ0)(θ).

3.3 Application
The path is now discretized following section 3.2.1 and a shape derivative is computed to allow a gradient
descent optimization.

3.3.1 Dealing with the constraints, the Augmented Lagrangian Method

To include the equality constraint (C = 0, see (10)) in the optimization process, an augmented Lagrangian
method is applied. From [42], a penalized function J is introduced and the optimization problem becomes:

min
Γ

J = LF −λlagC+
µ
2

C2, such that T is a solution of (8). (15)

This formulation corresponds to the Lagrangian function of problem (10) in which the penalization term
µ
2C2 has been added to the objective function (µ = 1 > 0 fixed). An algorithm alternatively minimizing this
Lagrangian function with respect to Γ and maximizing with respect to λlag would, at convergence, lead to
a result satisfying the constraints. The minimization with respect to Γ is detailed in the following. The
maximization of λlag is easier: at each iteration n, (−Cn) is a maximizing direction and the update (16) yields
an increase of the Lagrangian function. In all numerical applications, the multiplier λlag is initialized to 1.

λ
n+1
lag = λ

n
lag−µCn. (16)

3.3.2 Theoretical computation of the shape derivative

Proposition 1. The shape derivative of the objective function (15) is, ∀θ ∈W 1,∞
(
R2,R2

)
:

DJ(Γ)(θ) =
∫

Γ

vn(s)θ(s)n(s)ds+ vτ(B)θ(B)τ(B)+ vτ(A)θ(A)τ(A), (17)

where 
∀s ∈ Γ, vn(s) =−PQ

∂p
∂n

(s)+(1−PQ p(s))κ(s),

vτ(B) = 1−PQ p(B),
vτ(A) =−(1−PQ p(A)) ,

(18)

with 1Σs the characteristic function of Σs and the adjoint p ∈ H1(Σ), solution of{
−∇ · (λ∇p)+ β̃p =

(
−λlag +µC

)(
2lφ
(
Tφ−T

)+
1Σs −2lM (T −TM)+

)
inΣ

λ∂n p = 0 on∂Σ.
(19)
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Proof. To compute the shape derivative of this problem, from Céa’s method [6, 15], a Lagrangian function
L : Uad×H1(Σ)×H1(Σ) is introduced, where Uad is the space of admissible shapes Γ:

L(Γ,Φ,q) =LF(Γ)−λlagC(Γ,Φ)+
µ
2

C(Γ,Φ)2

+
∫

Σ

(
λ∇Φ ·∇q+ β̃(Φ−Tinit)q

)
dx−

∫
Γ

PQqds.

where C(Γ,Φ) is the constraint (10) computed for a field Φ instead of T , which of course depends on Γ.
Differentiating this Lagrangian with respect to Φ, ∀ψ ∈ H1(Σ),

∂L
∂Φ

(Γ,T,q)(ψ) =
(
−λlag +µC

)[
−2lφ

∫
Σs

(
Tφ−T

)+ dx+2lM
∫

Σ

(T −TM)+
]

ψdx+
∫

Σ

λ∇q ·∇ψ+ β̃qψdx

=
(
−λlag +µC

)∫
Σ

[
−2lφ

(
Tφ−T

)+
1Σs +2lM (T −TM)+

]
ψdx+

∫
Σ

(
−∇ · (λ∇q)+ β̃q

)
ψdx

−
∫

∂Σ

λ∂nqψds.

Setting to 0 the evaluation of this derivative at Φ = T (solution of (8)) amounts to solving the variational
formulation of the adjoint problem given by (19). Moreover, for Φ= T , one gets that, ∀q∈H1(Σ), L(Γ,T,q)=
J(Γ). Thus, ∀θ ∈W 1,∞

(
Γ,R2

)
, ∀q ∈ H1(Σ):

DJ(Γ)(θ) =
∂L
∂Γ

(Γ,T,q)(θ)+<
∂L
∂Φ

(Γ,T,q),
∂T
∂Γ

(θ)> .

Evaluating this last equation at q= p (the adjoint given by (19)) gives that differentiating the objective function
finally consists in computing the partial derivative with respect to the shape Γ of the Lagrangian function
evaluated at Φ = T and q = p. The conclusion comes finally from Lemma 1.

3.3.3 Regularization on the discretized line

Since a gradient descent method is used, it is necessary to give a Hilbert structure to the space W 1,∞
(
R2,R2

)
.

More precisely, one should find a Hilbert space Θ, with its scalar product < ·, ·>Θ, such that a gradient J′(Γ)
could be determined, ∀θ ∈Θ∩W 1,∞

(
R2,R2

)
, by

DJ(Γ)(θ) =< J′(Γ),θ >Θ (20)

and −J′(Γ) would be a relevant velocity. In Subsection 3.2.2, formula (14) corresponds to the choice of a L2-
scalar product. However, the resulting path could lack smoothness. To regularize the path, an alternative scalar
product is employed, corresponding to the Laplace-Beltrami flow [13]. In such a case, with J′(Γ) = J′(Γ)ττ+
J′(Γ)nn ∈ H1(Γ,R2) (τ and n respectively the tangent and normal to the line) and θ = θττ+θnn ∈ H1(Γ,R2):

< J′(Γ),θ >Θ=
∫

Γ

η
2
∂τJ′(Γ) ·∂τθ+ J′(Γ) ·θdx. (21)

where ∂τθ = (τ ·∇)θ is the tangential derivative along the path and η > 0 is a regularization parameter (of the
order of a few mesh cell sizes, see Section 3.4). Computing the gradient in this context amounts to finding
J′(Γ) such that, ∀W =Wττ+Wnn ∈ H1(Γ,R2)∫

Γ

η
2
∂τJ′(Γ) ·∂τW + J′(Γ) ·Wdx =

∫
Γ

vnn ·Wds+ v(A)τ(A) ·W (A)+ v(B)τ(B) · (B)W (B). (22)

The resulting gradient J′(Γ) may not belong to W 1,∞(Γ,R2) anymore but is regular enough for this application
[6]. The descent direction chosen is then θ =−J′(Γ).

Discretization of the regularization equation This continuous regularization equation has been adapted to
the discretized line using a P1−formulation. Let f a P1−function and g a P0−one. Their integral is given by:

∫
Γ

f (s)ds =
N−1

∑
i=0

li

(
fi + fi+1

2

)
,

∫
Γ

g(s)ds =
N−1

∑
i=0

ligi.
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3.3.4 Step and projection

At each iteration n > 0, the advection velocity V n is determined at each point and the line is updated by:

∀i ∈ 0,N, Pn+1
i =

(
xn+1

i ,yn+1
i
)
= Pn

i +Sn
i V n

i .

The step Sn
i is given by:

Sn
i =

ζn∆x
maxi(‖V n

i ‖)
,

with ζn a coefficient initialized to 1 and updated at each iteration so that, if the objective function decreases
enough, namely J(Γn+1) < toln ∗ J(Γn), ζn+1 = min(1.2∗ζn,1) and else ζn+1 = 0.6 ∗ ζn. After this update,
if some points are outside from the domain Σ they are orthogonally projected back to Σ. The tolerance toln

is an optimization parameter, chosen by the user. Setting it different from 1 allows the objective function for
increasing a bit at some iterations. In numerical applications, this tolerance is set to tol0 = 2 at the beginning
and is multiplied by 0.9 every 50 iterations.

3.4 Numerical results in the steady case

1 initialization of the line;
2 resolution of the heat equation and computation of the objective function and constraints;
3 computation of the derivatives;
4 for each iteration do
5 update of the tolerance;
6 line variation such that Γn+1 = Γn− stepJ′(Γn);
7 resolution of the heat equation, computation of the objective function and constraint;
8 if J(Γn+1)< J(Γn)∗ toln then
9 iteration accepted;

10 Lagrange multiplier λlag updated;
11 step increased ;
12 update of the variables;
13 computation of the derivatives;
14 end
15 else
16 iteration refused;
17 step decreased;
18 end
19 end

Algorithm 1: Iterative algorithm to optimize the steady problem.

This section presents the numerical results for the optimization of Problem (10), using Algorithm 1. For
simplicity, there is no stopping criterion in this algorithm, except a prescribed maximal number of iterations.
Of course, one could add one, based on the optimality criterion. In our case, in case of convergence, the
advection step will get extremely small and, even if not stopped, the algorithm will not modify much the line.

We consider here a working domain Σ = [−10cm,10cm]× [−10cm,10cm], discretized with a triangular
mesh having 12800 elements (the mean length of an element is ∆x = 0.0035). The accuracy of the discretized
path is given by the distance ∆P between two nodes (dlower = 0.35∆x ≤ ∆P ≤ 0.7∆x = dupper). In this sim-
ulation, we set the conductivity λ = 0.25W.m−1K−1, λsol = 15W.m−1K−1 and the phase change temperature
Tφ = 1700K, values corresponding to maraging steel [53]. As for the other values, they have been arbitrarily
chosen to enable steady optimization: ∆Z = 1m, L = 10cm, PQ = 7000W.m−2, Tinit = 500K. The maximum
temperature is TM,Σs = 2000K in the object and TM,Σ\Σs = 1600K outside. The coefficients lφ and lM , from
(10) are both set to 1. Since the problem is fully symmetric with respect to the (Oy)-axis, we consider, in case
of a symmetric initialization, only half of the working domain, adding a sliding constraint on the last point of
the path: the advection velocity at point B is projected on the (Ox)-axis. The finite element computations are
run with Freefem [24] whereas the descent algorithm is run by Python. To solve this problem, 500 iterations
are run on a MacBook laptop equipped with 2,3 GHz Intel Core i5 and a RAM of 16GB. For the example
presented on Figure 6, the optimization process took around 3 minutes, with a mean time of 0.3s (half the
domain) for each iteration. No specific efforts for optimizing the Python optimization code have been made.
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3.4.1 Manufacturing the whole working domain

The first test consists in building the whole working domain Σ. Thus, ∀x ∈ Σ,TM(x) = TM,Σs . Three different
initializations have been tested: zigzag, contour and spiral. The results are presented in Figures 6, 7, 8. A
reference result is given in Figure 5. It corresponds to the smallest zigzag path with equidistant horizontal lines,
centered horizontally and vertically, with its horizontal line equal to 0.16cm, such that the phase constraint is
reduced to 0. To each figure is associated the path length and the constraint C given by (10). The final
numerical normalized values are given by Table 1 with:

N(Cφ) =

√
Cφ

|Σ|T 2
φ

, N(CM) =

√
CM

|Σ|T 2
M,ΣS

.

The values correspond to the full domain Σ (and not only half of it).

Figure 5: Temperature distribution for the non optimized reference path, steady case
L = 1.14m, C = 346m2K2

Case Length (m) N(Cφ) N(CM)
Reference (non optimized) 1.14 1.97e−5 3.29e−2

Zigzag initialization 1.00 3.63e−5 2.50e−5
Contour initialization 1.00 2.20e−4 2.92e−4
Spiral initialization 1.02 1.67e−9 8.66e−7

Table 1: Comparison of the final optimized results

These first results validate the algorithm with a real improvement of the objective functions and satisfaction
of the constraints. Besides this validation, some points must be highlighted. The resulting path differs from one
initialization to the other. Indeed, the optimization problem is not convex and there exist local minima. The
technique used here is based on small variations which explains that, depending on the initialization, different
solutions are found. The final quantities, however, are quite similar for each case. The result corresponding
to a spiral initialization satisfies better the constraints than the others. However, its length is greater. This
difference may be a result of the symmetry process. The spiral initialization is indeed not symmetric and,
unlike the zigzag and contour initializations test cases, the algorithm has been run on the whole working
domain.

Finally, let us focus on the importance of the regularization parameter η. The algorithm has been run
for three different tests: η = 5dlower, η = 15dlower, η = 20dlower (recall that dlower = 0.35∆x). The results,
presented by Table 2 and Figure 9, show that this choice of regularization brings different local minima too
(the case η = 15dlower is the same than in Figure 6). The ”regularity” of the final path also differs and adding
more industrial constraints would probably help the designer to elect one.

Case Length (m) N(Cφ) N(CM)
η = 5 0.988 0 0

η = 15 1.00 3.63e−5 2.50e−5
η = 20 0.999 1.49e−3 1.02e−3

Table 2: Comparison of the final optimized results depending on the regularization coefficient, with a zigzag
initialization
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(a) Initial path,
L = 0.790m, C = 1345m2K2

(b) Iteration 50,
L = 0.991m, C = 161m2K2

(c) Iteration 100,
L = 0.993m, C = 4.63e−2m2K2

(d) Iteration 500 (final)
L = 1.00m, C = 6.34e−5m2K2

(e) Evolution of length for half of the
domain

(f) Evolution of Cφ for half of the domain (g) Evolution of CM for half of the domain

Figure 6: Temperature distribution and convergence histories during the optimization process, starting from a
zigzag initialization, steady case, η = 15dlower

3.4.2 Manufacturing a cantilever shape

The area to build, Σs, is now different from the whole working domain Σ. The maximum temperature TM is
thus space dependent. The maximum temperature out of the cantilever shape ΣS is of high importance and
chosen to be favoured. Thus, the maximum temperature constraint is split such that:

CM =CM,Σs +10CM,Σ\Σs ,
CM,Σs =

∫
Σs

[
(T (x)−TM,Σs)

+]2 dx,

CM,Σ\Σs =
∫

Σ\Σs

[(
T (x)−TM,Σ\Σs

)+]2
dx.

Two application cases, with their temperature constraints, are presented on Figures 10 and 11. In these cases,
the mesh is adapted to the cantilever and respectively contains 1097 and 1661 triangles. The mean computa-
tional time for one iteration is reduced to 0.15s (for half the domain).

The results for the first test case (Figure 10) are given by Figures 12 and 13. Here again, symmetry applies
and only one half of the domain is considered. The normalized results are compared in Table 3 with

N(Cφ) =

√
Cφ

VΣs T
2

φ

, N(CM,Σs) =

√
CM,Σs

VΣsT
2

M,ΣS

, N(CM,Σ\Σs) =

√
CM,Σ\Σs

VΣ\ΣsT
2

M,Σ\Σs

.

For this first object, the volume of Σs is VΣs = 2.75e−02m2 and the volume of Σ\Σs is VΣ\Σs = 1.25e−02m2.
The results of the second test case (Figure 11) are given by Figures 14 and 15. Here again, symmetry

applies and only one half of the domain is considered. The normalized results are compared in Table 4, with
VΣs = 2.10e−02m2 and VΣ\Σs = 1.90e−02m2.
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(a) Initial path
L = 0.64m, C = 6537m2K2

(b) Iteration 50
L = 0.931m, C = 2128m2K2

(c) Iteration 100
L = 0.999m, C = 4.99m2K2

(d) Iteration 500 (final)
L = 1.00m, C = 8.78e−3m2K2

(e) Evolution of length for half of the
domain

(f) Evolution of Cφ for half of the domain (g) Evolution of CM for half of the domain

Figure 7: Temperature distribution and convergence histories during the optimization process, starting from a
contour initialization, steady case, η = 15dlower

Case Length (m) N(Cφ) N(CM,Σs) N(CM,Σ\Σs)

Hat 0.941 9.46e−3 8.38e−4 2.70e−3
Contour 0.937 1.29e−2 3.74e−4 3.64e−3

Table 3: Comparison of the final optimized results for the one hole cantilever

Case Length (m) N(Cφ) N(CM,Σs) N(CM,Σ\Σs)

Hat 0.828 5.81e−2 4.44e−3 1.30e−2
Contour 0.843 2.73e−2 0 6.12e−3

Table 4: Comparison of the final results for the three holes cantilever

These two cantilever test cases validate quite well the algorithm. Indeed, the path really adapts to the
constraints given. Different optimized paths appear depending on the initialization. Some of them seem to fit
the constraints whereas others, such as the result presented by Figure 14, obviously do not. However, this result
still corresponds to a local minimum. One should change the optimization parameters or even the augmented
Lagrangian algorithm to solve this difficulty.

4 Unsteady case: optimal control of the path
We now consider the unsteady problem modeled in Section 2 which would be the case in laser based powder
bed fusion. The source is a Gaussian function, defined by (2), with center u(t,x) moving along the oriented
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(a) Initial path
L = 1.47m, C = 20507m2K2

(b) Iteration 50
L = 1.07m, C = 2475m2K2

(c) Iteration 100
L = 1.03m, C = 23.0m2K2

(d) Iteration 500 (final)
L = 1.02m, C = 1.08e−8m2K2

(e) Evolution of length (f) Evolution of Cφ (g) Evolution of CM

Figure 8: Temperature distribution and convergence histories during the optimization process, starting from a
spiral initialization, steady case, η = 15dlower

(a) η = 5dlower (b) η = 15dlower (c) η = 20dlower

Figure 9: Temperature distribution of the final iteration (iteration 500) from a zigzag initialization depending
on the regularization coefficient η

path Γ, satisfying the trajectory equation (3). We aim at constraining the temperature, solution of the heat
equation (1) by controlling the source center and thus the path Γ. The final time tF is also to be determined,
such that tF ∈ [0,TF ] (bounding the final time tF by TF > 0 fixed is an industrial requirement). In the remaining
of this work, we assume that both the scalar velocity V and the power P are fixed. As mentioned in Section
2.2, this means that we cannot switch the source on and off during the process, making the final time be the
manufacturing time.
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Figure 10: One hole cantilever, steady case Figure 11: Three holes cantilever, steady case

(a) Initial path (b) Optimized path

(c) Evolution of length for
half of the domain

(d) Evolution of Cφ for half of
the domain

(e) Evolution of CM,Σs for half
of the domain

(f) Evolution of CM,Σ\Σs for
half of the domain

Figure 12: Initial and final temperature distribution as well as convergence histories, path optimization for the
one hole cantilever from a hat initialization (η = 10dlower)

(a) Initial path (b) Optimized path

(c) Evolution of length for
half of the domain

(d) Evolution of Cφ for half of
the domain

(e) Evolution of CM,Σs for half
of the domain

(f) Evolution of CM,Σ\Σs for
half of the domain

Figure 13: Initial and final temperature distribution as well as convergence histories, path optimization for the
one hole cantilever from a contour initialization (η = 5dlower)
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(a) Initial path (b) Optimized path

(c) Evolution of length for
half of the domain

(d) Evolution of Cφ for half of
the domain

(e) Evolution of CM,Σs for half
of the domain

(f) Evolution of CM,Σ\Σs for
half of the domain

Figure 14: Initial and final temperature distribution as well as convergence histories, path optimization for the
three holes cantilever from a hat initialization (η = 5dlower)

(a) Initial path (b) Optimized path

(c) Evolution of length for
half of the domain

(d) Evolution of Cφ for half of
the domain

(e) Evolution of CM,Σs for half
of the domain

(f) Evolution of CM,Σ\Σs for
half of the domain

Figure 15: Initial and final temperature distribution and convergence histories, path optimization for the three
holes cantilever from a hat initialization (η = 5dlower)

4.1 Continuous optimal control of the path
Unlike the steady case, the unsteady problem not only involves a PDE but interweaves it with the trajectory
equation, an ODE depending on time. This complicates the problem, preventing from using the very conve-
nient shape optimization theory. The approach is thus modified, relying on optimal control methods for mixed
PDE and ODE problems [17, 29, 55, 56] and especially on the approach developed in [56].

4.1.1 Path description

As already mentioned we consider in this case the evolution of the source’s position with respect to time. The
support of the source term is not the whole line anymore but travels along the line. Thus, the path description
is modified: it is characterized by its starting point ũ, its length (or equivalently its final time tF ) and the angle
α(t) between its tangent direction and the horizontal axis (see Figure 16). Thus, in the sequel, the optimization
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variable will be the angle α,the starting point ũ and the final time tF . Another possible choice would be the
position x(t) on the line: this will be investigated in future work (see Section 6).

Figure 16: Continuous path description

In this context, the source point trajectory equation becomes:{
u̇(t) =V τ(α(t)) =V (cosα(t),sinα(t)) , t ∈ (0, tF)
u(0) = ũ.

(23)

4.1.2 Problem definition

We consider the optimization problem (7). The line Γ is now fully described by the angle α ∈ L2((0, tF)),
the starting point ũ ∈ Σ and the final time tF ∈ (0,TF). These three variables constitute the new optimization
parameters.

To deal with the constraints, we transform the optimization problem (7) into an unconstrained optimization
problem, setting a new objective function J such that:

J (tF ,α, ũ) = ltF tF + lφCφ + lMCM (24)

with Cφ and CM defined by (4) and (5) depend on u and T , and where the Lagrange multipliers ltF , lφ, lM are
kept constant during the optimization process (in a future work the Lagrange multipliers will vary, allowing to
treat the original constrained problem (7)). The unconstrained optimization problem is the following:

min
tF∈[0,TF ],α∈A , ũ∈Σ

J (tF ,α, ũ)

such that


α ∈ A = L2((0, tF))
u ∈U = C 0

(
[0, tF ],R2

)
solution of (23),

T ∈ T = L2
(
[0, tF ],H1(Σ)

)
∩C 0

(
[0, tF ],L2(Σ)

)
solution of (1).

(25)

4.1.3 Differentiation of the objective function

In the unsteady case, the descent gradient algorithm is simple since it is merely a classical parametric op-
timization with respect to the angle, the starting point and the final time. However, the computation of the
derivatives is slightly more complex.

Proposition 2. The derivatives of the objective function (24) are:

DαJ(tF ,α, ũ)(δα) =−
∫ tF

0
V τ
′(α(t)) ·w(t)δα(t)dt, (26)

with δα ∈ A a differentiation direction and τ′(α(t)) = (−sinα(t),cosα(t)),

DũJ(tF ,α, ũ)(δũ) =−w(0) ·δũ, (27)

with δũ ∈ R2 a differentiation direction, and

DtF J(tF ,α, ũ) = ltF + lM
∫

Σ

[
(T (tF ,x)−TM)+

]2
dx

+
lφ

tFp

∫
Σs

2
(
Tφ−Np(tF ,T )

)+ Np(tF ,T )1−p (Np(tF ,T )p−T (tF)p)dx.
(28)

In the above formulas, w ∈U is the adjoint for the ODE (23), solution of ẇ(t) =
2
r2

c

∫
Σ

q̃(u(t),x)p(t,x)(u(t)− x)dx t ∈ (0, tF),

w(tF) = 0,
(29)
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with rc parameter related to the beam’s focusing (see (2)) and p ∈ T is the adjoint of the heat equation,
solution of 

−ρ̃∂t p+∇ · (λ∇p)+ β̃p =−2lM (T −TM)+

+
2lφ
tF

(
Tφ−Np(tF ,T )

)+ Np(tF ,T )1−pTp−11Σs

in(0, tF)×Σ

λ∂n p = 0 on(0, tF)×∂Σ

p(tF ,x) = 0 inΣ.

(30)

Proof. As in the steady context, we rely on Cea’s Lagrangian approach to compute the derivatives by using the
adjoint method [15]. Recalling the definition (25) of the spaces A ,U, T , a Lagrangian function L : [0,TF ]×
A×Σ×U×U×T ×T →R, involving the variational formulations of both the heat and trajectory equations,
is introduced:

L (tF ,α, ũ,v,w,Φ, p) = J(tF ,α, ũ)+ L̃(tF ,α, ũ,v,w,Φ, p)

with
L̃ (tF ,α, ũ,v,w,Φ, p) =

∫ tF

0
(v̇−V τ(α(t))) ·w(t)dt +(v(0)− ũ) ·w(0)

+
∫ tF

0

∫
Σ

((
ρ̃∂tΦ+ β̃Φ− β̃Tinit − q̃(v(t))

)
p+λ∇Φ ·∇p

)
dxdt

+
∫

Σ

ρ̃(0,x)(Φ(0,x)−Tinit(x)) p(0,x)dx.

Then, ∀(tF ,α, ũ) ∈ [0,TF ]×A×Σ, ∀(w, p) ∈U×T , with u ∈U and T ∈ T respectively solutions of (23) and
(1), L̃ (tF ,α, ũ,u,w,T, p) = 0 and thus:

L (tF ,α, ũ,u,w,T, p) = J(tF ,α, ũ).

Differentiating with respect to the control parameters X =(tF ,α, ũ)∈ [0,TF ]×A×Σ, for any differentiation
direction δX ,

dL
dX

(X ,u,w,T, p)(δX) = ∂X L(X ,u,w,T, p)(δX)

+< ∂vL(X ,u,w,T, p),∂X u(δX)>+< ∂ΦL(X ,u,w,T, p),∂X T (δX)> .
(31)

Setting to 0 the derivatives of the Lagragian function L with respect to v and Φ, evaluated at Φ = T (solution
of (1)) and v = u (solution of (23)), comes down to solving the adjoint equations (29) and (30). Particularizing
w to be solution of (29) and p solution of (30), the differentiation finally results in

dX J(X) = ∂X L (X ,u,w,T, p) . (32)

Classically, (31) yields the derivatives with respect to α and ũ. As for the differentiation with respect to the
final time tF , one gets:

∂tF L (tF ,α, ũ,u,w,T, p) = ltF

+ lφ
∫

Σs

−2
(
Tφ−Np(tF ,T )

)+ Np(tF ,T )1−p
(
−1
pt2

F

∫ tF

0
|T |pdt +

1
ptF

T (tF)p
)

dx

+ lM
∫

Σ

[
(T (tF ,x)−TM)+

]2
dx

+(u̇(tF)−V τ(α(tF))) ·w(tF)

+
∫

Σ

((
ρ̃∂tT (tF ,x)+ β̃T (tF ,x)− q̃(u(tF),x)

)
p(tF ,x)+λ∇T (tF ,x) ·∇p(tF ,x)

)
dx.

(33)

It is relevant to notice that for smooth solutions in time, the variational formulation of (1) and (23) are satisfied
at the final time tF . Thus, the two last terms of (33) cancel and we get the result (28).

Remark 3. Proposition 2 gives the derivative of the problem with respect to the control variables, α, ũ, tF .
The partial derivatives with respect to tF ∈ R and ũ ∈ R2 need no post processing since they belong to a finite
dimensional space. However, to get a descent direction for α, the Hilbert structure of A = L2(0, tF) must be
recalled. The gradient ∇αJ is derived from the differential by:

DαJ(α)(δα) =
∫ tF

0
∇αJ(α)δαdt. (34)
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4.2 Discrete optimal control of the path

4.2.1 Discrete path description

As in the steady context (Section 3), a fixed physical mesh and a path described by a broken line (Figure 17)
are chosen. Yet, if this broken line was previously defined by its node points, it is now characterized by the
segments angles with the (Ox)-axis and the starting point ũ of the line (Figure 17). Each segment element
has the same fixed length l. Fixing this size highly simplifies the resolution of the heat equation: its time step
corresponds to the time required by the source to go from one node point to the next one on the discretized
path and thus, ∆t = l/V . The price to pay is that the final time tF is no longer a continuous variable but a
discrete one proportional to the number of segments.

Figure 17: Continuous path (solid line) and its discretization (dotted line)

4.2.2 Discrete problem definition and adjoint equations

Time is thus discretized by a sequence {0 = t0, ..., tN} with t0 the initial time, tN = tF and ∀i ∈ J1,NK, ti =
ti−1 +∆t

(
∆t = l

V

)
. At each time step ti we associate an angle αi = α(ti), a temperature Ti = T (ti), and a

path position ui = u(ti). The heat equation (1) is discretized with respect to time by an implicit Euler scheme
whereas an Euler forward scheme is used for the trajectory equation (23):{ ui−ui−1

∆t
= F (αi) ∀i ∈ {1, ..,N−1}

u0 = ũ .
(35)

and for i ∈ {1, ..,N},
ρ̃

Ti(x)−Ti−1(x)
∆t

−∇ · (λ∇Ti(x))+ β̃(Ti(x)−Tinit) = q̃(ui−1,x,) ∀x ∈ Σ

λ∂nTi(x) = 0 ∀x ∈ ∂Σ

T0(x) = Tinit(x) ∀x ∈ Σ,

(36)

In numerical practice, we first solve the ODE (35) for index i− 1 and then the PDE (36) for i. The differen-
tiation process described in the continuous case (Section 4.1) can be also be applied in the discrete case (see
[5] for a similar approach in shape optimization). The corresponding adjoint equations are backward. The
discrete equations for the heat adjoint p = (p0, ..., pN) are, ∀i ∈ 0, ...N−1:

ρ̃
pi− pi+1

∆t
−∇ · (λ∇pi)+ β̃pi =−2lM (Ti−TM)+

+
2lφ
tF

(
Tφ−Np(tF ,T )

)+ Np(tF ,T )1−pTp−1
i 1Σ

inΣ

λ∂n pi = 0 on∂Σ.
ρ̃

∆t
pN−∇ · (λ∇pN)+ β̃pN =−2lφ (TN−TM)+

+
2lφ
tF

(
Tφ−Np(tF ,T )

)+ Np(tF ,T )1−pT p−1
N

inΣ

λ∂n pN = 0 on∂Σ.

(37)

The discrete equations for the ODE adjoint w = (w0, ..., wN−1) are ∀i ∈ {1, ..,N−1}
wi+1−wi

∆t
=

2
r2

c

∫
Σ

q̃(ui)pi(ui− x)dx,

wN−1

∆t
=− 2

r2
c

∫
Σ

q̃(uN−1)pN(uN−1− x)dx.
(38)
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4.2.3 Update of the angle α

The derivative with respect to α is given by (34), namely

∇αJ(α(t)) =−V τ
′(α(t)) ·w(t).

Upon discretization, the angle is updated by, ∀i ∈ {0, ...,N−2}

α
n+1
i = α

n
i +Sn

αV ∆tτ′(αi)wi+1,

with a positive step Sn
α > 0. The descent gradient algorithm requires small variations to ensure that the opti-

mized function decreases. The angles’s variations must be kept small and the step Sn
α is chosen so that

‖αn+1−α
n‖∞ = α

n
re f .

The reference angle αn
re f is initialized to α0

re f = 3. At each iteration n, if the objective function satisfies
J(αn+1)< toln ∗ J(αn), then,

α
n+1
re f = min

(
α

0
re f ,1.2α

n
re f
)
,

else,
α

n+1
re f = 0.6α

n
re f ,

where toln ≥ 1 is a tolerance which is initialized as 2 and multiplied by 0.9 every 50 iterations.

4.2.4 Update of the starting point ũ

The starting point ũ is updated after the updates of the other points ui. In particular, the average displacement
of those nodes has been computed as

δun =
1

N−1

N−1

∑
i=1
|un+1

i −un
i |,

where |.| is the Euclidian distance in R2. The derivative with respect to ũ is given by (27). At each iteration n,

ũn+1 = ũn +Sn
ũδun w0

‖w0‖
,

with a positive step Sn
ũ > 0. This descent step is updated as follows: at each iteration n, if the objective function

satisfies J(ũn+1)< toln ∗ J(ũn) (see the definition of the tolerance in Section 4.2.3),

Sn+1
ũ = min

(
S0

ũ,1.2Sn
ũ
)
,

else,
Sn+1

ũ = 0.6Sn
ũ.

This update of the starting point is not done at each iteration but only every 3 iterations. Notice that, but for
the starting point of the line, each point moves twice. The first move corresponds to the angle’s update. The
second move corresponds to the starting point’s update, which actually induces a rigid body motion.

4.2.5 Update of the final time tF

Recall that the final time tF is not continuous anymore but a discrete variable linked to the number of segments
of the path. We define a discrete descent step Sn

tF which is a positive integer number initialized at 5. This
number Sn

tF determines the number of segments which are added or removed at the end of the discretized path
for each iteration n. If the time derivative (28) is negative or if any node point of the line is out of the domain
Σ, Sn

tF segments are removed. Else a straight line of Sn
tF segments (of size l) are added. The direction of the

added segments can be chosen within 8 values which are in addition of αn
N−1 (the direction of the last segment

of the path at iteration n): 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦. The best one to optimize the problem is
chosen (see Figure 18). The descent step Sn

tF is updated as follows: if after iteration n, the objective function
satisfies J(ũn+1)< toln ∗ J(ũn) (see the definition of the tolerance in Section 4.2.3), then

Sn+1
tF = min(Sn

tF +1,5),

otherwise,
Sn+1

tF = max(Sn
tF −1,0).

The final time tF is not updated at each iteration but every 5 iterations. When the final time is updated, the
angles and the starting point are kept unchanged.
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(a) Removing a segment if one node point
is out of the working domain

(b) Adding a segment

Figure 18: Final time tF update process

5 Numerical application in the unsteady case

5.1 Algorithmic details
For our numerical simulations corresponding to Problem (25) we use Algorithm 2. As in the steady case, for
simplicity, no stopping criterion has been implemented in this algorithm, except a prescribed maximal number
of iterations.

1 initialization of the line;
2 resolution of the heat equation along the line and computation of the objective function and

constraints;
3 computation of the derivatives;
4 for each iteration do
5 update the tolerance;
6 line variation;
7 resolution of the heat equation, computation of the objective function and constraint;
8 if improvement

(
Jn+1 < tolnJn

)
then

9 iteration accepted;

10 step coefficients increased (αn+1
re f = min

(
α0

re f ,1.2αn
re f

)
, Sn+1

ũ = min
(
§0

tildeu,1.2Sn
ũ
)

if update

of the starting point and Sn+1
tF = min(Sn

tF +1,5) if update of the final time);
11 update of the variables;
12 computation of the derivatives;
13 end
14 else
15 iteration refused;
16 step coefficient refused (αn+1

re f = 0.6αn
re f , Sn+1

ũ = 0.6Sn
ũ if update of the starting point and

Sn+1
tF = max(Sn

tF −1,0) if update of the final time);
17 end
18 end

Algorithm 2: Iterative algorithm to optimize the unsteady problem

We consider the working domain Σ = [−10cm,10cm]× [−10cm,10cm], discretized with a triangular mesh
having 3200 elements (the averaged length of an element is ∆x = 0.0071). The length of each line segment
is 0.5∆x. In this simulation, the conductivity has been chosen as λ = 1000W.m−1 ·K−1, the heat capacity
c = 450J.kg−1.◦C−1, ρ = 8000kg.m−3, the phase change temperature Tφ = 773K, TM,Σs = 3773K, TM,Σ\Σs =

673K and Tinit = 303K. We set ∆Z = 10cm, L = 10cm, P = 76.8 ∗ 109W . The coefficient rc is chosen to
be 0.0001 and the power p = 8. The velocity is V = 1m.s−1. If the values of the density and heat capacity
correspond to real values for solid maraging steel [5, 53], the other values have been chosen to help validating
the algorithm. Considering only realistic values is part of the perspectives described in Section 6. For the
numerical applications, the Lagrange multipliers are set to

ltF = 1, lφ = 1, lM = 1. (39)

With such a choice of Lagrange multipliers and since the numerical values of the constraints are by far larger
than the typical final time, the optimization process mostly tries to satisfy the two constraints Cφ = 0 and
CM = 0 and not so much to minimize the objective function, namely the final time.
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5.2 Manufacturing the whole working domain
The first test case consists in building the whole working domain Σ and thus ∀x ∈ Σ, TM(x) = TM,Σs . Four
different initializations are tested: zigzag, contour, spiral, and straight line. In each case, 1000 iterations are
performed and the path has converged. In each case, two functions are plotted for the first and final iterations.
The left plots represent the integrand of the phase constraint(

Tφ−Np(tF ,T )
)+

,

and the right plots the integrand of the maximum temperature constraint∫ tF

0
(T −TM)+ dt.

In all figures, a larger box than the working domain is plotted so we can see if the path goes away from the
working domain (the working domain corresponds to the colored part). The evolution of the length and the
logarithm of both constraints with respect to iterations are also given. As for the computational time, around
one hour is required to run on a a MacBook laptop equipped with 2,3 GHz Intel Core i5 and a RAM of
16GB for 1000 iterations, giving Figure 19. The computational time depends on the path since the number of
linear problems to solve is twice the number of points constituting the path. Normalized numerical results are
summed up in Table 5 with the following definition of normalized constraints:

N(Cφ) =

√
Cφ

|Σ|T 2
φ

, N(CM) =

√
CM

|Σ|T 2
MV LF

.

Case Length Phase constraint N(Cφ) Max. temperature constraint N(CM)
Zigzag 0.92 3.76e−02 1.81e−03

Contour 0.97 1.48e−03 5.22e−03
Spiral 0.97 3.32e−04 4.14e−04

Straight 0.95 4.90e−03 4.21e−03

Table 5: Results in the unsteady case

Figures 19, 20, 21 and 22 show the path after 1000 iterations. The constraints are almost fully satisfied (see
Table 5). Clearly the path has adapted to the requirements, validating the algorithm. These conclusions lead to
interesting perspectives. At short term, the optimization algorithm could be improved and its parameters better
tuned in order to speed up convergence. Then, the model could be expanded to more realistic constraints, to
three dimensions or to allow for source speed and power optimization.

5.3 Manufacturing a cantilever shape
A final example consists in building two shapes. The first shape, a one hole cantilever, is presented by Figure
10 whereas the second one, a three holes cantilever, is given by Figure 11. In these cases, the maximum
temperature is space dependent and the maximum temperature constraint CM is split into two different ones
such that J(tF ,α, ũ) = tF +Cφ+CM,Σs +CM,Σ\Σs . All the numerical values remain unchanged (see Section 5.1)
but for the conductivity. Indeed, in order to ease the resolution, the conductivity out of the shape has been
lowered to 50W ·m−1 ·K−1 whereas it remains 1000W ·m−1 ·K−1 in the shape. This is for instance the case
when, after the building of some layers, the conductivity changes depending on the phase of the material which
is under. The results correspond to iteration 1000.

In Figures 23 and 24, for the first and final iterations, the left plots represent regions of the working domain
that have solidified (in blue) (

Tφ−Np(tF ,T )
)+

,

whereas the right plots give the maximum temperature constraint within the shape∫ tF

0
(T −TM,Σs)

+ dt.

Table 6 presents the normalized numerical values. The results in the cantilever case corroborate the previous
ones. Indeed, it is clear that the path is adapting to the constraints.
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(a) First iteration, phase constraint,
L = 0.83m, Cφ = 4226K2m2

(b) First iteration, maximum constraint,
L = 0.83m, CM = 346K2m2s

(c) Final iteration, phase constraint,
L = 0.92m, Cφ = 33.7K2m2

(d) Final iteration, maximum constraint,
L = 0.92m, CM = 1.71K2m2s

(e) Evolution of length (f) Evolution of ln(Cφ) (g) Evolution of ln(CM)

Figure 19: Zigzag initialization: integrand of the phase (a, c) and maximum (b, d) constraints for the first and
last iterations and convergence histories (e, f, g)

Case Length N(Cφ) N(CM,Σs) N(CM,Σ\Σs)

One hole cantilever First iteration 0.25 4.82e−01 2.49e−03 1.96e−01
Last iteration 0.65 2.70e−02 4.92e−03 5.90e−02

Three holes cantilever First iteration 0.24 5.04e−01 1.15e−03 4.48e−01
Last iteration 0.78 6.92e−03 3.36e−02 4.87e−01

Table 6: Results for the cantilevers in the unsteady case

6 Conclusions and perspectives
In contrast with the usual approach of pattern based scanning paths, we proposed in this paper a PDE-ODE
optimal control method to optimize the trajectory. Before treating the realistic time-dependent problem, a
toy model was introduced, based on a steady-state regime which yields a computationally cheap algorithm to
test our optimization algorithm. In both cases (steady and unsteady), the numerical results show that large
improvements are obtained by optimization. However, some issues appear. First of all, these problems are not
convex and thus, many (local or global) minima exist. The optimized path depends on both the optimization
parameters and the chosen initialization. In particular, according to the chosen initialization, the optimized path
can be very different. A striking feature, unlike pattern based paths, is that all the proposed optimized paths
have similar performances in terms of length and temperature constraints. An interesting perspective would
be to determine a priori the required path length to then optimize the path keeping its length constant. Second,
the optimized paths are strongly influenced by the numerical values of the physical parameters. Investigating
this dependence in future works is key to the adaptation of the algorithm to more realistic problems.
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(a) First iteration, phase constraint,
L = 0.71m, Cφ = 3131K2m2

(b) First iteration, maximum constraint,
L = 0.71m, CM = 8.74e−2K2m2s

(c) Final iteration, phase constraint,
L = 0.97m, Cφ = 5.27e−2K2m2

(d) Final iteration, maximum constraint,
L = 0.97m, CM = 5.38e−2K2m2s

(e) Evolution of length (f) Evolution of ln(Cφ) (g) Evolution of ln(CM)

Figure 20: Contour initialization: integrand of the phase (a, c) and maximum (b, d) constraints for the first
and last iterations and convergence histories (e, f, g)

Several other perspectives can be considered. Obviously, the physical model could be improved. In par-
ticular, the material characteristics should also depend on time, taking into account the advance of the phase
change. On the other hand, more complex constraints could be considered (anisotropy for example [32]), and
a mechanical state equation could be added to take into account the mechanical behavior of the built part. It
would be very interesting to test this optimization algorithm on a sequence of successive layers to get some
intuition on the evolution of the paths. A further generalisation is to add the velocity magnitude and the source
power as optimization variables. In the present work, the modulus of the velocity is constant, which yields a
proportional link between the path length and the final time. In particular, it implies that the final time is equal
to the manufacturing time. In reality, the path length, the final time and the manufacturing time are all three
different. A model’s modification as well as the power and velocity optimization could lead to more realistic
results.
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(a) First iteration, phase constraint,
L = 0.89m, Cφ = 1052K2m2

(b) First iteration, maximum constraint,
L = 0.89m, CM = 1.56K2m2s

(c) Final iteration, phase constraint,
L = 0.97m, Cφ = 2.63e−03K2m2

(d) Final iteration, maximum constraint,
L = 0.97m, CM = 9.05e−2K2m2s

(e) Evolution of length (f) Evolution of ln(Cφ) (g) Evolution of ln(CM)

Figure 21: Spiral initialization: integrand of the phase (a, c) and maximum (b, d) constraints for the first and
last iterations and convergence histories (e, f, g)
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[3] Grégoire Allaire. Conception Optimale de Structures. Vol. 58. Mathématiques & Applications (Berlin)
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nelle de La Fonction Coût”. In: RAIRO Modélisation Mathématique et Analyse Numérique 20.3 (1986),
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8 Appendix
In this Annex some details are given about the derivation of the thermal model of Subsection 2.1. Let H be
the height of the already built part of the object. The layer being processed corresponds to the coordinate
z = 0 whereas the base plate is at z = −H (each new layer corresponds to z = 0 whereas H increases during
the process). The working box D = Σ× (−H,0) corresponds to the already processed layers (with solid and
powder) and the new layer. We take into account the conduction and the heat source only, and, since the
powder’s conductivity is low, we assume adiabatic boundary conditions (Neumann). The three dimensional
heat equation, based on the scheme presented by Figure 25 is stated by (40) (with ρ the density, c the heat
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capacity, λ the conductivity):
ρ(t,x)c(t,x)∂tT (t,x)−∇ · (λ(t,x)∇T (t,x)) = 0, (t,x) ∈ (0, tF)×D,
λ(t,x)∂nT (t,x) = q(t,x), (t,x) ∈ (0, tF)×∂Dtop,
λ(t,x)∂nT (t,x) = 0, (t,x) ∈ (0, tF)×∂Dside,
T (t,x) = Tini, (t,x) ∈ (0, tF)×∂Dbottom,
T (0,x) = Tini, x ∈ D,

(40)

Figure 25: Three dimensional model

A first step consists in truncating the working domain to focus on the last layer. We consider a new working
domain D̃ with thickness L (0 < L < H and D̃ = Σ× (−L,0)). We assume that, in this new working domain D̃,
the physical parameters ρ, c and λ are constant with respect to time and to the vertical axis. A Fourier boundary
condition, with a transmission coefficient β is set on the bottom boundary such that, ∀(t,x)∈ (0, tF)×∂D̃bottom,

λ∂nT =−β(T (t,x)−Tini) .

This models the heat loss by conduction from the domain D̃ to the domain D\ D̃. The coefficient β measures
this heat transmission and must be related to the conduction at the surface and to a characteristic thickness ∆Z.
We choose β = λ

∆Z . This leads to a modified heat equation:
ρ(t,x)c(t,x)∂tT (t,x)−∇ · (λ(t,x)∇T (t,x)) = 0, (t,x) ∈ (0, tF)× D̃,
λ(t,x)∂nT (t,x) = q(t,x), (t,x) ∈ (0, tF)×∂D̃top,
λ(t,x)∂nT (t,x) = 0, (t,x) ∈ (0, tF)×∂D̃side,
λ∂nT (t,x) =−β(T (t,x)−Tini) , (t,x) ∈ (0, tF)×∂D̃bottom,
T (0,x) = Tini, x ∈ D̃,

(41)

In a second step, we average (41) in the vertical direction in order to deduce a two dimensional model. Whereas
we had x = (X ,Y,Z) and ∇ the three gradients operator in (40), we now consider x′ = (X ,Y ) and ∇′ a plane
gradient operator. The source term, previously applied on the top layer, is now a volumetric source of heat on
the surface Σ. We set ∆′ = ∂2

X + ∂2
Y such that ∆T = ∆′T + ∂2

ZT . An integration along the (Oz)-axis, between
(−L) and 0 gives:∫ 0

−L
ρc∂tT +∇

′ ·
(
λ∇
′T
)

dZ = ρc∂t

(∫ 0

−L
T dz

)
+∇ ·

(
λ∇

(∫ 0

−L
T dz

))
+

∫ 0

−L
λ∂

2
ZT dZ

= ρcL∂t T̃ +L∇
′ ·
(
λ∇
′T̃
)
+λ [∂ZT ]0−L ,

= ρcL∂t T̃ +L∇
′ ·
(
λ∇
′T̃
)
−q+β(T (−L)−Tini) .

(42)

with T̃ = 1
L
∫ 0
−L T dz the temperature averaged along the vertical axis. Finally approximating T (−L) by T̃ and,

dividing the equation by L gives (1).
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